AD9082 [ADI]

MxFE Quad, 16-Bit, 12 GSPS RF DAC and Dual, 12-Bit, 6 GSPS RF ADC;
AD9082
型号: AD9082
厂家: ADI    ADI
描述:

MxFE Quad, 16-Bit, 12 GSPS RF DAC and Dual, 12-Bit, 6 GSPS RF ADC

文件: 总33页 (文件大小:717K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MxFE Quad, 16-Bit, 12 GSPS RF DAC  
and Dual, 12-Bit, 6 GSPS RF ADC  
AD9082  
Data Sheet  
Auxiliary features  
FEATURES  
Fast frequency hopping  
Direct digital synthesis (DDS)  
Flexible reconfigurable common platform design  
4 DACs and 2 ADCs (4D2A)  
Low latency digital loopback mode (ADC to DAC)  
ADC clock driver with selectable divide ratios  
Power amplifier downstream protection circuitry  
On-chip temperature monitoring unit  
Flexible GPIOx pins  
TDD power savings option  
SERDES JESD204B/JESD204C interface, 16 lanes up to 16.22 Gbps  
8 lanes per DACs and ADCs  
Supports single, dual, and quad band  
Maximum DAC/ADC sample rate up to 12 GSPS/6 GSPS  
DAC to ADC sample rate ratios of 1, 2, 3, and 4  
ADC and DAC datapath bypass option  
Analog bandwidth to 8 GHz  
Full-scale output current range, ac coupling: 7 mA to 40 mA  
On-chip PLL with multichip synchronization  
External RFCLK input option  
JESD204B compatible with the maximum 15.5 Gbps lane rate  
JESD204C compatible with the maximum 16.22 Gbps lane rate  
Sample and bit repeat mode for lane rate matching  
Total power consumption: 11.45 W typical  
15 mm × 15 mm, 324-ball BGA with 0.8 mm pitch  
ADC ac performance at 6 GSPS  
Full-scale input voltage: 1.475 V p-p  
Full-scale sine wave input power: 4.4 dBm  
Noise density: −153 dBFS/Hz  
Noise figure: 25.3 dB  
HD2: −65.2 dBFS at 2.7 GHz  
HD3: −70.8 dBFS at 2.7 GHz  
APPLICATIONS  
Wireless communications infrastructure  
Microwave point-to-point, E-band and 5G mmWave  
Broadband communications systems  
DOCSIS 3.1 and 4.0 CMTS  
Phased array radar and electronic warfare  
Electronic test and measurement systems  
Worst other (excluding HD2 and HD3): −68.5 dBFS at 2.7 GHz  
DAC ac performance at 3.7 GHz output  
2-tone IMD3 (−7 dBFS per tone): −78.9 dBc  
NSD, single-tone, fDAC = 12 GSPS: −155.1 dBc/Hz  
SFDR, single-tone, fDAC = 12 GSPS: −70 dBc  
Versatile digital features  
Supports real or complex digital data (8-, 12-, 16-, or 24-bit)  
Selectable interpolation and decimation filters  
Configurable DDC and DUC  
8 fine complex DUCs and 4 coarse complex DUCs  
8 fine complex DDCs and 4 coarse complex DDCs  
48-bit NCO per DUC/DDC  
Option to bypass fine and coarse DUC/DDC  
Programmable 192-tap PFIR filter for receive equalization  
Supports 4 different profile settings loaded via GPIO  
Programable delay per data path  
GENERAL DESCRIPTION  
The mixed signal front-end (MxFE®) is a highly integrated device  
with a 16-bit, 12 GSPS maximum sample rate, RF digital-to-analog  
converter (DAC) core, and 12-bit, 6 GSPS rate, RF analog-to-  
digital converter (ADC) core. The AD9082 supports four  
transmitter channels and two receiver channels. The AD9082  
is well suited for applications requiring both wideband ADCs  
and DACs to process signal(s) having wide instantaneous  
bandwidth. The device features a 16 lane, 16.22 Gbps JESD204C  
or 15.5 Gbps JESD204B data transceiver port, an on-chip clock  
multiplier, and a digital signal processing (DSP) capability  
targeted at either wideband or multiband, direct to RF  
applications. The AD9082 also features a bypass mode that  
allows the full bandwidth capability of the ADC and/or DAC  
cores to bypass the DSP datapaths. The device also features low  
latency loopback and frequency hopping modes targeted at  
phase array radar system and electronic warfare applications.  
Receive AGC support  
Fast detect with low latency for fast AGC control  
Signal monitor for slow AGC control  
Dedicated AGC support pins  
Transmit DPD support  
Fine DUC channel gain control and delay adjust  
Coarse DDC delay adjust for DPD observation path  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2020 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
AD9082  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
DAC AC Specifications................................................................9  
ADC AC Specifications............................................................. 12  
Timing Specifications................................................................ 13  
Absolute Maximum Ratings......................................................... 15  
Reflow Profile ............................................................................. 15  
Thermal Resistance.................................................................... 15  
ESD Caution ............................................................................... 15  
Pin Configuration and Function Descriptions .......................... 16  
Typical Performance Characteristics .......................................... 21  
DAC ............................................................................................. 21  
ADC ............................................................................................. 26  
Theory of Operation ...................................................................... 32  
Outline Dimensions....................................................................... 33  
Ordering Guide .......................................................................... 33  
Applications ...................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications .................................................................................... 4  
Recommended Operating Conditions ...................................... 4  
DC Specifications ......................................................................... 4  
DAC and ADC Sampling Specifications................................... 5  
Power Consumption.................................................................... 6  
Clock Input and Phase-Locked Loop (PLL) Frequency  
Specifications ................................................................................ 6  
Input and Output Data Rates and Signal Bandwidth  
Specifications ................................................................................ 7  
JESD204B and JESD204C Interface Electrical and Speed  
Specifications ................................................................................ 8  
CMOS Pin Specifications............................................................ 9  
REVISION HISTORY  
9/2020—Rev. 0 to Rev. A  
Changes to Figure 1.......................................................................... 3  
Changes to Figure 5........................................................................ 16  
Changes to Table 14....................................................................... 17  
6/2020—Revision 0: Initial Version  
Rev. A | Page 2 of 33  
 
Data Sheet  
AD9082  
FUNCTIONAL BLOCK DIAGRAM  
AD9082  
DAC0P  
FINE DIGITAL  
DELAY  
PA  
PROTECT  
COARSE DIGITAL  
UPCONVERSION  
RAMP  
UP/DOWN  
DAC0  
UPCONVERSION  
ADJUST  
SERDIN0±  
SERDIN1±  
SERDIN2±  
SERDIN3±  
SERDIN4±  
SERDIN5±  
SERDIN6±  
SERDIN7±  
DAC0N  
FINE DIGITAL  
UPCONVERSION  
DELAY  
ADJUST  
DAC1P  
DAC1N  
ISET  
FINE DIGITAL  
DELAY  
PA  
COARSE DIGITAL  
UPCONVERSION  
RAMP  
DAC1  
UPCONVERSION  
ADJUST  
PROTECT  
UP/DOWN  
FINE DIGITAL  
UPCONVERSION  
DELAY  
ADJUST  
DAC  
BIAS  
FINE DIGITAL  
UPCONVERSION  
DELAY  
ADJUST  
DAC2P  
DAC2N  
PA  
PROTECT  
COARSE DIGITAL  
UPCONVERSION  
RAMP  
UP/DOWN  
FINE DIGITAL  
UPCONVERSION  
DELAY  
ADJUST  
DAC2  
DAC3  
FINE DIGITAL  
UPCONVERSION  
DELAY  
ADJUST  
DAC3P  
DAC3N  
PA  
PROTECT  
COARSE DIGITAL  
UPCONVERSION  
RAMP  
UP/DOWN  
FINE DIGITAL  
UPCONVERSION  
DELAY  
ADJUST  
SYNCOUTB0±  
SYNCOUTB1±  
DAC  
CLOCK  
LOOPBACK  
MUX  
VCM0  
COARSE DIGITAL  
DOWNCONVERSION  
FINE DIGITAL  
DOWNCONVERSION  
DELAY  
ADJUST  
SERDOUT0±  
SERDOUT1±  
SERDOUT2±  
SERDOUT3±  
SERDOUT4±  
SERDOUT5±  
SERDOUT6±  
SERDOUT7±  
ADC0P  
ADC0N  
FINE DIGITAL  
DELAY  
DOWNCONVERSION  
ADJUST  
ADC0  
FINE DIGITAL  
DOWNCONVERSION  
DELAY  
ADJUST  
COARSE DIGITAL  
ADCx_FD1  
ADCx_FD2  
ADCx_SMON1  
ADCx_SMON0  
DOWNCONVERSION  
FINE DIGITAL  
DOWNCONVERSION  
DELAY  
ADJUST  
FAST DETECT  
SIGNAL MONITOR  
FINE DIGITAL  
DOWNCONVERSION  
DELAY  
ADJUST  
ADC1P  
ADC1N  
COARSE DIGITAL  
DOWNCONVERSION  
FINE DIGITAL  
DOWNCONVERSION  
DELAY  
ADJUST  
ADC1  
FINE DIGITAL  
DOWNCONVERSION  
DELAY  
ADJUST  
VCM1  
COARSE DIGITAL  
DOWNCONVERSION  
FINE DIGITAL  
DOWNCONVERSION  
DELAY  
ADJUST  
÷1, ÷2, ÷3,  
OR ÷4  
VDD1_NVG  
NVG1_OUT  
VNN1  
TO DAC  
CLOCK  
SYNCINB0±  
SYNCINB1±  
PEAK VALUE  
CLOCK DISTRIBUTION  
AND  
CONTROL LOGIC  
ALIGN  
DETECT  
SYNCRONIZATION  
RXEN0  
RXEN1  
LOGIC  
BVNN1  
BVNN2  
PLL  
TXEN0  
TXEN1  
BVDD3  
MICROPROCESSOR  
GPIO MUX  
SPI  
SYSREF  
CLOCK  
RECEIVER  
CLOCK  
RECEIVER  
CLOCK  
DRIVER  
Figure 1.  
Rev. A | Page 3 of 33  
 
 
AD9082  
Data Sheet  
SPECIFICATIONS  
RECOMMENDED OPERATING CONDITIONS  
Successful DAC calibration is required during the device initialization phase that occurs shortly after power-up to ensure long-term  
reliability of the DAC core circuitry. Refer to UG-1578, the device user guide, for more information on device initialization.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
OPERATING JUNCTION TEMPERATURE (TJ)  
ANALOG SUPPLY VOLTAGE RANGE  
AVDD2, BVDD2, RVDD2  
AVDD1, AVDD1_ADC, CLKVDD1, FVDD1, VDD1_NVG1  
DIGITAL SUPPLY VOLTAGE RANGE  
DVDD1, DVDD1_RT, DCLKVDD1, DAVDD1  
DVDD1P8  
120  
°C  
1.9  
0.95  
2.0  
1.0  
2.1  
1.05  
V
V
0.95  
1.7  
1.0  
1.8  
1.05  
2.1  
V
V
SERIALIZER/DESERIALIZER (SERDES) SUPPLY VOLTAGE RANGE  
SVDD2_PLL  
SVDD1, SVDD1_PLL  
1.9  
0.95  
2.0  
1.0  
2.1  
1.05  
V
V
DC SPECIFICATIONS  
Nominal supplies with DAC output full-scale current (IOUTFS) = 26 mA, unless otherwise noted. For the minimum and maximum values,  
TJ = −40°C to +120°C, and for the typical values, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min Typ  
Max Unit  
DAC RESOLUTION  
ADC RESOLUTION  
DAC ACCURACY  
Gain Error  
Gain Matching  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
ADC ACCURACY  
No Missing Codes  
Offset Error  
16  
12  
Bit  
Bit  
1.5  
0.1  
8.0  
3.5  
%FSR  
%FSR  
LSB  
Shuffling disabled  
Shuffling disabled  
LSB  
Guaranteed  
0.57  
0.26  
5.34  
1.06  
0.32  
1.38  
%FSR  
%FSR  
%FSR  
%FSR  
LSB  
Offset Matching  
Gain Error  
Gain Matching  
DNL  
Dithering enabled  
Dithering enabled  
INL  
LSB  
DAC ANALOG OUTPUTS  
Full-Scale Output Current Range  
AC Coupling  
DACxP and DACxN  
AC coupling, setting resistance (RSET) = 5 kΩ  
Output common-mode voltage (VCM) = 0 V  
VCM = 0.3 V  
7
26  
20  
40  
mA  
mA  
DC Coupling  
Full-Scale Sinewave Output Power with  
AC Coupling1  
Ideal 2:1 balun interface to 50 Ω  
IOUTFS = 26 mA  
IOUTFS = 40 mA  
Common-Mode Output Voltage (VCMOUT  
3.3  
7
0
dBm  
dBm  
V
)
Differential Impedance  
100  
Rev. A | Page 4 of 33  
 
 
 
Data Sheet  
AD9082  
Parameter  
Test Conditions/Comments  
Min Typ  
1.475  
Max Unit  
ADC ANALOG INPUTS  
Differential Input Voltage  
Full-Scale Sine Wave Input Power  
ADCxP and ADCxN  
V p-p  
dBm  
Input power level resulting 0 dBFS tone level on fast  
Fourier transform (FFT)  
4.4  
Common-Mode Input Voltage (VCMIN)  
Differential Input  
Resistance  
Capacitance  
Return Loss  
AC-coupled, equal to voltage at VCMx for ADCx input  
1
V
100  
0.4  
−4.3  
−3.6  
−2.9  
pF  
dB  
dB  
dB  
<2.7 GHz  
2.7 GHz to 3.8 GHz  
3.8 GHz to 5.4 GHz  
CLKINP and CLKINN  
CLOCK INPUTS  
Differential Input Power  
Direct RF Clock  
CLK Synchronization Enabled  
Differential Input Impedance1  
Common-Mode Voltage  
ADC CLOCK OUTPUTS  
0
0
dBm  
dBm  
Ω//pF  
V
100//0.3  
0.5  
AC coupled  
ADCDRVP and ADCDRVN  
Differential Output Voltage Magnitude2 1.5 GHz  
740  
690  
640  
490  
100  
0.5  
mV p-p  
mV p-p  
mV p-p  
mV p-p  
2.0 GHz  
3 GHz  
6 GHz  
Differential Output Resistance  
Common-Mode Voltage  
AC coupled  
V
1 The actual measured full-scale power is frequency dependent due to DAC sinc response, impedance mismatch loss, and balun insertion loss.  
2 Measured with differential 100 Ω load and less than 2 mm of printed circuit board (PCB) trace from package ball.  
DAC AND ADC SAMPLING SPECIFICATIONS  
Nominal supplies. For the minimum and maximum values, TJ = −40°C to +120°C and 5% of nominal supply. For the typical values, TA  
= 25°C, unless otherwise noted.  
Table 3.  
Parameter  
DAC UPDATE RATE1  
Minimum  
Maximum  
ADC SAMPLE RATE1  
Minimum  
Maximum  
Aperture Jitter2  
Min  
12  
6
Typ  
Max  
Unit  
2.9  
GSPS  
GSPS  
1.45  
GSPS  
GSPS  
fs rms  
65  
1 Pertains to the update rate of the DAC and ADC cores independent of datapath and JESD mode configuration.  
2 Measured using a signal-to-noise ratio (SNR) degradation method with the DAC disabled, clock divider = 1, ADC frequency (fADC) = 6 GSPS, and input frequency (fIN) = 5.55 GHz.  
Rev. A | Page 5 of 33  
 
AD9082  
Data Sheet  
POWER CONSUMPTION  
Typical at nominal supplies and maximum at 5% supplies. DAC datapath with a complex I/Q data rate frequency (fIQ_DATA) = 375 MSPS and  
DAC frequency (fDAC) of 12 GSPS with interpolate by 32× with JRx mode of 16B (L = 8, M = 16). ADC datapath with fIQ_DATA = 375 MSPS and  
fADC of 6 GSPS with decimate by 16× with JTx mode of 17B (L = 8, M = 16). For the minimum and maximum values, TJ = −40°C to +120°C.  
For the typical values, TA = 25°C, unless otherwise noted.  
See the UG-1578 user guide for further information on the JESDB or JESDC mode configurations and detailed settings referred to  
throughout this data sheet.  
Table 4.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
CURRENTS  
AVDD2 (IAVDD2  
)
2.0 V supply  
2.0 V supply  
2.0 V supply  
2.0 V supply total power dissipation  
1.0 V supply  
1.0 V supply  
1.0 V supply  
1.0 V supply  
1.0 V supply  
1.0 V supply  
1.0 V supply  
1.0 V supply  
1.0 V supply  
1.0 V supply  
1.0 V supply total power dissipation  
1.8 V supply  
190  
292  
44  
1.05  
43  
1541  
1700  
96  
72.5  
290  
985  
3555  
461  
1626  
10.4  
6.8  
BVDD2 (IBVDD2) + RVDD2 (IRVDD2  
AVDD2_PLL (IAVDD2__PLL) + SVDD2_PLL (ISVDD2__PLL  
Power Dissipation for 2 V Supplies  
PLLCLKVDD1 (IPLLCLKVDD1  
AVDD1 (IAVDD1) + DCLKVDD1(IDCLKVDD1  
AVDD1_ADC (IAVDD1_ADC  
CLKVDD1 (ICLKVDD1  
FVDD1 (IFVDD1  
VDD1_NVG (IVDD1_NVG  
DAVDD1 (IDAVDD1  
DVDD1 (IDVDD1  
DVDD1_RT (IDVDD1_RT  
)
mA  
mA  
W
)
)
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
W
)
)
)
)
)
)
)
)
SVDD1 (ISVDD1) + SVDD1_PLL (ISVDD1_PLL  
Power Dissipation for 1 V Supplies  
DVDD1P8 (IDVDD1P8  
)
)
mA  
W
Total Power Dissipation  
Total power dissipation of 2 and 1 V supplies  
11.45  
CLOCK INPUT AND PHASE-LOCKED LOOP (PLL) FREQUENCY SPECIFICATIONS  
For the minimum and maximum values, TJ = −40°C to +120°C and 5% of nominal supply, unless otherwise noted.  
Table 5.  
Parameter  
Test Conditions/Comments  
Min Typ Max  
Unit  
PLL VOLTAGE CONTROLLED OSCILLATOR (VCO) FREQUENCY RANGES  
VCO Output  
Divide by 1  
Divide by 2  
Divide by 4  
6
3
1.5  
25  
12  
6
3
GSPS  
GSPS  
GSPS  
MHz  
PHASE FREQUENCY DETECT INPUT FREQUENCY RANGES  
750  
CLOCK INPUTS (CLKINP, CLKINN) FREQUENCY RANGES  
PLL Off  
PLL On  
1.45  
25  
50  
75  
100  
12  
750  
1500 MHz  
2250 MHz  
3000 MHz  
GHz  
MHz  
M divider set to divide by 1  
M divider set to divide by 2  
M divider set to divide by 3  
M divider set to divide by 4  
Rev. A | Page 6 of 33  
 
 
Data Sheet  
AD9082  
INPUT AND OUTPUT DATA RATES AND SIGNAL BANDWIDTH SPECIFICATIONS  
For the minimum and maximum values, TJ = −40°C to +120°C and 5% of nominal supply, unless otherwise noted.  
Table 6.  
Parameter1  
Test Conditions/Comments  
Min  
Typ Max  
Unit  
DATA RATE PER INPUT CHANNEL  
Channel datapaths bypassed (1× interpolation),  
single DAC mode only, 16-bit resolution  
(JR mode = 19C)  
12,000 MSPS  
Channel datapaths bypassed (1× interpolation),  
dual DAC or dual ADC, 16-bit resolution  
(JRxmode = 18C and JTx mode = 28C)  
Channel datapaths bypassed (1× interpolation),  
quad DAC mode , 12-bit resolution (JRx mode =  
35C)  
6000  
4000  
MSPS  
MSPS  
1 complex channel enabled, 16-bit resolution  
(JRx mode = 18C and JTx mode = 19C)  
2 complex channels enabled, 12-bit resolution  
(JRx mode = 23C and JTx mode = 27C)  
4 complex channels enabled, 12-bit resolution  
(JRx mode = 24C and JTx mode = 26C)  
8 complex channels enabled, 16-bit resolution  
(JRx mode = 16C and JTx mode = 16C)  
6000  
4000  
2000  
750  
MSPS  
MSPS  
MSPS  
MSPS  
COMPLEX SIGNAL BANDWIDTH PER CHANNEL  
1 complex channel enabled (0.8 × data  
frequency (fDATA))  
4800  
MHz  
2 complex channels enabled (0.8 × fDATA  
4 complex channels enabled (0.8 × fDATA  
8 complex channels enabled (0.8 × fDATA  
)
)
)
3200  
1600  
600  
MHz  
MHz  
MHz  
MAXIMUM NUMERICALLY CONTROLLED OSCILLATOR (NCO)  
CLOCK RATE  
Channel NCO  
Main DAC NCO  
Main ADC NCO  
1500  
12  
6
MHz  
GHz  
GHz  
MAXIMUM NCO SHIFT FREQUENCY RANGE  
Channel NCO  
Channel summing node = 1.5 GHz,  
channel interpolation rate > 1×  
−750  
+750  
MHz  
Main DAC NCO  
Main ADC NCO  
fDAC = 12 GHz, main interpolation rate > 1×  
fADC = 6 GHz, main decimation rate > 1×  
Maximum NCO output frequency × 0.8  
−6  
−3  
+6  
+3  
GHz  
GHz  
MHz  
MAXIMUM FREQUENCY SPACING ACROSS INPUT CHANNELS  
1200  
1 The values listed for these parameters are the maximum possible when considering all JESD204B modes of operation. Some modes are more limiting, based on other  
parameters.  
Rev. A | Page 7 of 33  
 
AD9082  
Data Sheet  
JESD204B AND JESD204C INTERFACE ELECTRICAL AND SPEED SPECIFICATIONS  
Nominal supplies. For the minimum and maximum values, TJ = −40°C to +120°C and 5% of nominal supply, and for the typical values,  
TA = 25°C, unless otherwise noted.  
Table 7.  
Parameter  
Test Conditions/Comments  
Serial lane rate (bit repeat option disabled) 8.11  
168.35  
Min  
Typ  
Max  
15.5  
64.5  
Unit  
Gbps  
ps  
JESD204B SERIAL INTERFACE RATE  
Unit Interval  
JESD204C SERIAL INTERFACE RATE  
Unit Interval  
Serial lane rate (bit repeat option disabled) 8.11  
16.22  
61.65  
Gbps  
ps  
123.3  
JESD204x DATA INPUTS  
Differential Voltage, RVDIFF  
Differential Impedance, ZRDIFF  
Termination Voltage, VTT  
JESD204x DATA OUTPUTS  
Logic Compliance  
Differential Output Voltage  
Differential Termination Impedance  
Rise Time, tR  
SERDINx , where x = 0 to 7  
800  
98  
0.97  
mV p-p  
V
At dc  
AC-coupled  
SERDOUTx , where x = 0 to 7  
JESD204B/JESD204C compliant  
675  
Maximum strength  
mV p-p  
ps  
ps  
80  
108  
18  
18  
120  
20% to 80% into 100 Ω load  
20% to 80% into 100 Ω load  
Fall Time, tF  
SYSREFP AND SYSREFN INPUTS  
Logic Compliance  
LVDS/LVPECL1  
Differential Input Voltage  
Input Common-Mode Voltage Range DC-coupled  
Input Reference, RIN (Differential)  
0.7  
1.9  
2
V p-p  
V
0.675  
100  
1
Input Capacitance (Differential)  
pF  
SYNCxOUTB OUTPUTS2  
Output Differential Voltage, VOD  
Output Offset Voltage, VOS  
SYNCxOUTB+  
Where x = 0 or1  
Driving 100 Ω differential load  
400  
DVDD1P8/2  
Refer to CMOS pin specification  
mV  
V
CMOS output option  
Where x = 0 or1  
SYNCxINB INPUT2  
Logic Compliance  
LVDS  
Differential Input Voltage  
Input Common-Mode Voltage  
RIN (Differential)  
0.7  
0.675  
18  
1.9  
2
mV p-p  
V
kΩ  
DC-coupled  
18  
Input Capacitance (Differential)  
SYNCxINB+ INPUT  
1
1
pF  
CMOS input option  
Refer to CMOS pin specification  
1 LVDS means low voltage differential signaling and LVPECL means low voltage positive/pseudo emitter-coupled logic.  
2 IEEE 1596.3 Standard LVDS compatible.  
Rev. A | Page 8 of 33  
 
Data Sheet  
AD9082  
CMOS PIN SPECIFICATIONS  
Nominal supplies. For the minimum and maximum values, TJ = −40°C to +120°C and DVDD1P8 = 2.0 V 5%, and for the typical values,  
TA = 25°C, unless otherwise noted.  
Table 8.  
Parameter  
Symbol Test Conditions/Comments  
SDIO, SCLK, CSB, RESETB, RXEN0, RXEN1,  
Min  
Typ  
Max  
Unit  
INPUTS  
TXEN0, TXEN1, SYNC0INB , SYNC1INB ,  
and GPIOx  
Logic 1 Voltage  
Logic 0 Voltage  
Input Resistance  
OUTPUTS  
VIH  
VIL  
0.70 × DVDD1P8  
V
V
kΩ  
0.3 × DVDD1P8  
30  
SDIO, SDO, GPIOx, ADCx_FDx, SYNC0INB ,  
and SYNC1INB , 4 mA load  
Logic 1 Voltage  
Logic 0 Voltage  
VOH  
VOL  
DVDD1P8 − 0.45  
1.45  
V
V
0.45  
0.35  
INTERRUPT OUTPUTS  
Logic 1 Voltage  
Logic 0 Voltage  
IRQB_0 and IRQB_1, pull-up resistor of 5 kΩ  
VOH  
VOL  
V
V
DAC AC SPECIFICATIONS  
Nominal supplies with TA = 25°C. fIQ_DATA = 1500 MSPS. Specifications represent the average of all four DAC channels with the DAC  
OUTFS = 26 mA and ADC powered down, unless otherwise noted.  
I
Table 9.  
Parameter  
Test Conditions/Comments  
Min Typ  
Max Unit  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
Single-Tone, fDAC = 12 GSPS  
Output Frequency (fOUT) = 100 MHz  
fOUT = 500 MHz  
−7 dBFS, shuffle enabled  
−70.7  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
−69.2  
−69.7  
−68.5  
−73.1  
−70  
fOUT = 900 MHz  
fOUT = 1900 MHz  
fOUT = 2600 MHz  
fOUT = 3700 MHz  
fOUT = 4500 MHz  
−66.5  
Single-Tone, fDAC = 9 GSPS  
fOUT = 100 MHz  
fOUT = 500 MHz  
fOUT = 900 MHz  
fOUT = 1900 MHz  
fOUT = 2600 MHz  
fOUT = 3700 MHz  
Single-Tone, fDAC = 6 GSPS  
fOUT = 100 MHz  
fOUT = 500 MHz  
−7 dBFS, shuffle enabled  
−7 dBFS, shuffle enabled  
−74.4  
−72.5  
−72.50  
−71.0  
−71.5  
−69.1  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
−77  
dBc  
dBc  
dBc  
dBc  
−75.8  
−75.3  
−75.3  
fOUT = 900 MHz  
fOUT = 1900 MHz  
SINGLE-BAND APPLICATION, BAND 3  
Windowed SFDR Nonharmonics  
In Band  
fDAC =9 GSPS, 500 MHz reference clock  
−7 dBFS, shuffle enabled  
1842.5 MHz 37.5 MHz pass-band region  
1842.5 MHz, 200 MHz pass-band region  
−95.5  
−80.3  
dBc  
dBc  
DPD Band  
Rev. A | Page 9 of 33  
 
 
AD9082  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min Typ  
Max Unit  
ADJACENT CHANNEL LEAKAGE RATIO  
Single Carrier 20 MHz LTE Downlink Test Vector  
fDAC = 12 GSPS  
−1 dBFS digital back off, 256QAM  
fOUT = 1840 MHz  
fOUT = 2650 MHz  
fOUT = 3500 MHz  
fOUT = 1900 MHz  
fOUT = 2650 MHz  
fOUT = 750 MHz  
fOUT = 1840 MHz  
77.3  
76.3  
73.3  
77.0  
77.1  
78.8  
77.3  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
fDAC = 9 GSPS  
fDAC = 6 GSPS  
THIRD-ORDER INTERMODULATION DISTORTION (IMD3)  
fDAC = 12 GSPS  
Two tone test, −6 dBFS per tone, 1 MHz spacing  
fOUT = 1900 MHz  
fOUT = 2600 MHz  
fOUT = 3700 MHz  
fOUT = 1900 MHz  
fOUT = 2600 MHz  
fOUT = 900 MHz  
fOUT = 1900 MHz  
−74.5  
−75.5  
−77  
−83  
−86  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
fDAC = 9 GSPS  
fDAC = 6 GSPS  
−88.4  
−86.3  
NOISE SPECTRAL DENSITY (NSD)  
0 dBFS, NSD measurement taken at  
10% away from fOUT, shuffle off  
Single-Tone, fDAC = 12 GSPS  
fOUT = 150 MHz  
−168  
dBc/Hz  
fOUT = 500 MHz  
fOUT = 950 MHz  
fOUT = 1840 MHz  
fOUT = 2650 MHz  
fOUT = 3700 MHz  
fOUT = 4500 MHz  
−166.7  
−164.8  
−161.6  
−160  
−155.1  
−154.2  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Single-Tone, fDAC = 9 GSPS  
fOUT = 150 MHz  
fOUT = 500 MHz  
fOUT = 950 MHz  
fOUT = 1840 MHz  
−168  
−166  
−164  
−160.2  
−158.4  
−153.5  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
fOUT = 2650 MHz  
fOUT = 3700 MHz  
Single-Tone, fDAC = 6 GSPS  
fOUT = 150 MHz  
fOUT = 500 MHz  
fOUT = 950 MHz  
fOUT = 1840 MHz  
−168  
−165  
−163  
−159  
−156.8  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
fOUT = 2650 MHz  
SINGLE SIDEBAND PHASE NOISE OFFSET (PLL DISABLED)  
fOUT = 3 GHz, fDAC = 12 GSPS, CLKINx Frequency (fCLKIN) =  
12 GHz  
Direct RF clock input at 7 dBm  
R&S SMA100B B711 option  
1 kHz  
−119  
−129  
−136  
−146  
−148  
−150  
−154  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
10 kHz  
100 kHz  
600 kHz  
1.2 MHz  
1.8 MHz  
6 MHz  
Rev. A | Page 10 of 33  
Data Sheet  
AD9082  
Parameter  
Test Conditions/Comments  
Min Typ  
Max Unit  
SINGLE SIDEBAND PHASE NOISE OFFSET (PLL ENABLED)  
Loop filter component values include  
C1 = 22 nF, R1 = 226 Ω, C2 = 2.2 nF,  
C3 = 33 nF, and phase detector  
frequency (PFD) = 500 MHz  
fOUT = 1.8 GHz, fDAC = 12 GSPS, fCLKIN = 0.5 GHz  
1 kHz  
−103  
−111  
−119  
−127  
−132  
−137  
−148  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
10 kHz  
100 kHz  
600 kHz  
1.2 MHz  
1.8 MHz  
6 MHz  
Rev. A | Page 11 of 33  
AD9082  
Data Sheet  
ADC AC SPECIFICATIONS  
Nominal supplies with TA = 25°C. Input amplitude (AIN) = −1 dBFS, full bandwidth (no decimation) with dual link JTx mode of 13C.  
Specifications represent worst measured of any ADC channel with DACs powered down. See the AN-835 Application Note,  
Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
Table 10.  
Parameter  
Min  
Typ  
Max  
Unit  
NOISE DENSITY1  
NOISE FIGURE2  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 253 MHz  
fIN = 450 MHz  
fIN = 900 MHz  
fIN = 1800 MHz  
fIN = 2700 MHz  
fIN = 3600 MHz  
fIN = 4500 MHz  
−153  
25.3  
dBFS/Hz  
dB  
56.7  
56.9  
56.2  
54.7  
52.4  
51.8  
50.4  
51.0  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
fIN = 5400 MHz  
SIGNAL-TO-NOISE-AND-DISTORTION (SINAD) RATIO  
fIN = 253 MHz  
fIN = 450 MHz  
fIN = 900 MHz  
fIN = 1800 MHz  
fIN = 2700 MHz  
fIN = 3600 MHz  
fIN = 4500 MHz  
fIN = 5400 MHz  
56.6  
56.6  
55.7  
53.9  
52.0  
51.3  
49.6  
48.9  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 253 MHz  
fIN = 450 MHz  
fIN = 900 MHz  
fIN = 1800 MHz  
fIN = 2700 MHz  
fIN = 3600 MHz  
fIN = 4500 MHz  
fIN = 5400 MHz  
9.1  
9.1  
9
8.7  
8.3  
8.2  
7.9  
7.8  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
WORST HD2  
fIN = 253 MHz  
fIN = 450 MHz  
fIN = 900 MHz  
fIN = 1800 MHz  
fIN = 2700 MHz  
fIN = 3600 MHz  
fIN = 4500 MHz  
fIN = 5400 MHz  
−72.1  
−68.9  
−67.1  
−64.6  
−65.2  
−58.1  
−65  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
−54.1  
Rev. A | Page 12 of 33  
 
Data Sheet  
AD9082  
Parameter  
Min  
Typ  
Max  
Unit  
WORST HD3  
fIN = 253 MHz  
fIN = 450 MHz  
fIN = 900 MHz  
fIN = 1800 MHz  
fIN = 2700 MHz  
fIN = 3600 MHz  
fIN = 4500 MHz  
fIN = 5400 MHz  
−80.0  
−78.3  
−70.8  
−66  
−70.8  
−69.2  
−64.3  
−62  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
WORST OTHER, EXCLUDING HD2 OR HD3 HARMONIC  
fIN = 253 MHz  
fIN = 450 MHz  
fIN = 900 MHz  
fIN = 1800 MHz  
fIN = 2700 MHz  
fIN = 3600 MHz  
fIN = 4500 MHz  
fIN = 5400 MHz  
−85.3  
−81.4  
−76.5  
−72.1  
−68.5  
−65.9  
−64.2  
−62.7  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
TWO-TONE IMD3, Input Amplitude 1 (AIN1) = Input Amplitude 2 (AIN2) = −7 dBFS  
Input Frequency 1 (fIN1) = 890 MHz, Input Frequency 2 (fIN2) = 910 MHz  
fIN1 = 1780 MHz, fIN2 = 1820 MHz  
fIN1 = 2680 MHz, fIN2 = 2720 MHz  
fIN1 = 3560 MHz, fIN2 = 3640 MHz  
fIN1 = 5360 MHz, fIN2 = 5440 MHz  
ANALOG BANDWIDTH3  
−78.9  
−75  
−73.2  
−64.2  
8
dBFS  
dBFS  
dBFS  
dBFS  
GHz  
1 Noise density is measured at a low analog amplitude and/or frequency where timing jitter does not degrade noise floor.  
2 Noise figure is based on a nominal full-scale input power of 4.5 dBm with an input span of 1.5 V p-p and RIN = 100 Ω.  
3 Analog input bandwidth is the bandwidth of operation in which the full-scale input frequency response rolls off by −3 dB based on a de-embedded model of the ADC  
extracted from the measured frequency response on evaluation board. This bandwidth requires optimized matching network to achieve this upper bandwidth.  
TIMING SPECIFICATIONS  
For the minimum and maximum values, TJ = −40°C to +120°C and 5% of nominal supply, unless otherwise noted.  
Table 11.  
Parameter  
Symbol  
Test Conditions/Comments  
Min Typ Max Unit  
SERIAL PORT INTERFACE (SPI) WRITE OPERATION  
Maximum SCLK Clock Rate  
SCLK Clock High  
fSCLK, 1/tSCLK  
33  
5
5
4
4
MHz  
ns  
ns  
ns  
ns  
tPWH  
tPWL  
tDS  
tDH  
tS  
SCLK = 33 MHz  
SCLK = 33 MHz  
SCLK Clock Low  
SDIO to SCLK Setup Time  
SCLK to SDIO Hold Time  
CSB to SCLK Setup Time  
SCLK to CSB Hold Time  
4
4
ns  
ps  
tH  
Rev. A | Page 13 of 33  
 
AD9082  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min Typ Max Unit  
SPI READ OPERATION  
Maximum SCLK Clock Rate  
SCLK Clock High  
SCLK Clock Low  
SDIO to SCLK Setup Time  
SCLK to SDIO Hold Time  
CSB to SCLK Setup Time  
SCLK to SDIO Data Valid Time  
SCLK to SDO Data Valid Time  
CSB to SDIO Output Valid to High-Z  
CSB to SDO Output Valid to High-Z  
fSCLK, 1/tSCLK  
tPWH  
tPWL  
tDS  
tDH  
tS  
tDV  
tDV_SDO  
tZ  
tZ_SDO  
8
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
50  
50  
4
4
4
20  
20  
20  
20  
Timing Diagrams  
tS  
tH  
tSCLK  
CSB  
tPWH  
tPWL  
SCLK  
SDIO  
tDS  
tDH  
R/W  
A15 A14  
A0  
D7  
D6 D1 D0  
Figure 2. Timing Diagram for 3-Wire Write Operation  
tS  
tSCLK  
CSB  
tPWH  
tPWL  
SCLK  
tDS  
tDV  
tZ  
tDH  
SDIO  
R/W A14 A2 A1  
A0  
D7 D6 D1 D0  
Figure 3. Timing Diagram for 3-Wire Read Operation  
tS  
tSCLK  
CSB  
tPWH  
tPWL  
SCLK  
tDS  
tDH  
R/W A14 A2 A1  
SDIO  
SDO  
A0  
tZ_SDO  
tDV_SDO  
D7 D6 D1 D0  
Figure 4. Timing Diagram for 4-Wire Read Operation  
Rev. A | Page 14 of 33  
Data Sheet  
AD9082  
ABSOLUTE MAXIMUM RATINGS  
Table 12.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Operation beyond the maximum operating conditions for  
extended periods may affect product reliability.  
Parameter  
Rating  
ISET, DACxP, DACxN, TDP, TDN  
VCO_COARSE, VCO_FINE,  
VCO_VCM, VCO_VREG  
ADC0P, ADC0N, ADC1P, ADC1N  
VCM0, VCM1  
CLKINP, CLKINN  
ADCDRVN, ADCDRVP  
SERDINx , SERDOUTx  
SYSREFP, SYSREFN, and  
SYNCxINB  
−0.3 V to AVDD2 + 0.3 V  
−0.3 V to AVDD2_PLL + 0.3 V  
−0.3 V to BVDD2 + 0.3 V  
−0.3 V to RVDD2 + 0.3 V  
−0.2 V to PLLCLKVDD1 + 0.2 V  
−0.2 V to CLKVDD1 + 0.2 V  
−0.2 V to SVDD1 + 0.2 V  
−0.2 V to +2.5 V  
REFLOW PROFILE  
The AD9082 reflow profile is in accordance with the JEDEC  
JESD 20 criteria for Pb-free devices. The maximum reflow  
temperature is 260°C.  
SYNCxOUTB , SYNCxINB ,  
RESETB, TXENx, RXENx, IRQB_x,  
CSB, SCLK, SDIO, SDO,  
TMU_REFN, TMU_REFP,  
ADCx_SMON0, ADCx_SMON1,  
ADCx_FD0, ADCx_FD1, GPIOx  
AVDD2, AVDD2_PLL, BVDD2,  
RVDD2, SVDD2_PLL, DVDD1P8  
PLLCLKVDD1, AVDD1,  
AVDD1_ADC, CLKVDD1,  
FVDD1, DAVDD1, DVDD1_RT,  
DCLKVDD1, SVDD1  
−0.3 V to DVDD1P8 + 0.3 V  
THERMAL RESISTANCE  
Thermal performance is directly linked to PCB design and  
operating environment. The use of appropriate thermal  
management techniques is recommended to ensure that the  
maximum TJ does not exceed the limits shown in Table 12.  
−0.3 V to +2.2 V  
−0.2 V to +1.2 V  
θJA is the natural convection, junction to ambient thermal  
resistance measured in a one cubic foot sealed enclosure.  
θJC_TOP is the junction to case, thermal resistance.  
θJB is the junction to board, thermal resistance.  
VNN1  
−1.1 V to +0.2 V  
Table 13. Simulated Thermal Resistance1  
Temperature  
Junction (TJ)1  
Storage Range  
Airflow Velocity  
(m/sec)  
125°C  
−40°C to +150°C  
PCB Type  
θJA  
θJC_TOP θJB Unit  
1.8 °C/W  
JEDEC 2s2p  
Board  
0.0  
14.9 0.70  
1 Do not exceed this temperature for any duration of time when the device is  
powered.  
1 Thermal resistance values specified are simulated based on JEDEC specifications  
in compliance with JESD51-12 with the device power equal to 9 W.  
ESD CAUTION  
Rev. A | Page 15 of 33  
 
 
 
 
 
AD9082  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AD9082  
TOP VIEW  
(Not to Scale)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
SYNC1INB– SYNC0INB– SERDOUT0– SERDOUT0+  
GND  
A
B
C
GND  
AVDD2  
GND  
GND  
NC  
NC  
GND  
GND  
ADC0N  
ADC0P  
GND  
SVDD1  
GND  
DAC0P  
DAC0N  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
DNC  
GND  
VCM0  
GND  
GND  
BVNN2  
GND  
GND  
RVDD2  
GND  
SYNC1INB+ SYNC0INB+  
RESETB DVDD1P8  
GND  
GND  
SVDD1  
SVDD1  
SVDD1  
SERDOUT7– SERDOUT7+  
SERDOUT1– SERDOUT1+  
ADCDRVN ADCDRVP  
BVDD3  
GND  
GND  
VDD1_  
NVG  
SERDOUT6– SERDOUT6+  
D
E
F
AVDD1  
AVDD2  
GND  
AVDD1  
AVDD1  
AVDD1  
GND  
AVDD1  
GND  
GND  
GND  
DNC  
GND  
FVDD1  
GND  
BVDD2  
BVDD2  
GND  
VNN1  
VNN1  
GND  
ADC0_  
SMON1  
ADC0_  
SMON0  
RXEN1  
RXEN0  
SDIO  
GND  
GND  
NVG1_  
OUT  
GND  
DAVDD1  
DAVDD1  
GND  
VNN1  
ADC1_  
SMON1  
ADC1_  
SMON0  
SERDOUT2– SERDOUT2+ SVDD1  
GND  
GND  
DAC1N  
GND  
DVDD1P8  
DVDD1 ADC0_FD1 ADC0_FD0  
GND  
GND  
SVDD1  
SERDOUT5– SERDOUT5+  
TMU_  
REFN  
TMU_  
G
H
J
DAC1P  
GND  
GND  
CLKVDD1 AVDD1_  
ADC  
AVDD1_  
ADC  
ADC1_FD1 ADC1_FD0  
REFP  
CSB  
SERDOUT3– SERDOUT3+ SVDD1  
GND  
GND  
SERDOUT4– SERDOUT4+  
AVDD2  
ISET  
GND  
GND  
GND  
GND  
DVDD1  
GND  
DVDD1  
GND  
SCLK  
GND  
GND  
GND  
SVDD1  
VCO_  
FINE  
SVDD1_  
PLL  
VCO_  
COARSE  
CLKINP  
CLKINN  
GND  
GND  
PLLCLKVDD1 DVDD1_  
RT  
DVDD1_  
RT  
GND  
GND  
GND  
DVDD1  
DVDD1  
GND  
GND  
DVDD1  
DVDD1  
DVDD1  
GPIO3  
GND  
GND  
SDO  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCO_  
VREG  
VCO_  
VCM  
DCLKVDD1 DVDD1_  
RT  
DVDD1_  
RT  
SVDD2_  
PLL  
SVDD1_  
PLL  
GPIO9  
GPIO8  
K
L
GND  
AVDD2  
GND  
AVDD2_  
PLL  
DNC  
GND  
GND  
GND  
GND  
GND  
DVDD1  
DVDD1  
GND  
GND  
GND  
DNC  
DNC  
SERDIN0– SERDIN0+  
DAC2P  
GND  
CLKVDD1 AVDD1_  
ADC  
AVDD1_  
ADC  
GPIO1  
GPIO7 SERDIN4– SERDIN4+  
SVDD1  
GND  
GND  
M
N
P
R
T
DAC2N  
GND  
GND  
AVDD1  
AVDD1  
GND  
GND  
DAVDD1  
DAVDD1  
GND  
GND  
GND  
GND  
TDP  
TDN  
GPIO2  
GPIO4  
GPIO0  
GPIO6  
TXEN0  
GND  
GND  
SVDD1 SERDIN1– SERDIN1+  
NVG1_  
OUT  
IRQB_0  
AVDD2  
BVDD2  
VNN1  
VNN1  
SERDIN7– SERDIN7+  
SVDD1  
GND  
GND  
VDD1_  
NVG  
TXEN1  
GND  
GND  
SVDD1 SERDIN2– SERDIN2+  
GND  
AVDD1  
GND  
AVDD1  
AVDD1  
GND  
GND  
GND  
FVDD1  
GND  
BVDD2  
GND  
VNN1  
GND  
GND  
BVNN2  
GND  
IRQB_1  
GPIO5  
GND  
DAC3N  
DAC3P  
SYSREFN SYSREFP  
BVDD3  
GND  
GPIO10 DVDD1P8 SERDIN6– SERDIN6+  
SVDD1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCM1  
GND  
GND  
DNC  
RVDD2 SYNC1OUTB+SYNC0OUTB+  
U
V
SVDD1  
SVDD1  
SERDIN3– SERDIN3+  
SYNC1OUTBSYNC0OUTB–  
GND  
SERDIN5– SERDIN5+  
GND  
GND  
GND  
AVDD2  
GND  
GND  
GND  
NC  
NC  
ADC1N  
ADC1P  
ANALOG  
GROUND  
DIGITAL  
GROUND  
SERDES  
GND  
GND  
GROUND  
Figure 5. 324-Ball Pin Configuration  
Rev. A | Page 16 of 33  
 
Data Sheet  
AD9082  
Table 14. Pin Function Descriptions  
Pin No.  
Mnemonic  
Type  
Description  
POWER SUPPLIES  
A2, E2, H2, L2, P2, V2  
L3  
AVDD2  
AVDD2_PLL  
Input  
Input  
Analog 2.0 V Supply Inputs for DAC.  
Analog 2.0 V Supply Input for Clock PLL Linear  
Dropout Regulator (LDO).  
D7, E7, P7, R7  
B11, U11  
J5  
D2 to D4, E3, F3, N3, P3, R2 to R4  
G7, G8, M7, M8  
G6, M6  
D6, R6  
D10, R10  
BVDD2  
RVDD2  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Analog 2.0 V Supply Inputs for ADC Buffer.  
Analog 2.0 V Supply Inputs for ADC Reference.  
Analog 1.0 V Supply Input for Clock PLL.  
Analog 1.0 V Supply Inputs for DAC Clock.  
Analog 1.0 V Supply Inputs for ADC.  
Analog 1.0 V Supply Inputs for ADC Clock.  
Analog 1.0 V Supply Inputs for ADC Reference.  
Analog 1.0 V Supply Inputs for Negative Voltage  
Generator (NVG) Used to Generate −1 V Output.  
PLLCLKVDD1  
AVDD1  
AVDD1_ADC  
CLKVDD1  
FVDD1  
VDD1_NVG  
E9, P9  
NVG1_OUT  
VNN1  
Output  
Input  
Analog −1 V Supply Outputs from NVG.  
Decouple NVG1_OUT to GND with a 0.1 μF  
capacitor.  
Analog −1 V Supply Inputs for ADC Buffer and  
Reference. Connect these pins to the adjacent,  
NVG1_OUT pins.  
Analog −2 V Supply Outputs for ADC Buffer.  
Decouple each BVNN2 pin to GND with a 0.1 μF  
capacitor.  
D8, E8, E10, P8, R8, P10  
C9, T9,  
BVNN2  
Output  
Output  
C10, T10  
BVDD3  
Analog 3 V Supply Output for ADC Buffer.  
Decouple BVDD3 to GND with 0.1 μF capacitor.  
E5, F5, N5, P5  
F10, H9, H11, J9, J11, K9, K11, L9, L11, M9  
J6, J7, K6, K7  
K5  
A16, B16, C16, D16, E16, F16, G16, H16, M16, SVDD1  
N16, P16, R16, T16, U16, V16  
DAVDD1  
DVDD1  
DVDD1_RT  
DCLKVDD1  
Input  
Input  
Input  
Input  
Input  
Digital Analog 1.0 V Supply Inputs.  
Digital 1.0 V Supply Inputs.  
Digital 1.0 Supply Inputs for Retimer Block.  
Digital 1.0 V Clock Generation Supply.  
Digital 1.0 V Supply Inputs for SERDES  
Deserializer and Serializer.  
K15  
J16, K16  
SVDD2_PLL  
Input  
Input  
Digital 2.0 V Supply Input for SERDES LDO.  
Digital 1.0 V Supply Inputs for SERDES Clock  
Generation and PLL.  
Digital Interface and Temperature Monitoring  
Unit (TMU) Supply Inputs (Nominal 1.8 V).  
SVDD1_PLL  
DVDD1P8  
GND  
C13, F9, T13  
Input  
A1, A3, A4, A7, A8, A11, A17, A18, B2 to B6,  
B9, B10, B14, B15, C2, C5 to C8, C11, C17,  
C18, D1, D5, D9, D14, D15, E1, E4, E6, E17,  
E18, F2, F4, F6 to F8, F14, F15, G2 to G5,  
G17, G18, H1, H5 to H8, H10, H12, H14,  
H15, J2, J8, J10, J12, J14, J15, J17, J18, K2,  
K8, K10, K12, K14, K17, K18, L1, L5 to L8,  
L10, L12, L14, M2 to M5, M10, M17, M18,  
N2, N4, N6 to N8, N14, N15, P1, P4, P6,  
P17, P18, R1, R5, R9, R14, R15, T2, T5 to T8,  
T11, T17, T18, U2 to U6, U9, U10, U14,  
U15, V1, V3, V4, V7, V8, V11, V17, V18  
Input/output Ground References.  
Rev. A | Page 17 of 33  
AD9082  
Data Sheet  
Pin No.  
ANALOG OUTPUTS  
B1, C1  
G1, F1  
M1, N1  
Mnemonic  
Type  
Description  
DAC0P, DAC0N  
DAC1P, DAC1N  
DAC2P, DAC2N  
DAC3P, DAC3N  
ISET  
Output  
Output  
Output  
Output  
Output  
DAC0 Output Currents, Ground Referenced.  
DAC1 Output Currents, Ground Referenced.  
DAC2 Output Currents, Ground Referenced.  
DAC3 Output Currents, Ground Referenced.  
DAC Bias Current Setting Pin. Connect this pin  
with a 5 kΩ resistor to GND.  
U1, T1  
H3  
C4, C3  
B8, U8  
K3  
ADCDRVP,  
ADCDRVN  
Output  
Output  
Output  
Output  
Output  
ADC Clock Output Options. These pins are  
disabled by default.  
ADC Buffer Common-Mode Output Voltage.  
Decouple this pin to GND with a 0.1 μF capacitor.  
PLL LDO Regulator Output. Decouple this pin to  
GND with a 2.2 μF capacitor.  
TMU ADC Negative Reference. Connect this pin  
to GND.  
VCM0, VCM1  
VCO_VREG  
TMU_REFN  
TMU_REFP  
G9  
G10  
TMU ADC Positive Reference. Connect this pin  
to DVDD1P8.  
ANALOG INPUTS  
A10, A9  
ADC0P, ADC0N  
ADC1P, ADC1N  
VCO_FINE  
Input  
Input  
Input  
Input  
Input  
Input  
ADC0 Differential Inputs with Internal 100 Ω  
Differential Resistor.  
ADC1 Differential Inputs with Internal 100 Ω  
Differential Resistor.  
On-Chip Clock Multiplier and PLL Fine Loop  
Filter Input.  
On-Chip DAC Clock Multiplier and PLL Coarse  
Loop Filter Input.  
On-Chip Clock Multiplier and VCO Common-  
Mode Input.  
Anode and Cathode of Temperature Diodes.  
This feature is not supported. Tie TDP and TDN  
to GND.  
V10, V9  
J3  
J4  
VCO_COARSE  
VCO_VCM  
K4  
N9, N10  
TDP, TDN  
J1, K1  
CLKINP, CLKINN  
Input  
Differential Clock Inputs with Nominal 100 Ω  
Termination. Self bias input requiring ac  
coupling. When the on-chip clock multiplier PLL  
is enabled, this input is the reference clock  
input. If the PLL is disabled, an RF clock equal to  
the DAC output sample rate is required.  
CMOS INPUTS AND OUTPUTS1  
G13  
H13  
F13  
J13  
CSB  
Input  
Input  
Serial Port Enable Input. Active low.  
Serial Plot Clock Input.  
SCLK  
SDIO  
SDO  
Input/output Serial Port Bidirectional Data Input/Output.  
Output  
Input  
Serial Port Data Output.  
C12  
RESETB  
Active Low Reset Input. RESETB places digital  
logic and SPI registers in a known default state.  
RESETB must be connected to a digital IC that is  
capable of issuing a reset signal for the first step  
in the device initialization process.  
E13, D13  
P13, R13  
RXEN0, RXEN1  
TXEN0, TXEN1  
Input  
Input  
Active High ADC and Receive Datapath Enable  
Inputs. RXENx is also SPI configurable.  
Active High DAC and Transmit Datapath Enable  
Inputs. TXENx is also SPI configurable.  
Rev. A | Page 18 of 33  
Data Sheet  
AD9082  
Pin No.  
Mnemonic  
Type  
Description  
D12, D11  
ADC0_SMON0,  
ADC0_SMON1  
Output  
ADC0 Signal Monitoring Outputs by Default. Do  
not connect if unused.  
E12, E11  
F12, F11  
G12, G11  
P12, R12  
ADC1_SMON0,  
ADC1_SMON1  
ADC0_FD0,  
ADC0_FD1  
ADC1_FD0,  
ADC1_FD1  
IRQB_0, IRQB_1  
Output  
Output  
Output  
Outputs  
ADC1 Signal Monitoring Outputs by Default. Do  
not connect if unused.  
ADC0 Fast Detect Outputs by Default. Do not  
connect if unused.  
ADC1 Fast Detect Outputs by Default. Do not  
connect if unused.  
Interrupt Request 0 and 1 Outputs. These pins  
are an open-drain, active low output (CMOS  
levels with respect to DVDD1P8). Connect a  
10 kΩ pull-up resistor to DVDD1P8 to prevent  
these pins from floating when unused.  
K13, L13, M11 to M13, N11 to N13,  
P11, R11, T12  
GPIO0 to GPIO10  
Input/output General-Purpose Input or Output Pins.  
JESD204B or JESD204C COMPATIBLE SERDES  
DATA LANES AND CONTROL SIGNALS2  
L18, L17  
N18, N17  
R18, R17  
U18, U17  
M15, M14  
V15, V14  
T15, T14  
P15, P14  
U13, V13  
SERDIN0+,  
SERDIN0−  
SERDIN1+,  
SERDIN1−  
SERDIN2+,  
SERDIN2−  
SERDIN3+,  
SERDIN3−  
SERDIN4+,  
SERDIN4−  
SERDIN5+,  
SERDIN5−  
SERDIN6+,  
SERDIN6−  
SERDIN7+,  
SERDIN7−  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
JRx Lane 0 Inputs, Data True/Complement.  
JRx Lane 1 Inputs, Data True/Complement.  
JRx Lane 2 Inputs, Data True/Complement.  
JRx Lane 3 Inputs, Data True/Complement.  
JRx Lane 4 Inputs, Data True/Complement.  
JRx Lane 5 Inputs, Data True/Complement.  
JRx Lane 6 Inputs, Data True/Complement.  
JRx Lane 7 Inputs, Data True/Complement.  
SYNC0OUTB+,  
SYNC0OUTB−  
JRx Link 0 Synchronization Outputs for  
JESD204B interface. These pins are LVDS or  
CMOS configurable. These pins can also  
provide differential 100 Ω output impedance  
in LVDS mode.  
U12, V12  
SYNC1OUTB+,  
SYNC1OUTB−  
Output  
JRx Link 1 Synchronization Outputs for  
JESD204B interface or CMOS Input for Transmit  
Fast Frequency Hopping (FFH) via GPIOx pins.  
For sync output function, these pins are LVDS  
or CMOS output configurable and can provide  
differential 100 Ω output impedance in LVDS  
mode.  
A15, A14  
C15, C14  
E15, E14  
G15, G14  
H18, H17  
SERDOUT0+,  
SERDOUT0−  
SERDOUT1+,  
SERDOUT1−  
SERDOUT2+,  
SERDOUT2−  
SERDOUT3+,  
SERDOUT3−  
Output  
Output  
Output  
Output  
Output  
JTx Lane 0 Outputs, Data True/Complement.  
JTx Lane 1 Outputs, Data True/Complement.  
JTx Lane 2 Outputs, Data True/Complement.  
JTx Lane 3 Outputs, Data True/Complement.  
JTx Lane 4 Outputs, Data True/Complement.  
SERDOUT4+,  
SERDOUT4−  
Rev. A | Page 19 of 33  
AD9082  
Data Sheet  
Pin No.  
Mnemonic  
Type  
Description  
F18, F17  
SERDOUT5+,  
SERDOUT5−  
SERDOUT6+,  
SERDOUT6−  
SERDOUT7+,  
SERDOUT7−  
SYNC0INB+,  
SYNC0INB−  
Output  
JTx Lane 5 Outputs, Data True/Complement.  
JTx Lane 6 Outputs, Data True/Complement.  
JTx Lane 7 Outputs, Data True/Complement.  
D18, D17  
B18, B17  
B13, A13  
Output  
Output  
Input  
JTx Link 0 Synchronization Inputs for JESD204B  
interface. These pins are LVDS or CMOS  
configurable. These pins are LVDS or CMOS  
configurable and have selectable internal 100 Ω  
input impedance for LVDS operation  
B12, A12  
T4, T3  
SYNC1INB+,  
SYNC1INB−  
Input  
Input  
JTx Link 1 Synchronization Inputs for JESD204B  
interface or CMOS Inputs for Receive FFH via  
GPIOx pins. These pins are LVDS or CMOS  
configurable and have selectable internal 100 Ω  
input impedance for LVDS operation.  
Active High JESD204 System Reference Inputs.  
These pins are configurable for differential  
current mode logic (CML), PECL, and LVDS with  
internal 100 Ω termination or single-ended  
CMOS.  
SYSREFP, SYSREFN  
NO CONNECTS AND DO NOT CONNECTS  
A5, A6, V5, V6  
NC  
No Connect. These pins can be left open or  
connected.  
B7, H4, L4, L15, L16, U7  
DNC  
DNC  
Do Not Connect. The pins must be kept open.  
1 CMOS inputs do not have pull-up or pull-down resistors.  
2 SERDINx and SERDOUTx include 100 Ω internal termination resistors.  
Rev. A | Page 20 of 33  
Data Sheet  
AD9082  
TYPICAL PERFORMANCE CHARACTERISTICS  
DAC  
TA = 25°C using the AD9082-FMCA-EBZ, data curves represent average performance of all DAC outputs with harmonics (or alias  
harmonics) and spurs falling in the first DAC Nyquist zone (<fDAC/2), IOUTFS = 26 mA, PLL clock multiplier enabled, and ADC powered  
down, unless otherwise noted. See the UG-1578 user guide for additional information on the JESDB or JESDC mode configurations.  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
0dBFS  
0dBFS  
–7dBFS  
–12dBFS  
–17dBFS  
–7dBFS  
–12dBFS  
–17dBFS  
0
1000  
2000  
3000  
4000  
5000  
6000  
0
500  
1000  
1500  
2000  
2500  
3000  
fOUT (MHz)  
fOUT (MHz)  
Figure 6. HD2 vs. fOUT over Digital Scale (Mode 17B), 6 GSPS DAC Sample  
Figure 9. HD2 vs. fOUT over Digital Scale (Mode 16B), 12 GSPS DAC Sample  
Rate, Channel Interpolation 1×, Main Interpolation 4×  
Rate, Channel Interpolation 4×, Main Interpolation 8×  
–50  
–50  
0dBFS  
–55  
–55  
–60  
–65  
–70  
–75  
–80  
–7dBFS  
–12dBFS  
–17dBFS  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–85  
–90  
0dBFS  
–7dBFS  
–12dBFS  
–17dBFS  
–95  
–100  
0
500  
1000  
1500  
2000  
2500  
3000  
0
1000  
2000  
3000  
4000  
5000  
6000  
fOUT (MHz)  
fOUT (MHz)  
Figure 7. HD3 vs. fOUT over Digital Scale (Mode 17B), 6 GSPS DAC Sample  
Figure 10. HD3 vs. fOUT over Digital Scale (Mode 16B), 12 GSPS DAC Sample  
Rate, Channel Interpolation 1×, Main Interpolation 4×  
Rate, Channel Interpolation 4×, Main Interpolation 8×  
–50  
–50  
0dBFS  
–55  
–55  
–60  
–65  
–70  
–75  
–80  
–7dBFS  
–12dBFS  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–17dBFS  
–85  
–90  
0dBFS  
–7dBFS  
–12dBFS  
–17dBFS  
–95  
–100  
0
500  
1000  
1500  
2000  
2500  
3000  
0
1000  
2000  
3000  
4000  
5000  
6000  
fOUT (MHz)  
fOUT (MHz)  
Figure 8. SFDR, Worst Spurious vs. fOUT over Digital Scale (Mode 17B),  
6 GSPS DAC Sample Rate, Channel Interpolation 1×, Main Interpolation 4×  
Figure 11. SFDR, Worst Spurious vs. fOUT over Digital Scale (Mode 16B), 12 GSPS  
DAC Sample Rate, Channel Interpolation 4×, Main Interpolation 8×  
Rev. A | Page 21 of 33  
 
 
AD9082  
Data Sheet  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
0dBFS  
–7dBFS  
–13dBFS  
–17dBFS  
0dBFS  
–7dBFS  
–12dBFS  
–17dBFS  
–100  
0
1000  
2000  
3000  
4000  
5000  
6000  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
fOUT (MHz)  
fOUT (MHz)  
Figure 12. HD2 vs. fOUT over Digital Scale (Mode 17B), 12 GHz GSPS Sample Rate,  
Channel Interpolation 1×, Main Interpolation 8×  
Figure 15. HD2 vs. fOUT over Digital Scale (Mode 17B), 9 GHz GSPS Sample Rate,  
Channel Interpolation 1×, Main Interpolation 6×  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–50  
0dBFS  
–55  
–7dBFS  
–13dBFS  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–17dBFS  
–85  
–90  
0dBFS  
–7dBFS  
–12dBFS  
–17dBFS  
–95  
–100  
0
1000  
2000  
3000  
4000  
5000  
6000  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
fOUT (MHz)  
fOUT (MHz)  
Figure 13. HD3 vs. fOUT over Digital Scale (Mode 17B), 12 GSPS DAC Sample Rate,  
Channel Interpolation 1×, Main Interpolation 8×  
Figure 16. HD3 vs. fOUT over Digital Scale (Mode 17B), 9 GSPS DAC Sample Rate,  
Channel Interpolation 1×, Main Interpolation 6×  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–50  
0dBFS  
–55  
–7dBFS  
–13dBFS  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–17dBFS  
–85  
–90  
0dBFS  
–7dBFS  
–12dBFS  
–17dBFS  
–95  
–100  
0
1000  
2000  
3000  
4000  
5000  
6000  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
fOUT (MHz)  
fOUT (MHz)  
Figure 14. SFDR vs. fOUT over Digital Scale (Mode 17B), 12 GSPS DAC Sample  
Rate, Channel Interpolation 1×, Main Interpolation 8×  
Figure 17. SFDR vs. fOUT over Digital Scale (Mode 17B), 9 GSPS DAC Sample Rate,  
Channel Interpolation 1×, Main Interpolation 6×  
Rev. A | Page 22 of 33  
Data Sheet  
AD9082  
–50  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–6dBFS  
–6dBFS  
–13dBFS  
–18dBFS  
–23dBFS  
–13dBFS  
–18dBFS  
–23dBFS  
0
500  
1000  
1500  
2000  
2500  
3000  
0
1000  
2000  
3000  
4000  
5000  
6000  
7000  
fOUT (MHz)  
fOUT (MHz)  
Figure 18. IMD3 vs. fOUT over Digital Scale (Mode 17B), 6 GSPS DAC  
Sample Rate, Channel Interpolation 1×, Main Interpolation 4×  
Figure 21. IMD3 vs. fOUT over Digital Scale (Mode 17B), 9 GSPS DAC Sample  
Rate, Channel Interpolation 1×, Main Interpolation 6×, 1 MHz Tone Spacing  
–50  
–50  
–6dBFS  
–55  
–6dBFS  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–13dBFS  
–13dBFS  
–18dBFS  
–23dBFS  
–18dBFS  
–23dBFS  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
0
1000  
2000  
3000  
4000  
5000  
6000  
0
1000  
2000  
3000  
4000  
5000  
6000  
fOUT (MHz)  
fOUT (MHz)  
Figure 19. IMD3 vs. fOUT over Digital Scale (Mode 16B),  
Figure 22. IMD3 vs. fOUT over Digital Scale (Mode 17B),  
12 GHz DAC Sample Rate, Channel Interpolation 4×, Main Interpolation 8×  
12 GSPS DAC Sample Rate, Channel Interpolation 1×, Main Interpolation 8×  
–50  
–50  
fDAC = 11796.48MSPS  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
fDAC = 11796.48MSPS  
fDAC = 8847.36MSPS  
fDAC = 5898.24MSPS  
fDAC = 2949.12MSPS  
–53  
–56  
–59  
–62  
–65  
–68  
–71  
–74  
–77  
–80  
fDAC = 9830.4MSPS  
fDAC = 5898.24MSPS  
fDAC = 2949.24MSPS  
0
1000  
2000  
3000  
4000  
5000  
6000  
0
1000  
2000  
3000  
4000  
5000  
6000  
fOUT (MHz)  
fOUT (MHz)  
Figure 20. IMD3 vs. fOUT over fDAC (Mode 17B), 1 MHz Tone Spacing with  
−12 dBFS/Tone Level  
Figure 23. Worst Harmonic In-Band vs. fOUT Across fDAC with 0 dBFS Tone Level  
(Mode 17B)  
Rev. A | Page 23 of 33  
AD9082  
Data Sheet  
2
1
MKR1 3.900000000GHz  
–41.78dBm  
1
–35  
–45  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
–11  
–12  
–55  
fDAC = 11796.48MSPS  
fDAC = 8847.36MSPS  
fDAC = 5898.24MSPS  
fDAC = 2949.12MSPS  
–65  
–75  
–85  
–95  
–105  
–115  
–13  
0
1000  
2000  
3000  
4000  
5000  
6000  
CENTER 3.9000GHz  
#RES BW 100kHz  
SPAN 798.3MHz  
SWEEP 233ms (1001PTS)  
fOUT (MHz)  
Figure 24. DAC0 Fundamental Output Power vs. fOUT for  
Different fDAC Sample Rates (Mode 17B), Channel Interpolation 1×,  
Main Interpolation 8×, 0 dBFS Digital Back Off)  
Figure 27. Adjacent Channel Leakage Ratio (ACLR) Performance for 100 MHz  
5G Test Vector at fOUT = 3.9 GHz and fDAC = 11.898 GSPS, Test Vector Peak to  
RMS = 11.7 dB with −1 dBFS Back Off (Mode 9C), Channel Interpolation 3×,  
Main Interpolation 8×  
–140  
–140  
SHUFFLE ON  
SHUFFLE ON  
–143  
–146  
–149  
–152  
–155  
–158  
–161  
–164  
–167  
–170  
SHUFFLE OFF  
–143  
–146  
–149  
–152  
–155  
–158  
–161  
–164  
–167  
–170  
SHUFFLE OFF  
0
1000  
2000  
3000  
4000  
5000  
6000  
0
1000  
2000  
3000  
4000  
5000  
6000  
fOUT (MHz)  
fOUT (MHz)  
Figure 25. Single-Tone NSD Measured at 10% Offset from fOUT vs. fOUT  
,
Figure 28. Single-Tone NSD Measured at 10% Offset from fOUT vs. fOUT  
,
11796.48 MSPS fDAC, 16-Bit Resolution, Shuffle Off vs. Shuffle On (Mode 17B)  
11796.48 MSPSz fDAC, 12-Bit Resolution, Shuffle Off vs. Shuffle On (Mode 24C)  
–140  
–140  
fDAC = 11796.48MSPS  
fDAC = 11796.48MSPS  
fDAC = 8847.36MSPS  
–143  
fDAC = 5898.24MSPS  
–146  
–143  
fDAC = 8847.36MSPS  
fDAC = 5898.24MSPS  
–146  
–149  
–152  
–155  
–158  
–161  
–164  
–167  
–170  
–149  
–152  
–155  
–158  
–161  
–164  
–167  
–170  
0
1000  
2000  
3000  
4000  
5000  
6000  
0
1000  
2000  
3000  
4000  
5000  
6000  
fOUT (MHz)  
fOUT (MHz)  
Figure 26. Single-Tone NSD Measured at 10% Offset from fOUT vs. fOUT over fDAC  
,
Figure 29. Single-Tone NSD Measured at 10% Offset from fOUT vs. fOUT over fDAC  
,
16-Bit Resolution, Shuffle On (Mode 17B)  
12-Bit Resolution, Shuffle On (Mode 24C)  
Rev. A | Page 24 of 33  
Data Sheet  
AD9082  
–80  
–70  
–80  
fREF = 125MHz  
fREF = 250MHz  
fREF = 375MHz  
fREF = 500MHz  
fREF = 750MHz  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
CLOCK PLL DISABLED  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY OFFSET (Hz)  
FREQUENCY OFFSET (Hz)  
Figure 30. Single Sideband Phase Noise vs. Frequency Offset with fDAC = 12 GSPS,  
fOUT = 3 GHz, Clock PLL Disabled with External 12 GHz Clock Input Using  
R&S SMA100B with B711 Option as Clock Source, Engineering Board Used  
Figure 33. Single Sideband Phase Noise vs. Frequency Offset for Different PLL  
Reference Clock (fREF), fOUT = 1.8 GHz, fDAC = 12 GSPS, PLL Enabled with Exception of  
External 12 GHz Clock Input with Clock PLL Disabled, Engineering Board Used  
MKR2 265.0MHz  
–0.294dB  
–40  
–50  
–30  
1
2Δ1  
–40  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
CENTER 2.145GHz  
#RES BW 30kHz  
SPAN 140MHz  
SWEEP 3.862s  
CENTER 2.0125GHz  
#RES BW 30kHz  
SPAN 500.0MHz  
SWEEP 42.87ms (1001PTS)  
Figure 34. Dual Band ACLR Performance for 20 MHz LTE at fOUT = 2.145 GHz  
and fDAC = 11.796 GSPS, Test Vector PAR = 7.7 dB with −1 dBFS Back Off  
(Mode 9C), Channel Interpolation 3×, Main Interpolation 8×  
Figure 31. Dual Band 3GPP B1 and B3 Wideband Plot for 20 MHz LTE at  
fOUT = 1.88 GHz and fOUT = 2.145 GHz with fDAC = 11.796 GSPS,  
Test Vector PAR = 7.7 dB with −1 dBFS Back Off (Mode 9C),  
Channel Interpolation 3×, Main Interpolation 8×  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
CENTER 1.88GHz  
#RES BW 30kHz  
SPAN 140MHz  
SWEEP 3.862s (1001PTS)  
Figure 32. Dual Band ACLR Performance for 20 MHz LTE at fOUT = 1.88 GHz  
and fDAC = 11.796 GSPS, Test Vector PAR = 7.7 dB with −1 dBFS Back Off  
(Mode 9C), Channel Interpolation 3×, Main Interpolation 8×  
Rev. A | Page 25 of 33  
AD9082  
Data Sheet  
ADC  
Sampling rate = 6 GSPS with clock frequency (fCLK) = 6 GHz direct RF clock of 6 GHz, Nyquist mode operation (no decimation) with  
JESD204 interface mode = 19B, timing calibration disabled with 100 MHz region centered on Nyquist zone transition, TA = 25°C, 128 K FFT  
sample with no averaging and AIN = −1 dBFS, ADCx input, and DAC powered down, unless otherwise noted.  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
93  
90  
87  
84  
81  
78  
75  
72  
69  
66  
63  
60  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
SNR = 56.9dBFS  
HD2 = 80.6dBFS  
HD3 = 79.7dBFS  
WORST OTHER SPUR = –87.4dBFS  
CH0 SFDR  
CH1 SFDR  
CH0 SNR  
CH1 SNR  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
FREQUENCY (GHz)  
INPUT AMPLITUDE (dBFS)  
Figure 35. Single-Tone FFT at fIN = 450 MHz  
Figure 38. Single-Tone SFDR and SNR vs. Input Amplitude at fIN = 450 MHz  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
93  
90  
87  
84  
81  
78  
75  
72  
69  
66  
63  
60  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
SNR = 56.4dBFS  
HD2 = 67.4dBFS  
HD3 = 71.6dBFS  
WORST OTHER SPUR = –83.8dBFS  
CH0 SFDR  
CH1 SFDR  
CH0 SNR  
CH1 SNR  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
FREQUENCY (GHz)  
INPUT AMPLITUDE (dBFS)  
Figure 36. Single-Tone FFT at fIN = 900 MHz  
Figure 39. Single-Tone SFDR and SNR vs. Input Amplitude at fIN = 900 MHz  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
93  
90  
87  
84  
81  
78  
75  
72  
69  
66  
63  
60  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
SNR = 54.8dBFS  
HD2 = 67.9dBFS  
HD3 = 68.0dBFS  
WORST OTHER SPUR = –80.0dBFS  
CH0 SFDR  
CH1 SFDR  
CH0 SNR  
CH1 SNR  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
FREQUENCY (GHz)  
INPUT AMPLITUDE (dBFS)  
Figure 37. Single-Tone FFT at fIN = 1.8 GHz  
Figure 40. Single-Tone SFDR and SNR vs. Input Amplitude at fIN = 1.8 GHz  
Rev. A | Page 26 of 33  
 
Data Sheet  
AD9082  
0
93  
90  
87  
84  
81  
78  
75  
72  
69  
66  
63  
60  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
SNR = 52.7dBFS  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
HD2 = 65.2dBFS  
HD3 = 71.3dBFS  
WORST OTHER SPUR = –75.5dBFS  
CH0 SFDR  
CH1 SFDR  
CH0 SNR  
CH1 SNR  
51  
0
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.0  
3.0  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
FREQUENCY (GHz)  
INPUT AMPLITUDE (dBFS)  
Figure 41. Single-Tone FFT at fIN = 2.7 GHz  
Figure 44. Single-Tone SFDR and SNR vs. Input Amplitude at fIN = 2.7 GHz  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
93  
90  
87  
84  
81  
78  
75  
72  
69  
66  
63  
60  
57  
54  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
SNR = 51.9dBFS  
HD2 = 58.1dBFS  
HD3 = 69.2dBFS  
WORST OTHER SPUR = –73.7dBFS  
CH0 SFDR  
CH1 SFDR  
CH0 SNR  
CH1 SNR  
0.5  
1.0  
1.5  
2.0  
2.5  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
FREQUENCY (GHz)  
INPUT AMPLITUDE (dBFS)  
Figure 42. Single-Tone FFT at fIN = 3.6 GHz  
Figure 45. Single-Tone SFDR and SNR vs. Input Amplitude at fIN = 3.6 GHz  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
93  
90  
87  
84  
81  
78  
75  
72  
69  
66  
63  
60  
57  
54  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
SNR = 50.8dBFS  
HD2 = 70.5dBFS  
HD3 = 64.2dBFS  
WORST OTHER SPUR =  
–74.0dBFS  
CH0 SFDR  
CH1 SFDR  
CH0 SNR  
CH1 SNR  
0.5  
1.0  
1.5  
2.0  
2.5  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
FREQUENCY (GHz)  
INPUT AMPLITUDE (dBFS)  
Figure 43. Single-Tone FFT at fIN = 4.5 GHz  
Figure 46. Single-Tone SFDR and SNR vs. Input Amplitude at fIN = 4.5 GHz  
Rev. A | Page 27 of 33  
AD9082  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
93  
90  
87  
84  
81  
78  
75  
72  
69  
66  
63  
60  
57  
54  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
SNR = 51.3dBFS  
HD2 = 54.1dBFS  
HD3 = 61.0dBFS  
WORST OTHER SPUR = –70.3dBFS  
CH0 SFDR  
CH1 SFDR  
CH0 SNR  
CH1 SNR  
–110  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
FREQUENCY (GHz)  
INPUT AMPLITUDE (dBFS)  
Figure 47. Single-Tone FFT at fIN = 5.4 GHz  
Figure 50. Single-Tone SFDR and SNR vs. Input Amplitude at fIN = 5.4 GHz  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
93  
90  
87  
84  
81  
78  
75  
72  
69  
66  
63  
60  
57  
54  
51  
48  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
SNR = 50.3dBFS  
HD2 = 57.0dBFS  
HD3 = 61.3dBFS  
WORST OTHER SPUR = –69.0dBFS  
CH0 SFDR  
CH1 SFDR  
CH0 SNR  
CH1 SNR  
–110  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
FREQUENCY (GHz)  
INPUT AMPLITUDE (dBFS)  
Figure 48. Single-Tone FFT at fIN = 6.3 GHz  
Figure 51. Single-Tone SNR/SFDR vs. Input Amplitude at fIN = 6.3 GHz  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–64  
A
AND A  
= –7.0dBFS  
IN2  
IN1  
–70  
–76  
CH0 IMD3L  
CH0 IMD3H  
CH1 IMD3L  
CH1 IMD3H  
IMD3L = –78.1dBFS  
IMD3H = –79.0dBFS  
–82  
–88  
–94  
–100  
–106  
–112  
–118  
–124  
–130  
1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10  
–31  
–28  
–25  
–22  
–19  
–16  
–13  
–10  
–7  
FREQUENCY (GHz)  
INPUT AMPLITUDE (dBFS)  
Figure 49. Two-Tone FFT, fIN1 = 1.775 GHz, fIN2 = 1.825 GHz, and  
AIN1 and AIN2 = −7 dBFS (Note That IMD3L and IMD3H Are the Lower and  
Higher IMD3 Product Components in dBFS.)  
Figure 52. Two-Tone IMD3 vs. Input Amplitude with  
fIN1 = 1.775 GHz, fIN2 = 1.825 GHz  
Rev. A | Page 28 of 33  
Data Sheet  
AD9082  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–64  
–70  
A
AND A  
= –7.0dBFS  
IN2  
IN1  
CH0 IMD3L  
CH0 IMD3H  
CH1 IMD3L  
CH1 IMD3H  
IMD3L = –75.6dBFS  
IMD3H = –74.8dBFS  
–76  
–82  
–88  
–94  
–100  
–106  
–112  
–118  
–124  
–130  
2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00  
–31  
–28  
–25  
–22  
–19  
–16  
–13  
–10  
–7  
FREQUENCY (GHz)  
INPUT AMPLITUDE (dBFS)  
Figure 53. Two-Tone FFT, fIN1 = 2.675 GHz, fIN2 = 2.725 GHz, and  
AIN1 and AIN2 = −7 dBFS  
Figure 56. Two-Tone IMD3 vs. Input Amplitude with fIN1 = 2.675 GHz and  
fIN2 = 2.725 GHz  
0
–64  
A
AND A  
= –7.0dBFS  
IN2  
IN1  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–70  
–76  
CH0 IMD3L  
CH0 IMD3H  
CH1 IMD3L  
CH1 IMD3H  
IMD3L = –72.8dBFS  
IMD3H = –73.1dBFS  
–82  
–88  
–94  
–100  
–106  
–112  
–118  
–124  
–130  
2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
–31  
–28  
–25  
–22  
–19  
–16  
–13  
–10  
–7  
FREQUENCY (GHz)  
INPUT AMPLITUDE (dBFS)  
Figure 54. Two-Tone FFT, fIN1 = 3.575 GHz, fIN2 = 3.625 GHz, and  
AIN1 and AIN2 = −7 dBFS  
Figure 57. Two-Tone IMD3 vs. Input Amplitude with fIN1 = 3.575 GHz and  
fIN2 = 3.625 GHz  
0
–64  
A
AND A  
= –7.0dBFS  
IN2  
IN1  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–70  
–76  
CH0 IMD3L  
CH0 IMD3H  
CH1 IMD3L  
CH1 IMD3H  
IMD3L = –64.2dBFS  
IMD3H = –65.4dBFS  
–82  
–88  
–94  
–100  
–106  
–112  
–118  
–124  
–130  
0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90  
–31  
–28  
–25  
–22  
–19  
–16  
–13  
–10  
–7  
FREQUENCY (GHz)  
INPUT AMPLITUDE (dBFS)  
Figure 55. Two-Tone FFT, fIN1 = 5.375 GHz, fIN2 = 5.425 GHz, and  
AIN1 and AIN2 = −7 dBFS  
Figure 58. Two-Tone IMD3 vs. Input Amplitude with fIN1 = 5.375 GHz and  
fIN2 = 5.425 GHz  
Rev. A | Page 29 of 33  
AD9082  
Data Sheet  
57  
56  
55  
54  
53  
52  
51  
50  
48  
48  
57  
56  
55  
54  
53  
52  
51  
50  
48  
48  
47  
CH0 DIRECT RF  
CH1 DIRECT RF  
CH0 CLK_PLL  
CH1 CLK_PLL  
CH0 DIRECT RF, DAC OFF  
CH0 DIRECT RF, DAC ON  
CH0 CLK PLL, DAC OFF  
CH0 CLK PLL, DAC ON  
47  
0
1000  
2000  
3000  
4000  
5000  
6000  
0
1000  
2000  
3000  
4000  
5000  
6000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 59. SNR vs. Frequency with AIN =−1 dBFS Between Direct External RF  
Clock = 6 GHz and PLL Clock Multiplier Enabled with Reference Input of 125 MHz  
Figure 62. SNR vs. Frequency with AIN = −1 dBFS with DAC On/Off and  
PLL On/Off Between Direct External RF Clock = 6 GHz and PLL Clock  
Multiplier Enabled with Reference Input of 125 MHz  
86  
0
CH0 DIRECT RF  
–0.5  
CH1 DIRECT RF  
CH0 CLK_PLL  
CH1 CLK_PLL  
83  
80  
77  
74  
71  
68  
65  
62  
59  
56  
53  
50  
47  
ADC0  
ADC1  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
–5.5  
–6.0  
–6.5  
–7.0  
–7.5  
–8.0  
0
1000  
2000  
3000  
4000  
5000  
6000  
0
1
2
3
4
5
6
7
8
9
FREQUENCY (MHz)  
FREQUENCY (GHz)  
Figure 63. Measured Input Bandwidth of ADC0 and ADC1 Input Using  
Marki Microwave BALH-0009 on AD9082-FMCA-EBZ (No Matching Network),  
De-Embedded −3 dB ADC Bandwidth Is Equal to 8 GHz  
Figure 60. SFDR vs. Frequency with AIN = −1 dBFS Between Direct External RF  
Clock = 6 GHz and PLL Clock Multiplier Enabled with Reference Input of 125 MHz  
–45  
–45  
–51  
–57  
–63  
–69  
–75  
–81  
–87  
ADC0 HD2  
ADC0 HD3  
ADC1 HD2  
ADC1 HD3  
–51  
–57  
–63  
–69  
–75  
–81  
–87  
–93  
–99  
–105  
–93  
ADC0 HD2  
ADC0 HD3  
ADC1 HD2  
ADC1 HD3  
–99  
–105  
0
1000  
2000  
3000  
4000  
5000  
6000  
0
1000  
2000  
3000  
4000  
5000  
6000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 64. Harmonics (HD2 and HD3) vs. Frequency with AIN = −9 dBFS  
Figure 61. Harmonics (HD2 and HD3) vs. Frequency with AIN = −1 dBFS  
Rev. A | Page 30 of 33  
Data Sheet  
AD9082  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
CH0 HD2  
CH0 HD3  
CH1 HD2  
CH1 HD3  
CH0 HD2  
CH0 HD3  
CH1 HD2  
CH1 HD3  
2000  
2500  
3000  
3500  
4000  
4500  
5000  
5500  
6000  
2000  
2500  
3000  
3500  
4000  
4500  
5000  
5500  
6000  
SAMPLE FREQUENCY (MHz)  
SAMPLE FREQUENCY (MHz)  
Figure 65. HD2 and HD3 vs. Sample Frequency (fS), fIN = 450 MHz,  
AIN = −1 dBFS, fS = 2 GSPS to 6 GSPS  
Figure 68. HD2 and HD3 vs. Sample Frequency, fIN = 3450 MHz, AIN = −1 dBFS,  
fS = 2 GSPS to 6 GSPS  
85  
80  
75  
70  
65  
60  
85  
CH0 SNR  
CH0 SFDR  
CH1 SNR  
80  
CH1 SFDR  
75  
70  
65  
60  
55  
50  
45  
55  
CH0 SNR  
CH0 SFDR  
CH1 SNR  
CH1 SFDR  
50  
45  
2000  
2500  
3000  
3500  
4000  
4500  
5000 5500 6000  
2000  
2500  
3000  
3500  
4000  
4500  
5000  
5500  
6000  
SAMPLE FREQUENCY (MHz)  
SAMPLE FREQUENCY (MHz)  
Figure 66. SNR and SFDR vs. Sample Frequency, fIN = 450 MHz, AIN = −1 dBFS,  
fS = 2 GSPS to 6 GSPS  
Figure 69. SNR and SFDR vs. Sample Frequency, fIN = 3450 MHz,  
AIN = −1 dBFS, fS = 2 GSPS to 6 GSPS  
80  
75  
70  
65  
60  
55  
50  
250k  
1.925 LSB RMS  
200k  
150k  
100k  
50k  
0
45  
CH0 SNR  
CH0 SFDR  
40  
CH1 SNR  
CH1 SFDR  
35  
30  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
DIE TEMPERATURE (°C)  
CODE  
Figure 70. Input Referred Noise Histogram  
Figure 67. SFDR and SNR vs. Die Temperature, fIN= 1.85 GHz, AIN = −1 dBFS  
Rev. A | Page 31 of 33  
AD9082  
Data Sheet  
THEORY OF OPERATION  
The AD9082 is a highly integrated, 28 nm, RF, MxFE featuring  
four 16-bit, 12 GSPS DAC cores and two 12-bit, 6 GSPS ADC  
cores (see Figure 1). The DAC core is based on a current  
segmentation architecture providing a differential complementary  
current output with an adjustable full-scale output (IOUTFS) range  
of 7 mA to 40 mA. The ADC core is based on a proprietary  
interleaved architecture that suppresses residual interleaving  
spurious products into the noise floor. To enable wide bandwidth  
operation, a high linearity 100 Ω differential buffer with overload  
protection is used to isolate the ADC core from the RF ADC  
driver source. An on-chip clock multiplier can be used to  
synthesize the RF DAC and ADC clocks or, alternatively,  
an external clock can be applied.  
external to the device. The transmit datapath includes digital gain  
control, fine delay adjust, and power amplifier protection to  
simplify DPD integration in a multiband transmitter. The receive  
path includes a flexible programmable 192-tap finite impulse  
response (PFIR) filter. The filter can be allocated across one or  
more ADCs for receive equalization with support for four  
different profiles. These profiles can be selected using the  
GPIOx pins. The receive datapath also includes a fast and slow  
signal detection capability in support of automatic gain control  
(AGC). Transmit and receive data formatting can be real or  
complex with resolutions of 8, 12, 16, and 24 bits depending on  
the JESD204B or the JESD204C mode. The AD9082 also allows  
complete bypass of the transmit and receive DSP paths enabling  
Nyquist operation.  
Flexible transmit and receive DSP paths are available to up and  
down sample the desired intermediate frequency (IF) or RF  
signal(s) to manageable data interface rates aligned with  
bandwidth requirements. The transmit and receive DSP paths are  
symmetric and consist of four coarse digital upconversion (DUC)  
and digital downconversion (DDC) blocks in the main datapath  
along with eight fine DUC and DDC blocks in the channelizer  
datapath. Each block includes a 48-bit NCO configurable for  
integer or fractional mode of operation. The channelizer  
datapath enables an efficient implementation to support  
multiband applications where up to eight RF bands can be  
supported. Each of the DUC and DDC blocks are bypassable  
and offer flexible interpolating and decimation factors. The  
NCO in each block also supports coherent frequency hopping.  
The device also supports fast frequency hopping via GPIOx and a  
low latency digital loopback capability. An on-chip TMU is also  
included and can be used as part of a thermal management  
solution. Power savings option in support of time division  
duplex (TDD) applications are included.  
A 16-lane JESD204 transceiver port is available to support the  
high data throughput rates on the receive and transmit datapaths.  
Eight SERDES lanes are designated for the transmit datapaths,  
while the other 8 lanes are designated for the receive datapaths with  
the option to support two links. The transceiver port supports  
JESD204C up to 16.22 GSPS or JESD204B up to 15.5 GSPS lane  
rates. The JESD204 data link layer is highly flexible allowing  
optimization of the lane count (or rate) required to support a  
target throughput rate. Internal synchronization for deterministic  
latency and phase alignment as well as multichip synchronization  
are possible via an external alignment signal (SYSREF).  
Additional features are also included in the receive and  
transmit datapaths as well as elsewhere to facilitate system  
integration. Both datapaths include adjustable delay lines to  
compensate for mismatch in channel delay paths that may occur  
Rev. A | Page 32 of 33  
 
Data Sheet  
AD9082  
OUTLINE DIMENSIONS  
15.10  
15.00 SQ  
14.90  
11.80  
11.60 SQ  
11.50  
A1 BALL  
CORNER  
A1 BALL  
CORNER  
0.70  
BSC  
18 16 14 12 10  
17 15 13 11  
8
6
4
2
9
7
5
3
1
A
B
C
E
D
F
14.80  
G
14.70 SQ  
14.60  
H
J
L
13.60 REF  
SQ  
K
M
P
T
12.60  
12.50 SQ  
12.40  
N
R
U
0.80  
BSC  
V
R 0.5~1.5  
R 1.0  
TOP VIEW  
BOTTOM VIEW  
1.20  
1.10  
1.00  
DETAIL A  
1.72  
1.58  
1.44  
0.87 REF  
DETAIL A  
SIDE VIEW  
0.525  
0.500  
0.475  
0.40  
0.36  
0.32  
SEATING  
PLANE  
0.40  
0.35  
0.30  
COPLANARITY  
0.10  
0.50  
0.45  
0.40  
BALL DIAMETER  
COMPLIANT TO JEDEC STANDARDS MO-275-KKAB-1  
Figure 71. 324-Ball Ball Grid Array, Thermally Enhanced [BGA_ED]  
(BP-324-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Package  
Option  
Model1  
Temperature Range  
Package Description  
AD9082BBPZ-4D2AC  
AD9082BBPZRL-4D2AC −40°C to +85°C  
AD9082-FMCA-EBZ  
−40°C to +85°C  
324-Ball Ball Grid Array, Thermally Enhanced [BGA_ED], JESD204B and JESD204C  
324-Ball Ball Grid Array, Thermally Enhanced [BGA_ED], JESD204B and JESD204C  
AD9082 Evaluation Board with High Performance Analog Network  
BP-324-3  
BP-324-3  
1 Z = RoHS Compliant Part.  
©2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D21496-9/20(A)  
Rev. A | Page 33 of 33  
 
 

相关型号:

AD9082-FMCA-EBZ

MxFE Quad, 16-Bit, 12 GSPS RF DAC and Dual, 12-Bit, 6 GSPS RF ADC
ADI

AD9082BBPZ-4D2AC

MxFE Quad, 16-Bit, 12 GSPS RF DAC and Dual, 12-Bit, 6 GSPS RF ADC
ADI

AD9082BBPZRL-4D2AC

MxFE Quad, 16-Bit, 12 GSPS RF DAC and Dual, 12-Bit, 6 GSPS RF ADC
ADI

AD9083

16-Channel, 125 MHz Bandwidth, JESD204B Analog-to-Digital Converter
ADI

AD9083BBCZ

16-Channel, 125 MHz Bandwidth, JESD204B Analog-to-Digital Converter
ADI

AD9083BBCZ-RL7

16-Channel, 125 MHz Bandwidth, JESD204B Analog-to-Digital Converter
ADI

AD9083EBZ

16-Channel, 125 MHz Bandwidth, JESD204B Analog-to-Digital Converter
ADI

AD9100

Ultrahigh Speed Monolithic Track-and-Hold
ADI

AD9100*

Ultrahigh Speed Monolithic Track-and-Hold
ADI

AD9100AD

Ultrahigh Speed Monolithic Track-and-Hold
ADI

AD9100AE

IC TRACK AND HOLD AMPLIFIER, 0.02 us ACQUISITION TIME, CQCC28, CERAMIC, LCC-28, Sample and Hold Circuit
ADI

AD9100JD

Ultrahigh Speed Monolithic Track-and-Hold
ADI