AD9083BBCZ-RL7 [ADI]

16-Channel, 125 MHz Bandwidth, JESD204B Analog-to-Digital Converter;
AD9083BBCZ-RL7
型号: AD9083BBCZ-RL7
厂家: ADI    ADI
描述:

16-Channel, 125 MHz Bandwidth, JESD204B Analog-to-Digital Converter

文件: 总93页 (文件大小:2837K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16-Channel, 125 MHz Bandwidth, JESD204B  
Analog-to-Digital Converter  
Data Sheet  
AD9083  
FEATURES  
APPLICATIONS  
1.0 V and 1.8 V supply operation  
125 MHz usable analog input bandwidth  
Sample rate up to 2 GSPS  
Noise spectral density in 100 MHz bandwidth =  
−145 dBFS/Hz, 2.0 GSPS encode  
SNR = 66 dBFS in 100 MHz bandwidth, 2.0 GSPS encode  
SNR = 82 dBFS in 15.625 MHz bandwidth, 2.0 GSPS encode  
SFDR = 60 dBc in 100 MHz bandwidth, 2.0 GSPS encode  
SFDR = 80 dBc in 15.625 MHz bandwidth, 2.0 GSPS encode  
90 mW total power per channel at 2.0 GSPS (default settings)  
Flexible input range: 0.5 V p-p to 2 V p-p differential  
90 dB channel crosstalk, 2.0 GSPS encode  
Digital processor  
Millimeter wave imaging  
Electronic beam forming and phased arrays  
Multichannel wideband receivers  
Electronic support measures  
PRODUCT HIGHLIGHTS  
1. Continuous time, Σ-Δ analog-to-digital converters (ADCs)  
support signal bandwidths of up to 125 MHz with low  
power and minimal filtering.  
2. Integrated digital processing blocks reduce data payload  
and lower overall system cost.  
3. Configurable JESD204B interface reduces printed circuit  
board (PCB) complexity.  
4. Flexible power-down options.  
CIC decimation filter  
5. SPI interface controls various product features and  
functions to meet specific system requirements.  
6. Small, 9 mm × 9 mm, 100-ball CSP_BGA package, simple  
interface, and integrated digital processing save PCB space.  
Programmable DDC  
Data gating  
JESD204B Subclass 1 encoded outputs  
Supports up to 16 Gbps/lane  
Flexible sample data processing  
Flexible JESD204B lane configurations  
Large signal dither  
Serial port control  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
(1V)  
AVDD1P8  
(1.8V)  
DVDD  
(1V)  
DVDD1P8  
(1.8V)  
AD9083  
NCO  
NCO  
NCO  
2
0
1
DECIMATE  
BY J  
GAIN  
VIN1+ TO  
VIN16+  
MIXER  
AVERAGING AND  
DECIMATION FILTER  
ADC  
SERDOUT0±  
SERDOUT1±  
SERDOUT2±  
SERDOUT3±  
VIN1– TO  
VIN16–  
CIC DECIMATOR  
JESD204B  
OUTPUTS  
AVERAGING AND  
MIXER  
MIXER  
GAIN  
GAIN  
DECIMATION FILTER  
AVERAGING AND  
DECIMATION FILTER  
SYNCINB±  
16 CHANNELS  
CLK±  
CSB  
PLL,  
SPI AND CONTROL  
REGISTERS  
SYSREF±  
TRIG±  
JESD204B SUBCLASS1 CONTROL,  
AND CLOCK DISTRIBUTION  
SCLK  
SDIO  
AGND  
DGND  
PD/STBY  
Figure 1.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2021 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
AD9083  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Nonburst Mode Datapath......................................................... 37  
Burst Mode Datapath ................................................................ 41  
Averaging Filters ........................................................................ 42  
Mixers .......................................................................................... 43  
NCO FTW Description............................................................. 43  
Digital Outputs ............................................................................... 45  
JESD204B Overview .................................................................. 45  
Functional Overview ................................................................. 46  
JESD204B Link Establishment ................................................. 46  
Physical Layer (Driver) Outputs.............................................. 48  
Setting Up the AD9083 Digital Interface.................................... 49  
JESD204B Transport Layer Settings........................................ 49  
Deterministic Latency ............................................................... 51  
Multichip Synchronization....................................................... 51  
Sampled SYSREF Mode ............................................................ 51  
Serial Port Interface (SPI) ............................................................. 53  
Configuration Using the SPI .................................................... 53  
Hardware Interface .................................................................... 53  
Programming Guide...................................................................... 54  
Programming Sequence ............................................................ 54  
Memory Map .................................................................................. 60  
Logic Levels................................................................................. 60  
Memory Map Register Details...................................................... 61  
Applications Information ............................................................. 90  
Evaluation Board Information................................................. 90  
Power Delivery Network........................................................... 90  
Layout Guidelines ...................................................................... 90  
Outline Dimensions....................................................................... 93  
Ordering Guide .............................................................................. 93  
Applications ...................................................................................... 1  
Product Highlights........................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
General Description......................................................................... 3  
Specifications .................................................................................... 4  
DC Specifications ......................................................................... 4  
AC Specifications ......................................................................... 5  
Digital Specifications ................................................................. 10  
Switching Specifications............................................................ 11  
Timing Specifications ................................................................ 12  
Absolute Maximum Ratings ......................................................... 13  
Thermal Resistance.................................................................... 13  
ESD Caution................................................................................ 13  
Pin Configuration and Function Descriptions .......................... 14  
Typical Performance Characteristics........................................... 17  
Equivalent Circuits......................................................................... 25  
Terminology.................................................................................... 27  
Theory of Operation ...................................................................... 28  
ADC Architecture ...................................................................... 28  
Low-Pass, CTSD ADC Overview............................................. 29  
Low-Pass Σ-Δ ADC.................................................................... 29  
Analog Inputs ............................................................................. 30  
Clock Inputs................................................................................ 32  
Power Modes .............................................................................. 33  
Temperature Diode.................................................................... 33  
Digital Signal Processing Overview......................................... 33  
Signal Processing Tile .................................................................... 35  
Cascaded Integrator Comb (CIC) Filter ................................. 36  
REVISION HISTORY  
1/2021—Revision 0: Initial Version  
Rev. 0 | Page 2 of 93  
 
Data Sheet  
AD9083  
GENERAL DESCRIPTION  
response (FIR) decimation filters (decimate by J block), or up  
to three quadrature DDC channels with averaging decimation  
filters for data gating applications.  
The AD9083 is a 16-channel, 125 MHz bandwidth, continuous  
time Σ-Δ (CTSD) ADC. The device features an on-chip,  
programmable, single-pole antialiasing filter and termination  
resistor that is designed for low power, small size, and ease of  
use.  
Users can configure the Subclass 1 JESD204B based, high speed  
serialized output in a variety of lane configurations (up to four),  
depending on the DDC configuration and the acceptable lane rate  
of the receiving logic device. Multiple device synchronization is  
supported through the SYSREF , TRIG , and SYNCINB  
input pins.  
The 16 ADC cores features a first-order, CTSD modulator  
architecture with integrated, background nonlinearity  
correction logic and self cancelling dither. Each ADC features  
wide bandwidth inputs supporting a variety of user-selectable  
input ranges. An integrated voltage reference eases design  
considerations.  
The AD9083 has flexible power-down options that allow  
significant power savings when desired. All of these features  
can be programmed using a 1.8 V capable 3-wire serial port  
interface (SPI).  
The analog input and clock signals are differential inputs. Each  
ADC has a signal processing tile to filter out of band shaped  
noise from the Σ-Δ ADC and reduce the sample rate. Each tile  
contains a cascaded integrator comb (CIC) filter, a quadrature  
digital downconverter (DDC) with multiple finite input  
The AD9083 is available in a Pb-free, 100-ball CSP_BGA and is  
specified over the −40°C to +85°C industrial temperature range.  
This product is protected by a U.S. patent.  
Rev. 0 | Page 3 of 93  
 
AD9083  
Data Sheet  
SPECIFICATIONS  
Table 1 shows the AD9083 wide bandwidth real output setups used to obtain the specifications. The AD9083 is a highly programmable  
device and supports many use cases. Refer to the Setting Up the AD9083 Digital Interface section and the Programming Guide section  
for more details.  
Table 1.  
JESD204B Link Setup Parameters  
Number of  
fSAMPLE  
(GSPS)  
CIC Output Data Number of  
Decimation J Decimation Rate (MSPS) Lanes (L)  
Number of  
Octets per  
Frame (F)  
Number of  
Converters (M)  
Samples (S)  
N’  
K
2
1
1
1
8
4
250  
250  
4
4
16  
16  
6
6
1
1
12 32  
12 32  
DC SPECIFICATIONS  
AVDD = 1.0 V, AVDD1P8 = 1.8 V, DVDD = 1.0 V, DVDD1P8 = 1.8 V, programmable maximum ADC input voltage range (VMAX) = 1.8 V,  
analog input (AIN) = −2.0 dBFS, −40°C ≤ TJ ≤ +115°C1, mode details as shown in Table 12, backoff = 03, EN_HP = 04, unless otherwise noted.  
Typical specifications represent performance at TJ = 45°C (TA = 25°C).  
Table 2.  
1.0 GSPS  
Typ  
2.0 GSPS  
Typ  
Parameter5  
Min  
Max  
Min  
Max  
Unit  
RESOLUTION  
12  
16  
12  
16  
Bits  
ACCURACY  
Offset Error  
Offset Matching  
Gain Error  
Gain Matching  
TEMPERATURE DRIFT  
Offset Stability Error  
Gain Stability Error  
Voltage Reference  
ANALOG INPUTS  
0.33  
0.75  
5.2  
−0.86  
−10  
+0.33  
+0.75  
+5.2  
+1.55  
+1.66  
+20  
%FS  
%FS  
%FS  
%FS  
1.1  
+1.1  
+3.7  
14.1  
0.2  
0.1  
14.1  
0.2  
0.1  
ppm/°C  
ppm/°C  
ppm/°C  
Differential Input Voltage  
Range  
Common-Mode Voltage (VCM  
0.5  
0.5  
1.0  
2.0  
1.0  
0.5  
0.5  
1.0  
2.0  
1.0  
V p-p  
)
0.7  
RIN  
0.7  
RIN  
V
Ω
Common-Mode Input Series  
6
Resistance (RIN  
)
Differential Input Termination 100  
Resistance (RTERM  
200  
2 × RIN  
100  
200  
2 × RIN  
Ω
)
Differential Input Capacitance  
Analog Full-Power Bandwidth  
0.35  
125  
0.35  
125  
pF  
MHz  
POWER SUPPLY  
AVDD  
AVDD1P8  
DVDD  
0.95  
1.7  
0.95  
1.7  
1.0  
1.8  
1.0  
1.8  
208  
65  
1.05  
1.9  
1.05  
1.9  
0.95  
1.7  
0.95  
1.7  
1.0  
1.8  
1.0  
1.8  
397  
95  
1.05  
1.9  
1.05  
1.9  
471  
102  
971  
48  
V
V
V
V
mA  
mA  
mA  
mA  
DVDD1P8  
AVDD Current (IAVDD  
AVDD1P8 Current (IAVDD1P8  
DVDD Current (IDVDD  
DVDD1P8 (IDVDD1P8  
)
)
)
592  
40  
797  
41  
)
Rev. 0 | Page 4 of 93  
 
 
 
Data Sheet  
AD9083  
1.0 GSPS  
Typ  
2.0 GSPS  
Typ  
Parameter5  
Min  
Max  
Min  
Max  
Unit  
POWER CONSUMPTION  
Total Power Dissipation  
1.0  
1.4  
W
(Including Output Drivers)7  
Power-Down Dissipation  
Standby8  
Power per Channel  
56  
676  
63  
86  
802  
90  
mW  
mW  
mW  
1 The TJ range of −40°C to +115°C translates to an TA range of −40°C to +85°C.  
216-channel, 125 MSPS real output mode.  
3 Backoff is the reduction in front-end gain for increased linearity.  
4 EN_HP increases the SNR by 2.5 dB at an increased power dissipation.  
5 See the AN-835 for definitions and for details on how these tests were completed.  
6 RIN = 8 kΩ/Kvti, where Kvti is proportional to the ADC front-end gain factor, RIN = 1000 Ω for fS = 1 GSPS, and RIN = 381 for fS = 2 GSPS.  
7 See Table 1 for setup details. Note that power consumption varies as a function of sample rate, the decimation options selected, and the JESD204B setup.  
8 Can be controlled by SPI, ADC in low power mode.  
AC SPECIFICATIONS  
AVDD = 1.0 V, AVDD1P8 = 1.8 V, DVDD = 1.0 V, DVDD1P8 = 1.8 V, VMAX = 1.8 V, −40°C ≤ TJ ≤ +115°C TJ range of −40°C to +115°C  
translates to a TA range of −65°C to +85°C. The mode details are as shown in Table 1 (16-channel, 125 MSPS, real output mode), unless  
otherwise noted. Typical specifications represent performance at TJ = 45°C (TA = 25°C).  
Table 3.  
1.0 GSPS  
Typ  
2.0 GSPS  
Max Min Typ  
Parameter1  
Test Conditions/Comments Min  
Max  
Unit  
NOISE SPECTRAL DENSITY (NSD)  
Flicker Noise Corner  
1
1
MHz  
NSD at 22 MHz  
AIN = −3.0 dBFS, frequency (f) = 22 MHz  
Backoff = 0, EN_HP = 0  
Backoff = 3, EN_HP = 0  
Backoff = 6, EN_HP = 0  
Backoff = 0, EN_HP = 1  
−141  
−138  
−136  
−144  
−146 −144 dBFS/Hz  
−145  
−142  
dBFS/Hz  
dBFS/Hz  
−149 −146 dBFS/Hz  
SIGNAL-TO-NOISE RATIO (SNR)  
SNR at 22 MHz  
AIN = −3.0 dBFS, f = 22 MHz  
Backoff = 0, EN_HP = 0  
Backoff = 3, EN_HP = 0  
Backoff = 6, EN_HP = 0  
Backoff = 0, EN_HP = 1  
60  
57  
55  
63  
62  
65  
65  
64  
61  
67  
dBFS  
dBFS  
dBFS  
dBFS  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)/  
THIRD-ORDER HARMONIC DISTORTION (HD3)  
HD3 at 22 MHz  
AIN = −3.0 dBFS, f = 22 MHz  
Backoff = 0, EN_HP = 0  
Backoff = 3, EN_HP = 0  
Backoff = 6, EN_HP = 0  
Backoff = 0, EN_HP = 1  
−68  
−76  
−74  
−66  
−69  
−71  
−75  
−69  
−64  
−63  
dBc  
dBc  
dBc  
dBc  
THIRD-ORDER INTERMODULATION DISTORTION  
(IMD3)  
SFDR/HD3 at 22 MHz  
AIN = −9.0 dBFS, f = 22 MHz  
Backoff = 0, EN_HP = 0  
Backoff = 3, EN_HP = 0  
Backoff = 6, EN_HP = 0  
Backoff = 0, EN_HP = 1  
−83  
−86  
−93  
−87  
−85  
−86  
−86  
−85  
dBFS  
dBFS  
dBFS  
dBFS  
Delete blank line  
In-Band Gain Flatness2  
CROSSTALK3  
ANALOG INPUT BANDWIDTH, FULL POWER4  
25°C  
25°C  
25°C  
0.3  
90  
0.5  
90  
dB  
dB  
62.5  
125  
MHz  
1 See AN-835 for definitions and for details on how these tests were completed.  
2 The gain flatness may vary depending on the digital filter selection in the datapath.  
3 Crosstalk is measured at 30.3 MHz with a −2.0 dBFS analog input on one channel, and no input on the adjacent channel.  
4 Full power bandwidth of fS/16 is achieved only when CIC decimation = 4 is used.  
Rev. 0 | Page 5 of 93  
 
AD9083  
Data Sheet  
AC Specifications for Different Variable Settings  
See the AN-835 for definitions and for details on how the tests shown in this section were completed. fS is the sample clock of the converter core.  
Backoff is the reduction in front-end gain for increased linearity. EN_HP increases the SNR by 2.5 dB at an increased power dissipation.  
Table 4. Variable Settings: fS = 2.0 GSPS, Backoff = 0, and EN_HP = 0  
Parameters  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
NSD  
Flicker Noise Corner  
1
MHz  
At 15.625 MHz (fS/128)  
At 31.25 MHz (fS/64)  
At 100 MHz (fS/20)  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
−155  
−153  
−145  
dBFS/Hz  
dBFS/Hz  
dBFS/Hz  
SNR  
7.8 MHz to 23.4 MHz (15.625 MHz Bandwidth)  
23.4 MHz to 39 MHz (15.625 MHz Bandwidth)  
92.2 MHz to 107.8 MHz (15.625 MHz Bandwidth)  
DC to 15.625 MHz  
DC to 31.25 MHz  
DC to 100 MHz  
SFDR/HD3  
At fS/128  
82  
80  
71  
82  
76  
66  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
AIN = −2.0 dBFS  
AIN = −8.0 dBFS  
−80  
−75  
−60  
dBc  
dBc  
dBc  
At fS/64  
At fS/20  
IMD3  
At fS/128  
At fS/64  
At fS/20  
−80  
−75  
−60  
dBc  
dBc  
dBc  
Table 5. Variable Settings: fS = 2.0 GSPS, Backoff = 3, and EN_HP = 0  
Parameters  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
NSD  
Flicker Noise Corner  
1
MHz  
At 15.625 MHz (fS/128)  
At 31.25 MHz (fS/64)  
At 100 MHz (fS/20)  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
−153  
−151  
−143  
dBFS/Hz  
dBFS/Hz  
dBFS/Hz  
SNR  
7.8 MHz to 23.4 MHz (15.625 MHz Bandwidth)  
23.4 MHz to 39 MHz (15.625 MHz Bandwidth)  
92.2 MHz to 107.8 MHz (15.625 MHz Bandwidth)  
DC to 15.625 MHz  
DC to 31.25 MHz  
DC to 100 MHz  
SFDR/HD3  
At fS/128  
80  
74  
64  
80  
74  
64  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
AIN = −2.0 dBFS  
AIN = −8.0 dBFS  
−81  
−78  
−63  
dBc  
dBc  
dBc  
At fS/64  
At fS/20  
IMD3  
At fS/128  
At fS/64  
At fS/20  
−81  
−77  
−63  
dBc  
dBc  
dBc  
Rev. 0 | Page 6 of 93  
Data Sheet  
AD9083  
Table 6. Variable Settings: fS = 2.0 GSPS, Backoff = 6, and EN_HP = 0  
Parameters  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
NSD  
Flicker Noise Corner  
1
MHz  
At 15.625 MHz (fS/128)  
At 31.25 MHz (fS/64)  
At 100 MHz (fS/20)  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
−150  
−148  
−140  
dBFS/Hz  
dBFS/Hz  
dBFS/Hz  
SNR  
7.8 MHz to 23.4 MHz (15.625 MHz Bandwidth)  
23.4 MHz to 39 MHz (15.625 MHz Bandwidth)  
92.2 MHz to 107.8 MHz (15.625 MHz Bandwidth)  
DC to 15.625 MHz  
DC to 31.25 MHz  
DC to 100 MHz  
SFDR/HD3  
At fS/128  
77  
71  
61  
77  
71  
61  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
AIN = −2.0 dBFS  
AIN = −8.0 dBFS  
−82  
−81  
−66  
dBc  
dBc  
dBc  
At fS/64  
At fS/20  
IMD3  
At fS/128  
At fS/64  
At fS/20  
−82  
−80  
−66  
dBc  
dBc  
dBc  
Table 7. Variable Settings: fS = 2.0 GSPS, Backoff = 0, and EN_HP = 1  
Parameters  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
NSD  
Flicker Noise Corner  
1
MHz  
At 15.625 MHz (fS/128)  
At 31.25 MHz (fS/64)  
At 100 MHz (fS/20)  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
−157  
−155  
−147  
dBFS/Hz  
dBFS/Hz  
dBFS/Hz  
SNR  
7.8 MHz to 23.4 MHz (15.625 MHz Bandwidth)  
23.4 MHz to 39 MHz (15.625 MHz Bandwidth)  
92.2 MHz to 107.8 MHz (15.625 MHz Bandwidth)  
DC to 15.625 MHz  
DC to 31.25 MHz  
DC to 100 MHz  
SFDR/HD3  
At fS/128  
85  
79  
69  
85  
79  
69  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
AIN = −2.0 dBFS  
AIN = −8.0 dBFS  
−80  
−75  
−60  
dBc  
dBc  
dBc  
At fS/64  
At fS/20  
IMD3  
At fS/128  
At fS/64  
At fS/20  
−80  
−75  
−60  
dBc  
dBc  
dBc  
Rev. 0 | Page 7 of 93  
AD9083  
Data Sheet  
Table 8. Variable Settings: fS = 1.0 GSPS, Backoff = 0, and EN_HP = 0  
Parameters  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
NSD  
Flicker Noise Corner  
1
MHz  
At 7.8125 MHz (fS/128)  
At 15.625 MHz (fS/64)  
At 50 MHz (fS/20)  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
−152  
−151  
−144  
dBFS/Hz  
dBFS/Hz  
dBFS/Hz  
SNR  
3.9 MHz to 11.7 MHz (7.8125 MHz Bandwidth)  
11.7 MHz to 19.5 MHz (7.8125 MHz Bandwidth)  
46.1 MHz to 53.9 MHz (7.8125 MHz Bandwidth)  
DC to 7.8125 MHz  
DC to 15.625 MHz  
DC to 50 MHz  
SFDR/HD3  
82  
80  
71  
82  
76  
66  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
At fS/128  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
−80  
−75  
−60  
dBc  
dBc  
dBc  
HD3 at fS/64  
HD3 at fS/20  
SFDR/IMD3  
At fS/128  
At fS/64  
At fS/20  
AIN = −8.0 dBFS  
AIN = −8.0 dBFS  
AIN = −8.0 dBFS  
−80  
−75  
−60  
dBc  
dBc  
dBc  
Table 9. Variable Settings: fS = 1.0 GSPS, Backoff = 3, and EN_HP = 0  
Parameters  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
NSD  
Flicker Noise Corner  
1
MHz  
At 7.8125 MHz (fS/128)  
At 15.625 MHz (fS/64)  
At 50 MHz (fS/20)  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
−150  
−149  
−142  
dBFS/Hz  
dBFS/Hz  
dBFS/Hz  
SNR  
3.9 MHz to 11.7 MHz (7.8125 MHz Bandwidth)  
11.7 MHz to 19.5 MHz (7.8125 MHz Bandwidth)  
46.1 MHz to 53.9 MHz (7.8125 MHz Bandwidth)  
DC to 7.8125 MHz  
DC to 15.625 MHz  
DC to 50 MHz  
SFDR/HD3  
80  
74  
64  
80  
74  
64  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
At fS/128  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
−81  
−78  
−63  
dBc  
dBc  
dBc  
HD3 at fS/64  
HD3 at fS/20  
SFDR/IMD3  
At fS/128  
At fS/64  
At fS/20  
AIN = −8.0 dBFS  
AIN = −8.0 dBFS  
AIN = −8.0 dBFS  
−81  
−77  
−63  
dBc  
dBc  
dBc  
Rev. 0 | Page 8 of 93  
Data Sheet  
AD9083  
Table 10. Variable Settings: fS = 1.0 GSPS, Backoff = 6, and EN_HP = 0  
Parameters  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
NSD  
Flicker Noise Corner  
1
MHz  
At 7.8125 MHz (fS/128)  
At 15.625 MHz (fS/64)  
At 50 MHz (fS/20)  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
−147  
−146  
−139  
dBFS/Hz  
dBFS/Hz  
dBFS/Hz  
SNR  
3.9 MHz to 11.7 MHz (7.8125 MHz Bandwidth)  
11.7 MHz to 19.5 MHz (7.8125 MHz Bandwidth)  
46.1 MHz to 53.9 MHz (7.8125 MHz Bandwidth)  
DC to 7.8125 MHz  
DC to 15.625 MHz  
DC to 50 MHz  
SFDR/HD3  
77  
71  
61  
77  
71  
61  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
At fS/128  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
−82  
−81  
−66  
dBc  
dBc  
dBc  
HD3 at fS/64  
HD3 at fS/20  
SFDR/IMD3  
At fS/128  
At fS/64  
At fS/20  
AIN = −8.0 dBFS  
AIN = −8.0 dBFS  
AIN = −8.0 dBFS  
−82  
−80  
−66  
dBc  
dBc  
dBc  
Table 11. Variable Settings: fS = 1.0 GSPS, Backoff = 0, and EN_HP = 1  
Parameters  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
NSD  
Flicker Noise Corner  
1
MHz  
At 7.8125 MHz (fS/128)  
At 15.625 MHz (fS/64)  
At 50 MHz (fS/20)  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
−154  
−153  
−146  
dBFS/Hz  
dBFS/Hz  
dBFS/Hz  
SNR  
3.9 MHz to 11.7 MHz (7.8125 MHz Bandwidth)  
11.7 MHz to 19.5 MHz (7.8125 MHz Bandwidth)  
46.1 MHz to 53.9 MHz (7.8125 MHz Bandwidth)  
DC to 7.8125 MHz  
DC to 15.625 MHz  
DC to 50 MHz  
SFDR/HD3  
85  
79  
69  
85  
70  
69  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
At fS/128  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
AIN = −2.0 dBFS  
−80  
−75  
−60  
dBc  
dBc  
dBc  
HD3 at fS/64  
HD3 at fS/20  
SFDR/IMD3  
At fS/128  
At fS/64  
At fS/20  
AIN = −8.0 dBFS  
AIN = −8.0 dBFS  
AIN = −8.0 dBFS  
−80  
−75  
−60  
dBc  
dBc  
dBc  
Rev. 0 | Page 9 of 93  
AD9083  
Data Sheet  
DIGITAL SPECIFICATIONS  
AVDD = 1.0 V, AVDD1P8= 1.8 V, DVDD = 1.0 V, DVDD1P8 = 1.8 V, VMAX = 1.8 V1, AIN = −2.0 dBFS, −40°C ≤ TJ ≤ +115°C2, mode  
details as shown in Table 13, unless otherwise noted. Typical specifications represent performance at TJ = 45°C (TA = 25°C).  
Table 12.  
Parameter  
Min  
Typ  
Max  
Unit  
CLOCK INPUTS (CLK+, CLK−)  
Differential Input Voltage  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance  
300  
800  
0.5  
100  
1
1800  
mV p-p  
V
pF  
SYSREF and TRIG INPUTS (SYSREF+, SYSREF−, TRIG+, AND TRIG−)  
Logic Compliance  
LVDS  
Differential Input Voltage  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance (Differential)  
LOGIC INPUT (SDIO, SCLK, CSB, PD/STBY, AND RSTB)  
Logic Compliance  
700  
0.5  
100  
1
1100  
mV p-p  
V
pF  
CMOS  
Logic 1 Voltage  
Logic 0 Voltage  
Input Resistance  
0.7 × DVDD1P8  
DVDD1P8 – 0.45  
V
V
0.3 × DVDD1P8  
High impedance  
CMOS  
LOGIC OUTPUT (SDIO)  
Logic Compliance  
Logic 1 Voltage (High Output Current (IOH) = 800 µA)  
Logic 0 Voltage (Low Output Current (IOL) = 50 µA)  
SYNCINB INPUT (SYNCINB+/SYNCINB−)  
Logic Compliance  
V
V
0.45  
LVDS  
Differential Input Voltage  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance  
700  
0.45  
100  
1
1900  
mV p-p  
V
kΩ  
pF  
SYNCINB+ INPUT  
Logic Compliance  
CMOS  
Logic 1 Voltage  
Logic 0 Voltage  
0.7 × DVDD1P8  
V
V
0.3 × DVDD1P8  
Input Resistance  
High impedance  
DIGITAL OUTPUTS (SERDOUTx , x = 0 TO 3)  
Standards Compliance  
Differential Output Voltage  
Differential Termination Impedance  
JESD204B  
675  
108  
mV p-p  
80  
120  
1 VMAX is the programmable maximum ADC input voltage range.  
2 The TJ range of −40°C to +115°C translates to an TA range of −65°C to +85°C.  
3 16-channel 125 MSPS real output mode.  
Rev. 0 | Page 10 of 93  
 
Data Sheet  
AD9083  
SWITCHING SPECIFICATIONS  
AVDD = 1.0 V, AVDD1P8 = 1.8 V, DVDD = 1.0 V, DVDD1P8 = 1.8 V, VMAX = 1.8 V1, −40°C ≤ TJ ≤ +115°C2, mode details as shown in  
Table 13, unless otherwise noted. Typical specifications represent performance at TJ = 45°C (TA = 25°C).  
Table 13.  
Parameter  
Min  
Typ  
Max  
Unit  
CLOCK  
Clock Rate (at CLK+/CLK− Pins)4  
ADC Sample Rate5  
Clock Pulse Width  
50  
1
1
250  
500  
2
10  
MHz  
GSPS  
ns  
OUTPUT PARAMETERS  
Unit Interval (UI)6  
62.5  
0.25  
4000  
16  
ps  
ps  
ps  
ms  
Gbps  
Rise Time (tR) (20% to 80% into 100 Ω Load)  
Fall Time (tF) (20% to 80% into 100 Ω Load)  
Phase-Locked Loop (PLL) Lock Time7  
Data Rate per Channel (NRZ)8  
30  
30  
5
1 VMAX is the programmable maximum ADC input voltage range.  
2 The TJ range of −40°C to +115°C translates to an TA range of −65°C to +85°C.  
3 16-channel 125 MSPS real output mode.  
4 Input clock to the on-chip PLL (Pin K3 and Pin J3).  
5 ADC sample clock of the converter core.  
6 Baud rate = 1/UI. A subset of this range can be supported.  
7 Lock times may vary depending on the JESD204B link setup.  
8 Default L = 4. This number can be changed based on the sample rate and decimation ratio.  
Rev. 0 | Page 11 of 93  
 
AD9083  
Data Sheet  
TIMING SPECIFICATIONS  
Table 14.  
Parameter  
Description  
Min Typ Max Unit  
SPI TIMING REQUIREMENTS  
tDS  
tDH  
tCLK  
tS  
tH  
tHIGH  
tLOW  
tACCESS  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the SCLK  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
Minimum period that SCLK must be in a logic high state  
Minimum period that SCLK must be in a logic low state  
Maximum time delay between falling edge of SCLK and output data valid for a  
read operation  
4
4
10  
2
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4
4
2
4
tDIS_SDIO  
Time required for the SDIO pin to switch from an output to an input relative to  
the SCLK rising edge  
6
ns  
t
t
t
t
t
H
DS  
HIGH  
CLK  
ACCESS  
t
LOW  
t
t
DH  
S
CSB  
SCLK  
DON’T CARE  
DON’T CARE  
DON’T CARE  
R/W  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
SDIO DON’T CARE  
Figure 2. Serial Port Interface Timing Diagram  
Rev. 0 | Page 12 of 93  
 
 
 
Data Sheet  
AD9083  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 15.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
Electrical  
AVDD to AGND  
AVDD1P8 to AGND  
DVDD to DGND  
DVDD1P8 to DGND  
AGND to DGND  
VINx to AGND  
CLK to AGND  
1.05 V  
2.0 V  
1.05 V  
2.0 V  
Table 16. Thermal Resistance  
Package Type  
BC-100-81  
θJA  
θJC_TOP θJB  
ΨJB  
ΨJT  
Unit  
23.4 10.3  
8.9  
9.0  
1.2  
°C/W  
−0.3 V to +0.3 V  
1 Test Condition 1: Thermal impedance simulated values are based on JEDEC  
2S2P thermal test board with 190 thermal vias. See JEDEC JESD-51.  
AGND − 0.3 V to AVDD1P8 + 0.3 V  
AGND − 0.3 V to AVDD + 0.3 V  
DGND − 0.3 V to DVDD1P8 + 0.3 V  
SCLK, SDIO, CSB, RSTB,  
PD/STBY to DGND  
ESD CAUTION  
SYSREF , TRIG to AGND  
SYNCINB to DGND  
Temperature  
AGND − 0.3 V to AVDD + 0.3 V  
DGND − 0.3 V to DVDD1P8 + 0.3 V  
Junction Range  
Storage Range  
(Ambient)  
−40°C to +125°C  
−65°C to +150°C  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Operation beyond the maximum operating conditions for  
extended periods may affect product reliability.  
Rev. 0 | Page 13 of 93  
 
 
 
AD9083  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AD9083  
1
2
3
4
5
6
7
8
9
10  
A
B
C
D
E
F
DGND  
SYNCINB+  
SYNCINB–  
CSB  
VIN1+  
VIN2+  
VIN3+  
VIN4+  
VIN5+  
DNC  
DVDD1P8  
DGND  
DVDD1P8  
DGND  
DVDD  
DVDD  
DVDD  
DVDD  
DVDD  
DVDD  
DVDD  
CLK–  
CLK+  
SCLK  
SDIO  
VIN1–  
PD/STDBY  
RSTB  
VIN2–  
AGND  
AVDD  
VIN3–  
AGND  
AGND  
AVDD  
AVDD  
AGND  
AGND  
VIN14–  
VIN14+  
VIN4–  
AVDD1P8  
AVDD1P8  
AGND  
VIN5–  
VIN6–  
TD  
VIN6+  
VIN7+  
VIN8+  
VIN9+  
VIN10+  
VIN11+  
RBIAS  
AGND  
SEROUT0–  
SEROUT1–  
SEROUT2–  
SEROUT3–  
TRIG+  
SEROUT0+  
SEROUT1+  
SEROUT2+  
SEROUT3+  
DGND  
DGND  
DGND  
DGND  
DGND  
REF_VCO  
AVDD  
VIN7–  
AGND  
AVDD  
VIN8–  
AVDD  
AVDD  
AGND  
VIN9–  
G
H
J
VCOARSE_  
VCO  
AVDD  
AVDD1P8  
AVDD1P8  
VIN13–  
VIN10–  
VIN11–  
VIN12–  
VIN12+  
AGND  
VIN16–  
VIN16+  
AVDD1P8  
VIN15–  
VIN15+  
TRIG–  
SYSREF–  
SYSREF+  
K
DNC  
AGND  
VIN13+  
LEGEND:  
1.0V SUPPLY  
DIGITAL INPUT  
1.8V SUPPLY  
SERDES OUTPUT  
DIGITAL CONTROLS  
STATIC CONTROLS  
GROUND RETURN  
ANALOG INPUT  
Figure 3. Pin Configuration  
Table 17. Pin Function Descriptions  
Pin No.  
Mnemonic  
Type  
Description  
Analog Power Supply (1.0 V Nominal).  
Analog Power Supply for Clock (1.0 V Nominal).  
Analog Power Supply for Internal PLL (1.0 V Nominal).  
Analog Power Supply (1.8 V Nominal).  
Power Supplies  
D6, E6, E7, F6, F7, G6  
F5  
J4  
C8, D8, G8, H6, H8  
D3, E3, F3, G3  
B3, C3, H3  
B1  
B2  
AVDD  
AVDD  
AVDD  
AVDD1P8  
DVDD  
DVDD  
DVDD1P8  
DVDD1P8  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Digital Power Supply (1.0 V Nominal).  
Digital Driver Power Supply (1.0 V Nominal).  
Digital Driver Power Supply (1.8 V Nominal).  
Digital Power Supply for I/O and SPI (1.8 V Nominal).  
Rev. 0 | Page 14 of 93  
 
Data Sheet  
AD9083  
Pin No.  
Mnemonic  
Type  
Description  
C6, C7, D7, E8, F8, G7, H5, H7, K10 AGND  
Ground  
Analog Ground. These AGND pins connect to the  
analog ground plane.  
E5  
K4  
AGND  
AGND  
DGND  
Ground  
Ground  
Ground  
Ground Reference for AVDD.  
Ground Reference for AVDD.  
Digital Ground. These DGND pins connect to the  
digital ground plane.  
D4, E4, F4, G4  
A1, C1, C2, H2  
DGND  
Ground  
Digital Driver Ground. These DGND pins connect to  
the digital driver ground plane.  
Analog  
A5, B5  
A6, B6  
A7, B7  
A8, B8  
A9, B9  
C9, C10  
D9, D10  
E9, E10  
F9, F10  
G9, G10  
H9, H10  
J9, K9  
VIN1+, VIN1−  
VIN2+, VIN2−  
VIN3+, VIN3−  
VIN4+, VIN4−  
VIN5+, VIN5−  
VIN6−, VIN6+  
VIN7−, VIN7+  
VIN8−, VIN8+  
VIN9−, VIN9+  
VIN10−, VIN10+  
VIN11−, VIN11+  
VIN12−, VIN12+  
VIN13−, VIN13+  
VIN14−, VIN14+  
VIN15−, VIN15+  
VIN16−, VIN16+  
CLK−, CLK+  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
ADC 1 Analog Input True/Complement.  
ADC 2 Analog Input True/Complement.  
ADC 3 Analog Input True/Complement.  
ADC 4 Analog Input True/Complement.  
ADC 5 Analog Input True/Complement.  
ADC 6 Analog Input Complement/True.  
ADC 7 Analog Input Complement/True.  
ADC 8 Analog Input Complement/True.  
ADC 9 Analog Input Complement/True.  
ADC 10 Analog Input Complement/True.  
ADC 11 Analog Input Complement/True.  
ADC 12 Analog Input Complement/True.  
ADC 13 Analog Input Complement/True.  
ADC 14 Analog Input Complement/True.  
ADC 15 Analog Input Complement/True.  
ADC 16 Analog Input Complement/True.  
Clock Input Complement/True.  
J8, K8  
J7, K7  
J6, K6  
J5, K5  
J3, K3  
Digital Inputs  
J2, K2  
SYSREF−, SYSREF+  
SYNCINB+, SYNCINB-  
TRIG+, TRIG−  
Input  
Input  
Input  
Active High JESD204B LVDS/CML System Reference  
Input Complement/True.  
Active Low JESD204B LVDS Sync Input  
True/Complement.  
Trigger Input LVDS. These TRIG pins can be left  
floating if disabled.  
A2, A3  
H1, J1  
Data Outputs  
D1, D2  
E1, E2  
F1, F2  
G1, G2  
SERDOUT0−, SERDOUT0+  
SERDOUT1−, SERDOUT1+  
SERDOUT2−, SERDOUT2+  
SERDOUT3−, SERDOUT3+  
Output  
Output  
Output  
Output  
Lane 0 Output Data Complement/True.  
Lane 1 Output Data Complement/True.  
Lane 2 Output Data Complement/True.  
Lane 3 Output Data Complement/True.  
Digital Controls  
C5  
PD/STBY  
Input  
Power-Down Input (Active High). The operation of  
the PD/STBY pin depends on the SPI mode and can  
be configured as power-down or standby.  
D5  
A4  
B4  
C4  
RSTB  
CSB  
SCLK  
SDIO  
Input  
Input  
Input  
Input/output  
Active Low Input for Device Reset.  
SPI Chip Select (Active Low).  
SPI Serial Clock.  
SPI Serial Data Input/Output.  
Rev. 0 | Page 15 of 93  
AD9083  
Data Sheet  
Pin No.  
Mnemonic  
Type  
Description  
Static Control  
B10  
J10  
H4  
TD  
RBIAS  
REG_VCO  
Temperature Diode Pin.  
Current Reference Resistor, 5 kΩ to AGND.  
Clock Multiplier PLL Voltage Regulator Bypass  
Capacitor. Low effective series resistance (ESR), low  
effective series inductance (ESL), 2.2 µF capacitor to  
AGND. Inductance between package and capacitor  
< 1 nH.  
G5  
VCOARSE_VCO  
DNC  
Clock Multiplier PLL Coarse Tuning Loop Filter, 33 nF  
Capacitor to AGND.  
Do Not Connect. Leave the DNC pins floating.  
A10, K1  
Rev. 0 | Page 16 of 93  
Data Sheet  
AD9083  
TYPICAL PERFORMANCE CHARACTERISTICS  
Nominal supply voltages, AIN = −2.0 dBFS, TJ = 45°C, and 128k FFT, unless otherwise noted.  
0
–12  
–24  
–36  
–48  
–60  
–72  
–84  
–96  
–108  
–120  
0
–12  
–24  
–36  
–48  
–60  
–72  
–84  
–96  
–108  
–120  
100k  
1M  
10M  
100M  
500M  
500M  
50M  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 4. ADC Noise Floor at Backoff = 3 dB, 1 GSPS  
Figure 7. ADC Noise Floor at Backoff = 3 dB, 2 GSPS  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
BACKOFF = 6dB  
BACKOFF = 3dB  
BACKOFF = 0dB  
BACKOFF = 6dB  
BACKOFF = 3dB  
BACKOFF = 0dB  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 5. ADC NSD at Various Backoff Values, 1 GSPS  
Figure 8. ADC NSD at Various Backoff Values, 2 GSPS  
0
–12  
–24  
–36  
–48  
–60  
–72  
–84  
–96  
–108  
–120  
0
–12  
–24  
–36  
–48  
–60  
–72  
–84  
–96  
–108  
–120  
BACKOFF = 6dB  
BACKOFF = 3dB  
BACKOFF = 0dB  
BACKOFF = 6dB  
BACKOFF = 3dB  
BACKOFF = 0dB  
HD2  
HD3  
HD3  
HD2  
1M  
10M  
90M  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 9. HD2 and HD3 at Various Backoff Values, 2 GSPS  
Figure 6. Harmonic Distortion 2 (HD2) and Harmonic Distortion 3 (HD3) at  
Various Backoff Values, 1 GSPS  
Rev. 0 | Page 17 of 93  
 
AD9083  
Data Sheet  
–130  
–133  
–136  
–139  
–142  
–145  
–148  
–151  
–154  
–157  
–138  
–140  
–142  
–144  
–146  
–148  
–150  
–152  
–154  
–156  
–158  
HP DISABLED  
HP ENABLED  
V
V
= 0.5V  
= 2.0V  
MAX  
MAX  
–160  
100k  
200k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1M  
10M  
FREQUENCY (Hz)  
100M  
100M  
100M  
Figure 13. ADC NSD at Minimum and Maximum VMAX Values, 2 GSPS  
Figure 10. ADC NSD with and Without EN_HP, 1 GSPS  
–140  
–140  
–142  
–144  
–146  
–148  
–150  
–152  
–154  
–156  
–158  
–160  
NSD (–2dBFS SIGNAL)  
NSD (NO SIGNAL)  
HP DISABLED  
HP ENABLED  
–142  
–144  
–146  
–148  
–150  
–152  
–154  
–156  
–158  
–160  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 14. ADC NSD with and Without Full-Scale Input Signal, 1 GSPS  
Figure 11. ADC NSD with and Without EN_HP, 2 GSPS  
–140  
–135  
–137  
–139  
–141  
–143  
–145  
–147  
–149  
–151  
–153  
–155  
NSD (–2dBFS SIGNAL)  
NSD (NO SIGNAL)  
V
V
= 0.5V  
= 2.0V  
MAX  
MAX  
–142  
–144  
–146  
–148  
–150  
–152  
–154  
–156  
–158  
–160  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 15. ADC NSD with and Without Full-Scale Input Signal, 2 GSPS  
Figure 12. ADC NSD at Minimum and Maximum VMAX Values, 1 GSPS  
Rev. 0 | Page 18 of 93  
Data Sheet  
AD9083  
–135  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
SNR BW = 15MHz  
SNR BW = 50MHz  
SNR BW = 125MHz  
f
f
f
= 2.3MHz  
= 12MHz  
= 48MHz  
IN  
IN  
IN  
–137  
–139  
–141  
–143  
–145  
–147  
–149  
–151  
–153  
–155  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
–65 –60 –55 –50 –45 –40 –35 –30 –25 –20 –15 –10 –5  
0
5
AMPLITUDE (dBFS)  
Figure 16. ADC NSD at Different Input Frequencies, 1 GSPS  
Figure 19. ADC SNR vs. Input Amplitude, 2 GSPS  
–140  
–142  
–144  
–146  
–148  
–150  
–152  
–154  
–156  
–158  
–160  
–50  
BACKOFF = 0dB  
BACKOFF = 3dB  
BACKOFF = 6dB  
f
f
f
= 5MHz  
= 25MHz  
= 100MHz  
IN  
IN  
IN  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
200k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1.0  
2.9  
4.7  
6.6  
8.5 10.3 12.2 14.1 16.0 17.8 19.7  
FREQUENCY (MHz)  
Figure 17. ADC NSD at Different Input Frequencies, 2 GSPS  
Figure 20. ADC HD2 vs. Frequency at Various Backoff Values and  
AIN = −2 dB, 1 GSPS  
100  
–70  
SNR BW = 7.5MHz  
SNR BW = 25MHz  
SNR BW = 62.5MHz  
BACKOFF = 0dB  
BACKOFF = 3dB  
BACKOFF = 6dB  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–72  
–74  
–76  
–78  
–80  
–82  
–84  
–86  
–88  
–90  
–65 –60 –55 –50 –45 –40 –35 –30 –25 –20 –15 –10 –5  
0
5
2.3  
6.1  
9.8 13.6 17.4 21.1 24.9 28.7 32.5 36.2 40.0  
FREQUENCY (MHz)  
AMPLITUDE (dBFS)  
Figure 18. ADC SNR vs. Input Amplitude, 1 GSPS  
Figure 21. ADC HD2 vs. Frequency at Various Backoff Values and  
AIN = −2 dB, 2 GSPS  
Rev. 0 | Page 19 of 93  
AD9083  
Data Sheet  
–65  
–69  
–73  
–77  
–81  
–85  
–89  
–93  
–97  
–101  
–40  
–47  
–54  
–61  
–68  
–75  
–82  
–89  
–96  
–103  
–110  
BACKOFF = 0dB  
BACKOFF = 3dB  
BACKOFF = 6dB  
BACKOFF = 0dB  
BACKOFF = 3dB  
BACKOFF = 6dB  
–105  
1.0  
2.9  
4.7  
6.6  
8.5 10.3 12.2 14.1 16.0 17.8 19.7  
FREQUENCY (MHz)  
2.3  
6.1  
9.8 13.6 17.4 21.1 24.9 28.7 32.5 36.2 40.0  
FREQUENCY (MHz)  
Figure 22. ADC HD2 vs. Frequency at Various Backoff Values and  
AIN = −10 dB, 1 GSPS  
Figure 25. ADC HD3 vs. Frequency at Various Backoff Values and  
AIN = −2 dB, 2 GSPS  
–65  
–50  
BACKOFF = 0dB  
BACKOFF = 0dB  
–69  
–56  
–62  
–68  
–74  
–80  
–86  
–92  
–98  
–104  
–110  
BACKOFF = 3dB  
BACKOFF = 6dB  
BACKOFF = 3dB  
BACKOFF = 6dB  
–73  
–77  
–81  
–85  
–89  
–93  
–97  
–101  
–105  
2.3  
6.1  
9.8 13.6 17.4 21.1 24.9 28.7 32.5 36.2 40.0  
FREQUENCY (MHz)  
1.0  
2.9  
4.7  
6.6  
8.5 10.3 12.2 14.1 16.0 17.8 19.7  
FREQUENCY (MHz)  
Figure 23. ADC HD2 vs. Frequency at Various Backoff Values and  
AIN = −10 dB, 2 GSPS  
Figure 26. ADC HD3 vs. Frequency at Various Backoff Values and  
AIN = −10 dB, 1 GSPS  
–50  
–50  
BACKOFF = 0dB  
BACKOFF = 0dB  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–56  
–62  
–68  
–74  
–80  
–86  
–92  
–98  
–104  
–110  
BACKOFF = 3dB  
BACKOFF = 6dB  
BACKOFF = 3dB  
BACKOFF = 6dB  
1.0  
2.9  
4.7  
6.6  
8.5 10.3 12.2 14.1 16.0 17.8 19.7  
FREQUENCY (MHz)  
2.3  
6.1  
9.8 13.6 17.4 21.1 24.9 28.7 32.5 36.2 40.0  
FREQUENCY (MHz)  
Figure 24. ADC HD3 vs. Frequency at Various Backoff Values and  
AIN = −2 dB, 1 GSPS  
Figure 27. ADC HD3 vs. Frequency at Various Backoff Values and  
AIN = −10 dB, 2 GSPS  
Rev. 0 | Page 20 of 93  
Data Sheet  
AD9083  
–120  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
–40°C  
+25°C  
+110°C  
SNR BW = 15MHz  
SNR BW = 50MHz  
SNR BW = 125MHz  
–124  
–128  
–132  
–136  
–140  
–144  
–148  
–152  
–156  
–160  
100k  
1M  
10M  
100M  
500M  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95  
110  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 28. ADC NSD vs. Junction Temperature, 1 GSPS  
Figure 31. ADC SNR vs. Junction Temperature, 2 GSPS  
–110  
–114  
–118  
–122  
–126  
–130  
–134  
–138  
–142  
–146  
–150  
506.0  
505.6  
505.2  
504.8  
504.4  
504.0  
503.6  
503.2  
502.8  
502.4  
502.0  
–40°C  
+25°C  
+110°C  
100k  
1M  
10M  
100M  
1G  
–40  
–10  
20  
50  
80  
110  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 29. ADC NSD vs. Junction Temperature, 2 GSPS  
Figure 32. Reference Voltage vs. Junction Temperature  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
SNR BW = 7.5MHz  
SNR BW = 25MHz  
SNR BW = 62.5MHz  
AVDD 1V  
AVDD 1.8V  
0
1.0  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95  
110  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
TEMPERATURE (°C)  
SAMPLE RATE (GHz)  
Figure 30. ADC SNR vs. Junction Temperature, 1 GSPS  
Figure 33. Supply Current vs. Sample Rate (Digital Domain Currents Vary  
with the DSP and JESD204B Setup)  
Rev. 0 | Page 21 of 93  
AD9083  
Data Sheet  
90  
86  
82  
78  
74  
70  
66  
62  
58  
54  
50  
0
–11  
–22  
–33  
–44  
–55  
–66  
–77  
–88  
–99  
–110  
BW = 2MHz  
BW = 10MHz  
BW = 25MHz  
IMD3 = 83.2dBFS  
5.0 16.5 28.0 39.5 51.0 62.5 74.0 85.5 97.0 108.5 120.0  
37  
39  
41  
43  
45  
47  
49  
51  
53  
55  
57  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 34. SNR vs. Sliding IF  
Figure 37. Two-Tone FFT, Backoff = 6, fIN1 = 45.4 MHz, fIN2 = 48 MHz, AIN1 and  
AIN2 = −8 dBFS, 1 GSPS  
0
0
–11  
–11  
IMD3 = 79dBFS  
IMD3 = 69.4dBFS  
–22  
–33  
–44  
–55  
–66  
–77  
–88  
–99  
–110  
–22  
–33  
–44  
–55  
–66  
–77  
–88  
–99  
–110  
37  
39  
41  
43  
45  
47  
49  
51  
53  
55  
57  
87  
89  
91  
93  
95  
97  
99  
101 103 105 107  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 35. Two-Tone FFT, Backoff = 0, fIN1 = 45.4 MHz, fIN2 = 48 MHz, AIN1 and  
AIN2 = −8 dBFS, 1 GSPS  
Figure 38. Two-Tone FFT, Backoff = 0, fIN1 = 96.6 MHz, fIN2 = 99 MHz, AIN1 and  
AIN2 = −8 dBFS, 2 GSPS  
0
0
–11  
–11  
IMD3 = 79.4dBFS  
IMD3 = 74.3dBFS  
–22  
–22  
–33  
–44  
–55  
–66  
–77  
–88  
–99  
–110  
–33  
–44  
–55  
–66  
–77  
–88  
–99  
–110  
37  
39  
41  
43  
45  
47  
49  
51  
53  
55  
57  
87  
89  
91  
93  
95  
97  
99  
101 103 105 107  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 36. Two-Tone FFT, Backoff = 3, fIN1 = 45.4 MHz, fIN2 = 48 MHz, AIN1 and  
AIN2 = −8 dBFS, 1 GSPS  
Figure 39. Two-Tone FFT, Backoff = 3, fIN1 = 96.6 MHz, fIN2 = 99 MHz, AIN1 and  
AIN2 = −8 dBFS, 2 GSPS  
Rev. 0 | Page 22 of 93  
Data Sheet  
AD9083  
0
–11  
–22  
–33  
–44  
–55  
–66  
–77  
–88  
–99  
–110  
0
–11  
–22  
–33  
–44  
–55  
–66  
–77  
–88  
–99  
–110  
IMD3 = 91.6dBFS  
IMD3 = 79dBFS  
87  
89  
91  
93  
95  
97  
99  
101 103 105 107  
37  
39  
41  
43  
45  
47  
49  
51  
53  
55  
57  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 40. Two-Tone FFT, Backoff = 6, fIN1 = 96.6 MHz, fIN2 = 99 MHz, AIN1 and  
AIN2 = −8 dBFS, 2 GSPS  
Figure 42. Two-Tone FFT, Backoff = 3, fIN1 = 45.4 MHz, fIN2 = 48 MHz, AIN1 and  
AIN2 = −16 dBFS, 1 GSPS  
0
0
–11  
–11  
IMD3 = 92dBFS  
IMD3 = 87.5dBFS  
–22  
–33  
–44  
–55  
–66  
–77  
–88  
–99  
–110  
–22  
–33  
–44  
–55  
–66  
–77  
–88  
–99  
–110  
37  
39  
41  
43  
45  
47  
49  
51  
53  
55  
57  
37  
39  
41  
43  
45  
47  
49  
51  
53  
55  
57  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 41. Two-Tone FFT, Backoff = 0, fIN1 = 45.4 MHz, fIN2 = 48 MHz, AIN1 and  
AIN2 = −16 dBFS, 1 GSPS  
Figure 43. Two-Tone FFT, Backoff = 6, fIN1 = 45.4 MHz, fIN2 = 48 MHz, AIN1 and  
AIN2 = −16 dBFS, 1 GSPS  
Rev. 0 | Page 23 of 93  
AD9083  
Data Sheet  
0
–11  
–22  
–33  
–44  
–55  
–66  
–77  
–88  
–99  
0
–11  
–22  
–33  
–44  
–55  
–66  
–77  
–88  
–99  
–110  
IMD3 = 88.3dBFS  
IMD3 = 86.5dBFS  
–110  
87  
89  
91  
93  
95  
97  
99  
101 103 105 107  
87  
89  
91  
93  
95  
97  
99  
101 103 105 107  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 44. Two-Tone FFT, Backoff = 0, fIN1 = 96.6 MHz, fIN2 = 99 MHz, AIN1 and  
AIN2 = −16 dBFS, 2 GSPS  
Figure 46. Two-Tone FFT, Backoff = 6, fIN1 = 96.6 MHz, fIN2 = 99 MHz, AIN1 and  
AIN2 = −16 dBFS, 2 GSPS  
0
–11  
IMD3 = 89.4dBFS  
–22  
–33  
–44  
–55  
–66  
–77  
–88  
–99  
–110  
87  
89  
91  
93  
95  
97  
99  
101 103 105 107  
FREQUENCY (MHz)  
Figure 45. Two-Tone FFT, Backoff = 3, fIN1 = 96.6 MHz, fIN2 = 99 MHz, AIN1 and  
AIN2 = −16 dBFS, 2 GSPS  
Rev. 0 | Page 24 of 93  
Data Sheet  
AD9083  
EQUIVALENT CIRCUITS  
AVDD1P8  
DVDD1P8  
C
DVDD1P8  
VIN1+  
R/2  
R/2  
C
AVDD1P8  
400Ω  
SDIO  
GND  
GND  
= 100Ω, 200Ω, OPEN  
R
R
TERM  
AVDD1P8  
TERM  
I
GND  
VIN1–  
O EN  
R/2  
R/2  
DGND  
C
DGND  
GND  
GND  
Figure 47. Analog Inputs  
Figure 50. SDIO Input/Output  
AVDD  
DE-EMPHASIS/SWING  
CONTROL (SPI)  
CLK+/  
SYSREF+/  
TRIG+  
DVDD  
30Ω  
172kΩ  
V
CM  
(0.5V)  
SERDOUTx+  
x = 0, 1, 2, 3  
100Ω  
GND  
AVDD  
172kΩ  
DATA+  
CLK–/  
SYSREF–/  
TRIG–  
GND  
DVDD  
OUTPUT  
DRIVER  
30Ω  
DATA–  
GND  
SERDOUTx–  
x = 0, 1, 2, 3  
GND  
Figure 48. CLK , SYSREF , and TRIG Inputs  
Figure 51. Digital Outputs  
DVDD1P8  
AVDD1P8  
1x DIODE  
VOLTAGE  
TD  
TEMPERATURE  
DIODE  
ENABLE  
20x DIODE  
VOLTAGE  
RSTB/SCLK/  
PD/STBY/CSB  
TEMPERATURE  
DIODE SELECT  
GND GND  
400Ω  
GND  
DGND  
Figure 52. TD (Temperature Diode) Pin  
Figure 49. RSTB, SCLK, PD/STBY, and CSB Inputs  
Rev. 0 | Page 25 of 93  
 
AD9083  
Data Sheet  
DVDD1P8  
600Ω  
DVDD1P8  
CMOS_EN  
DVDD1P8  
DGND  
SYNCINB+  
300Ω  
50Ω  
DGND  
DGND  
EN_LVDS  
DVDD1P8  
LVDS  
RECEIVER  
DVDD1P8  
50Ω  
SYNCINB–  
300Ω  
DGND  
DGND  
Figure 53. SYNCINB Input  
Rev. 0 | Page 26 of 93  
Data Sheet  
AD9083  
TERMINOLOGY  
Noise Spectral Density (NSD)  
In-Band Noise  
The NSD is the noise power normalized to 1 Hz bandwidth (at  
a particular frequency) relative to the full-scale of the ADC  
(dBFS). NSD is given in units of dBFS/Hz. Unlike a descrete-  
time flash type ADC, a Σ-Δ ADC displays uneven NSD across  
the spectrum from dc up to fS. Typical NSD at various  
inflection points are reported in the specifications. The total  
SNR is not always a straightforward calculation and it is often  
useful to think in terms of noise density instead of SNR.  
Achieving a good SNR is dependent on filtering out the  
wideband CTSD ADC quantization noise.  
In-band noise is the integrated noise power measured over a  
user defined bandwidth relative to the full-scale of the ADC (in  
dBFS). This bandwidth is typically equal to an intermediate  
frequency (IF) pass-band.  
Third-Order Intermodulation Distortion (IMD3)  
IMD3 is a figure of merit used to quantify the linearity of a  
component or system. Two equal amplitude, unmodulated  
carriers at specified frequencies (f1 and f2) injected in a nonlinear  
system exhibiting third-order nonlinearities produce IMD  
components at 2f1 − f2 and 2f2 − f1. Note that the IMD3  
performance of an ADC does not necessarily follow the 3:1 rule  
that is typical of RF/IF linear devices. IMD3 performance is  
dependent on dual tone frequencies, signal input levels, and the  
ADC clock rate.  
ADC DATA OUTPUT  
1/f NOISE  
THERMAL NOISE  
QUANTIZATION  
NOISE  
ADC NOISE  
Harmonic Distortion (HD2, HD3 and SFDR)  
A harmonic tone that falls within the IF band of interest when a  
single tone is swept across the user defined frequency range.  
fs/64  
fs/16  
fs/2  
Signal Transfer Function (STF)  
BAND OF  
INTEREST  
STF is the frequency response of the ADC output signal relative  
to a swept single tone at the ADC input. The Typical  
Performance Characteristics section shows the STF over the IF  
pass-band to highlight pass-band flatness. The STF also affects  
aliasing of undesired signal near fS.  
Figure 54. Noise Regions of a Σ-Δ ADC  
Rev. 0 | Page 27 of 93  
 
 
AD9083  
Data Sheet  
THEORY OF OPERATION  
Flicker noise may be higher for this architecture, lending itself  
to better performance for IF applications instead of zero IF.  
Similarly, input referred offset has no effect on an IF application,  
except when using the full dynamic range of the signal  
converter. A low power mode is available with a noise density  
increase of 3 dB for half the converter power.  
ADC ARCHITECTURE  
The AD9083 is a 16-channel, highly integrated and programmable  
front-end digitizer for a wide range of applications.  
The AD9083 ADC uses a first-order, CTSD modulator  
architecture that provides first-order quantization noise shaping  
and inherent first-order, sinc shaped, antialias filtering. This  
oversampling, combined with the inherent antialias filtering,  
eliminates thermal noise folding into the band of interest. This  
feature enables a fast signal settling time when compared to the  
settling time of Nyquist rate converters, which require highly  
selective antialias filters to eliminate noise folding. The first-  
order Σ-Δ modulator is superior to a higher order modulator  
because the former requires only a second-order CIC decimation  
filter to eliminate quantization noise before decimation. This  
low order decimation filter features better signal settling time  
compared to a higher order filter. Built into the ADC front end  
is a programmable termination resistor, programmable gain  
adjust, and a programmable, single-pole, low-pass filter (LPF).  
The ADC in the AD9083 must be initialized and set up based  
on the particular use case. Figure 55 shows the block diagram of  
the ADC used in the AD9083. The ADC in the AD9083  
requires a set of user-defined variables that set up the ADC in  
the use case specified by the application. These variables are as  
follows:  
fS, the sample clock of the converter core (1.0 GSPS to  
2.0 GSPS).  
VMAX, the differential peak-to-peak input full scale  
(0.5 V p-p, differential, to 2.0 V p-p, differential).  
fC, the cutoff frequency of the LPF (125 MHz to 800 MHz).  
RTERM, the differential input termination resistance.  
f
INMAX, the maximum input signal frequency.  
Background calibration digitally calibrates signal path gain  
error and nonlinearity. The ADC noise density is shaped, not  
flat, and is better at lower bandwidths. The worst case ADC  
noise density at a 2 GHz sample rate and 100 MHz offset is  
−147 dBFS/Hz. For a 2 GSPS sample rate and at 100 MHz  
bandwidth, the input referred noise figure is only 0.1 dB with  
40 dB of front-end gain.  
Backoff, the reduction in front-end gain for increased  
linearity.  
EN_HP, which increases the SNR by 2.5 dB by doubling  
the ADC power dissipation.  
fC = 125MHz TO 800MHz  
VINx+  
R/2  
R/2  
x = 1 TO 16  
C
16  
Σ-Δ  
MODULATOR  
R
TERM  
VINx–  
R/2  
R/2  
x = 1 TO 16  
VMAX  
C
fS  
Figure 55. AD9083 ADC Block Diagram  
Rev. 0 | Page 28 of 93  
 
 
 
Data Sheet  
AD9083  
LOW-PASS, CTSD ADC OVERVIEW  
LOW-PASS Σ-Δ ADC  
The AD9083 uses a voltage control oscillator (VCO)-based  
CTSD modulator ADC to convert the analog input to a digital  
word. The digital word can then be processed by a digital backend  
that provides decimation filtering, rate adjustment, DDC  
frequency shifting, and FIR filtering. The ADC samples at a  
rate (fS) between 1 GSPS and 2 GSPS. The typical maximum  
oversampling ratio (OSR) is 8 for a usable bandwidth up to fS/16.  
Figure 56 shows a simplified, single-ended representation of the  
low power Σ-Δ ADC modulator. The ADC is a first-order, single-  
stage modulator. The NTF is first order. Therefore, a relatively  
high OSR is required to reduce noise in the signal band of  
interest. For a more detailed description of the modulator,  
see IEEE JSSC 2010 and IEEE JSSC 2013.  
SIGNAL CONVERTER  
5
5
OVER-  
RANGE  
CORR  
8
8
NON-  
15  
15  
10x3 – ELEMENT  
ICRO  
RING  
PHASE  
–1  
–1  
1–z  
1–z  
LINEARITY  
CORRECTION  
SAMPLER  
DECODER  
v(t)  
V/I  
OVER-  
RANGE  
CORR  
NON-  
LINEARITY  
CORRECTION  
16  
10x3 – ELEMENT  
ICRO  
RING  
SAMPLER  
PHASE  
DECODER  
fS  
CALIBRATION UNIT  
Figure 56. Simplified, Single-Ended, Low Power, Σ-Δ ADC Modulator  
Rev. 0 | Page 29 of 93  
 
 
 
AD9083  
Data Sheet  
At signal frequencies below fS/64, the dominant noise source is  
white thermal noise. Above this frequency, the noise is dominated  
by shaped quantization noise rising at 6 dB/octave. At the  
maximum signal bandwidth of fS/16, quantization noise is the  
dominant noise source (see Figure 54). The ac performance  
tables give measurements of the NSD at various frequencies  
and ADC settings.  
Differential Input Considerations  
The AD9083 ADC uses a first-order, CTSD modulator  
architecture that provides first-order quantization noise  
shaping and inherent first-order, sinc shaped, antialias filtering.  
This oversampling, combined with the inherent antialias  
filtering, eliminates thermal noise folding into the band of  
interest. Therefore, there is no need for an antialiasing filter in  
the front end. The inputs can be differentially coupled using a  
balun/transformer or an amplifier. The inputs can also be  
ac- or dc-coupled. Moreover, the AD9083 inputs are resistively  
terminated, which makes it easier for amplifiers to drive the  
AD9083 analog inputs. Figure 58, Figure 59, Figure 60, and  
Figure 61 show some commonly applicable ways to provide an  
input to the AD9083.  
DESIRED  
INPUT  
fS/64 fS/16  
fS/2  
BAND OF  
INTEREST  
SIGNAL  
AD9083  
INPUT  
R
= 100Ω  
TERM  
CTSD  
1:2  
Figure 57. Noise Shaping Characterisctic of a Σ-Δ ADC  
Figure 58. AC-Coupled Inputs to the AD9083 Using a Transformer  
A digital decimation filter that follows the modulator removes  
the large out-of-band quantization noise (see Figure 57) while  
also reducing the data rate.  
SIGNAL  
AD9083  
INPUT  
V
R
= 100Ω  
ANALOG INPUTS  
CM  
TERM  
The analog input to the AD9083 is a differential buffer. The  
internal common-mode voltage of the buffer is 1.1 V when  
ac coupling. When dc coupling, the allowable level is 0.5 V  
to 1.0 V. The nominal VMAX level of the ADC is 1.8 V p-p,  
differential. This VMAX level is programmable from 0.5 V p-p  
to 2.0 V p-p.  
1:2  
Figure 59. DC-Coupled Inputs to the AD9083 Using a Transformer (Note the  
Center Tap Connection Providing the Common-Mode Voltage)  
AD9083  
SIGNAL  
INPUT  
R
= 100Ω  
TERM  
OR 200Ω OR  
OPEN  
The inputs of the AD9083 are terminated using a programmable  
differential resistor. This differential resistor can be programmed  
to 100 Ω, 200 Ω, or can be left open. Following the termination  
resistor is a programmable single-pole, LPF. The maximum  
signal bandwidth of the AD9083 is 125 MHz (fS/16) for a 2 GHz  
ADC fS. The fC of the LPF can be programmed to be between 125  
MHz to 800 MHz to reduce input noise to the ADC. In particular,  
this noise includes unwanted signals near fS that can alias down  
to the band of interest.  
Figure 60. AC-Coupled Inputs to the AD9083 Using an Amplifier  
AD9083  
SIGNAL  
INPUT  
R
= 100Ω  
TERM  
OR 200Ω OR  
OPEN  
V
OCM  
For applications where unwanted signals are not present,  
increasing the cutoff frequency of this filter improves the signal  
flatness out to the required signal bandwidth of the ADC. For  
best ADC noise performance, place the IF below fS/20, where fS  
is the ADC sample rate.  
Figure 61. DC-Coupled Inputs to the AD9083 Using an Amplifier (Note the  
VOCM Pin Providing the Common-Mode Voltage)  
Rev. 0 | Page 30 of 93  
 
 
 
 
 
 
Data Sheet  
AD9083  
1.1V  
Σ-Δ Analog Input Considerations  
A discrete time ADC aliases signals around the sample clock  
frequency and the corresponding multiples to the band of  
interest (see Figure 62). Therefore, an external antialias filter is  
needed to reject these signals.  
R
IN  
V
+ VIN  
– VIN  
CM  
(1.1V – V )/R  
CM  
IN  
V
UNDESIRED  
CM  
R
DESIRED  
INPUT  
SIGNAL  
IN  
1.1V  
Figure 64. Input Stage of the AD9083 Showing the Common Mode Voltage  
Generation  
fS  
fS/2  
The AD9083 can also be configured for ac-coupled applications.  
In this case, the output of the ac-coupling capacitor is biased to  
1.1 V by the input circuit (see Figure 65).  
ADC  
Figure 62. Aliasing in a Discrete Time ADC  
R
IN  
IN  
V
V
+ VIN  
– VIN  
CM  
In contrast, the CTSD modulator used in the AD9083 has  
some inherent antialiasing that lessens the antialias filtering  
requirements. The antialiasing property results from the signal  
processing inherent to the ADC architecture. The intrinsic STF of  
the ADC is that of a first-order sinc filter.  
CM  
R
1.1V  
1.1V  
Figure 65. AC-Coupled Application Using the AD9083  
Setting the device so that VCM = 0.7 V is recommended for  
optimum performance. However, the device can function over a  
wider range with reasonable performance.  
Additionally, a single-pole, first-order, programmable LPF is  
integrated in front of the ADC. This filter is SPI programmable  
between the 125 MHz to 800 MHz bandwidth.  
Input Termination  
The STF + LPF filtering at the front end reduces aliasing of  
undesired signals near the sample rate, fS (see Figure 63).  
A differential input termination can be enabled via the SPI  
register. This termination value can be either 100 Ω, 200 Ω, or  
high impedance. On-chip foreground calibration is performed  
after startup to reduce the device to device variation of resistor  
and capacitor values due to tolerances associated with the  
device process. This calibration improves the termination value  
tolerances, as well as the LPF tolerances discussed previously  
UNDESIRED  
STF + LPF  
SIGNAL  
DESIRED  
INPUT  
fS  
fS/2  
CTSD  
R
IN  
Figure 63. Alias Rejection of Σ-Δ ADC  
R
TERM  
Input Common Mode  
R
IN  
The analog inputs of the AD9083 are programmable resistors  
internally dc biased to 1.1 V. The device typically expects a  
common-mode input of 0.5 V to 1.0 V with a nominal voltage  
of 0.7 V. An internal reference loop automatically senses the  
input common mode and sources a current across the input  
resistor network to generate the appropriate common-mode  
level shift across each RIN (see Figure 64). The circuit driving  
the AD9083 must be able to sink this common-mode current.  
To set the value of the current use the following equation:  
Figure 66. Programmable Input Termination of the AD9083  
Input Signal Overload  
Unlike a traditional CTSD ADC, the AD9083 ADC saturates  
much like a flash converter. The ADC does not become unstable  
(as with a traditional CTSD ADC), and the recovery time is one  
clock cycle.  
I
SINK = (1.1 V − VCM)/(RIN)  
Rev. 0 | Page 31 of 93  
 
 
 
 
AD9083  
Data Sheet  
–85  
–90  
CLOCK INPUTS  
INTEGRATED JITTER = 148.2fS rms  
–95  
The AD9083 ADC sample clock is generated by using the  
on-chip, integrated, integer PLL VCO by providing a reference  
clock signal to the CLK differential inputs (Pin K3 and  
Pin J3). Clock multiplying employs the on-chip ADC PLL that  
accepts a reference clock operating at a submultiple of the  
desired ADC sample rate. The operating range of the clock  
multiplier reference input is 50 MHz to 500 MHz. The PLL  
then multiplies the reference clock up to the desired ADC  
sample clock frequency, which generates all the clocks within  
the AD9083. The block diagram of the on-chip PLL is shown in  
Figure 68.  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
1k  
10k  
100k  
1M  
10M  
The AD9083 contains a low jitter, differential clock receiver  
that is capable of interfacing directly to a differential clock  
source. The input is self biased with a nominal impedance of  
100 Ω. It is recommended that the clock source be ac-coupled  
to the CLK input pins. Improved phase noise performance  
can be achieved with a higher clock input level. The quality of  
the clock source, as well as its interface to the AD9083 clock  
input, directly impacts ac performance. Select the phase noise  
and spur characteristics of the clock source to meet the target  
application requirements. The typical phase noise performance  
of the on-chip PLL when clocking the AD9083 at a 2 GHz  
sample rate is shown in Figure 67.  
FREQUENCY (Hz)  
Figure 67. AD9083 On-Chip PLL Phase Noise vs. Frequency Offset, 2 GHz ADC  
Sample Rate, On-Chip DDC Enabled  
For optimal performance of the on-chip PLL, connect a low  
ESR, low ESL, X7R dielectric, 2.2 µF capacitor between the  
REG_VCO pin and GND. Additionally, connect a C0G or NP0  
dielectric, 33 nF capacitor between the VCOARSE_VCO pin  
and GND. Place these capacitors as close to the AD9083 chip as  
possible to avoid any external noise coupling.  
33nF  
2.2µF  
PCB  
VCOARSE VCO  
REG VCO  
CHIP  
PCB  
CHIP  
REGULATOR  
AVDD1P8  
CLK+  
30Ω  
30Ω  
172kΩ  
ADC_CLK  
1GHz TO 2GHz  
÷R  
PFD  
÷N  
FILTER  
÷D  
V
100Ω  
CM  
172kΩ  
8.8GHz TO 12.4GHz  
CLK–  
÷P  
OUTPUT  
DIVIDER  
CONTROL  
V
CM  
CAL  
Figure 68. AD9083 Clock Path Block Diagram  
Rev. 0 | Page 32 of 93  
 
 
 
Data Sheet  
AD9083  
POWER MODES  
DIGITAL SIGNAL PROCESSING OVERVIEW  
The AD9083 features low power modes that enable powering  
down certain blocks of the AD9083, or the entire chip, based on  
trade-offs between power saving achieved and wake-up time to full  
power on. These sections discuss the power-down modes available  
within the AD9083. All modes are controlled via the SPI.  
The CTSD ADC includes a digital processing block between the  
CTSD ADC output and the JESD204 transmitter core. The  
digital signal processing block can filter and translate IF to zero  
IF signals suitable for post processing by the host without any  
loss of dynamic range. This block includes a programmable  
CIC decimation filter, a mixer with NCO, and a highly  
programmable, multistage decimation FIR filter. Figure 70  
shows a simplified diagram of the digital functional block. For  
clarity, Figure 70 does not show the digital datapath routing  
options, which are described in the Signal Processing Tile  
section.  
Full Power-Down Mode  
In full power-down mode, almost all of the blocks within the  
AD9083 are held in low power mode, resulting in the highest  
power saving. However, this power saving results in slow wake-  
up times. The ADC internal reference, on-chip clock PLL, and  
the JESD204B PLL are powered on. On release of this mode, the  
ADC must undergo recalibration. The on-chip clock PLL and  
the JESD204B PLL must undergo relocking to achieve normal  
performance.  
CIC  
DDC  
FIR  
LOW-PASS  
CTSD  
Nx  
Mx  
NCO  
Standby Mode  
Figure 70. Simplified Diagram of the Digital Functional Block  
In standby mode, some of the blocks are kept running while  
others are held in a clock gated mode, resulting in medium  
power saving, but faster wake-up time compared to full power-  
down mode. The ADC cores, on-chip clock PLL, JESD204B  
PLL, and digital outputs are kept powered on. The digital and  
JESD204B framer blocks are clock gated. The JESD204B link  
must be reinitialized on release of this mode.  
The CTSD ADC provides a highly oversampled digital output  
representing the desired IF signal pass band and the out-of-  
band shaped noise. Figure 71 shows the spectrum of the raw  
ADC output.  
ADC DATA OUTPUT  
DESIRED  
INPUT  
Power-On Mode  
fIN  
Power-on mode is the normal operation mode for the AD9083.  
All blocks within the AD9083 are powered up and running at  
rated frequency. However, to further reduce power during  
normal operation, digital portions that do not need to be  
running can be selectively clock gated. For example, if the  
application only requires one numerically controlled oscillator  
(NCO)/mixer, the other two NCOs/mixers can be disabled. The  
same principle applies to the JESD204B lanes. The unused lanes  
can be powered down.  
ADC NOISE  
fS/64 fS/16  
fS/2  
BAND OF  
INTEREST  
Figure 71. Spectrum of the Raw ADC Output  
The digital signal path first filters and decimates the ADC  
output data by Nx. It is necessary to remove the majority of the  
out of band quantization noise before any clock rate reduction  
or frequency translation. Figure 72 shows the decimator output  
frequency spectrum.  
TEMPERATURE DIODE  
The AD9083 contains diode-based temperature sensors. The  
output voltages of these diodes correspond to the temperature  
of the silicon. There is a pair of diodes, one of which is 20× the  
size of the other. It is recommended to use both diodes to  
obtain an accurate estimate of the die temperature. For more  
information, see the AN-1432 Application Note, Practical  
Thermal Modeling and Measurements in High Power ICs. The  
temperature diode voltages can be exported to the TD pin using  
the SPI (see Figure 69).  
DECIMATED DATA OUTPUT  
fIN  
fS/64  
fS/16  
fS/2N  
Figure 72. Frequency Spectrum of the Decimator Output  
AVDD1P8  
Next, the DDC can be enabled to perform a frequency  
translation. Typically, this frequency translation is from a  
middle IF down to zero IF or very low IF. Figure 73 shows a  
representative of the output spectrum of the DDC output.  
1x DIODE  
VOLTAGE  
TD  
TEMPERATURE  
DIODE  
ENABLE  
20x DIODE  
VOLTAGE  
TEMPERATURE  
DIODE SELECT  
GND GND  
GND  
Figure 69. TD Pin Using the SPI  
Rev. 0 | Page 33 of 93  
 
 
 
 
 
 
 
AD9083  
Data Sheet  
DDC DATA OUTPUT  
The following equation shows the quantization noise density  
for truncation errors:  
NSDTRUNCATION = 20log10(2BITS) + 10log10(BWBASEBAND  
)
fIN fNCO  
For example, with 12-bit JESD204B data and a 2 MHz baseband  
bandwidth, the truncation error NSD is only −135 dBFS, which is  
well above the ADC noise floor. In this narrow-band example,  
16 bits are required to reduce the truncation error to −159 dBFS,  
which is well below the ADC noise level under all IF conditions.  
fS/2N  
Figure 73. Output Spectrum of the DDC Output  
OUTPUT DATA  
Finally, the FIR can filter and downsample the baseband signal  
to a much lower data rate suitable for transfer via the JESD204B  
interface. Figure 74 shows a representative of the output  
spectrum of the FIR filter output of a baseband signal.  
fIN  
fNCO  
ADC NOISE  
TRUNCATION  
NOISE  
DDC DATA OUTPUT  
fS/2(N + M)  
fIN fNCO  
Figure 75. Example Showing ADC Noise Unaffected by Truncation Error  
Truncation error that is well above the ADC noise floor may not  
only add to the noise floor but may also add spurious content  
when the truncation noise is correlated with the input signal.  
OUTPUT DATA  
fS/2(N + M)  
Figure 74. Output Spectrum of the FIR Filter Output of a Baseband Signal  
fIN fNCO  
TRUNCATION SPUR  
TRUNCATION NOISE  
> ADC NOISE  
Care must be taken when selecting the JESD204B output data  
format. Both 12- and 16-bit data modes are available, and the  
user must be careful to select a word length that does not add  
significant truncation noise to the baseband signal. Very  
narrow-band baseband applications may see high SNR values  
in the FIR output data. In all cases, the truncation noise density  
is well below the baseband NSD.  
fS/2(N + M)  
Figure 76. Example Showing ADC Noise Affected by Truncation Error  
Rev. 0 | Page 34 of 93  
 
 
Data Sheet  
AD9083  
SIGNAL PROCESSING TILE  
Each ADC has a signal processing tile to filter out of band  
shaped noise from the Σ-Δ ADC and to reduce the sample rate,  
resulting in 16 total tiles (see Figure 77).  
stream. To enable this operation, the converter number of bits,  
N, is set to a default value of 16.  
For typical high performance RF applications, the ADC can  
provide either a real output for zero IF inputs, or a quadrature  
output for low IF inputs. The datapath through the signal  
processing tile uses the multiple FIR decimate by J filters with  
optional frequency translation using the mixer/NCO0 block.  
This datapath is referred to as the nonburst mode datapath.  
Each tile contains a CIC filter and a DDC with multiple FIR  
decimation filters, known as the decimate by J filter block. The  
decimate by J filter block can be used with or without the  
quadrature mixer/NCO. For data gating applications, there are  
up to three quadrature DDC channels using an averaging filter,  
G, that selects and decimates the data.  
For applications using stepped frequency modulation bursts  
(SFCW), time must be allowed for settling. Data gating is used  
to select the number valid samples (G) of the pulse burst for  
averaging prior to decimation. Decimation reduces the data  
samples by 1/H. This datapath is referred to as the burst mode.  
In burst mode, each input channel is provided with three  
quadrature DDCs. All channels are programmed the same, but  
the individual DDCs and averaging FIR filters within a channel  
can be configured for a different frequency.  
Each processing block has control lines that allow the block to  
be independently enabled and disabled to provide the desired  
processing function. Multiplexers are enabled within the  
processing tile to send the data appropriate to the application  
use case. The register bits responsible for datapath selection by  
the multiplexors are shown in Figure 67.  
There are three NCOs (NCO0 to NCO2) available for the signal  
processing tile, one for each mixer. NCO2 and NCO3 are only  
used when the device is configured for data gating. The same  
three NCOs are used for all 16 signal processing tiles.  
Due to the JESD204B output line rate limitation (16 Gbps/lane)  
and the number of lanes available (four), care must be taken to  
ensure that the total throughput from all 16 signal processing  
tiles does not exceed the maximum allowable line rate.  
Therefore, not all combinations of CIC filter decimation, J  
decimation, or averaging (H) decimation are supported.  
The signal processing tile can be configured to output either  
real data or complex output data. The output is complex when  
using the mixer. The signal processing tile outputs a 16-bit  
NCO  
NCO  
NCO  
2
0
1
SIGNAL PROCESSING TILE 1 OF 16  
BURST_MODE  
DECI_ADC_DATA/  
NO_DDC_MODE  
DECIMATE  
BY J  
I
0
Q
0
NCO  
0
AVERAGE  
FILTER G  
DECIMATE  
BY H  
GAIN  
ADJUST  
NCO  
NCO  
1
2
AVERAGE  
FILTER G  
DECIMATE  
BY H  
CIC  
DECIMATOR  
BY N  
CIC OUTPUT  
DATA AT fS/N  
I
Q
1
ADC OUTPUT  
DATA AT fS  
1
2
GAIN  
ADJUST  
AVERAGE  
FILTER G  
DECIMATE  
BY H  
I
Q
2
GAIN  
ADJUST  
Figure 77. Signal Processing Tile Following Each ADC Channel (1 of 16)  
Rev. 0 | Page 35 of 93  
 
 
AD9083  
Data Sheet  
Adjust the CIC droop with a programmable gain adjustment.  
For each sample frequency, the tones are at different frequency  
values and the value of droop correction required is different.  
Figure 79 shows the droop characteristics to a finer detail.  
CASCADED INTEGRATOR COMB (CIC) FILTER  
Data from each ADC is sent to the CIC filter. The CIC filter can  
be bypassed, and the ADC data sent to the DDCs to decimate  
the data. This is enabled by writing a 1 to the DECI_ADC_  
DATA bit (Bit DB4) in the DP_CTRL register. In this mode,  
the mixer is bypassed. Therefore, there is no frequency shifting  
available.  
0
16× DECIMATION  
8× DECIMATION  
4× DECIMATION  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
The frequency response of the CIC filter built in to the AD9083  
is identical to that of a second-order moving average filter of  
Length N, where N is the decimation rate. The decimation rates  
allowed are 4×, 8×, or 16×, based on the setting. The output of  
the CIC filter is a single 16-bit data sample at a rate of fS/N  
where fS is the ADC sample rate and N is the CIC decimation  
ratio setting.  
The response of the CIC filter under different decimation  
settings is shown in Figure 78. The response is normalized to  
the ADC sample frequency (fS). This normalization helps the  
end user with frequency planning. For example, if the ADC fS is  
2 GSPS, a fundamental frequency placed at 100 MHz incurs CIC  
losses of 1.09 dB, 4.77 dB, and 25.17 dB for CIC decimation ratios  
of 4×, 8×, and 16×, respectively. Therefore, for this application  
use case, it is best to select a CIC decimation ratio of 4× and  
rely on the DDC decimation to further decimate the data.  
0
0.015 0.030 0.045 0.060 0.075 0.090 0.105 0.120 0.135 0.150  
NORMALIZED FREQUENCY (×fS  
)
Figure 79. Zoomed in Image of the CIC Filter Response Shown in Figure 78;  
Normalized to fS  
The AD9083 digital datapath has a block that can be used to  
program the gain to compensate for the droop. Based on the  
application and the input frequency, the user can program the  
appropriate gain to compensate for the loss through the CIC  
filter. The gain setting to compensate for the loss is calculated  
as follows  
0
16× DECIMATION  
8× DECIMATION  
4× DECIMATION  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
Fractional Bit Calculation ≥ frac(10(−Droop/20)) × 210  
For example, if the input frequency is 25 MHz, Table 18 shows  
the gain setting needed to compensate for the droop for the  
various CIC decimation ratios for various frequencies. As  
shown in Figure 79, the CIC roll-off must be considered when  
designing the AD9083 in a system. As a general rule, keep the  
IF to within 20% of the output data rate. For example, if the  
highest frequency in the system is 100 MHz, then a CIC  
decimation of 4× is recommended. Conversely, if a CIC  
decimation of 16× is chosen, keep the IF below 25 MHz.  
0
0.05  
0.10  
0.15  
0.20  
0.25  
NORMALIZED FREQUENCY (×fS  
)
The CIC gain is programmed as an unsigned 4.10 word. The  
first four bits represent the integer portion of the gain, and the  
following 10 bits represent the fraction portion of the gain.  
Figure 78. CIC Filter Response for Decimation Ratio = 4×, 8×, and 16×;  
Normalized to fS  
Table 18. Example Gain Compensation Settings for various CIC filter Roll-Off Values; fS = 2 GHz  
4× Decimation  
8× Decimation  
Frequency  
(MHz)  
CIC Droop (dB)  
−0.0669177  
−0.2687053  
Gain Compensation (Unsigned 4.10)  
0001_00_0000_1000  
0001_00_0010_0000  
CIC Droop (dB)  
−0.28  
−1.14  
Gain Compensation (Unsigned 4.10)  
0001_00_0010_0010  
0001_00_1001_0000  
25  
50  
Rev. 0 | Page 36 of 93  
 
 
 
 
Data Sheet  
AD9083  
The NO_DDC_MODE bit (Register 0x0116, Bit 1) of the  
DP_CTRL register bypasses the NCO/mixer where  
frequency translation is not required.  
The BURST_MODE bit (Register 0x0116, Bit 2]) of the  
DP_CTRL register) selects the decimate by J filter block.  
NONBURST MODE DATAPATH  
Figure 80 shows the signal processing configuration in the  
nonburst mode datapath. The input data can be direct from the  
ADC or via the output of the CIC filter. The datapath uses  
multiplexers configurable by the DP_CTRL register  
(Register 0x116) to appropriately route the data. The  
multiplexer control bits are shown in Figure 80.  
NCO  
0
SIGNAL PROCESSING TILE 1 OF 16  
BURST_MODE  
DECI_ADC_DATA/  
NO_DDC_MODE  
DECIMATE  
BY J  
ADC OUTPUT  
DATA AT fS  
I
Q
GAIN  
ADJUST  
CIC OUTPUT  
DATA AT fS/N  
DDC OUTPUT DATA  
AT fS/(N × J);  
J = 1 IF DDC BYPASSED  
NCO  
0
Figure 80. Nonburst Mode Datapath Within the Signal Processing Tile Following Each ADC Channel (1 of 16)  
Rev. 0 | Page 37 of 93  
 
 
AD9083  
Data Sheet  
The decimate by J block supports decimation ratios of 1, 4, 8, 10,  
12, 16, 20, 24, 30, 40, and 60, as shown in Table 19.  
Decimate by J Filters  
After the frequency translation stage, there are multiple  
decimation filter stages that reduce the output data rate. After  
the carrier of interest is tuned down to dc (carrier frequency =  
0 Hz), these filters efficiently lower the sample rate, while  
providing sufficient alias rejection from unwanted adjacent  
carriers around the bandwidth of interest.  
Decimation rates of 1, 4, 10, and 30 are valid only when CIC is  
not bypassed (for example, DECI_ADC_DATA is equal to 0).  
Figure 81 shows the detailed block diagram of the Decimate by  
J filters.  
Table 12 describes the filter characteristics of the different FIR filter  
blocks.  
When the decimate by J block is supplied with direct data from  
the ADC, there is no mixing option. Only decimation occurs.  
The valid J decimation options are determined by the path  
before the decimate by J block. Table 19 lists the available J  
decimation options determined by the input data path.  
Table 21 shows the different filter configurations selectable by  
including different filters. In all cases, the decimate by J filtering  
stage provides 81.4% of the available output bandwidth,  
< 0.005 dB of pass-band ripple, and >100 dB of stop band alias  
rejection. Table 22 shows the coefficients for the various finite  
impulse response (FIR) filters used in the AD9083.  
HB3  
HB2  
HB1  
PB2  
FROM MIXER/CIC  
HB4  
DIRECT FROM ADC  
TB3  
Figure 81. Decimate by J Filters Block Diagram  
Table 19. J Decimation Rate  
CIC Filter and NCO0/Mixer Bypassed  
(DECI_ADC_DATA = 1 and  
NO_DDC_MODE = 1)  
CIC Filter Enabled and NCO0/Mixer  
Bypassed (DECI_ADC_DATA = 0 and  
NO_DDC_MODE = 1)  
CIC Filter and NCO0/Mixer Enabled  
(DECI_ADC_DATA = 0 and  
NO_DDC_MODE = 0)  
Invalid  
Invalid  
8
1 (bypass mode)  
4
8
1 (bypass mode)  
4
8
Invalid  
12  
16  
20  
24  
40  
Invalid  
60  
10  
12  
16  
20  
24  
40  
30  
60  
Invalid  
Invalid  
16  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Table 20. Decimation Filter Characteristics  
Pass Band  
Filter Name  
Decimation Ratio  
(rad/sec)  
0.1 × π/2  
0.2 × π/2  
0.4 × π/2  
0.8 × π/2  
0.3 × π/3  
0.4 × π/5  
Stop Band (rad/sec)  
π/2 × 1.9  
π/2 × 1.8  
π/2 × 1.6  
π/2 × 1.2  
Pass-Band Ripple (dB)  
Stop Band Rejection (dB)  
HB4  
HB3  
HB2  
HB1  
TB3  
PB2  
2
2
2
2
3
5
< 0.001  
< 0.001  
< 0.001  
< 0.001  
< 0.001  
< 0.001  
>100  
>100  
>100  
>100  
>100  
>100  
π/3 × 1.8  
π/5 × 1.6  
Rev. 0 | Page 38 of 93  
 
 
Data Sheet  
AD9083  
Table 21. DDC Filter Configurations  
DDC Input Sample Rate1  
DDC Filter Configuration  
Decimation Ratio  
Output Bandwidth  
−fIN to +fIN  
fIN  
Not applicable  
1
HB1 + HB2  
HB1 + HB2 + HB3  
HB1 + PB2  
HB1 + HB2 + TB3  
HB1 + HB2 + HB3 + HB4  
HB1 + PB2 + HB3  
HB1 + HB2 + TB3 + HB4  
HB1 + PB2 + TB3  
HB1 + PB2 + HB3 + HB4  
HB1 + PB2 + TB3 + HB4  
4
8
0.814 × (−fIN/4 to +fIN/4)  
0.814 × (−fIN/8 to +fIN/8)  
10  
12  
16  
20  
24  
30  
40  
60  
0.814 × (−fIN/10 to +fIN/10)  
0.814 × (−fIN/12 to +fIN/12)  
0.814 × (−fIN/16 to +fIN/16)  
0.814 × (−fIN/20 to +fIN/20)  
0.814 × (−fIN/24 to +fIN/24)  
0.814 × (−fIN/30 to +fIN/30)  
0.814 × (−fIN/40 to +fIN/40)  
0.814 × (−fIN/60 to +fIN/60)  
1 fIN = fS/CIC_DEC_RATIO, where fS is the ADC sample rate.  
Table 22. DDC Filter Coefficients for Various FIR Filters in the AD9083  
Coefficient  
Number  
HB1  
HB2  
HB3  
HB4  
TB3  
PB2  
1
2
3
4
5
6
7
8
21'h1FFFF4  
21'h00000  
21'h00002C  
21'h00000  
21'h1FFF8C  
21'h00000  
21'h000102  
21'h00000  
21'h1FFDFC  
21'h00000  
21'h0003B4  
21'h00000  
21'h1FF9A0  
21'h00000  
21'h000A6E  
21'h00000  
21'h1FEFA7  
21'h00000  
21'h0018C0  
21'h00000  
21'h1FDB90  
21'h00000  
21'h003492  
21'h00000  
21'h1FB50C  
21'h00000  
21'h006AD4  
21'h00000  
21'h1F64EC  
21'h00000  
21'h00ED96  
21'h00000  
21'h1E5BAE  
21'h00000  
21'h0512F9  
19'h000B4  
19'h00000  
19'h7FA7E  
19'h00000  
19'h01766  
19'h00000  
19'h7B3EB  
19'h00000  
19'h1397E  
19'h20000  
19'h1397E  
19'h00000  
19'h7B3EB  
19'h00000  
19'h01766  
19'h00000  
19'h7FA7E  
19'h00000  
19'h000B4  
17'h1FF91  
17'h00000  
17'h0039C  
17'h00000  
17'h1EFC4  
17'h00000  
17'h04D0F  
17'h08000  
17'h04D0F  
17'h00000  
17'h1EFC4  
17'h00000  
17'h0039C  
17'h00000  
17'h1FF91  
19'h006D2  
19'h00000  
19'h7CBA8  
19'h00000  
19'h12D86  
19'h20000  
19'h12D86  
19'h00000  
19'h7CBA8  
19'h00000  
19'h006D2  
17'h00000  
17'h00000  
17'h1FFE4  
17'h1FFA8  
17'h00000  
17'h001F8  
17'h003F0  
17'h00000  
17'h1F352  
17'h1EAB6  
17'h00000  
17'h03E55  
17'h088D8  
17'h0AAAA  
17'h088D8  
17'h03E55  
17'h00000  
17'h1EAB6  
17'h1F352  
17'h00000  
17'h003F0  
17'h001F8  
17'h00000  
17'h1FFA8  
17'h1FFE4  
17'h00000  
17'h00000  
20'h00000  
20'hFFFF9  
20'hFFFEE  
20'hFFFE6  
20'h00000  
20'h0005A  
20'h000F6  
20'h0018A  
20'h00178  
20'h00000  
20'hFFCD0  
20'hFF8B0  
20'hFF5DC  
20'hFF77C  
20'h00000  
20'h00F00  
20'h01F90  
20'h02894  
20'h01FF2  
20'h00000  
20'hFCD26  
20'hF98A4  
20'hF7DEE  
20'hF9A1E  
20'h00000  
20'h0AD60  
20'h186CA  
20'h25CC0  
20'h2F99B  
20'h33330  
20'h2F99B  
20'h25CC0  
20'h186CA  
20'h0AD60  
20'h00000  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
Rev. 0 | Page 39 of 93  
 
 
AD9083  
Data Sheet  
Coefficient  
Number  
HB1  
HB2  
HB3  
HB4  
TB3  
PB2  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
21'h080000  
21'h0512F9  
21'h00000  
21'h1E5BAE  
21'h00000  
21'h00ED96  
21'h00000  
21'h1F64EC  
21'h00000  
21'h006AD4  
21'h00000  
21'h1FB50C  
21'h00000  
21'h003492  
21'h00000  
21'h1FDB90  
21'h00000  
21'h0018C0  
21'h00000  
21'h1FEFA7  
21'h00000  
21'h000A6E  
21'h00000  
21'h1FF9A0  
21'h00000  
21'h0003B4  
21'h00000  
21'h1FFDFC  
21'h00000  
21'h000102  
21'h00000  
21'h1FFF8C  
21'h00000  
21'h00002C  
21'h00000  
21'h1FFFF4  
20'hF9A1E  
20'hF7DEE  
20'hF98A4  
20'hFCD26  
20'h00000  
20'h01FF2  
20'h02894  
20'h01F90  
20'h00F00  
20'h00000  
20'hFF77C  
20'hFF5DC  
20'hFF8B0  
20'hFFCD0  
20'h00000  
20'h00178  
20'h0018A  
20'h000F6  
20'h0005A  
20'h00000  
20'hFFFE6  
20'hFFFEE  
20'hFFFF9  
20'h00000  
Rev. 0 | Page 40 of 93  
Data Sheet  
AD9083  
NUM_TONES bits (Bits[DB6:5]) in the DP_CTRL register  
BURST MODE DATAPATH  
(Register 0x116). The averaging filter uses a programmable  
number of last valid samples of the pulse burst equal to G and a  
programmable decimation value equal to H. The timing of the  
burst is derived from either the TRIG input or the SYSREF.  
Figure 82 shows the block diagram for the burst mode datapath  
of one signal processing tile of the AD9083. The data from the  
CIC filter can be sent to three DDCs channels simultaneously at a  
rate of fS/N (N = 4, 8, 16). Each DDC has a mixer fed with a 7-bit  
NCO that can be used to tune the outputs to dc. The number of  
DDCs used is programmable. The NCOs can be programmed  
to different frequencies, enabling frequency translations for up  
to three tones. The number of tones is defined in the  
In burst mode, the decimate by J filter block is bypassed. This  
bypass is enabled by the BURST_MODE bit (Bit DB2) in the  
DP_CTRL register.  
NO_DDC  
BURST  
NCO  
0
I
Q
AVERAGE  
FILTER  
DECIMATE  
BY H  
0
K
0fS/(N × R)  
0
NCO  
1
AVERAGE  
FILTER  
DECIMATE  
BY H  
K1fS/(N × R)  
CIC  
DECIMATOR  
BY N  
I
Q
1
ADC  
1
2
NCO  
2
AVERAGE  
FILTER  
DECIMATE  
BY H  
K
2fS/(N × R)  
I
Q
2
fS = 1 – 2Gsps  
fS/N  
fS/(N × H)  
Figure 82. Averaging Filter Example Showing the Datapath  
Rev. 0 | Page 41 of 93  
 
 
AD9083  
Data Sheet  
The supported values for G are 8 and 16. If G is 8, the  
supported H values are 12, 14, 16, 18. For a G value of 16, the  
supported H values are 24, 28, 32, 36.  
AVERAGING FILTERS  
The averaging filters are used in the burst mode datapath. In  
contrast to traditional decimation filters, the averaging filters  
are designed for determining the phase and amplitude of a  
single continuous wave (CW) tone of a known frequency. The  
filters average G samples when the data is stable within every H  
window.  
Averaging Filter Example  
In this example, the sample rate is 1.6 GSPS, N decimation = 4,  
and G = 16:  
f
f
f
NCO1 = 1 × (1.6e9 / (4 × 16)) = 25 MHz.  
NCO2 = 2 × (1.6e9 / (4 × 16)) = 50 MHz.  
NCO3 = 3 × (1.6e9 / (4 × 16)) = 75 MHz.  
NCO  
SAMPLE  
CLOCK  
Placing the frequencies like this is necessary to ensure that the  
two unwanted frequencies are located at the filter nulls of the  
selected NCO frequency and are removed. In the example  
shown, NCO0 only allows the 25 MHz tone through, while  
nulling out the 50 MHz and 75 MHz tones. Similarly, NCO1  
only allows the 50 MHz tone through, while nulling out the  
25 MHz and 75 MHz tones. See Figure 84 for the averaging filter  
frequency response at each stage of the datapath.  
G
H
DOWN-MIXED  
DATA  
SETTLING  
VALID  
DECIMATED  
DATA  
fS = 1.6 GSPS, CIC decimation = 8, G = 16,  
H decimation = 24.  
Figure 83. Averaging Filter  
With the averaging filters, the user has the option to provide up to  
three different CW tones. The filters in each signal processing tile  
can use up to three NCOs. The three NCOs are shared by each of  
the channels. For example, Channel 15 must use the same three  
frequencies as Channel 2.  
In each case, the input frequency being observed must be  
identical to the NCO frequency, meaning that the output of the  
ADC appears to be dc. By looking at the dc values of the I and  
Q outputs, the phase and amplitude of the original CW tone  
can be determined.  
When using the burst mode datapath along with multiple CW  
tones, the frequencies of the tones (fK) must be calculated per  
the following equation:  
fS  
fK = K ×  
N × G  
where:  
fS is the sample frequency.  
N is the CIC N decimation.  
G is the G value.  
K = 1, 2, or 3 for Frequency 1, Frequency 2, or Frequency 3,  
respectively.  
Rev. 0 | Page 42 of 93  
 
Data Sheet  
AD9083  
VCO ADC OUTPUT (fSADC = 1.6Gsps)  
–75M –25M +25M +75M  
–800M  
fSADC/2  
+800M  
fSADC/2  
–50M  
+50M  
+
CIC DECIMATOR OUTPUT (N = 4, fNCO = 400M)  
–75M –25M +25M +75M  
–50M +50M  
–200M  
fNCO/2  
+200M  
+fNCO/2  
FIRST MIXER COMPLEX OUTPUT (k0 = 4, G = 16)  
–100M –50M  
–75M  
0
+50M  
+25M  
–200M  
fNCO/2  
+200M  
+fNCO/2  
AVERAGING FILTER NULLS (k0 = 1, G = 16)  
–100M –50M  
–75M  
0
+50M  
+25M  
–200M  
fNCO/2  
+200M  
+fNCO/2  
DATA-GATING (BY H = 24, fDATA = 16.66M)  
0
–8.33M  
fDATA/2  
+8.33M  
+fDATA/2  
Figure 84. Averaging Filter Example Frequency Response  
where:  
MIXERS  
NCO_FTW is the 7-bit twos complement number representing  
the NCO FTW.  
fC is the desired carrier frequency.  
For nonburst mode RF applications, DDC0 using NCO0/mixer  
for frequency translation can be selected. In applications where  
real data outputs are required, the mixer can be bypassed.  
f
IN is the input frequency to the DDC.  
For data gating applications using burst mode, there are three  
mixers available. These mixers are supplied by NCOs that can be  
set to three different frequencies, enabling multiple frequency  
translations (see the Averaging Filters section).  
fS  
fIN  
=
CIC _ DEC _ RATIO  
where CIC_DEC_RATIO is the CIC decimation ratio and can  
be 1, 4, 8, or 16.  
NCO FTW DESCRIPTION  
mod(x) is a remainder function. For example mod(110,100) =  
10 and for negative numbers, mod(−32,10) = −2.  
There are three identical NCOs in the AD9083: NCO0 to NCO2.  
Each NCO enables the frequency translation process by  
creating a complex exponential frequency (e-jωt), which can be  
mixed with the input spectrum to translate the desired  
frequency band of interest to dc, where it can be filtered by the  
subsequent LPF blocks to prevent aliasing. The NCO frequency  
tuning word (FTW) is 7-bits wide. The NCO output is 12-bits.  
All 16 signal processing tiles use the outputs from the same  
three NCOs (NCO0 to NCO2).  
floor(x) is defined as the largest integer less than or equal to x.  
For example, floor(3.6) = 3.  
Example FTW Calculation  
In this example, the ADC sample rate (fS) is 2 GHz.  
CIC_DEC_RATIO is set to 4. The desired fC is 100 MHz.  
Plugging in the following values to the equation above yields an  
NCO_FTW value of 26.  
The NCO FTW can be calculated by the following equation:  
mod( fC , fIN  
)
NCO_ FTW = floor 27  
fIN  
Rev. 0 | Page 43 of 93  
 
 
 
AD9083  
Data Sheet  
designer be aware of this phenomenon and adjust the  
fC Calculation from FTW  
frequency plan of the logic device. One way to increase this  
resolution is to increase the CIC decimation ratio. In the  
previous example, if the CIC decimation ratio is increased to 8  
(instead of 4), the NCO_FTW results in a value of 51, which  
calculates to 99.6094 MHz. This frequency only varies from the  
actual requested frequency of 100 MHz by ~0.4%. However,  
choosing this frequency plan results in an increased CIC filter  
droop, as shown in Figure 78. Therefore, care must be taken to  
choose the appropriate ADC sample rates, CIC decimation  
ratio, and the NCO frequency tuning word.  
The actual fC from the example above can be calculated as  
follows:  
NCO _ FTW × fIN  
Actual _ fC =  
27  
For the example listed above, the actual tuning frequency is  
2 GHz  
26×  
4
Actual _ fC  
=
= 101.5625 MHz  
27  
The example in this section shows that, even though the  
requested frequency is 100 MHz, the actual tuning frequency is  
about 1.5% off the actual value. It is important that the system  
Rev. 0 | Page 44 of 93  
Data Sheet  
AD9083  
DIGITAL OUTPUTS  
The AD9083 digital outputs are designed to the JEDEC standard  
JESD204B, serial interface for data converters. JESD204B is a  
protocol to link the AD9083 to a digital processing device over  
a serial interface with lane rates of up to 16 Gbps. The benefits  
of the JESD204B interface over LVDS include a reduction in  
required board area for data interface routing, and an ability to  
enable smaller packages for converter and logic devices.  
K is the number of frames per multiframe  
(AD9083 value = 8, 16, or 32 )  
S is the samples transmitted/single converter/frame cycle  
(AD9083 value = set automatically based on L, M, F, and N΄)  
HD is the high density mode (AD9083 = set automatically  
based on L, M, F, and N΄)  
CF is the number of control words/frame clock  
cycle/converter device (AD9083 value = 0)  
JESD204B OVERVIEW  
The JESD204B data transmit block assembles the parallel data  
from the ADC into frames and uses 8-bit/10-bit encoding as  
well as optional scrambling to form serial output data. Lane  
synchronization is supported through the use of special control  
characters during the initial establishment of the link. Additional  
control characters are embedded in the data stream to maintain  
synchronization thereafter. A JESD204B receiver is required to  
complete the serial link. For additional details on the JESD204B  
interface, refer to the JESD204B standard.  
Figure 85 shows a simplified block diagram of the AD9083  
JESD204B link. The AD9083 can be configured to use  
sixteen converters and four lanes. Data from all sixteen  
converters is output to SERDOUT0 , SERDOUT1 ,  
SERDOUT2 and SERDOUT3 . The AD9083 allows other  
configurations, such as combining the outputs of all converters  
onto a single lane. These modes are customizable, and can be  
set up via the SPI.  
In the AD9083, if N’ = 16, the N-bit converter word from each  
converter is broken into two octets (eight bits of data). Bit N − 1  
(MSB) through Bit N-8 are in the first octet. The second octet  
contains Bit N − 9 through Bit 0 (LSB), CS control bits (the CS  
parameter defines the number of control bits), and tail bits, if  
necessary, are appended to the LSB’s to achieve N’ number of  
bits in the JESD word. If tail bits are needed, they can be  
configured as zeros or a pseudorandom number sequence.  
Control bits can be used to indicate overrange, SYSREF , or  
fast detect output.  
The AD9083 JESD204B data transmit block maps up to sixteen  
physical ADCs or up to 96 virtual converters (when all the  
DDCs are enabled) over a link. A link can be configured to use  
one, two, or four JESD204B lanes. The JESD204B specification  
refers to a number of parameters to define the link, and these  
parameters must match between the JESD204B transmitter (the  
AD9083 output) and the JESD204B receiver (the logic device  
input).  
The JESD204B link is described according to the following  
parameters:  
For modes where N’ = 12, each of the M/L samples on a lane  
are concatenated starting with sample 0 on lane 0 to create the  
F octets in each lane. If control bits are required, then N must  
equal N’ – CS.  
L is the number of lanes per converter device (lanes per  
link); (AD9083 value = 1, 2, 3, or 4)  
M is the number of converters per converter device  
(virtual converters per link) (AD9083 value = 16, 32, 96)  
F is the octets/frame (AD9083 value = 2, 3, 4, 6, 8, 12, 16,  
24, 32, 48, 64, 72 or 96)  
The resulting octets can be scrambled. Scrambling is optional;  
however, it is recommended to avoid spectral peaks when  
transmitting similar digital data patterns. The scrambler uses a  
self-synchronizing, polynomial-based algorithm defined by the  
N΄ is the number of bits per sample (JESD204B word size)  
(AD9083 value = 12 or 16)  
14 + x15. The descrambler in the receiver is a self-  
equation 1 + x  
synchronizing version of the scrambler polynomial.  
N is the converter resolution  
CS is the number of control bits/sample  
(AD9083 value = 0, 1, 2, or 3)  
The octets are then encoded with an 8-bit/10-bit encoder. The  
8-bit/10-bit encoder works by taking eight bits of data (an  
octet) and encoding them into a 10-bit symbol.  
INPUT 1  
ADC 1  
SERDOUT0±  
DSP BLOCK/  
FORMAT  
JESD204B  
LINK  
CONTROL  
LANE MUX  
AND  
MAPPING  
SERDOUT1±  
SERDOUT2±  
SERDOUT3±  
INPUT 15  
ADC 15  
SYSREF±  
SYNCINB±  
Figure 85. Transmit Link Simplified Block Diagram  
Rev. 0 | Page 45 of 93  
 
 
 
AD9083  
Data Sheet  
TRANSPORT  
LAYER  
DATA LINK  
LAYER  
PHYSICAL  
LAYER  
PROCESSED  
SAMPLES  
FROM ADC  
ALIGNMENT  
CHARACTER  
GENERATION  
SAMPLE  
FRAME  
8-BIT/10-BIT  
ENCODER  
CROSSBAR  
MUX  
SCRAMBLER  
SERIALIZER  
Tx  
OUTPUT  
CONSTRUCTION CONSTRUCTION  
SYSREF_x  
SYNCINB_x  
Figure 86. Data Flow  
Physical Layer  
FUNCTIONAL OVERVIEW  
The physical layer consists of the high speed circuitry clocked at  
the serial clock rate. In this layer, parallel data is converted into  
one, two, or four lanes of high speed differential serial data. The  
implementation of the Physical Layer is covered in the Physical  
Layer (Driver) Outputs section.  
The block diagram in Figure 86 shows the flow of data through  
the JESD204B hardware from the sample input to the physical  
output. The processing can be divided into layers that are  
derived from the open source initiative (OSI) model, widely  
used to describe the abstraction layers of communications  
systems. These layers are the transport layer, data link layer,  
and physical layer (serializer and output driver).  
JESD204B LINK ESTABLISHMENT  
The AD9083 JESD204B transmitter (Tx) interface operates in  
Subclass 0 or Subclass 1 as defined in the JEDEC Standard  
JESD204B (July 2011 specification). The link establishment  
process is divided into the following steps: code group synchro-  
nization, initial lane alignment sequence, and user data and error  
correction.  
Transport Layer  
The transport layer handles packing the data (consisting of  
samples and optional control bits) into JESD204B frames that  
are mapped to 8-bit octets. The packing of samples into frames  
are determined by the JESD204B configuration parameters for  
number of lanes (L), number of converters (M), the number of  
octets per lane per frame (F), the number of samples per  
converter per frame (S), and the number of bits in a nibble  
group (sometimes called the JESD204 word size − N’).  
Code Group Synchronization (CGS)  
CGS is the process by which the JESD204B receiver finds the  
boundaries between the 10-bit symbols in the stream of data.  
During the CGS phase, the JESD204B transmit block transmits  
/K/ characters (/K28.5/ symbols). The receiver must locate the  
/K/ characters in its input data stream using clock and data  
recovery (CDR) techniques.  
Samples are mapped in order starting from Converter 0, then  
Converter 1, and so on until Converter M − 1. If S > 1, each  
sample from the converter is mapped before mapping the  
samples from the next converter. Each sample is mapped into  
words formed by appending converter control bits, if enabled,  
to the LSBs of each sample. The words are then padded with tail  
bits, if necessary, to form nibble groups (NGs) of the appropriate  
size as determined by the N’ parameter. The following equation  
can be used to determine the number of tail bits within a nibble  
group (JESD204B word):  
The receiver issues a synchronization request by asserting the  
SYNCINB pin of the AD9083 low. The JESD204B Tx then begins  
sending /K/ characters. After the receiver has synchronized, it waits  
for the correct reception of at least four consecutive /K/ symbols. It  
then de-asserts SYNCINB . The AD9083 then transmits an ILAS  
on the following local multiframe clock (LMFC) boundary.  
For more information on the code group synchronization  
phase, refer to the JEDEC Standard JESD204B, July 2011,  
Section 5.3.3.1.  
T = N CS  
Data Link Layer  
The data link layer is responsible for the low level functions  
of passing data across the link. These include optionally  
scrambling the data, inserting control characters during the  
initial lane alignment sequence (ILAS) and for frame and  
multiframe synchronization monitoring, and encoding 8-bit  
octets into 10-bit symbols. The data link layer is also responsible  
for sending the ILAS, which contains the link configuration  
data used by the receiver to verify the settings in the transport  
layer.  
The SYNCINB pin operation can also be controlled by the  
SPI. The SYNCINB signal is a differential dc-coupled LVDS  
mode signal by default, but it can also be driven single-ended.  
The SYNCINB pins can also be configured to run in CMOS  
(single-ended) mode by setting Bit 0 in Register 0x447. When  
running SYNCINB in CMOS mode, connect the CMOS  
SYNCINB signal to Pin 21 (SYNCINB+) and leave Pin 20  
(SYNCINB−) disconnected.  
The implementation of the data link layer is discussed in the  
JESD204B Link Establishment section.  
Rev. 0 | Page 46 of 93  
 
 
 
Data Sheet  
AD9083  
These conditions are different for unscrambled and scrambled  
data. The scrambling operation is enabled by default, but it can  
be disabled using the SPI.  
Initial Lane Alignment Sequence (ILAS)  
The ILAS phase follows the CGS phase and begins on the next  
LMFC boundary after SYNCINB deassertion. The ILAS  
consists of four mulitframes, with an /R/ character marking the  
beginning and an /A/ character marking the end. The ILAS  
begins by sending an /R/ character followed by 0 to 255 ramp  
data for one multiframe. On the second multiframe, the link  
configuration data is sent, starting with the third character. The  
second character is a /Q/ character to confirm that the link  
configuration data follows. All undefined data slots are filled  
with ramp data. The ILAS sequence is never scrambled.  
For scrambled data, any 0xFC character at the end of a frame  
is replaced by an /F/, and any 0x7C character at the end of a  
multiframe is replaced with an /A/. The JESD204B receiver  
(Rx) checks for /F/ and /A/ characters in the received data  
stream and verifies that they only occur in the expected  
locations. If an unexpected /F/ or /A/ character is found, the  
receiver handles the situation by using dynamic realignment or  
asserting the SYNCINB signal for more than four frames to  
initiate a resynchronization. For unscrambled data, if the final  
octet of two subsequent frames are equal, the second octet is  
replaced with an /F/ symbol if it is at the end of a frame, and an  
/A/ symbol if it is at the end of a multiframe.  
The ILAS sequence construction is shown in Figure 87. The  
four multiframes include the following:  
Multiframe 1 begins with an /R/ character (/K28.0/) and  
ends with an /A/ character (/K28.3/).  
Insertion of alignment characters can be modified using SPI. The  
frame alignment character insertion (FACI) is enabled by default.  
Multiframe 2 begins with an /R/ character followed by a  
/Q/ character (/K28.4/), followed by link configuration  
parameters over 14 configuration octets (see Table 23) and  
ends with an /A/ character. Many of the parameter values  
are of the value – 1 notation.  
8-Bit/10-Bit Encoder  
The 8-bit/10-bit encoder converts 8-bit octets into 10-bit symbols  
and inserts control characters into the stream when needed. The  
control characters used in JESD204B are shown in Table 23.  
The 8-bit/10-bit encoding ensures that the signal is dc balanced by  
using the same number of ones and zeros across multiple symbols.  
Multiframe 3 begins with an /R/ character (/K28.0/) and  
ends with an /A/ character (/K28.3/).  
Multiframe 4 begins with an /R/ character (/K28.0/) and  
ends with an /A/ character (/K28.3/).  
The 8-bit/10-bit interface has options that can be controlled via  
the SPI. These operations include bypass and invert. These options  
are troubleshooting tools for the verification of the digital front  
end (DFE). Refer to the Memory Map section, Register 0x2A3  
(JTX_DL_204B_CONFIG0) for information on configuring the  
8-bit/10-bit encoder.  
User Data and Error Detection  
After the initial lane alignment sequence is complete, the user  
data (ADC samples) is sent. During transmission of the user data,  
a mechanism called character replacement monitors the frame  
clock and multiframe clock alignment. This mechanism replaces  
the last octet of a frame or multiframe with an /F/ or /A/  
alignment characters when the data meets certain conditions.  
K
K
R
D
D
A
R
Q
C
C
D
D
A
R
D
D
A
R
D
D
A
D
END OF  
MULTIFRAME  
START OF  
ILAS  
START OF LINK  
CONFIGURATION DATA  
START OF  
USER DATA  
Figure 87. Initial Lane Alignment Sequence  
Table 23. AD9083 Control Characters Used in JESD204B  
10-Bit Value,  
RD1 = −1  
10-Bit Value,  
RD1 = +1  
Abbreviation  
Control Symbol  
/K28.0/  
/K28.3/  
/K28.4/  
/K28.5/  
8-Bit Value  
000 11100  
011 11100  
100 11100  
101 11100  
111 11100  
Description  
/R/  
/A/  
/Q/  
/K/  
/F/  
001111 0100  
001111 0011  
001111 0100  
001111 1010  
001111 1000  
110000 1011  
110000 1100  
110000 1101  
110000 0101  
110000 0111  
Start of multiframe  
Lane alignment  
Start of link configuration data  
Group synchronization  
Frame alignment  
/K28.7/  
1 RD means running disparity.  
Rev. 0 | Page 47 of 93  
 
 
AD9083  
Data Sheet  
DVDD  
100Ω  
DIFFERENTIAL  
TRACE PAIR  
0.1µF  
0.1µF  
SERDOUTx+  
SERDOUTx–  
100Ω  
RECEIVER  
OUTPUT SWING = 675mV p-p DIFFERENTIAL  
ADJUSTABLE  
Figure 88. AC-Coupled Digital Output Termination Example  
The format of the output data is twos complement by default.  
To change the output data format, see the Memory Map section  
Register 0x18A (OUT_FORMAT_SEL ).  
PHYSICAL LAYER (DRIVER) OUTPUTS  
Digital Outputs, Timing, and Controls  
The AD9083 physical layer consists of drivers that are defined in  
the JEDEC Standard JESD204B, July 2011. The differential digital  
outputs are powered up by default. The drivers use a dynamic  
100 Ω internal termination to reduce unwanted reflections.  
Deemphasis  
Deemphasis enables the receiver eye diagram mask to be met in  
conditions where the interconnect insertion loss does not meet  
the JESD204B specification. Use the deemphasis feature only  
when the receiver is unable to recover the clock due to excessive  
insertion loss. Under normal conditions, it is disabled to conserve  
power. Additionally, enabling and setting too high a deemphasis  
value on a short link can cause the receiver eye diagram to fail.  
Use the deemphasis setting with caution because it can increase  
electromagnetic interference (EMI). See the Memory Map section  
(Register 0x413 to Register 0x422 in Memory Map) for more  
details.  
Place a 100 Ω differential termination resistor at each receiver  
input to result in a nominal 0.85 × DVDD V p-p swing at the  
receiver (see Figure 88). The swing is adjustable through the  
SPI registers. AC coupling is recommended to connect to the  
receiver. See the Memory Map section (Register 0x402 to  
Register 0x409) for more details.  
The AD9083 digital outputs can interface with custom ASICs  
and field programmable gate array (FPGA) receivers, providing  
superior switching performance in noisy environments. Single  
point-to-point network topologies are recommended with a  
single differential 100 Ω termination resistor placed as close to  
the receiver inputs as possible.  
JTX PLL  
The JTX PLL generates the serializer clock (fLR), which operates  
at the JESD204B lane rate. The status of the PLL lock can be  
checked in the PLL_STATUS register (Register 0x301), Bit 7  
(JTX_PLL_LOCKED). This read only bit lets the user know if  
the PLL has achieved lock for the specific setup.  
If there is no far end receiver termination, or if there is poor  
differential trace routing, timing errors can result. To avoid  
such timing errors, it is recommended that the trace length be  
less than six inches, and that the differential output traces be  
close together and at equal lengths.  
Rev. 0 | Page 48 of 93  
 
 
Data Sheet  
AD9083  
SETTING UP THE AD9083 DIGITAL INTERFACE  
where:  
OUT = fS/DECTOTAL.  
fS is the ADC sample rate.  
DECTOTAL is the total decimation rate of the signal processing  
tile.  
The AD9083 has one JESD204B link. The serial outputs  
(SERDOUT0 to SERDOUT3 ) or lanes are considered to be  
part of one JESD204B link. The maximum lane rate allowed by  
the AD9083 is 16 Gbps.  
f
The basic parameters that determine the link setup are  
Table 24 shows the JESD204B output configurations supported  
for the non-burst mode data path. Table 25 shows the  
JESD204B output configurations supported for burst mode  
data path. Take care to ensure that the serial line rate for a  
given configuration is within the supported range of 0.25 Gbps  
to 16 Gbps.  
AD9083 datapath (nonburst or burst mode)  
Number of converters per link (M).  
Number of lanes per link (L).  
N΄ is the number of bits per sample (JESD204B word size),  
(AD9083 value = 12 or 16).  
The lane line rate is related to the JESD204B parameters using  
the following equation:  
JESD204B TRANSPORT LAYER SETTINGS  
See the JESD204B Overview section for details regarding the  
transport layer information listed in Table 24 and Table 25.  
10  
8
M × N ' ×  
× fOUT  
Lane Rate =  
L
Table 24. JESD2048 Output Configuration in Nonburst Mode Data  
No. of Virtual Converters  
Supported (Same Value as M)  
JESD2048 Serial  
Lane Rate  
CIC N  
4
8
16  
4,  
8
16  
4
8
16  
4
8
16  
4
NCO/Mixer Decimate by J  
L
M
F
S
N'  
K
8
160 × fOUT  
120 × fOUT  
80 × fOUT  
60 × fOUT  
Bypassed  
Bypassed  
Bypassed  
Bypassed  
Bypassed  
4, 8, 16  
4, 8, 16  
1, 4, 8, 16  
4, 8, 16  
4, 8, 16  
1, 4, 8, 16  
4
1
1
4
1
1
1
1
1
1
1
8
16  
1
16 32  
12 32  
16 32  
12 32  
1
2
2
8
8
8
12  
8
1
1
1
6
40 × fOUT  
30 × fOUT  
4
4
8
8
4
3
1
1
16 32  
12 32  
8
4
8
16  
320 × fOUT  
4
8
Bypassed  
8, 12, 16, 20, 24, 30, 40, 60  
4, 8, 10, 12, 16, 20, 24, 30, 40,  
60  
1
16 32  
1
16 32  
16  
4, 8, 10, 12, 16, 20, 24, 30, 40,  
60  
1
20, 40, 60  
240 × fOUT  
4
8
16  
Bypassed  
Bypassed  
10, 12, 20, 24, 30, 40, 60  
10, 12, 16, 20, 24, 30, 40, 60  
8, 10, 12, 16, 20, 24, 30, 40,  
60  
16, 20, 40, 60  
4, 8,  
4
1
2
16 24  
1
1
12 32  
1
4
8
160 × fOUT  
16 16  
16 32  
16  
1
Rev. 0 | Page 49 of 93  
 
 
 
AD9083  
Data Sheet  
No. of Virtual Converters  
Supported (Same Value as M)  
JESD2048 Serial  
Lane Rate  
CIC N  
1
NCO/Mixer Decimate by J  
L
M
F
S
N'  
K
20  
120 × fOUT  
80 × fOUT  
1
4
8
16  
1
4
8
16  
1
8
Bypassed  
Bypassed  
16, 20  
4
1
1
8, 12, 16, 24  
4
1
1
2
3
16 12  
1
1
12 32  
12 32  
16  
16  
16  
8
8
6
80 × fOUT  
Bypassed  
4
1
16 32  
8, 12, 16, 24  
1
4, 8, 12, 16, 24  
60 × fOUT  
Bypassed  
Enabled  
4
1
1
1
12 32  
16 16  
1
32  
640 × fOUT  
4
16  
32 64  
8
8, 16  
16  
16  
4
4, 8, 16,  
16  
8, 16  
480 × fOUT  
320 × fOUT  
Enabled  
Enabled  
1
2
32 48  
32 32  
1
1
12 16  
16 32  
8
4, 8  
16  
4
8
16  
4
8
4
160 × fOUT  
160 × fOUT  
120 × fOUT  
Enabled  
Enabled  
Enabled  
4, 8, 16,  
4, 8, 16,  
1, 4, 8, 16  
4, 8  
4
3
4
4
32 16  
32 16  
32 12  
1
1
1
12 32  
16 32  
12 32  
16  
4
1
4
16  
1
Table 25. JESD2048 Output Configuration Burst Mode Datapath .  
No. of Virtual Converters Supported  
(Same Value as M)  
JESD2048 Lane Rate  
640 × fOUT  
640 × fOUT  
480 × fOUT  
480 × fOUT  
640 × fOUT  
640 × fOUT  
480 × fOUT  
480 × fOUT  
640 × fOUT  
640 × fOUT  
480 × fOUT  
480 × fOUT  
480 × fOUT  
480  
CIC N NCO/Mixer  
Dec H  
L
1
1
1
1
2
2
2
2
3
3
3
3
4
4
M
F
S
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N’  
K
32  
4
8
4
8
4
8
4
8
4
8
4
8
4
8
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
24, 28, 32, 36  
12, 14, 16, 18  
24  
32 64  
32 64  
32 48  
32 48  
64 64  
64 64  
64 48  
64 48  
96 64  
96 64  
96 48  
96 48  
96 48  
96 48  
16 16  
16 16  
12 16  
12 16  
16 16  
16 16  
12 16  
12 16  
16 16  
16 16  
12 16  
12 16  
16 16  
16 16  
12, 16  
64  
96  
24, 28, 32  
12, 14, 16  
24  
12  
32, 36  
18  
24, 28, 32, 36  
14, 18  
24, 28  
12, 14  
Rev. 0 | Page 50 of 93  
 
Data Sheet  
AD9083  
SYSREF jitter must be much less than one sample clock  
DETERMINISTIC LATENCY  
period. A SYSREF coming from an ASIC or an FPGA may  
have significant jitter.  
Both ends of the JESD204B link contain various clock domains  
distributed throughout each system. Data traversing from one  
clock domain to a different clock domain can lead to ambiguous  
delays in the JESD204B link. These ambiguities lead to non-  
repeatable latencies across the link from one power cycle or link  
reset to the next. The AD9083 supports JESD204B Subclass 0  
and Subclass 1 operation. If deterministic latency is not a  
system requirement, Subclass 0 operation is recommended and  
the SYSREF signal may not be required. Even in Subclass 0  
mode, the SYSREF signal can required in an application where  
multiple AD9083 devices must be synchronized with each other.  
SYSREF Related Functionality  
The AD9083 supports resynchronization of internal clocks and  
NCOs, as well as across multiple AD9083 devices. The SYSREF  
and trigger signal inputs to the AD9083 are used to provide a  
synchronization triggering mechanism that supports  
Deterministic latency in JESD Subclass 1 mode.  
Multichip synchronization for NCO reset.  
In resynchronization mode with the SYSREF_RESYNC_  
MODE bit (Register 0x1C0, Bit 2 =1), the AD9083 aligns all  
internal clocks to the SYSREF signal (for Subclass 1  
synchronization and deterministic latency). In the case of  
periodic SYSREF, after alignment is achieved, further periodic  
SYSREF inputs are automatically aligned to the internal clocks.  
A change in the SYSREF input phase initiates a re-alignment of  
the datapath clocks to the new SYSREF input phase.  
Subclass 0  
If there is no requirement for multichip synchronization while  
operating in Subclass 0 mode, the SYSREF input can be left  
disconnected. In this mode, the relationship of the JESD204B  
clocks between the JESD204B transmitter and receiver are  
arbitrary but does not affect the ability of the receiver to  
capture and align the lanes within the link  
The NCORESET_ALL_SYSREF bit field set to 0 (default) in  
Register 0x1C0, Bit 3 ensures that the NCOs only receive a reset  
pulse in response to a SYSREF pulse that has resynchronized  
the clocks. Program the NCOs to continuous synchronization  
mode by programming DDC_SYNC_NEXT = 0 and  
Subclass 1  
The JESD204B protocol organizes data samples into octets,  
frames, and multiframes, as described in the Transport Layer  
section of this data sheet. The LMFC is synchronous with the  
beginnings of these multiframes. In Subclass 1 operation, the  
SYSREF signal is used to synchronize the LMFCs for each  
device in a link or across multiple links (within the AD9083,  
SYSREF signal also synchronizes the internal sample dividers).  
The JESD204B receiver uses the multiframe boundaries and  
buffering to achieve consistent latency across lanes (or even  
multiple devices), and also to achieve a fixed latency between  
power cycles and link reset conditions. The AD9083 features  
sampled SYSREF modes for JESD204B Subclass 1 operation.  
See the Multichip Synchronization (MCS) section for details.  
DDC_SYNC_EN = 1 in Register 0x1C4, Bits[1:0].  
The DDCs are programmed to reset the NCOs in response to  
the periodic SYSREF pulse or the Nth SYSREF pulse received  
using Register 0x284 (JTX_TPL_SYSREF_N_SHOT).  
Multichip Synchronization and NCO Reset Options  
There are two aspects of multichip synchronization:  
Aligning the clocks across multiple devices.  
Aligning the NCOs across multiple devices.  
MULTICHIP SYNCHRONIZATION  
Aligning Clocks Across Multiple Devices  
The AD9083 has a JESD204B Subclass 1 compatible SYSREF  
input, which provides flexible options for synchronizing the  
internal blocks of the AD9083. The SYSREF input is a source  
synchronous system reference signal used to align the AD9083  
LMFCs that enables multichip synchronization between  
multiple AD9083s. The input clock divider, the signal  
processing tile, signal monitor block, and JESD204B link can be  
synchronized using the SYSREF input.  
Aligning the clocks across multiple devices is provided by the  
SYSREF signal in resynchronization mode. The SYSREF signal  
is used to align all the clocks in the AD9083. When SYSREF is  
deterministically sampled by multiple devices, it implies that  
the clocks are aligned across multiple devices.  
Aligning NCOs Across Multiple Devices  
NCO reset is handled by the reset of the NCO accumulators in  
the AD9083 signal processing tiles. To ensure that the NCOs  
are reset deterministically across devices, it is important to use  
resynchronization mode.  
SAMPLED SYSREF MODE  
In sampled SYSREF mode, SYSREF operates as a standard  
JESD204B Subclass 1 signal.  
An external controller (for example, a clock generator chip )  
generates periodic SYSREF pulses or a one-shot SYSREF pulse  
to the SYSREF input.  
The following are some characteristics of sampled SYSREF  
synchronization:  
Synchronous sampling of SYSREF.  
Must meet setup/hold time requirements for reliable  
synchronization. This is increasingly difficult to achieve as  
the sample rate increases.  
Rev. 0 | Page 51 of 93  
 
 
 
AD9083  
Data Sheet  
The latency numbers, such as SYSREF LMFC delay, SYSREF to  
NCO reset delay, and so on, depend on the configuration used.  
Key Features and Notes Regarding Resynchronization  
Mode  
The latency of the NCO reset from SYSREF is constant for all  
periodic SYSREF pulses. If the SYSREF period is altered, a  
resynchronization followed by an NCO reset is triggered.  
In SYSREF resynchronization mode, all clocks shut down and  
restart in-phase to the SYSREF pulse.  
The JESD LMFC aligns at a deterministic phase/delay from the  
SYSREF pulse.  
The SYSREF period for any mode must be a multiple of the  
multiframe clock period. Additional restriction may be  
required due to decimation modes.  
The NCOs reset at a deterministic time after the SYSREF pulse  
is received. The NCO reset occurs after the datapath clocks are  
aligned to the new SYSREF.  
An LMFC settling period of 8 LMFCs is expected for the  
internal LMFC to stabilize after a SYSREF input initiates  
realignment.  
Rev. 0 | Page 52 of 93  
Data Sheet  
AD9083  
SERIAL PORT INTERFACE (SPI)  
The AD9083 SPI allows the user to configure the converter for  
specific functions or operations through a structured register  
space provided inside the ADC. The SPI gives the user added  
flexibility and customization, depending on the application.  
Addresses are accessed via the serial port and can be written to  
or read from via the port. Memory is organized into bytes that  
can be further divided into fields. These fields are documented  
in the Memory Map section. For detailed operational information,  
see the Serial Control Interface Standard (Rev. 1.0).  
In addition to word length, the instruction phase determines  
whether the serial frame is a read or write operation, allowing  
the serial port to be used both to program the chip and to read  
the contents of the on-chip memory. If the instruction is a  
readback operation, performing a readback causes the SDIO  
pin to change direction from an input to an output at the  
appropriate point in the serial frame.  
Data can be sent in MSB first mode or in LSB first mode. MSB first  
is the default on power-up and can be changed via the SPI port  
configuration register. For more information about this and other  
features, see the Serial Control Interface Standard (Rev. 1.0).  
CONFIGURATION USING THE SPI  
Three pins define the SPI of the AD9083 ADC: the SCLK pin,  
the SDIO pin, and the CSB pin (see Table 26). The SCLK (serial  
clock) pin is used to synchronize the read and write data  
presented to and from the ADC. The SDIO (serial data input/  
output) pin is a dual-purpose pin that allows data to be sent and  
read from the internal ADC memory map registers. The CSB  
(chip select bar) pin is an active low control that enables or  
disables the read and write cycles. The falling edge of CSB, in  
conjunction with the rising edge of SCLK, determines the start  
of the framing. An example of the serial timing and its  
definitions can be found in Figure 2 and Table 14.  
HARDWARE INTERFACE  
The pins described in Table 26 comprise the physical interface  
between the user programming device and the serial port of the  
AD9083. The SCLK pin and the CSB pin function as inputs  
when using the SPI interface. The SDIO pin is bidirectional,  
functioning as an input during write phases and as an output  
during readback.  
The SPI interface is flexible enough to be controlled by either  
FPGAs or microcontrollers. One method for SPI configuration  
is described in detail in the AN-812 Application Note,  
Other modes involving the CSB pin are available. The CSB pin  
can be held low indefinitely, which permanently enables the  
device; this is called streaming. The CSB can stall high between  
bytes to allow additional external timing. When CSB is tied  
high, SPI functions are placed in a high impedance mode. This  
mode turns on any SPI pin secondary functions.  
Microcontroller-Based Serial Port Interface (SPI) Boot Circuit.  
Do not activate the SPI port during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK signal, the CSB signal, and the SDIO signal are typically  
asynchronous to the ADC clock, noise from these signals can  
degrade converter performance. If the on-board SPI bus is  
used for other devices, it may be necessary to provide buffers  
between this bus and the AD9083 to prevent these signals from  
transitioning at the converter inputs during critical sampling  
periods.  
All data is composed of 8-bit words. The first bit of each  
individual byte of serial data indicates whether a read or write  
command is issued, which allows the SDIO pin to change  
direction from an input to an output.  
Table 26. Serial Port Interface Pins  
Pin  
Function  
SCLK  
SDIO  
Serial clock. The serial shift clock input that is used to synchronize serial interface, reads, and writes.  
Serial data input/output. A dual-purpose pin that typically serves as an input or an output, depending on the instruction  
being sent and the relative position in the timing frame.  
CSB  
Chip select bar. An active low control that gates the read and write cycles.  
Rev. 0 | Page 53 of 93  
 
 
 
 
AD9083  
Data Sheet  
PROGRAMMING GUIDE  
The AD9083 is highly reconfigurable and programmable via  
the SPI interface.  
3. Delay = minimum 200 µs. Otherwise, wait for POR circuit  
to deassert. The PORB_STAT register (Register 0x0020)  
can be read back to verify the state of the PORb signals.  
Register 0x0020 = 7Fh means the AD9083 is ready to be  
programmed and the power supplies are at the optimal  
level.  
4. Configure any supporting circuitry to the AD9083. For  
example, set up any necessary clock components so that  
the reference clock to the AD9083 on-chip PLL is stable  
before beginning to set up the AD9083.  
The AD9083 product page contains instructions in the  
Software and Systems Requirements section to request device  
application programming interface (API) C code drivers. These  
drivers are reference code that allows the user to quickly  
configure the AD90803 using high level function calls, known  
as application APIs. Analog Devices provides the full source  
code for these high level function calls.  
PROGRAMMING SEQUENCE  
5. Configure any necessary setup for the FPGA in the system  
to receive the JESD204B data after the AD9083 is fully  
configured.  
When powered on, the various blocks inside AD9083 power up  
in a disabled state. To set up the AD9083 in a specific mode, a  
set of SPI operations are required. Before beginning the full  
programming of the device, ensure that the following sequence  
is completed:  
After the platform and system-dependent setup is complete and  
stable, the AD9083 can be programmed to a desired configuration.  
To simplify the programming details needed to configure the  
AD9083, a short list of high level API function calls are  
provided. These high level API calls completely configure the  
device in any desired supported state. The programming  
sequence for proper AD9083 setup is shown in Table 27.  
1. Ramp up the supplies. There is no requirement for any  
power supply sequencing. The POR circuitry holds the  
AD9083 in reset until all the supplies reach the correct  
threshold.  
2. Issue a soft reset through SPI Register 0x000 = 81h, or by  
toggling the RSTB pin.  
Table 27. Programming Sequence to Set Up the AD9083  
Step  
No.  
API Function  
Input Parameters  
Description  
1
adi_ad9083_device_reset() &ad9083_dev: (device structure pointer) Performs a soft reset of the AD9083.  
ad9083_soft_reset  
2
adi_ad9083_device_init()  
&ad9083_dev: (device structure pointer) Prints the API revision, retrieves the host CPU endian  
mode, retrieves the host CPU type, configures the SPI  
mode, executes a SPI read/write test, and checks the  
power status.  
3
4
adi_ad9083_device_  
clock_config_set()  
&ad9083_dev: (device structure pointer) Configures the on-chip PLL with the correct settings based  
on the user input of the desired ADC sample rate and the PLL  
reference clock that is provided to the CLK pins.  
adc_clk_hz: ADC Sample Rate  
ref_clk_hz: PLL Reference Clock  
adi_ad9083_rx_  
adc_config_set()  
&ad9083_dev (device structure pointer) Configures the VCO ADC settings according to the desired  
input settings for each parameter.  
fc: -3dB LPF cutoff frequency  
vmax: differential peak-to-peak input  
full-scale  
rterm: termination resistance  
en_hp: enable high performance mode  
backoff: dB backoff in terms of noise (dB  
value × 100)  
finmax: maximum input frequency,  
should be set to fADC/20  
Rev. 0 | Page 54 of 93  
 
 
 
Data Sheet  
AD9083  
Step  
No.  
API Function  
Input Parameters  
Description  
5
adi_ad9083_rx_  
&ad9083_dev: (device structure pointer) Configures the digital datapath of the ADC based on the  
datapath_config_set()  
desired signal path flow (determined by the mode input  
parameter), the decimation rates chosen, and the NCO  
frequency shift (if used). The valid adi_ad9083_datapath_  
mode_e enumeration values are as follows:  
mode: determines datapath flow, refer  
to enumeration  
adi_ad9083_datapath_mode_e for  
exact details  
dec: array of decimation value choices  
including CIC decimation, J decimation,  
G averaging value and H decimation  
nco_freq_hz: NCO shift frequency  
desired  
AD9083_DATAPATH_ADC_CIC: ADC CIC JESD204B  
Output  
AD9083_DATAPATH_ADC_CIC_NCO_J: ADC CIC →  
NCO J Decimation JESD204B Output  
AD9083_DATAPATH_ADC_CIC_J: ADC CIC NCO J  
Decimation JESD204B Output  
AD9083_DATAPATH_ADC_J: ADC J Decimation →  
JESD204B Output  
AD9083_DATAPATH_ADC_CIC_NCO_G: ADC CIC →  
NCO G average samples JESD204B Output  
AD9083_DATAPATH_ADC_CIC_NCO_G_H: ADC CIC →  
NCO G average samples H Decimation JESD204B  
Output  
6
adi_ad9083_jtx_startup()  
&ad9083_dev: (device structure pointer) Configures the JESD204B interface with the SERDES  
parameters for the desired configuration. Array inputs are:  
{L, F, M, S, HD, K, N, NP, CF, CS, DID, BID, LID, SC, SCR},  
where SC = subclass  
&jtx_param: pointer to array of  
JESD204B parameter settings for  
desired mode operation  
These API function calls are all that are needed to set up the  
device. All lower level SPI writes are handled by the API  
function calls underneath these high level calls and are  
abstracted to make configuration easier for the user. More  
detailed information about each of these API function calls and  
the lower level SPI configuration included in the source code  
can be found in the AD9083 API specification document,  
which is provided with the API source code. This source code  
package can be requested through the instructions provided at  
the AD9083 product page.  
Rev. 0 | Page 55 of 93  
AD9083  
Data Sheet  
Example 1: Wide Bandwidth Real Output Mode  
Low pass filter cut-off frequency (fC) = 800 MHz.  
MAX = 2.0 V.  
TERM = 100 Ω.  
EN_HP = 0.  
Backoff = 0 dB.  
Mixer bypassed (real data).  
CIC decimator bypassed.  
Decimate by J = 8.  
Output bandwidth = 100 MHz.  
Transport parameters L, M, F, S, N’, K = 4, 16, 6, 1, 12, 32.  
Each lane = 15 Gbps.  
V
R
After powering up the device, execute the API sequence  
according to the target application requirements listed in this  
section. This sequence configures the AD9083 to operate in wide  
bandwidth mode without frequency translation in the datapath.  
The total power consumption in this mode is about 1.42 W. This is  
the mode of operation used to measure the data sheet parameters  
listed in the specification tables. (see Table 1).  
Sample rate = 2 GSPS.  
On-chip PLL reference = 250 MHz.  
f
INMAX = 100 MHz (sample rate/20).  
The following API sequence with specific input parameters is needed to fully configure the device in the wide bandwidth mode of operation:  
// Define device structure and instantiate  
adi_ad9083_device_t ad9083_dev;  
// Perform soft reset  
adi_ad9083_device_reset(&ad9083_dev, 0);  
// Get API revision, CPU info etc  
adi_ad9083_device_init(&ad9083_dev);  
// Set up clocking configuration, lock on-chip PLL  
//ADC Sample Rate = 2GSPS (adc_clk_hz in units of Hz)  
//PLL Reference Clock = 250MHz (ref_clk_hz in units of Hz)  
adi_ad9083_device_clock_config_set(&ad9083_dev, adc_clk_hz = 2000000000, ref_clk_hz =  
250000000);  
// Setup VCO ADC settings  
//LPF bandwidth Fc = 800MHz (fc in units of Hz), Vmax = 2.0V (vmax in mV units)  
//Rterm = 100 ohm (rterm bitfield = 2 for 100 ohm), Enhp = 0  
//Backoff = 0dB (backoff in terms of noise, dB * 100)  
//Finmax = 100MHz (finmax in units of Hz)  
adi_ad9083_adc_term_res_e rterm = AD9083_ADC_TERM_RES_100; // (enum value = 2)  
adi_ad9083_rx_adc_config_set(&ad9083_dev, fc = 800000000, vmax = 2000, rterm = term, en_hp  
= 0, backoff = 0, finmax = 100000000);  
// Setup Datapath  
//Datapath: ADC -> J -> JESD204B output  
//Decimation: CIC bypassed (/1), J Decimation = 8, G value bypassed, H value bypassed  
//NCO frequency shifts: NCO0, NCO1 & NCO2 bypassed  
adi_ad9083_datapath_mode_e datapath_mode = AD9083_DATAPATH_ADC_J;  
uint8_t dec[] = {0, AD9083_J_DEC_8, 0, 0};  
uint64_t nco_freq_hz = { 0, 0, 0};  
adi_ad9083_rx_datapath_config_set(&ad9083_dev, datapath_mode, dec, nco_freq_hz);  
Rev. 0 | Page 56 of 93  
Data Sheet  
AD9083  
// Setup JESD204B  
// L, M, F, S, N’, K = 4,16,6,1,12,32  
adi_cms_jesd_param_t jtx_param[] =  
/*L  
F
M
S
HD  
K
N
'
CF CS DID BID LID SC SCR */  
0, 0, 0, 0, 0, 0, 1 };  
{ 4, 6, 16, 1,  
1, 32, 12, 12,  
adi_ad9083_jtx_startup(&ad9083_dev, &jtx_param);  
0
–20  
SNR = 64.5dBFS  
SFDR = 65dBFS  
–40  
–60  
–80  
HD3  
–100  
–120  
0
12.50 25 37.50 50 62.50 75 87.50 100 112.50 125  
FREQUENCY (MHz)  
Figure 89. FFT Wide Bandwidth Real Output Mode  
Table 28. Power Consumption Wide Bandwidth  
Domain  
Voltage (V)  
Current (A)  
0.397  
Power (W)  
0.397  
AVDD  
1
AVDD1P8  
DVDD  
1.8  
1
0.096  
0.774  
0.1728  
0.774  
DVDD1P8  
1.8  
0.041  
Total  
0.0738  
1.4176  
0.089  
Power per Channel (W)  
1 OF 16 CHANNELS SHOWN  
ADC  
15Gbps/  
LANE  
J
JESD204B  
Tx  
I
19.7MHz  
8
2GHz ADC  
SAMPLE CLOCK  
L = 4  
M = 16  
F = 6  
S = 1  
K = 32  
NP = 12  
CLOCK GENERATION  
AND  
250MHz  
REF IN  
DISTRIBUTION  
Figure 90. Wide Bandwidth Real Output Mode Block Diagram, See Table 1  
Rev. 0 | Page 57 of 93  
AD9083  
Data Sheet  
Example 2 : Narrow Bandwidth Complex Output Mode  
Backoff = 0  
NCO0/mixer (complex data), FTW = 70.3125 MHz.  
CIC decimator = 4.  
Decimate by J = 16.  
Output bandwidth = 12.7187 MHz.  
Transport parameters L, M, F, S, N’, K = 2, 32, 32, 1, 16, 32.  
Each lane = 10 Gbps.  
After powering up the device, execute the API sequence  
according to the target application requirements listed in this  
section. This sequence configures the AD9083 to operate in narrow  
bandwidth mode using frequency translation in the datapath. The  
total power consumption in this mode is about1.17 W.  
Sample rate = 2 GSPS.  
On-chip PLL reference = 250 MHz.  
f
INMAX = 100 MHz (sample rate/20).  
fC = 800 MHz.  
MAX = 2.0 V.  
TERM = 100 Ω.  
EN_HP = 0  
V
R
The following API sequence with specific input parameters is needed to fully configure the part in the wide bandwidth mode of operation:  
// Define device structure and instantiate  
adi_ad9083_device_t ad9083_dev;  
// Perform soft reset  
adi_ad9083_device_reset(&ad9083_dev, 0);  
// Get API revision, CPU info etc  
adi_ad9083_device_init(&ad9083_dev);  
// Set up clocking configuration, lock on-chip PLL  
//ADC Sample Rate = 2GSPS (adc_clk_hz in units of Hz)  
//PLL Reference Clock = 250MHz (ref_clk_hz in units of Hz)  
adi_ad9083_device_clock_config_set(&ad9083_dev, adc_clk_hz = 2000000000, ref_clk_hz =  
250000000);  
// Setup VCO ADC settings  
//LPF bandwidth Fc = 800MHz (fc in units of Hz), Vmax = 2.0V (vmax in mV units)  
//Rterm = 100 ohm (rterm bitfield = 2 for 100 ohm), Enhp = 0  
//Backoff = 0dB (backoff in terms of noise, dB * 100)  
//Finmax = 100MHz (finmax in units of Hz)  
adi_ad9083_adc_term_res_e rterm = AD9083_ADC_TERM_RES_100; // (enum value = 2)  
adi_ad9083_rx_adc_config_set(&ad9083_dev, fc = 800000000, vmax = 2000, rterm = term, en_hp  
= 0, backoff = 0, finmax = 100000000);  
// Setup Datapath  
//Datapath: ADC -> CIC -> NCO -> J -> JESD204B output  
//Decimation: CIC =4, J Decimation = 16, G value bypassed, H value bypassed  
//NCO frequency shifts: NCO0 = 70.3125MHz, NCO1 & NCO2 bypassed  
adi_ad9083_datapath_mode_e datapath_mode = AD9083_DATAPATH_ADC_CIC_NCO_J;  
uint8_t dec[] = {AD9083_CIC_DEC_4, AD9083_J_DEC_16, 0, 0};  
uint64_t nco_freq_hz = { 70312500, 0, 0};  
adi_ad9083_rx_datapath_config_set(&ad9083_dev, datapath_mode, dec, nco_freq_hz);  
Rev. 0 | Page 58 of 93  
Data Sheet  
AD9083  
// Setup JESD204B  
// L, M, F, S, N’, K = 2,32,32,1,16,32  
adi_cms_jesd_param_t jtx_param[] =  
/*L  
F
M
S
HD  
K
N
'
CF CS DID BID LID SC SCR */  
{ 2, 32, 32, 1,  
1, 32, 16, 16,  
0, 0, 0,  
0,  
0,  
0, 1 };  
adi_ad9083_jtx_startup(&ad9083_dev, &jtx_param);  
0
–20  
SNR = 70.2dBFS  
SFDR = 86.8dBFS  
–40  
–60  
–80  
–100  
–120  
–140  
–16  
–11  
–7  
–2  
2
7
11  
16  
FREQUENCY (MHz)  
Figure 91. FFT Narrow Bandwidth Complex Output Mode  
Table 29. Power Consumption Narrow Bandwidth  
Domain  
Voltage (V)  
Current (A)  
Power (W)  
0.396  
0.1728  
0.532  
0.0738  
1.1746  
0.073  
AVDD  
AVDD1P8  
DVDD  
1
1.8  
1
0.396  
0.096  
0.532  
0.041  
Total  
DVDD1P8  
1.8  
Power per Channel (W)  
1 OF 16 CHANNELS SHOWN  
I
I
70.3125MHz  
NCO  
cos(wt)  
10Gbps/  
LANE  
CIC  
J DECIMATOR  
16  
90°  
0°  
JESD204B  
Tx  
70.5MHz  
ADC  
4
CORR = 1.0×  
–sin(wt)  
2GHz ADC  
SAMPLE CLOCK  
Q
Q
L = 2  
M = 32  
F = 32  
S = 1  
K = 32  
NP = 16  
CLOCK GENERATION  
AND  
250MHz  
REF IN  
DISTRIBUTION  
Figure 92. Narrow Bandwidth Complex Output Mode Block Diagram  
Rev. 0 | Page 59 of 93  
AD9083  
Data Sheet  
MEMORY MAP  
All address locations that are not included in the memory map  
are not currently supported for this device and must not be  
written.  
LOGIC LEVELS  
An explanation of logic level terminology follows:  
“Bit is set” is synonymous with “bit is set to Logic 1” or  
“writing Logic 1 for the bit.”  
“Clear a bit” is synonymous with “bit is set to Logic 0” or  
“writing Logic 0 for the bit.”  
X denotes a don’t care bit.  
Rev. 0 | Page 60 of 93  
 
 
Data Sheet  
AD9083  
MEMORY MAP REGISTER DETAILS  
Table 30. AD9083 Memory Map Register Details  
Addr. Name  
Bits  
Bit Name  
Description  
Reset Access  
Analog Devices SPI Registers  
0x000 SPI_INTERFACE_  
CONFIG_A  
7
SOFT_RESET_7  
Initiates a Reset Equivalent to a Hard Reset.  
Whenever a soft reset is issued, the user must  
wait at least 200 µs before writing to any other  
register, to provide sufficient time for the device  
reset to complete.  
0x0  
R/W  
0: Do nothing.  
1: Reset the SPI and registers (self clearing).  
6
5
LSB_FIRST_6  
LSB/MSB Bit Shift First.  
1: Least significant bit shifted first for all SPI  
operations.  
0: Most significant bit shifted first for all SPI  
operations.  
Multibyte SPI Operations Address Increment.  
0: Multibyte SPI operations cause addresses to  
auto-decrement.  
0x0  
0x0  
R/W  
R/W  
ADDR_ASCENSION_5  
1: Multibyte SPI operations cause addresses to  
auto-increment.  
[4:3]  
2
RESERVED  
Reserved.  
0x0  
0x0  
R/W  
R/W  
ADDR_ASCENSION_2  
Mirror of 0x000[5].  
0: Multibyte SPI operations cause addresses to  
auto-decrement.  
1: Multibyte SPI operations cause addresses to  
auto-increment.  
1
LSB_FIRST_1  
Mirror of 0x000[6].  
0x0  
R/W  
1: Least significant bit shifted first for all SPI  
operations.  
0: Most significant bit shifted first for all SPI  
operations.  
0
7
SOFT_RESET_0  
Mirror of 0x000[7].  
0: Do nothing.  
1: Reset the SPI and registers (self clearing).  
SPI Streaming Mode.  
0x0  
0x0  
R/W  
R/W  
0x01  
0x02  
SPI_INTERFACE_  
CONFIG_B  
SINGLE_INSTRUCTION  
0: Streaming is enabled.  
1: Streaming is disabled. Only one read or write  
operation is performed regardless of the state of  
the CSB line.  
[6:0]  
[7:2]  
[1:0]  
RESERVED  
RESERVED  
OP_MODE  
Reserved.  
Reserved.  
0x0  
0x0  
0x0  
R/W  
R
DEVICE_CONFIG  
Operating Mode.  
00: Normal Operation.  
01: Normal Operation with Reduced Power.  
10: Standby.  
R/W  
11: Sleep.  
0x03  
0x04  
0x05  
0x06  
CHIP_TYPE  
[7:0]  
[7:0]  
[7:0]  
[7:4]  
[3:0]  
[7:0]  
CHIP_TYPE  
High Speed ADCs.  
Chip ID. AD9083  
Chip ID. AD9083  
Chip Speed Grade.  
Reserved.  
Offset Pointer or LSB of the Device Index  
Register.  
Offset Pointer or LSB of the Device Index  
Register.  
0x3  
0xEA  
0x0  
0x0  
0x0  
0x0  
R
R
R
PROD_ID_LSB  
PROD_ID_MSB  
CHIP_GRADE  
PROD_ID[7:0]  
PROD_ID[15:8]  
CHIP_SPEED_GRADE  
RESERVED  
R
R
R/W  
0x08  
0x09  
DEVICE_INDEX1  
DEVICE_INDEX2  
DEV_INDEX1  
[7:0]  
DEV_INDEX2  
0x0  
R/W  
Rev. 0 | Page 61 of 93  
 
AD9083  
Data Sheet  
Addr. Name  
Bits  
Bit Name  
Description  
Reset Access  
0x0A CHIP_SCRATCH  
[7:0]  
CHIP_SCRATCH  
Chip Scratchpad Register. This register is used to 0x0  
provide a consistent memory location for  
software debug.  
R/W  
0x0C  
VENDOR_ID_LSB  
[7:0]  
[7:0]  
7
CHIP_VENDOR_ID[7:0]  
CHIP_VENDOR_ID[15:8]  
RESERVED  
PORB_VDDSYNTH_JTX_PLL_1 PORb Status of JESD PLL 1.0 V VDD.  
P0  
Vendor ID.  
Vendor ID.  
Reserved.  
0x56  
R
R
R
R
0x0D VENDOR_ID_MSB  
0x20  
0x4  
0x0  
0x0  
PORB_STAT  
6
5
4
PORB_VDDPHY_SER_1P0  
PORB_VDDLDO_JTX_PLL_  
1P8  
PORb Status of JESD SER PHY 1.0 V VDD.  
PORb Status of JESD PLL (LDO) 1.8 V VDD.  
0x0  
0x0  
R
R
3
2
1
PORB_VDDCP_JTX_PLL_1P0 PORb Status of JESD PLL 1.0 V VDD.  
0x0  
0x0  
0x0  
R
R
R
PORB_VDD_SYNCRX_1P8  
PORB_VDD_DIG_1P0  
PORb Status for SYNCRX I/O VDD 1.8V.  
PORb Status of Digital 1.0 V VDD and Digital I/O  
1.8 V VDD.  
0
PORB_VDD_ANA  
Status of VDD Domains in ADC, CLKTOP, on-chip 0x0  
PLL, and TOPREF.  
R
0x21  
0x24  
PORB_MASK_RESET  
BLOCK_RESET  
[7:1]  
0
RESERVED  
PORB_IGNORE  
Reserved.  
0x0  
R
R/W  
Controls Whether or Not to Gate Internal Resets 0x0  
with PORb.  
Reserved.  
Resets the DIG Datapath and JTX.  
1: Assert Reset.  
[7:6]  
5
RESERVED  
DIG_DP_JTX_RESET  
0x0  
0x0  
R
R/W  
0: De-Assert Reset  
4
3
2
1
0
JTX_PLL_RESET  
JTXPHY_RESET  
TOPREF_RESET  
CLKTOP_RESET  
ADC_RESET  
Reset the JTX_PLL.  
1: Assert Reset.  
0: De-Assert Reset.  
Reset the SER PHY.  
1: Assert Reset.  
0: De-Assert Reset.  
Reset the TOP REF.  
1: Assert Reset.  
0: De-Assert Reset.  
Reset the CLK TOP.  
1: Assert Reset.  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
0: De-Assert Reset.  
Reset the ADCs.  
1: Assert Reset.  
0: De-Assert Reset.  
0x30  
LOW_PWR_PIN_CTRL  
[7:6]  
5
RESERVED  
JTXPHY_PIN_CTRL  
Reserved.  
For JTXPHY.  
0x0  
0x0  
R
R/W  
1: PD Pin and MASK Bit Control  
0: CONFIG Bit Programming Control  
For JTX.  
1: PD Pin and MASK Bit Control  
0: CONFIG Bit Programming Control  
For DIG DP.  
4
3
JTX_PIN_CTRL  
0x0  
0x0  
R/W  
R/W  
DIG_DP_PIN_CTRL  
1: PD Pin and MASK Bit Control  
0: CONFIG Bit Programming Control  
Rev. 0 | Page 62 of 93  
Data Sheet  
AD9083  
Addr. Name  
Bits  
Bit Name  
Description  
Reset Access  
2
TOPREF_PIN_CTRL  
For TOP REF.  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
1: PD Pin and MASK Bit Control  
0: CONFIG Bit Programming Control  
Power Down for CLKTOP.  
1: PD Pin and MASK Bit Control  
0: CONFIG Bit Programming Control  
For All 16 ADCs.  
1
0
CLKTOP_PIN_CTRL  
ADC_PIN_CTRL  
1: PD Pin and MASK Bit Control  
0: CONFIG Bit Programming Control  
Reserved.  
0x31  
0x32  
LOW_PWR_PIN_  
POLARITY  
[7:2]  
[1:0]  
RESERVED  
POL  
0x0  
0x0  
R
Polarity of PD Pin.  
0: Active High.  
1: Active Low.  
Reserved.  
Low Power Mode for JTXPHY.  
0 : Normal Mode.  
R/W  
LOW_PWR_CONFIG  
[7:6]  
5
RESERVED  
JTXPHY_LP_MODE  
0x0  
0x0  
R
R/W  
1 : Low Power Mode.  
Low Power Mode for JTX.  
0: Normal Mode  
1: Low Power Mode  
Low Power Mode for Digital Datapath.  
0: Normal Mode  
4
3
2
JTX_LP_MODE  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
DIG_DP_LP_MODE  
TOPREF_LP_MODE  
1: Low Power Mode  
Low Power Mode for Top Ref. If 1 then bias  
currents to on-chip PLL, ADC, clock buffer and  
monitor mux from master bias are disabled. BG is  
still active.  
0: Normal Mode  
1: Low Power Mode  
1
0
CLKTOP_LP_MODE  
ADC_LP_MODE  
Low Power Mode for Clock Top.  
0: Normal Mode  
1: Low Power Mode  
Low Power Mode for All 16 ADCs.  
0: Normal Mode  
1: Low Power Mode  
Reserved.  
0x0  
0x0  
R/W  
R/W  
0x33  
LOW_PWR_PIN_MASK [7:6]  
5
RESERVED  
JTXPHY_LP_PIN_MASK  
0x0  
0x0  
R
R/W  
Mask the PD to JTXPHY.  
0: Mask  
1: Unmask  
4
3
2
1
0
JTX_LP_PIN_MASK  
Mask the PD to JTX.  
0: Mask  
1: Unmask  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
DIG_DP_LP_PIN_MASK  
TOPREF_LP_PIN_MASK  
CLKTOP_LP_PIN_MASK  
ADC_LP_PIN_MASK  
Mask the PD to DIG_DP.  
0: Mask  
1: Unmask  
Mask the PD to TOP REF.  
0: Mask  
1: Unmask  
Mask the PD to CLKTOP.  
0: Mask  
1: Unmask  
Mask the PD to ADC  
0: Mask  
1: Unmask.  
Rev. 0 | Page 63 of 93  
AD9083  
Data Sheet  
Addr. Name  
Bits  
Bit Name  
Description  
Reset Access  
Digital Datapath Setup Registers  
0x100 NCO0_CONTROL  
[7:1]  
0
RESERVED  
ADITHER_EN0  
Reserved.  
0x0  
0x1  
R
R/W  
Amplitude Dither Enable for NCO0.  
1: Enables amplitude dither.  
0: Disables amplitude dither.  
Reserved.  
NCO Frequency Tuning Word for NCO0. Specifies  
the frequency tuning word for NCO0. Only Bits[6:0]  
are valid.  
0x105 NCO0_FTW  
7
[6:0]  
RESERVED  
NCO0_FTW  
0x0  
0x0  
R
R/W  
0x106 NCO0_PHOFF  
7
RESERVED  
Reserved.  
0x0  
R
[6:0]  
NCO0_PHOFF  
NCO Phase Offset for NCO0. Specifies the phase 0x0  
offset for NCO0. Only Bits[6:0] are valid  
R/W  
0x107 NCO1_CONTROL  
[7:1]  
0
RESERVED  
ADITHER_EN1  
Reserved.  
0x0  
0x1  
R
R/W  
Amplitude Dither Enable for NCO1.  
1: Enables amplitude dither.  
0: Disables amplitude dither.  
Reserved.  
0x10C NCO1_FTW  
7
RESERVED  
0x0  
R
[6:0]  
NCO1_FTW  
NCO Frequency Tuning Word for NCO1. Specifies 0x0  
the frequency tuning word for NCO0. Only  
Bits[6:0] are valid  
R/W  
0x10D NCO1_PHOFF  
7
RESERVED  
Reserved.  
0x0  
R
[6:0]  
NCO1_PHOFF  
NCO Phase Offset for NCO1. Specifies the phase 0x0  
offset for NCO0. Only Bits[6:0] are valid  
R/W  
0x10E NCO2_CONTROL  
[7:1]  
0
RESERVED  
ADITHER_EN2  
Reserved.  
0x0  
0x1  
R
R/W  
Amplitude Dither Enable for NCO2.  
1: Enables amplitude dither.  
0: Disables amplitude dither.  
Reserved.  
0x113 NCO2_FTW  
7
RESERVED  
0x0  
R
[6:0]  
NCO2_FTW  
NCO Frequency Tuning Word for NCO2. Specifies 0x0  
the frequency tuning word for NCO0. Only  
Bits[6:0] are valid  
R/W  
0x114 NCO2_PHOFF  
0x115 MIXER_CTRL  
7
[6:0]  
RESERVED  
NCO2_PHOFF  
Reserved.  
0x0  
R
R/W  
NCO Phase Offset for NCO2. Specifies the phase 0x0  
offset for NCO0. Only Bits[6:0] are valid  
Reserved.  
[7:2]  
[1:0]  
RESERVED  
MIXER_MODE  
0x0  
0x0  
R
R/W  
Mixer Mode.  
00: Normal Mode: Output is input multiplied by  
NCO data.  
01: NCO Bypass Mode: Output is same as input.  
10: Reserved.  
11: NCO Test Mode : Output is constant times  
NCO Data.  
0x116 DP_CTRL  
7
RESERVED  
Reserved.  
0x0  
R
[6:5]  
NUM_TONES  
Number of Tones. Defines number of Tones per 0x3  
ADC in Burst mode. This field is valid only for  
BURST_MODE = 1 case.  
R/W  
00: Invalid.  
01: 1 Tone.  
10: 2 Tone.  
11: 3 Tones.  
4
DECI_ADC_DATA  
ADC Output as input to J decimator.  
1: ADC output to J decimator.  
0: CIC output to J decimator.  
0x0  
R/W  
Rev. 0 | Page 64 of 93  
Data Sheet  
AD9083  
Addr. Name  
Bits  
Bit Name  
Description  
Reset Access  
3
NCO_6DB_GAIN  
Enable Gain 6 db.  
0x0  
R/W  
1: Enables the 6 dB gain when NCO is used in  
datapath  
0: Disables 6 dB gain for all modes  
2
1
BURST_MODE  
Burst Mode.  
0x1  
0x0  
R/W  
R/W  
1: Burst mode is selected. Selects the G/H path.  
0: Non-burst Mode. Selects the Decimate by J path.  
NCO Bypass. Note that this bit is valid only for  
non-burst mode.  
NO_DDC_MODE  
1: Bypasses the NCO/MIXER( Real Data).  
0: NCO/MIXER Enabled.  
Datapath Enable.  
0
DATAPATH_EN  
0x0  
R/W  
1: Enables all the 16 datapaths.  
0: Disables all the 16 datapaths.  
Reserved.  
CIC Accumulator Clear.  
1: Clears the CIC accumulators in all the 16  
datapaths  
0x117 CIC_CTRL  
[7:3]  
2
RESERVED  
CIC_ACC_CLR  
0x0  
0x0  
R
R/W  
0: No Action  
[1:0]  
CIC_DEC_RATE  
CIC Decimation Rate.  
00-Decimate by 4  
0x0  
R/W  
01: Decimate by 8  
10: Decimate by 16  
This is common for all the 16 datapaths  
00: Decimate by 4.  
01: Decimate by 8.  
10: Decimate by 16.  
0x118 DECIMATE_H  
[7:0]  
H_VALUE  
"H" Value. Specifies the "H" value for decimation 0x10 R/W  
in burst mode. (G/H)  
Eg: 'h04 ==> Decimate by 4  
000001: 1.  
001100: 12.  
001110: 14.  
010000: 16.  
010010: 18.  
011000: 24.  
011100: 28.  
100000: 32.  
100100: 36.  
0x119 DECIMATE_G  
[7:0]  
G_VALUE  
"G" Value. Specifies the "G" value in burst mode. 0x8  
R/W  
(G/H)  
It is for these many samples averaging has to be  
done.  
00000: N/A.  
01000: 8.  
10000: 16.  
0x11A DECIMATE_J  
[7:4]  
[3:0]  
RESERVED  
DEC_J  
Reserved.  
0x0  
0x0  
R
R/W  
Bits for J Decimator.  
0000: Bypass (No Decimation).  
0001: Decimate by 4.  
0010: Decimate by 8.  
0011: Decimate by 16.  
0100: Not Valid.  
0101: Not Valid.  
0110: Decimate by 12.  
Rev. 0 | Page 65 of 93  
AD9083  
Data Sheet  
Addr. Name  
Bits  
Bit Name  
Description  
Reset Access  
0111: Decimate by 24.  
1000: Not Valid.  
1001: Decimate By 10 (Valid only for CIC Data  
Not valid for Decimation of ADC Data).  
1010: Decimate by 20.  
1011: Decimate by 40.  
1100: Not Valid.  
1101: Not Valid.  
1110: Not Valid.  
1111: Decimate by 60.  
0x11B DECIMATE_H_EFF  
[7:0]  
H_EFF_VALUE  
"H_EFF" Value. Specifies the "H" value for  
decimation in burst mode. (G/H)  
Eg: 'h04 ==> Decimate by 4  
0x10  
R
0x152 CIC_GAIN_ADJ_  
VALUE_0  
0x153 CIC_GAIN_ADJ_  
VALUE_1  
[7:0]  
[7:2]  
CIC_GAIN_ADJ_VAL_0[7:0]  
RESERVED  
CIC Gain Adj 0. integer-4. fraction-10  
0x7  
0x0  
R/W  
R
Reserved.  
[1:0]  
[7:4]  
CIC_GAIN_ADJ_VAL_0[9:8]  
RESERVED  
CIC Gain Adj 0. integer-4. fraction-10  
Reserved.  
0x0  
0x0  
R/W  
R
0x154 CIC_GAIN_ADJ_  
VALUE_2  
[3:0]  
[7:0]  
CIC_GAIN_ADJ_VAL_0[13:10] CIC Gain Adj 0. integer-4. fraction-10  
0x1  
0x20 R/W  
R/W  
0x155 CIC_GAIN_ADJ_  
VALUE_3  
CIC_GAIN_ADJ_VAL_1[7:0]  
CIC Gain Adj 1. integer-4. fraction-10  
0x156 CIC_GAIN_ADJ_  
VALUE_4  
[7:2]  
RESERVED  
Reserved.  
0x0  
R
[1:0]  
[7:4]  
CIC_GAIN_ADJ_VAL_1[9:8]  
RESERVED  
CIC Gain Adj 1. integer-4. fraction-10  
Reserved.  
0x0  
0x0  
R/W  
R
0x157 CIC_GAIN_ADJ_  
VALUE_5  
[3:0]  
[7:0]  
CIC_GAIN_ADJ_VAL_1[13:10] CIC Gain Adj 1. integer-4. fraction-10  
0x1  
0x4A R/W  
R/W  
0x158 CIC_GAIN_ADJ_  
VALUE_6  
CIC_GAIN_ADJ_VAL_2[7:0]  
CIC Gain Adj 2. integer-4. fraction-10  
0x159 CIC_GAIN_ADJ_  
VALUE_7  
[7:2]  
RESERVED  
Reserved.  
0x0  
R
[1:0]  
[7:4]  
CIC_GAIN_ADJ_VAL_2[9:8]  
RESERVED  
CIC Gain Adj 2. integer-4. fraction-10  
Reserved.  
0x0  
0x0  
R/W  
R
0x170 CIC_GAIN_ADJ_  
VALUE_8  
[3:0]  
[7:6]  
5
CIC_GAIN_ADJ_VAL_2[13:10] CIC Gain Adj 2. integer-4. fraction-10  
RESERVED Reserved.  
DFORMAT_DDC_DITHER_EN 0: Disable  
1: Enable  
0x1  
0x0  
0x0  
R/W  
R
R/W  
0x189 OUT_RES  
4
[3:0]  
RESERVED  
DFORMAT_RES  
Reserved.  
0x0  
0x0  
R/W  
R/W  
Data Output Resolution.  
0000: 16-bit resolution.  
0001: 15-bit resolution.  
0010: 14-bit resolution.  
0011: 13-bit resolution.  
0100: 12-bit resolution.  
0101: 11-bit resolution.  
0110: 10-bit resolution.  
0111: 9-bit resolution.  
1000: 8-bit resolution.  
Rev. 0 | Page 66 of 93  
Data Sheet  
AD9083  
Addr. Name  
0x18A OUT_FORMAT_SEL  
Bits  
[7:3]  
2
Bit Name  
RESERVED  
DFORMAT_INV  
Description  
Reserved.  
Output Data Inversion Enable. Digital ADC  
Sample Invert  
Reset Access  
0x0  
0x0  
R
R/W  
0: ADC sample data is NOT inverted  
1: ADC sample data is inverted  
[1:0]  
DFORMAT_SEL  
Output Data Format Selection.  
00: 2'Complement.  
01: Offset Binary.  
0x0  
R/W  
10: Gray Code.  
0x18B CTRL_0_1_SEL  
[7:4]  
[3:0]  
DFORMAT_CTRL_BIT_1_SEL  
DFORMAT_CTRL_BIT_0_SEL  
Control Bit 1 Mux Selection.  
00: Overrange Bit.  
01: SYSREF.  
Control Bit 0 Mux Selection.  
00: Overrange Bit.  
01: SYSREF.  
0x0  
0x0  
R/W  
R/W  
0x18C CTRL_2_SEL  
0x18D OVR_CLR_0  
[7:4]  
[3:0]  
RESERVED  
DFORMAT_CTRL_BIT_2_SEL  
Reserved.  
0x0  
0x0  
R
R/W  
Control Bit 2 Mux Selection.  
00: Overrange Bit.  
01: SYSREF.  
Overrange Status Clear. Converter overrange  
clear bit (active high).  
[7:0]  
[7:0]  
[7:0]  
DFORMAT_OVR_CLR[7:0]  
DFORMAT_OVR_CLR[15:8]  
DFORMAT_OVR_CLR[23:16]  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
After an overrange sticky bit is set,  
it remains set until explicitly cleared by writing a  
1 to the corresponding DFORMAT_OVR_CLR bit.  
The DFORMAT_OVR_CLEAR[95:0] bits must be  
cleared for further overrange to be reported .  
[0] = Overrange sticky bit clear for Converter 0  
[1] = Overrange sticky bit clear for Converter 1  
[2] = Overrange sticky bit clear for Converter 2  
and so on.  
0x18E OVR_CLR_1  
Overrange Status Clear. Converter overrange  
clear bit (active high).  
After an overrange sticky bit is set,  
it remains set until explicitly cleared by writing a  
1 to the corresponding DFORMAT_OVR_CLR bit.  
The DFORMAT_OVR_CLEAR[95:0] bits must be  
cleared for further overrange to be reported .  
[0] = Overrange sticky bit clear for Converter 0  
[1] = Overrange sticky bit clear for Converter 1  
[2] = Overrange sticky bit clear for Converter 2  
and so on.  
0x18F OVR_CLR_2  
Overrange Status Clear. Converter overrange  
clear bit (active high).  
After an overrange sticky bit is set,  
it remains set until explicitly cleared by writing a  
1 to the corresponding DFORMAT_OVR_CLR bit.  
The DFORMAT_OVR_CLEAR[95:0] bits must be  
cleared for further overrange to be reported .  
[0] = Overrange sticky bit clear for Converter 0  
[1] = Overrange sticky bit clear for Converter 1  
[2] = Overrange sticky bit clear for Converter 2  
and so on.  
Rev. 0 | Page 67 of 93  
AD9083  
Data Sheet  
Addr. Name  
Bits  
Bit Name  
Description  
Reset Access  
0x190 OVR_CLR_3  
[7:0]  
DFORMAT_OVR_CLR[31:24]  
Overrange Status Clear. Converter overrange  
clear bit (active high).  
After an overrange sticky bit is set,  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
it remains set until explicitly cleared by writing a  
1 to the corresponding DFORMAT_OVR_CLR bit.  
The DFORMAT_OVR_CLEAR[95:0] bits must be  
cleared for further overrange to be reported .  
[0] = Overrange sticky bit clear for Converter 0  
[1] = Overrange sticky bit clear for Converter 1  
[2] = Overrange sticky bit clear for Converter 2  
and so on.  
0x191 OVR_CLR_4  
0x192 OVR_CLR_5  
0x193 OVR_CLR_6  
0x194 OVR_CLR_7  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
DFORMAT_OVR_CLR[39:32]  
DFORMAT_OVR_CLR[47:40]  
DFORMAT_OVR_CLR[55:48]  
DFORMAT_OVR_CLR[63:56]  
Overrange Status Clear. Converter overrange  
clear bit (active high).  
After an overrange sticky bit is set,  
it remains set until explicitly cleared by writing a  
1 to the corresponding DFORMAT_OVR_CLR bit.  
The DFORMAT_OVR_CLEAR[95:0] bits must be  
cleared for further overrange to be reported .  
[0] = Overrange sticky bit clear for Converter 0  
[1] = Overrange sticky bit clear for Converter 1  
[2] = Overrange sticky bit clear for Converter 2  
and so on.  
Overrange Status Clear. Converter overrange  
clear bit (active high).  
After an overrange sticky bit is set,  
it remains set until explicitly cleared by writing a  
1 to the corresponding DFORMAT_OVR_CLR bit.  
The DFORMAT_OVR_CLEAR[95:0] bits must be  
cleared for further overrange to be reported .  
[0] = Overrange sticky bit clear for Converter 0  
[1] = Overrange sticky bit clear for Converter 1  
[2] = Overrange sticky bit clear for Converter 2  
and so on.  
Overrange Status Clear. Converter overrange  
clear bit (active high).  
After an overrange sticky bit is set,  
it remains set until explicitly cleared by writing a  
1 to the corresponding DFORMAT_OVR_CLR bit.  
The DFORMAT_OVR_CLEAR[95:0] bits must be  
cleared for further overrange to be reported .  
[0] = Overrange sticky bit clear for Converter 0  
[1] = Overrange sticky bit clear for Converter 1  
[2] = Overrange sticky bit clear for Converter 2  
and so on.  
Overrange Status Clear. Converter overrange  
clear bit (active high).  
After an overrange sticky bit is set,  
it remains set until explicitly cleared by writing a  
1 to the corresponding DFORMAT_OVR_CLR bit.  
The DFORMAT_OVR_CLEAR[95:0] bits must be  
cleared for further overrange to be reported .  
[0] = Overrange sticky bit clear for Converter 0  
[1] = Overrange sticky bit clear for Converter 1  
[2] = Overrange sticky bit clear for Converter 2  
and so on.  
Rev. 0 | Page 68 of 93  
Data Sheet  
AD9083  
Addr. Name  
Bits  
Bit Name  
Description  
Reset Access  
0x195 OVR_CLR_8  
[7:0]  
DFORMAT_OVR_CLR[71:64]  
Overrange Status Clear. Converter overrange  
clear bit (active high).  
After an overrange sticky bit is set,  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
it remains set until explicitly cleared by writing a  
1 to the corresponding DFORMAT_OVR_CLR bit.  
The DFORMAT_OVR_CLEAR[95:0] bits must be  
cleared for further overrange to be reported .  
[0] = Overrange sticky bit clear for Converter 0  
[1] = Overrange sticky bit clear for Converter 1  
[2] = Overrange sticky bit clear for Converter 2  
and so on.  
0x196 OVR_CLR_9  
0x197 OVR_CLR_10  
0x198 OVR_CLR_11  
[7:0]  
[7:0]  
[7:0]  
DFORMAT_OVR_CLR[79:72]  
DFORMAT_OVR_CLR[87:80]  
DFORMAT_OVR_CLR[95:88]  
Overrange Status Clear. Converter overrange  
clear bit (active high).  
After an overrange sticky bit is set,  
it remains set until explicitly cleared by writing a  
1 to the corresponding DFORMAT_OVR_CLR bit.  
The DFORMAT_OVR_CLEAR[95:0] bits must be  
cleared for further overrange to be reported .  
[0] = Overrange sticky bit clear for Converter 0  
[1] = Overrange sticky bit clear for Converter 1  
[2] = Overrange sticky bit clear for Converter 2  
and so on.  
Overrange Status Clear. Converter overrange  
clear bit (active high).  
After an overrange sticky bit is set,  
it remains set until explicitly cleared by writing a  
1 to the corresponding DFORMAT_OVR_CLR bit.  
The DFORMAT_OVR_CLEAR[95:0] bits must be  
cleared for further overrange to be reported .  
[0] = Overrange sticky bit clear for Converter 0  
[1] = Overrange sticky bit clear for Converter 1  
[2] = Overrange sticky bit clear for Converter 2  
and so on.  
Overrange Status Clear. Converter overrange  
clear bit (active high).  
After an overrange sticky bit is set,  
it remains set until explicitly cleared by writing a  
1 to the corresponding DFORMAT_OVR_CLR bit.  
The DFORMAT_OVR_CLEAR[95:0] bits must be  
cleared for further overrange to be reported .  
[0] = Overrange sticky bit clear for Converter 0  
[1] = Overrange sticky bit clear for Converter 1  
[2] = Overrange sticky bit clear for Converter 2  
and so on.  
Rev. 0 | Page 69 of 93  
AD9083  
Data Sheet  
Addr. Name  
Bits  
Bit Name  
Description  
Reset Access  
0x199 OVR_STATUS_0  
[7:0]  
DFORMAT_OVR_STATUS[7:0] Output Overrange Status Indicator. Converter  
overrange indication sticky bits (active high).  
One bit for each virtual converter  
0x0  
0x0  
0x0  
R
R
R
0: No overrange occurred.  
1: Overrange occurred.  
This bit is set to 1 if converter is driven beyond  
the specified input range. It is sticky, meaning it  
remains set until explicitly cleared by writing a 1  
to the corresponding  
DFORMAT_OVR_CLEAR[15:0] bits. The  
corresponding DFORMAT_OVR_CLEAR[15:0] bits  
must be cleared for further overflows to be  
reported.  
[0] = Overrange sticky bit for Converter 0  
[1] = Overrange sticky bit for Converter 1  
[2] = Overrange sticky bit for Converter 2  
and so on.  
0x19A OVR_STATUS_1  
[7:0]  
DFORMAT_OVR_  
STATUS[15:8]  
Output Overrange Status Indicator. Converter  
overrange indication sticky bits (active high).  
One bit for each virtual converter  
0: No overrange occurred.  
1: Overrange occurred.  
This bit is set to 1 if converter is driven beyond  
the specified input range. It is sticky, meaning it  
remains set until explicitly cleared by writing a 1  
to the corresponding  
DFORMAT_OVR_CLEAR[15:0] bits. The  
corresponding DFORMAT_OVR_CLEAR[15:0] bits  
must be cleared for further overflows to be  
reported.  
[0] = Overrange sticky bit for Converter 0  
[1] = Overrange sticky bit for Converter 1  
[2] = Overrange sticky bit for Converter 2  
and so on.  
0x19B OVR_STATUS_2  
[7:0]  
DFORMAT_OVR_  
STATUS[23:16]  
Output Overrange Status Indicator. Converter  
overrange indication sticky bits (active high).  
One bit for each virtual converter  
0: No overrange occurred.  
1: Overrange occurred.  
This bit is set to 1 if converter is driven beyond  
the specified input range. It is sticky, meaning it  
remains set until explicitly cleared by writing a 1  
to the corresponding  
DFORMAT_OVR_CLEAR[15:0] bits. The  
corresponding DFORMAT_OVR_CLEAR[15:0] bits  
must be cleared for further overflows to be  
reported.  
[0] = Overrange sticky bit for Converter 0  
[1] = Overrange sticky bit for Converter 1  
[2] = Overrange sticky bit for Converter 2  
and so on.  
Rev. 0 | Page 70 of 93  
Data Sheet  
AD9083  
Addr. Name  
Bits  
Bit Name  
Description  
Reset Access  
0x19C OVR_STATUS_3  
[7:0]  
DFORMAT_OVR_  
STATUS[31:24]  
Output Overrange Status Indicator. Converter  
overrange indication sticky bits (active high).  
One bit for each virtual converter  
0: No overrange occurred.  
0x0  
0x0  
0x0  
R
R
R
1: Overrange occurred.  
This bit is set to 1 if converter is driven beyond  
the specified input range. It is sticky, meaning it  
remains set until explicitly cleared by writing a 1  
to the corresponding  
DFORMAT_OVR_CLEAR[15:0] bits. The  
corresponding DFORMAT_OVR_CLEAR[15:0] bits  
must be cleared for further overflows to be  
reported.  
[0] = Overrange sticky bit for Converter 0  
[1] = Overrange sticky bit for Converter 1  
[2] = Overrange sticky bit for Converter 2  
and so on.  
Output Overrange Status Indicator. Converter  
overrange indication sticky bits (active high).  
One bit for each virtual converter  
0: No overrange occurred.  
0x19D OVR_STATUS_4  
[7:0]  
DFORMAT_OVR_  
STATUS[39:32]  
1: Overrange occurred.  
This bit is set to 1 if converter is driven beyond  
the specified input range. It is sticky, meaning it  
remains set until explicitly cleared by writing a 1  
to the corresponding  
DFORMAT_OVR_CLEAR[15:0] bits. The  
corresponding DFORMAT_OVR_CLEAR[15:0] bits  
must be cleared for further overflows to be  
reported.  
[0] = Overrange sticky bit for Converter 0  
[1] = Overrange sticky bit for Converter 1  
[2] = Overrange sticky bit for Converter 2  
and so on.  
0x19E OVR_STATUS_5  
[7:0]  
DFORMAT_OVR_  
STATUS[47:40]  
Output Overrange Status Indicator. Converter  
overrange indication sticky bits (active high).  
One bit for each virtual converter  
0: No overrange occurred.  
1: Overrange occurred.  
This bit is set to 1 if converter is driven beyond  
the specified input range. It is sticky, meaning it  
remains set until explicitly cleared by writing a 1  
to the corresponding  
DFORMAT_OVR_CLEAR[15:0] bits. The  
corresponding DFORMAT_OVR_CLEAR[15:0] bits  
must be cleared for further overflows to be  
reported.  
[0] = Overrange sticky bit for Converter 0  
[1] = Overrange sticky bit for Converter 1  
[2] = Overrange sticky bit for Converter 2  
and so on.  
Rev. 0 | Page 71 of 93  
AD9083  
Data Sheet  
Addr. Name  
Bits  
Bit Name  
Description  
Reset Access  
0x19F OVR_STATUS_6  
[7:0]  
DFORMAT_OVR_  
STATUS[55:48]  
Output Overrange Status Indicator. Converter  
overrange indication sticky bits (active high).  
One bit for each virtual converter  
0: No overrange occurred.  
0x0  
0x0  
0x0  
R
R
R
1: Overrange occurred.  
This bit is set to 1 if converter is driven beyond  
the specified input range. It is sticky, meaning it  
remains set until explicitly cleared by writing a 1  
to the corresponding  
DFORMAT_OVR_CLEAR[15:0] bits. The  
corresponding DFORMAT_OVR_CLEAR[15:0] bits  
must be cleared for further overflows to be  
reported.  
[0] = Overrange sticky bit for Converter 0  
[1] = Overrange sticky bit for Converter 1  
[2] = Overrange sticky bit for Converter 2  
and so on.  
Output Overrange Status Indicator. Converter  
overrange indication sticky bits (active high).  
One bit for each virtual converter  
0: No overrange occurred.  
0x1A0 OVR_STATUS_7  
[7:0]  
DFORMAT_OVR_  
STATUS[63:56]  
1: Overrange occurred.  
This bit is set to 1 if converter is driven beyond  
the specified input range. It is sticky, meaning it  
remains set until explicitly cleared by writing a 1  
to the corresponding  
DFORMAT_OVR_CLEAR[15:0] bits. The  
corresponding DFORMAT_OVR_CLEAR[15:0] bits  
must be cleared for further overflows to be  
reported.  
[0] = Overrange sticky bit for Converter 0  
[1] = Overrange sticky bit for Converter 1  
[2] = Overrange sticky bit for Converter 2  
and so on.  
0x1A1 OVR_STATUS_8  
[7:0]  
DFORMAT_OVR_  
STATUS[71:64]  
Output Overrange Status Indicator. Converter  
overrange indication sticky bits (active high) .  
One bit for each virtual converter  
0: No overrange occurred.  
1: Overrange occurred.  
This bit is set to 1 if converter is driven beyond  
the specified input range. It is sticky, meaning it  
remains set until explicitly cleared by writing a 1  
to the corresponding  
DFORMAT_OVR_CLEAR[15:0] bits . The  
corresponding DFORMAT_OVR_CLEAR[15:0] bits  
must be cleared for further overflows to be  
reported.  
[0] = Overrange sticky bit for Converter 0  
[1] = Overrange sticky bit for Converter 1  
[2] = Overrange sticky bit for Converter 2  
and so on.  
Rev. 0 | Page 72 of 93  
Data Sheet  
AD9083  
Addr. Name  
Bits  
Bit Name  
Description  
Reset Access  
0x1A2 OVR_STATUS_9  
[7:0]  
DFORMAT_OVR_  
STATUS[79:72]  
Output Overrange Status Indicator. Converter  
overrange indication sticky bits (active high) .  
One bit for each virtual converter  
0: No overrange occurred.  
0x0  
0x0  
0x0  
R
R
R
R
1: Overrange occurred.  
This bit is set to 1 if converter is driven beyond  
the specified input range. It is sticky, meaning it  
remains set until explicitly cleared by writing a 1  
to the corresponding  
DFORMAT_OVR_CLEAR[15:0] bits . The  
corresponding DFORMAT_OVR_CLEAR[15:0] bits  
must be cleared for further overflows to be  
reported.  
[0] = Overrange sticky bit for Converter 0  
[1] = Overrange sticky bit for Converter 1  
[2] = Overrange sticky bit for Converter 2  
and so on.  
Output Overrange Status Indicator. Converter  
overrange indication sticky bits (active high) .  
One bit for each virtual converter  
0: No overrange occurred.  
0x1A3 OVR_STATUS_10  
[7:0]  
DFORMAT_OVR_  
STATUS[87:80]  
1: Overrange occurred.  
This bit is set to 1 if converter is driven beyond  
the specified input range. It is sticky, meaning it  
remains set until explicitly cleared by writing a 1  
to the corresponding  
DFORMAT_OVR_CLEAR[15:0] bits . The  
corresponding DFORMAT_OVR_CLEAR[15:0] bits  
must be cleared for further overflows to be  
reported.  
[0] = Overrange sticky bit for Converter 0  
[1] = Overrange sticky bit for Converter 1  
[2] = Overrange sticky bit for Converter 2  
and so on.  
0x1A4 OVR_STATUS_11  
[7:0]  
DFORMAT_OVR_  
STATUS[95:88]  
Output Overrange Status Indicator. Converter  
overrange indication sticky bits (active high) .  
One bit for each virtual converter  
0: No overrange occurred.  
1: Overrange occurred.  
This bit is set to 1 if converter is driven beyond  
the specified input range. It is sticky, meaning it  
remains set until explicitly cleared by writing a 1  
to the corresponding  
DFORMAT_OVR_CLEAR[15:0] bits . The  
corresponding DFORMAT_OVR_CLEAR[15:0] bits  
must be cleared for further overflows to be  
reported.  
[0] = Overrange sticky bit for Converter 0  
[1] = Overrange sticky bit for Converter 1  
[2] = Overrange sticky bit for Converter 2  
and so on.  
0x1B0 DATA_PATTERN_OVERR [7:4]  
IDE  
RESERVED  
Reserved.  
0x0  
0x0  
[3:2]  
1
RESERVED  
DATA_PATTERN_OVERRIDE  
Reserved.  
R
R/W  
This Bit Overrides the Dformat_tmode_sel[*] in 0x0  
the Dformat.  
0: Don't override data-pattern (Default).  
1: Override data-pattern.  
0
RESERVED  
Reserved.  
0x0  
R
Rev. 0 | Page 73 of 93  
AD9083  
Data Sheet  
Addr. Name  
0x1C0 SYNC_CTRL1  
Bits  
[7:4]  
3
Bit Name  
RESERVED  
NCORESET_ALL_SYSREF  
Description  
Reserved.  
Reset Access  
0x1  
R
NCO Reset Control by SYSREF. Applicable only in 0x1  
resynchronization mode.  
R/W  
0: NCO reset happens only with a SYSREF which  
caused resynchronization of clocks.  
1: NCO reset happens with all SYSREF pulses (not  
recommended unless SYSREF period is much  
greater LMFC periods).  
2
1
SYSREF_RESYNC_MODE  
RISEDGE_SYSREF  
SYSREF Resync Mode.  
0: SYSREF is not used for resync  
1: SYSREF is used for resync  
0x0  
0x0  
R/W  
R/W  
Risedge SYSREF.  
0: No rise edge detection on SYSREF pin. Input  
SYSREF used as such  
1: Rise edge detection done on input SYSREF and  
used.  
0
[7:0]  
DP_CLK_FORCEN  
TRIG_PROG_DELAY  
Reserved.  
0x0  
0x0  
R/W  
R/W  
0x1C1 TRIG_PROG_DELAY  
Programmable delay for input trig in terms of  
fS/4 clock cycles.  
0x1C2 SYSREF_PROG_DELAY [7:0]  
SYSREF_PROG_DELAY  
TRIG_EDGE_CTRL  
Programmable delay for input SYSREF terms of 0x0  
fS/2 clock cycles.  
R/W  
R/W  
0x1C3 TRIG_CTRL  
[7:6]  
Control for Trig Edge Detection.  
00: No Edge Detection.  
01: Positive Edge.  
10: Negative Edge.  
Reserved.  
0x0  
[5:0]  
[7:5]  
4
RESERVED  
RESERVED  
DDC_SOFT_RESET  
0x10 R/W  
0x1C4 DDC_SYNC_CTRL  
Reserved.  
0x0  
R/W  
R/W  
Digital Down Converter Soft Reset. Digital Down 0x0  
Converter Soft Reset  
0: Normal Operation  
1: DDC Held in Reset.  
Note: this bit can be used to synchronize all the  
NCOs inside the DDC blocks.  
[3:2]  
1
RESERVED  
Reserved.  
0x0  
0x1  
R
DDC_SYNC_NEXT  
DDC Next Synchronization Mode. DDC Next  
Synchronization Mode  
R/W  
0: Continuous mode  
1: Next Synchronization mode - only the next  
valid edge of SYSREF pin will be used to  
synchronize the NCO in the DDC block.  
Subsequent edges of the SYSREF pin will be  
ignored.  
Note: The SYSREF pin must an integer multiple of  
the NCO frequency in order for this function to  
operate correctly in continuous mode.  
0
DDC_SYNC_EN  
DDC Synchronization Enable. DDC  
0x0  
R/W  
Synchronization Enable  
0: Synchronization Disabled  
1: Synchronization Enabled. If DDC_SYNC_  
NEXT = 1, only the next valid edge of the SYSREF  
pin will be used to synchronize the NCO in the  
DDC block. Subsequent edges of the SYSREF pin  
are ignored. After the next SYSREF is received,  
this must be cleared for any subsequent use of  
next SYSREF.  
Note: the SYSREF input pin must be enabled in  
order to synchronize the DDCs.  
Rev. 0 | Page 74 of 93  
Data Sheet  
AD9083  
Addr. Name  
0x1C5 DDC_SYNC_STATUS  
Bits  
[7:1]  
0
Bit Name  
RESERVED  
DDC_SYNC_EN_CLEAR  
Description  
Reserved.  
Reset Access  
0x0  
R
R
DDC Sync Enable Clear Status. DDC Sync Enable 0x0  
Clear Status  
JESD204B Transmitter (JTX) Control Registers  
0x200 JTX_CORE_SAMPLE_  
7
JTX_CONV_DISABLE  
Converter sample mask to 0.  
0x0  
R/W  
to  
XBARn  
0x25F  
by 1  
[6:0]  
7
JTX_CONV_SEL  
Converter sample crossbar selection.  
0x0  
0x0  
R/W  
R/W  
0x260 JTX_CORE_CONFIG  
JTX_SYSREF_FOR_RELINK  
Will mask lane data to 0 until another SYSREF  
pulse is received if SYNC~ is asserted. Applies to  
JESD204B operation only.  
6
JTX_SYSREF_FOR_STARTUP  
Will mask lane data to 0 until the first SYSREF  
pulse is received after reset.  
0x0  
0x0  
R/W  
[5:4]  
3
RESERVED  
Reserved.  
R
JTX_CHKSUM_LSB_ALG  
0: Sum whole octets of L0 config for checksum 1: 0x0  
Sum individual fields for checksum.  
R/W  
2
[1:0]  
7
JTX_CHKSUM_DISABLE  
JTX_LINK_TYPE  
JTX_LANE_PD  
Checksum is always 0.  
Link layer type selection: 0: 204B 1: 204C 2: 204H. 0x0  
Physical lane in use based on link and crossbar  
configuration.  
0x0  
R/W  
R/W  
R
0x261 JTX_CORE_LANE_  
0x0  
to  
XBARn  
0x264  
by 1  
6
5
JTX_FORCE_LANE_PD  
JTX_LANE_INV  
Send 0s and activate jtx_lane_pd.  
Invert logical lane data (before crossbar).  
Lane crossbar selection. Setting here selects  
which logical lane should feed the physical lane.  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
[4:0]  
JTX_LANE_SEL  
0x271 JTX_CORE_TEST_  
CONFIG  
7
JTX_TEST_USER_GO  
Activate USER_SINGLE test mode.  
0x0  
R/W  
6
[5:4]  
[3:0]  
JTX_TEST_MIRROR  
JTX_TEST_GEN_SEL  
JTX_TEST_GEN_MODE  
Reverse bit order of test data.  
Test insertion point.  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
Test mode selection.  
0: Disabled for TEST_GEN_SEL = 0, lane loopback  
for TEST_GEN_SEL = 1.  
1: CHECKER_BOARD  
2: WORD_TOGGLE  
3: PN31  
5: PN15  
7: PN7  
8: RAMP  
14: USER_REPEAT  
15: USER_SINGLE.  
0x272 JTX_TEST_USER_DATA0 [7:0]  
0x273 JTX_TEST_USER_DATA1 [7:0]  
0x274 JTX_TEST_USER_DATA2 [7:0]  
0x275 JTX_TEST_USER_DATA3 [7:0]  
0x276 JTX_TEST_USER_DATA4 [7:0]  
0x277 JTX_TEST_USER_DATA5 [7:0]  
0x278 JTX_TEST_USER_DATA6 [7:0]  
0x279 JTX_TEST_USER_DATA7 [7:0]  
0x27A JTX_TEST_USER_DATA8 [7:2]  
[1:0]  
JTX_TEST_USER_DATA[7:0]  
User defined test data in LSBs.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
JTX_TEST_USER_DATA[15:8] User defined test data in LSBs.  
JTX_TEST_USER_DATA[23:16] User defined test data in LSBs.  
JTX_TEST_USER_DATA[31:24] User defined test data in LSBs.  
JTX_TEST_USER_DATA[39:32] User defined test data in LSBs.  
JTX_TEST_USER_DATA[47:40] User defined test data in LSBs.  
JTX_TEST_USER_DATA[55:48] User defined test data in LSBs.  
JTX_TEST_USER_DATA[63:56] User defined test data in LSBs.  
RESERVED  
Reserved.  
JTX_TEST_USER_DATA[65:64] User defined test data in LSBs.  
R/W  
Rev. 0 | Page 75 of 93  
AD9083  
Data Sheet  
Addr. Name  
Bits  
Bit Name  
Description  
Reset Access  
0x27B JTX_CORE_SYNC_N_  
SEL  
[7:3]  
RESERVED  
Reserved.  
0x0  
R
[2:0]  
JTX_SYNC_N_SEL  
Decimal value to select the physical sync_n  
source pin. Ignored when JTX_NUM_LINKS = 1.  
0x0  
R/W  
0x27C JTX_CORE_13  
[7:1]  
0
[7:3]  
RESERVED  
JTX_LINK_EN  
JTX_NS_CFG  
Reserved.  
See JTX documentation.  
Number of unique samples per converter in  
conv_sample.  
0x0  
0x0  
0x0  
R
R/W  
R/W  
0x27D JTX_TPL_CONFIG0  
2
JTX_TPL_CONV_  
ASYNCHRONOUS  
Expect link_pclk asynchronous to conv_clk. This 0x0  
will increase the delay for the domain handoff  
buffer in fixed latency mode. The increased delay  
may require setting the  
R/W  
JTX_TPL_ASYNC_SUPPORT parameter.  
1
0
JTX_TPL_TEST_ENABLE  
JTX_TPL_ADAPTIVE_LATENCY Enable adaptive latency mode. Default should be 0x0  
0.  
Enable long transport layer test.  
0x0  
R/W  
R/W  
0x27E JTX_TPL_CONFIG1  
7
6
JTX_TPL_SYSREF_IGNORE_  
WHEN_LINKED  
JTX_TPL_SYSREF_CLR_  
PHASE_ERR  
Mask incoming SYSREF when SYNC~ is de-  
asserted. Applies to 204B operation only.  
0x0  
R/W  
R/W  
Clear jtx_tpl_SYSREF_phase_err.  
0x0  
5
[4:3]  
2
JTX_TPL_SYSREF_MASK  
RESERVED  
JTX_TPL_SYSREF_PHASE_ERR Incoming SYSREF has been registered at an  
unexpected time from the previously established  
SYSREF phase.  
Mask any incoming SYSREF to 0.  
Reserved.  
0x0  
0x0  
0x0  
R/W  
R
R
1
0
JTX_TPL_SYSREF_RCVD  
RESERVED  
SYSREF phase has been established.  
Reserved  
Add additional conv_clk cycles of latency (for  
both latency modes). Useful in adaptive latency  
mode to get a wider adaptable range.  
0x0  
0x0  
0x0  
R
R
0x27F JTX_TPL_LATENCY_  
ADJUST  
[7:0]  
JTX_TPL_LATENCY_ADJUST  
R/W  
0x280 JTX_TPL_PHASE_  
ADJUST0  
0x281 JTX_TPL_PHASE_  
ADJUST1  
0x282 JTX_TPL_TEST_NUM_  
FRAMES0  
0x283 JTX_TPL_TEST_NUM_  
FRAMES1  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:5]  
4
JTX_TPL_PHASE_ADJUST[7:0] Output LMFC phase adjustment in conv_clk  
cycles. Maximum value is k*s/ns-1.  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R
JTX_TPL_PHASE_  
ADJUST[15:8]  
Output LMFC phase adjustment in conv_clk  
cycles. Maximum value is k*s/ns-1.  
JTX_TPL_TEST_NUM_  
FRAMES_M1[7:0]  
Number of frames (minus 1) in the long transport 0x0  
layer test pattern.  
JTX_TPL_TEST_NUM_  
FRAMES_M1[15:8]  
Number of frames (minus 1) in the long transport 0x0  
layer test pattern.  
0x284 JTX_TPL_SYSREF_N_  
SHOT  
RESERVED  
Reserved.  
0x0  
JTX_TPL_SYSREF_N_SHOT_EN Mask all incoming SYSREF pulses except the Nth 0x0  
R/W  
ABLE  
pulse specified by the n_shot_count. Disabling  
this will cause all SYSREF pulses to be sampled  
(continuous mode) and reset the n_shot counter.  
[3:0]  
JTX_TPL_SYSREF_N_SHOT_C Mask all incoming SYSREF pulses except the Nth 0x0  
R/W  
OUNT  
pulse where N is the value programmed + 1.  
Only used when n_shot_enable is high.  
0x285 JTX_TPL_BUF_FRAMES [7:0]  
JTX_TPL_BUF_FRAMES  
JTX_DID_CFG  
JTX_ADJCNT_CFG  
Frame delay through transport layer buffer.  
Device (= link) identification no.  
Number of adjustment resolution steps to adjust 0x0  
DAC LMFC. Applies to Subclass 2 operation only.  
0x0  
0x0  
R
R/W  
R/W  
0x286 JTX_L0_DID  
[7:0]  
[7:4]  
0x287 JTX_L0_ADJCNT_BID  
[3:0]  
[4:0]  
JTX_BID_CFG  
RESERVED  
Bank ID Extension to DID.  
Reserved.  
0x0  
0x0  
R/W  
R
Rev. 0 | Page 76 of 93  
Data Sheet  
AD9083  
Addr. Name  
Bits  
Bit Name  
Description  
Reset Access  
0x289 JTX_L0_SCR_L  
7
JTX_SCR_CFG  
JTx Scrambler  
0 = Disabled  
1 = Enabled  
0x0  
R/W  
[6:5]  
[4:0]  
RESERVED  
JTX_L_CFG  
Reserved.  
0x0  
0x0  
R
R/W  
Number of lanes per converter device (link).  
0 : L = 1  
1 : L = 2  
2 : L = 3  
3 : L = 4  
Values > 3 are not supported  
0x28A JTX_L0_F  
[7:0]  
JTX_F_CFG  
Number of octets per frame per lane.  
F = N/16 × M × N / L.  
0x0  
R/W  
0x28B JTX_L0_K  
0x28C JTX_L0_M  
[7:0]  
[7:0]  
JTX_K_CFG  
JTX_M_CFG  
Number of frames in a multi-frame/block.  
Number of converters per device.  
0x0  
0x0  
R/W  
R/W  
JTx number of virtual converters per link (M=JTX  
M configuration + 1). 0 = 1 virtual converter 1 = 2  
virtual converters 2 = 3 virtual converters 3 = 4  
virtual converters 5 = 6 virtual converters 7 = 8  
virtual converters 11 = 12 virtual converters 15 =  
16 virtual converters All other values are invalid.  
0x28D JTX_L0_CS_N  
[7:6]  
5
[4:0]  
JTX_CS_CFG  
RESERVED  
JTX_N_CFG  
Number of control bits per sample.  
Reserved.  
Converter resolution.  
Device Subclass Version 2: align transmission  
and LMFC boundaries to SYNC~ 1: align  
0x0  
0x0  
0x0  
0x0  
R/W  
R
R/W  
R/W  
0x28E JTX_L0_SUBCLASSV_NP [7:5]  
JTX_SUBCLASSV_CFG  
transmission and LMFC boundaries to SYSREF 0:  
transmission and LMFC boundaries are arbitrary.  
[4:0]  
[7:5]  
JTX_NP_CFG  
JTX_JESDV_CFG  
Total number of bits per sample.  
JESD204 version  
001: JESD204B  
0x0  
0x0  
R/W  
R/W  
0x28F JTX_L0_JESDV_S  
0x290 JTX_L0_HD  
[4:0]  
7
[6:0]  
[7:0]  
JTX_S_CFG  
JTX_HD_CFG  
RESERVED  
Samples per converter per frame.  
High Density format enabled.  
Reserved.  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R
0x293 JTX_L0_CHKSUMn  
JTX_CHKSUM_CFG  
Checksum calculation output (per lane).  
R
to  
0x296  
by 1  
0x297 JTX_L0_LIDn  
[7:5]  
RESERVED  
Reserved.  
0x0  
R
to  
0x29A  
by 1  
[4:0]  
JTX_LID_CFG  
Lane identification number (within link).  
0x0  
0x0  
R/W  
R/W  
0x2A3 JTX_DL_204B_CONFIG0 [7:4]  
JTX_DL_204B_ILAS_DELAY_C Delays ILAS Start by 0 to 15 LMFC Periods.  
FG  
3
2
JTX_DL_204B_BYP_ILAS_CFG bypass initial lane alignment sequence.  
0x0  
0x0  
R/W  
R/W  
JTX_DL_204B_ILAS_TEST_  
EN_CFG  
Enable ilas test mode that sends repeated ILAS  
pattern. If sync_n not active then 16 Kchars sent  
followed by repeated ILAS.  
1
0
JTX_DL_204B_BYP_8B10B_  
CFG  
Bypass 8-bit/10-bit encoder.  
0x0  
0x0  
R/W  
R/W  
JTX_DL_204B_BYP_ACG_CFG bypass alignment character generation.  
Rev. 0 | Page 77 of 93  
AD9083  
Data Sheet  
Addr. Name  
Bits  
Bit Name  
Description  
Reset Access  
0x2A4 JTX_DL_204B_CONFIG1 [7:3]  
2
RESERVED  
JTX_DL_204B_LSYNC_EN_  
CFG  
Reserved.  
Lane sync on both sides enabled.  
0x0  
0x0  
R
R/W  
1
JTX_DL_204B_DEL_SCR_CFG Alternative scrambler enable (see JESD204B  
section 5.2.4) 1 = scrambling begins at octet 2 of  
user data 0 = scrambling begins at octet 0 of user  
data This is the common usage.  
0x0  
R/W  
R/W  
0
JTX_DL_204B_10B_MIRROR  
Reverse order of 10 bit symbols from 204B link  
layer data.  
0x0  
0x2A5 JTX_DL_204B_CONFIG2 [7:6]  
5
RESERVED  
Reserved.  
0x0  
0x0  
R
JTX_DL_204B_TESTMODE_IG ignore sync_n input during D21.5 and RPAT  
NORE_SYNCN_CFG modes.  
R/W  
4
JTX_DL_204B_TPL_TEST_EN_ Turn on JESD Pattern Sequence test mode.  
CFG  
0x0  
R/W  
3
[2:1]  
RESERVED  
Reserved.  
0x0  
0x0  
R
R/W  
JTX_DL_204B_RJSPAT_SEL_C High Frequency Patterns Test Modes 11 =  
FG  
Unused 10 = JTSPAT Sequence 01 = JSPAT  
Sequence 00 = RPAT Sequence.  
0
JTX_DL_204B_RJSPAT_EN_CF Enable RPAT/JSPAT/JTSPAT Generator 1 = on  
(Note: Must also set phy_data_sel[n] = 1) 0 = off.  
JTX_DL_204B_KF_ILAS_CFG Number of multiframes to transmit during  
initialization sequence = 4*(kf_ilas_cfg+1).  
0x0  
0x0  
0x0  
R/W  
R/W  
R
G
0x2A6 JTX_DL_204B_KF_ILAS [7:0]  
0x2A8 JTX_DL_204B_SYNC_N  
7
JTX_DL_204B_SYNC_N  
JESD204 Frame Sync. Active low. Synchronous  
upon rising edge pclk. 0=transmit code group  
sync (K characters). Subclass 1: Internal LMFC  
reset for 1-pclk by falling edge sync_n Subclass 0:  
Internal lmfc held in reset by sync_n=0.  
[6:2]  
1
RESERVED  
JTX_DL_204B_SYNC_N_  
FORCE_EN  
Reserved.  
Force SYNC~ signal to value specified.  
0x0  
0x0  
R
R/W  
0
JTX_DL_204B_SYNC_N_  
FORCE_VAL  
Value to force SYNC~ if force enabled.  
Reserved.  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R
0x2A9 JTX_DL_204B_CLEAR_ [7:1]  
SYNC_NE_COUNT  
RESERVED  
0
JTX_DL_204B_CLEAR_SYNC_ Clear counter of SYNC~ falling edges.  
NE_COUNT  
JTX_DL_204B_SYNC_NE_COU Count of falling SYNC~ edges.  
NT  
R/W  
R
0x2AA JTX_DL_204B_SYNC_  
NE_COUNT  
0x2AB JTX_DL_204B_LANE_  
[7:0]  
[7:5]  
RESERVED  
Reserved.  
R
to  
CONFIGn  
0x2AE  
by 1  
4
3
JTX_DL_204B_SCR_IN_CTRL_ connect test_data[39:0] to scrambler input for  
0x0  
0x0  
R/W  
R/W  
CFG  
lane n.  
JTX_DL_204B_SCR_DATA_  
SEL_CFG  
Scrambler Input JESD Data on Lane Boundary  
scr_data_sel_cfg [n]: 1 = Continuous D21.5 Data  
for Lane [n] scr_data_sel_cfg [n]: 0 = JESD Frame  
Memory or ILAS Data for Lane[n].  
2
JTX_DL_204B_PHY_DATA_  
SEL_CFG  
JESD Data to PHY on a Lane Boundary [n]:  
1 = RPAT/JSPAT/JTSPAT Generator Data [n]:  
0 = 8-bit/10-bit Encoder Output Data.  
Reserved.  
0x0  
R/W  
1
0
[7:4]  
RESERVED  
RESERVED  
0x0  
0x0  
0x0  
R
R/W  
R
Reserved  
0x2C9 JTX_PHY_IFX_LANE_  
JTX_LANE_FIFO_WR_ENTRIES Number of entries in the FIFO synchronized to  
the write pointer.  
to  
CONFIGn  
0x2CC  
by 1  
[3:0]  
JTX_BR_LOG2_RATIO  
Log(bit repeat ratio)/Log(2), per lane.  
0x0  
R/W  
Rev. 0 | Page 78 of 93  
Data Sheet  
AD9083  
Addr. Name  
0x301 PLL_STATUS  
Bits  
7
[6:0]  
7
Bit Name  
JTX_PLL_LOCKED  
RESERVED  
SYSREF_PULSE_DELAY_  
ENABLE  
SYSREF_PULSE_DELAY_CYCLES Force link reset from Regmap.  
FORCE_JTX_PLL_RST_  
RELEASE_EN  
FORCE_JTX_PLL_RST_  
RELEASE  
Description  
PLL Locked Status Bit.  
Reserved.  
Reset Access  
0x0  
0x0  
0x0  
R
R
R/W  
0x309 SYSREF_DELAY_REG  
0x30A RESET_CTRL_REG  
Force link reset from Regmap.  
[6:0]  
7
0x0  
0x0  
R/W  
R/W  
Enable Force JTX_PLL Reset Release.  
Force JTX_PLL reset release.  
Reserved.  
6
0x0  
R/W  
5
4
RESERVED  
0x0  
0x0  
R
R/W  
FORCE_JTX_DIGITAL_RESET_ Enable SYSREF to Force link reset.  
ON_SYSREF  
[3:1]  
0
RESERVED  
Reserved.  
0x0  
R
R/W  
FORCE_JTX_DIGITAL_RESET_ Enable Early Detection of SYSREF to Force link reset. 0x0  
ON_RSTEN_FORCE_EN  
0x30B SER_PARITY_RESET_EN1 [7:0]  
SER_PARITY_RESET_EN  
RESERVED  
LCM_DIV_FORCE_EN  
LCM_DIV[7:0]  
parity reset enable.  
Reserved.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R
0x30C LCM_DIV_FORCE_EN  
[7:1]  
0
LCM Divider Value Force Enable.  
LCM Divider Value.  
LCM Divider Value.  
To select the lmfc or divided lmfc'.  
Reserved.  
which edge of LMFC. which edge of LMFC is used 0x0  
for division before sending out of GPIO. 0for  
posedge  
R/W  
R/W  
R/W  
R/W  
R
0x30D LCM_DIV1  
0x30E LCM_DIV2  
0x30F LMFC_CTL  
[7:0]  
[7:0]  
7
LCM_DIV[15:8]  
LMFC_OUT_SEL  
RESERVED  
[6:5]  
4
LMFC_DIV_EDGE  
R/W  
3
RESERVED  
Reserved.  
0x0  
R
[2:0]  
LMFC_OUT_DIV  
RESERVED  
FORCE_LINK_DIGITAL_RESET Force link reset from Regmap.  
RESERVED  
FORCE_LINK_RESET  
RESERVED  
Divider value before passing LMFC out of GPIO. 0x0  
R/W  
R
R/W  
R
R/W  
R
0x310 FORCE_LINK_RESET_REG [7:5]  
Reserved.  
0x0  
0x0  
0x0  
0x1  
0x0  
4
[3:1]  
0
Reserved.  
Force link reset from Regmap.  
Reserved.  
0x313 PHASE_ESTABLISH_  
STATUS  
[7:1]  
0
JTX_PHASE_ESTABLISHED  
RESERVED  
phase established readback.  
Reserved.  
0x0  
0x0  
R
R
0x315 CLKGEN_ALIGN_FALL_R [7:1]  
ST_DEASSERT  
0
CLKGEN_ALIGN_FALL_FOR_R To use clkgen_align for rst de-assert.  
ST_DEASSERT  
0x0  
R/W  
0x317 PLL_REF_CLK_DIV1_REG [7:4]  
[3:0]  
RESERVED  
DIVM_JTX_PLL_RC_RX  
Reserved.  
0x0  
0x2  
R
R/W  
Selects output division rate;. Selects output  
division rate;  
0: pd  
1: no divider  
2: divide by 2  
3: divide by 4  
0x319 PCLK_SYNC_DIV_REG1 [7:0]  
0x31A PCLK_SYNC_DIV_REG2 [7:1]  
0
0x31B PCLK_ASYNC_DIV_REG1 [7:0]  
0x31C PCLK_ASYNC_DIV_REG2 [7:1]  
0
0x31D CONV_CLK_DIV_REG1 [7:0]  
0x31E CONV_CLK_DIV_REG2 [7:2]  
[1:0]  
PCLK_SYNC_DIV_VAL[7:0]  
RESERVED  
PCLK_SYNC_DIV_VAL[8]  
PCLK_ASYNC_DIV_VAL[7:0]  
RESERVED  
PCLK_ASYNC_DIV_VAL[8]  
CONV_CLK_DIV_VAL[7:0]  
RESERVED  
JESD Synchronous PCLK Divider Value.  
Reserved.  
JESD Synchronous PCLK Divider Value.  
JESD Asynchronous PCLK Divider Value.  
Reserved.  
JESD Asynchronous PCLK Divider Value.  
JESD Conv Clock Divider Value.  
Reserved.  
0x4  
0x0  
0x0  
0x4  
0x0  
0x0  
0x4  
0x0  
0x0  
R/W  
R
R/W  
R/W  
R
R/W  
R/W  
R
CONV_CLK_DIV_VAL[9:8]  
JESD Conv Clock Divider Value.  
R/W  
Rev. 0 | Page 79 of 93  
AD9083  
Data Sheet  
Addr. Name  
0x31F JTX_CLK_CTRL_REG  
Bits  
[7:4]  
3
2
1
0
[7:4]  
3
Bit Name  
RESERVED  
Description  
Reserved.  
Reset Access  
0x0  
0x1  
0x1  
0x1  
0x1  
0x0  
0x0  
R
JTX_ASYNC_PCLK_EN  
JTX_IFX_CLK_EN  
JTX_CONV_CLK_EN  
JTX_SYNC_PCLK_EN  
RESERVED  
Enable to the Async Conv Clk Divider.  
Enable to the IFX Clock Divider.  
Enable to the Conv Clk Divider.  
Enable to the Sync PCLK Divider.  
Reserved.  
R/W  
R/W  
R/W  
R/W  
R
0x320 JTX_CLK_CTRL_REG2  
JTX_CONV_CLK_DIV_  
OVERRIDE  
Override the Async Conv Clk Div Val with the  
Regmap Val.  
R/W  
2
1
0
JTX_IFX_CLK_DIV_OVERRIDE Override the Async Conv Clk Div Val with the  
Regmap Val.  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
JTX_SYNC_PCLK_DIV_  
OVERRIDE  
Override the Async Conv Clk Div Val with the  
Regmap Val.  
JTX_ASYNC_PCLK_DIV_  
OVERRIDE  
Override the Async Conv Clk DivVal with the  
Regmap Val.  
0x321 IFX_CLK_DIV_REG1  
0x322 IFX_CLK_DIV_REG2  
[7:0]  
[7:1]  
0
7
6
[5:4]  
3
2
1
0
IFX_CLK_DIV_VAL[7:0]  
RESERVED  
IFX_CLK_DIV_VAL[8]  
TESTMUX_CLK_SEL  
TESTMUX_CLK_EN  
RESERVED  
JESD IFX Clock Divider Value.  
Reserved.  
JESD IFX Clock Divider Value.  
Select Testmux_clk[0] as the asynchronous clock. 0x0  
Enable Testmux_clk[0] Select.  
Reserved.  
0x4  
0x0  
0x0  
R/W  
R
R/W  
R/W  
R/W  
R
0x323 ASYNC_PCLK_CTRL  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
ASYNC_LANE_DOUT_SEL  
ASYNC_LINK_PCLK_SEL  
ASYNC_LANE_CLK_SEL  
ASYNC_IFX_PCLK_SEL  
Select Asynchronous Lane Data.  
Select Asynchronous Link PCLK.  
Select Asynchronous Lane Clock.  
Select Asynchronous IFX PCLK.  
R/W  
R/W  
R/W  
R/W  
R/W  
0x325 JTX_PCLK_DIV_  
INTEGER1  
[7:0]  
JTX_PCLK_DIV_INTEGER[7:0] Integer Part for PCLK Divider.  
0x326 JTX_PCLK_DIV_  
INTEGER2  
[7:1]  
RESERVED  
Reserved.  
0x0  
R
0
JTX_PCLK_DIV_INTEGER[8]  
RESERVED  
Integer Part for PCLK Divider.  
Reserved.  
0x0  
0x0  
R/W  
R
0x327 JTX_PCLK_DIV_FRAC_ [7:5]  
NUM  
[4:0]  
JTX_PCLK_DIV_FRAC_NUM  
RESERVED  
Fractional Numerator for PCLK Divider.  
Reserved.  
0x0  
0x0  
R/W  
R
0x328 JTX_PCLK_DIV_FRAC_ [7:5]  
DEN  
[4:0]  
JTX_PCLK_DIV_FRAC_DEN  
JTX_IFX_PCLK_DIV_  
INTEGER[7:0]  
Fractional Denominator for PCLK Divider.  
Integer Part for PCLK Divider.  
0x0  
0x0  
R/W  
R/W  
0x329 JTX_IFX_PCLK_DIV_  
INTEGER1  
0x32A JTX_IFX_PCLK_DIV_  
INTEGER2  
[7:0]  
[7:1]  
0
RESERVED  
Reserved.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R
JTX_IFX_PCLK_DIV_  
INTEGER[8]  
RESERVED  
Integer Part for PCLK Divider.  
Reserved.  
R/W  
R
0x32B JTX_IFX_PCLK_DIV_  
FRAC_NUM  
[7:5]  
[4:0]  
[7:5]  
[4:0]  
JTX_IFX_PCLK_DIV_FRAC_  
NUM  
Fractional Numerator for PCLK Divider.  
Reserved.  
R/W  
R
0x32C JTX_IFX_PCLK_DIV_  
FRAC_DEN  
RESERVED  
JTX_IFX_PCLK_DIV_FRAC_  
DEN  
Fractional Denominator for PCLK Divider.  
R/W  
Rev. 0 | Page 80 of 93  
Data Sheet  
AD9083  
Addr. Name  
0x402 JTX_SWING  
Bits  
7
[6:4]  
Bit Name  
RESERVED  
DRVSWING_CH1_SER_RC  
Description  
Reserved.  
SERDOUT1 output swing level.  
0 = 1.00 × DVDD  
Reset Access  
0x0  
0x1  
R
R/W  
1 = 0.85 × DVDD  
2 = 0.75 × DVDD  
3 = 0.50 × DVDD  
3
[2:0]  
RESERVED  
DRVSWING_CH0_SER_RC  
Reserved.  
SERDOUT0 output swing level.  
0 = 1.00 × DVDD  
0x0  
0x1  
R
R/W  
1 = 0.85 × DVDD  
2 = 0.75 × DVDD  
3 = 0.50 × DVDD  
0x403 JTX_SWING2  
7
[6:4]  
RESERVED  
DRVSWING_CH3_SER_RC  
Reserved.  
SERDOUT3 output swing level.  
0 = 1.00 × DVDD  
0x0  
0x1  
R
R/W  
1 = 0.85 × DVDD  
2 = 0.75 × DVDD  
3 = 0.50 × DVDD  
3
[2:0]  
RESERVED  
DRVSWING_CH2_SER_RC  
Reserved.  
SERDOUT2 output swing level.  
0 = 1.00 × DVDD  
0x0  
0x1  
R
R/W  
1 = 0.85 × DVDD  
2 = 0.75 × DVDD  
3 = 0.50 × DVDD  
0x40A POST_TAP_LEVEL1  
7
[6:4]  
RESERVED  
DRVPOSTEM_CH1_SER_RC  
Reserved.  
Sets Post Tap Level for SERDOUT1.  
0 = 0 dB.  
0x0  
0x0  
R
R/W  
1 = 3 dB.  
2 = 6 dB.  
3 = 9 dB.  
4 = 12 dB.  
5 to 7 = not applicable.  
3
[2:0]  
RESERVED  
DRVPOSTEM_CH0_SER_RC  
Reserved.  
Sets Post Tap Level for SERDOUT0.  
0 = 0 dB.  
0x0  
0x0  
R
R/W  
1 = 3 dB.  
2 = 6 dB.  
3 = 9 dB.  
4 = 12 dB.  
5 to 7 = not applicable.  
0x40B POST_TAP_LEVEL2  
7
[6:4]  
RESERVED  
DRVPOSTEM_CH3_SER_RC  
Reserved.  
Sets Post Tap Level for SERDOUT3.  
0 = 0 dB.  
0x0  
0x0  
R
R/W  
1 = 3 dB.  
2 = 6 dB.  
3 = 9 dB.  
4 = 12 dB.  
5 to 7 = not applicable.  
3
[2:0]  
RESERVED  
DRVPOSTEM_CH2_SER_RC  
Reserved.  
Sets Post Tap Level for SERDOUT2.  
0 = 0 dB.  
0x0  
0x0  
R
R/W  
1 = 3 dB.  
2 = 6 dB.  
3 = 9 dB.  
4 = 12 dB.  
5 to 7 = not applicable.  
Rev. 0 | Page 81 of 93  
AD9083  
Data Sheet  
Addr. Name  
Bits  
Bit Name  
Description  
Reset Access  
0x413 PRE_TAP_LEVEL_CH0  
[7:0]  
DRVPREEM_CH0_SER_RC  
Sets Pre Tap Level for SERDOUT0.  
0 = 0 dB.  
1 = 3 dB.  
2 = 6 dB.  
3 = not applicable.  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
0x414 PRE_TAP_LEVEL_CH1  
0x415 PRE_TAP_LEVEL_CH2  
0x416 PRE_TAP_LEVEL_CH3  
[7:0]  
[7:0]  
[7:0]  
DRVPREEM_CH1_SER_RC  
DRVPREEM_CH2_SER_RC  
DRVPREEM_CH3_SER_RC  
Sets Pre Tap Level for SERDOUT1.  
0 = 0 dB.  
1 = 3 dB.  
2 = 6 dB.  
3 = not applicable.  
Sets Pre Tap Level for SERDOUT2.  
0 = 0 dB.  
1 = 3 dB.  
2 = 6 dB.  
3 = not applicable.  
Sets Pre Tap Level for SERDOUT3.  
0 = 0 dB.  
1 = 3 dB.  
2 = 6 dB.  
3 = not applicable.  
0x425 PARITY_ERROR  
0x426 PARITY_ERROR2  
0x427 PARITY_RST_N  
[7:0]  
[7:0]  
[7:0]  
PARITY_ERROR_SER[7:0]  
PARITY_ERROR_SER[15:8]  
SER_PARITY_RST_N[7:0]  
JTx Parity Output Error flag, <0>=ch0, <1>=ch1 0x0  
JTx Parity Output Error flag, <0>=ch0, <1>=ch1 0x0  
R
R
R/W  
JTx Parity Clear bit each bit is a channel. JTx  
Parity Clear bit each bit is a channel ==> <3> =  
chan_3, <2> = chan_2  
0x0  
0x428 PARITY_RST_N2  
0x439 MAIN_DATA_INV  
[7:0]  
SER_PARITY_RST_N[15:8]  
JTx Parity Clear bit each bit is a channel. JTx  
Parity Clear bit each bit is a channel ==> <3> =  
chan_3, <2> = chan_2  
0x0  
R/W  
[7:4]  
3
RESERVED  
Reserved  
0x0  
0x0  
R/W  
R/W  
OUTPUTDATAINVERT_CH3  
JTx, Invert SERDOUT3 data.  
0 = normal.  
1 = invert.  
2
1
0
OUTPUTDATAINVERT_CH2  
OUTPUTDATAINVERT_CH1  
OUTPUTDATAINVERT_CH0  
JTx, Invert SERDOUT2 data.  
0 = normal.  
1 = invert.  
JTx, Invert SERDOUT1 data.  
0 = normal.  
1 = invert.  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
JTx, Invert SERDOUT0 data.  
0 = normal.  
1 = invert.  
0x447 SYNCINB_CTRL  
[7:4]  
3
RESERVED  
PD_SYNCINB_RX_RC  
Reserved.  
0x0  
0x1  
R
R/W  
SYNCINB receiver power control bit.  
0 = Normal Operation  
1 = Power Down  
2
1
0
SYNCINB_RX_PN_INV_RC  
SYNCINB Polarity control bit.  
0 = Normal polarity  
1 = Invert polarity  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
SYNCINB_RX_ONCHIP_TERM_R SYNCINB onchip termination control bit.  
C
0 = Disabled (Use if 0x447[0] = 0)  
1 = Enabled (100Ω differential)  
SYNCINB Mode control bit.  
0 = CMOS mode (Single Ended)  
1 = LVDS mode (Differential)  
Reserved.  
SYNCINB_RX_MODE_RC  
0x449 JTX_CTRL  
[7:1]  
0
RESERVED  
0x0  
0x0  
R
R/W  
JTAG_EN_SER_TESTMODE_RC SYNC control bit.  
Rev. 0 | Page 82 of 93  
Data Sheet  
AD9083  
Addr. Name  
0x500 JTX_PLL_RST  
Bits  
[7:1]  
0
Bit Name  
RESERVED  
RSTB_JTX_PLL_RC  
PLL_LOCKED_BYPASS_VAL  
Description  
Reserved.  
Force link reset from REGMAP.  
Bypass value for PLL_LOCKED output when  
PLL_LOCKED_BYPASS is 1. Select between PLL  
lock signal and timer based lock signal  
generation  
Reset Access  
0x0  
0x0  
0x0  
R
R/W  
R/W  
0x501 PLL_ENABLE_CTRL  
7
6
PLL_LOCKED_BYPASS  
Bypass control for PLL_LOCKED output.  
0: use state machine value  
0x0  
R/W  
1: use PLL_LOCKED_BYPASS_VAL). Select  
between PLL lock signal and timer based lock  
signal generation  
5
4
3
JTX_PLL_BYPASS_LOCK  
RESERVED  
LOLSTICKYCLEAR_FORCE_  
JTX_PLL_RC  
Bypass PLL lock input.  
Reserved.  
Clears out loss of lock bit.  
0x0  
0x0  
0x0  
R/W  
R
R/W  
2
1
RESERVED  
Reserved.  
0x0  
R
R/W  
LDSYNTH_FORCE_JTX_PLL_A to start calibration. A short "1" pulse starts VCO 0x0  
DC  
calibration, the pulse width should be at least 1  
reference clock period. Allows for user to do a  
calibration at will.  
0
PWRUP_JTX_PLL  
Power up PLL. Power up PLL, starts LDO, Starts  
Calibration, sends out PLL locked when done .  
"Big green button", forces power up, will not  
read back correctly if PLL is powered up  
internally  
0x0  
R/W  
0x502 PLL_STATUS  
[7:5]  
4
RESERVED  
LOSSLOCK_JTX_PLL_RS  
Reserved.  
0x0  
0x0  
R
R
PLL went out-of-lock. Bit to indicate PLL went  
out-of-lock at any time between frequency  
acquisitions.  
3
2
RFPLLLOCK_JTX_PLL_RS  
VCOCALINPROG_JTX_PLL_RS 0: when the last ALC is done (VCO cal. state  
machine is in ALC_CAL_LSB state). 1: when  
PLL is locked when this bit is HIGH.  
0x0  
0x0  
R
R
init_cal_redge=1 initiated by ld_synth  
1
REGULATORRDY_JTX_PLL_RS High = indicates regulator voltage is above  
threshold for at least cnt conversions  
0x0  
R
0
[7:5]  
4
JTX_PLLLOCK_JTX_PLL_RS  
RESERVED  
PD_TXCLK_DIST_RC  
PLL is locked when this bit is high.  
Reserved.  
txclk dist rc. Enable output clocks to serializer1  
SER  
0x0  
0x0  
0x0  
R
R
R/W  
0x506 PLL_ENCAL  
3
PD_RXCLK_DIST_RC  
rxclk dist rc. Enable output clocks to serializer1  
SER  
0x0  
R/W  
2
1
RESERVED  
EN_TX_ONLY_JTX_PLL_RC  
Reserved.  
Enable output clocks to serializer  
0x0  
0x0  
R
R/W  
1
SER only  
0
7
6
EN_OCTAVECAL_JTX_PLL_RC Determines whether to enable PLL octave  
calibration.  
REFCK_DIV40BDIV120_JTX_PLL Ref clock output (1/40 or 1/120).  
0x0  
0x0  
R/W  
R/W  
R/W  
0x507 JTX_PLL_REF_CLK_  
DIV1_REG  
DIVP_JTX_PLL_RC  
DIVM_JTX_PLL_RC  
Selects whether B is multiplied by 6 or 8. Selects 0x0  
output division rate; 0->pd, 1->no divider, 2-  
>divide by 2, 3->divide by 4  
Selects output division rate;. Selects output  
division rate; 0->/1, 1->/2. Bit [1] is not used.  
[5:4]  
0x2  
R/W  
3
RESERVED  
Reserved.  
0x0  
R
[2:0]  
REFINDIV_JTX_PLL_RC  
Sets division rate on input:. Sets division rate on 0x2  
input: 0->1, 1->2, 2->4, 3->8, 4 and above div 16  
R/W  
Rev. 0 | Page 83 of 93  
AD9083  
Data Sheet  
Addr. Name  
Bits  
Bit Name  
Description  
Reset Access  
0x508 PLL_DIV2  
[7:0]  
B_JTX_PLL_RC  
Selects PLL feedback divider. Sets integer  
division rate as N=8*B, where B=5 is its minimum  
value. (divb)  
0x5  
R/W  
0x50A PLL_DIVOVD  
[7:4]  
3
2
RESERVED  
Reserved.  
0x0  
0x0  
0x1  
0x1  
0x1  
0x0  
R
RXDIVRATEOVD_JTX_PLL_RC Override rxdivrate.  
R/W  
R/W  
R/W  
R/W  
R
R/W  
R
R/W  
R
REFINDIVOVD_JTX_PLL_RC  
DIVMOVD_JTX_PLL_RC  
BOVD_JTX_PLL_RC  
RESERVED  
RXDIVRATE_JTX_PLL_RC  
RESERVED  
VCORTRIM_JTX_PLL_RC  
RESERVED  
SEL_REFINDIV3_JTX_PLL_RC Enables additional /3 on input reference clock to 0x0  
PLL.  
Override refindiv.  
1
Override divm control.  
Bypass from octave cal (use b_JTX_PLL_rc).  
Reserved.  
When refindivovd is 1, sets value for rx_divrate. 0x8  
Reserved.  
0
0x50B PLL_RXDIVRATE  
0x50C PLL_VCO_TRIM  
0x50D PLL_REFCLK_CPL  
[7:4]  
[3:0]  
[7:6]  
[5:0]  
[7:2]  
1
0x0  
0x0  
0x0  
Trim code slaved to 6-bits in the bandgap.  
Reserved.  
R/W  
0
SEL_REFCKDCACB_JTX_PLL_RC Determines whether the reference clock input  
should be DC-coupled (1) or AC coupled (0)  
0x1  
R/W  
0x50E CBUS_REN_JTX_PLL  
[7:1]  
0
RESERVED  
CBUS_REN_JTX_PLL_RC  
RESERVED  
Reserved.  
Read enable for JTX_PLL registers.  
Reserved.  
0x0  
0x0  
0x0  
R
R/W  
R
0x50F CBUS_WSTROBE_JTX_ [7:1]  
PLL  
0
[7:2]  
1
CBUS_WSTROBE_JTX_PLL_RC Write Strobe for JTX_PLL registers.  
0x0  
0x0  
0x0  
R/W  
R
R/W  
0x510 CKDIST_PD  
RESERVED  
Reserved.  
IDIST_PD_RC  
Enable output clocks to serializer.  
1 : Enable  
0
PD_PPF_DES_RC  
Enable output clocks to serializer  
1 : Enable  
0x0  
R/W  
0x511 POLYPHASE_CTRL  
[7:0]  
TRIM_POLYPHASE_DES_RC  
DESIGNER DEBUG: Polyphase control. DESIGNER 0x2F R/W  
DEBUG: Polyphase control: <6:5>:  
ppf_divm_od<1:0>, <4>: en_ppf_divm_od,  
<3:1>: inv_str_od<2:0>, <0>: en_inv_str_od.  
0x512 PLL_READ_FREQ4  
0x513 PLL_READ_FREQ5  
[7:0]  
VCOFREQBAND_JTX_PLL_  
RS[7:0]  
VCO frequency control word that sets VCO  
frequency, 00: max. VCO frequency, 7FF: min.  
VCO frequency  
0x0  
R
[7:3]  
[2:0]  
RESERVED  
Reserved.  
0x0  
0x0  
R
R
VCOFREQBAND_JTX_PLL_RS[ VCO frequency control word that sets VCO  
10:8]  
frequency, 00: max. VCO frequency, 7FF: min.  
VCO frequency  
0x514 PLL_PTAT_STARTUP  
0x515 PLL_PTAT_STARTUP_  
STATUS1  
[7:0]  
[7:1]  
PTAT_STARTUP_JTX_PLL_RC PTAT startup control.  
RESERVED Reserved.  
0x0  
0x0  
R/W  
R
0
[7:1]  
PTAT_STARTUP_STATUS_RS1 PTAT startup status.  
RESERVED Reserved.  
0x0  
0x0  
R
R
0x516 PLL_PTAT_STARTUP_  
STATUS2  
0
[7:1]  
0
PTAT_STARTUP_STATUS_RS2 PTAT startup status.  
0x0  
0x0  
0x0  
R
R
R/W  
0x517 PLL_TEMP  
RESERVED  
Reserved.  
TDEGCINIT_JTX_PLL_RC  
Low-to-High transition activates on-chip  
temperature measurement.  
0x51E PLL_LOCK_CTL1  
[7:4]  
[3:1]  
0
JTX_PLL_LOCK_DIVIDER[3:0] PLL Lock counter.  
0x0  
0x0  
0x0  
R/W  
R
R/W  
RESERVED  
Reserved.  
JTX_PLL_LOCK_SEL  
PLL lock and timer based lock select. Select  
between PLL lock signal and timer based lock  
signal generation  
0x51F PLL_LOCK_CTL2  
0x520 CBUS_ADDR  
[7:6]  
[5:0]  
[7:0]  
RESERVED  
Reserved.  
0x0  
0x0  
0x0  
R
R/W  
R/W  
JTX_PLL_LOCK_DIVIDER[9:4] PLL Lock counter.  
CBUS_ADDR_JTX_PLL_RC Control bus address select.  
Rev. 0 | Page 84 of 93  
Data Sheet  
AD9083  
Addr. Name  
Bits  
Bit Name  
Description  
Reset Access  
0x521 CBUS_WDATA  
[7:0]  
CBUS_WDATA_JTX_PLL_RC  
Control Bus data,. Control Bus data, channel  
selected with cbus_wstrobe_ser signal  
0x0  
R/W  
0x522 CBUS_RDATA  
0x523 REFCLK_CTRL  
[7:0]  
CBUS_RDATA_JTX_PLL_RS  
RESERVED  
Read back bus, channel selected bwith  
cbus_ren_ser.  
0x0  
R
7
[6:3]  
2
Reserved.  
0x0  
0x0  
0x0  
R
R/W  
R/W  
SEL_REFCLK_RCVR_CM_CTRL Synca for refclk.  
SEL_REFCLK_RCVR_LP_MODE Synca for refclk.  
_RC  
1
0
[7:0]  
SEL_SYNCA_FOR_REFCLK_RC Synca for refclk.  
0x0  
0x1  
0x0  
R/W  
R/W  
R
EN_REFCLK_RCVR_RC  
JTX_PLL_REV_ID_RS  
Synca for refclk.  
Read back bus, channel selected bwith  
cbus_ren_ser.  
0x524 JTX_PLL_REV_ID_RS  
0xB90 POWER_DOWN_REG  
7
EN_CAL_ANA  
EN_CAL_CLK  
EN_34  
Enable Calibration Analog Blocks, Set to 0 for  
Power-down.  
Enable Calibration Clock and Digital Blocks, Set 0x0  
to 0 for Power-down.  
Enable Additional Two Signal Channels for 3dB 0x0  
Noise Improvement.  
Power down mode.  
0x0  
R/W  
R/W  
R/W  
R/W  
6
5
[4:3]  
PIN_PD_MODE  
0x0  
00: power down pin disabled.  
01: power down pin disables clock path only.  
10: power down pin disables adc clock and vti  
bias.  
11: power down pin disables adc clock, vti bias  
and adc masterbias block.  
2
1
0
EN_BIAS  
EN_ADCCLK  
EN_VTI  
Enable for Adc Bias Block, Set to 0 for Power-  
down.  
Enable Channel I Adc Clock, Set to 0 for Power- 0x0  
down.  
Enable Channel I Analog Front End, Set to 0 for 0x0  
Power-down.  
0x0  
R/W  
R/W  
R/W  
0xB91 ENABLE_CH7_0_REG  
7
6
5
EN_ADC7  
EN_ADC6  
EN_ADC5  
EN_ADC4  
EN_ADC3  
EN_ADC2  
EN_ADC1  
EN_ADC0  
EN_ADC15  
EN_ADC14  
EN_ADC13  
EN_ADC12  
EN_ADC11  
EN_ADC10  
EN_ADC9  
EN_ADC8  
RESERVED  
BGAIN  
Enable for Channel 7 Adc Clock.  
Enable for Channel 6 Adc Clock.  
Enable for Channel 5 Adc Clock.  
Enable for Channel 4 Adc Clock.  
Enable for Channel 3 Adc Clock.  
Enable for Channel 2 Adc Clock.  
Enable for Channel 1 Adc Clock.  
Enable for Channel 0 Adc Clock.  
Enable for Channel 15 Adc Clock.  
Enable for Channel 14 Adc Clock.  
Enable for Channel 13 Adc Clock.  
Enable for Channel 12 Adc Clock.  
Enable for Channel 11 Adc Clock.  
Enable for Channel 10 Adc Clock.  
Enable for Channel 9 Adc Clock.  
Enable for Channel 8 Adc Clock.  
Reserved  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
4
3
2
1
0
7
6
0xB92 ENABLE_CH15_8_REG  
5
4
3
2
1
0
0xB94 VTI_GAIN_REG  
[7:6]  
[5:0]  
[7:6]  
[5:0]  
[7:0]  
Bgain Adjustment.  
Reserved  
Bcap Adjustment.  
Bdither DAC1.  
R/W  
R
R/W  
R/W  
0xB95 VTI_LPF_CAP_REG  
RESERVED  
BCAP  
BDITHDAC1  
0xB99 DITHER_DAC_  
CURRENT1_REG  
0xB9A DITHER_DAC_  
CURRENT2_REG  
[7:0]  
BDITHDAC2  
Bdither DAC2.  
0x0  
R/W  
Rev. 0 | Page 85 of 93  
AD9083  
Data Sheet  
Addr. Name  
Bits  
Bit Name  
Description  
Reset Access  
0xBA2 VTI_SHIFT_CURRENT_  
MSB_REG  
7
SPARE_REG_12_7  
(vti_force_cm): 0 = vti normal mode, 1= vti input 0x0  
common-mode is forced by input.  
R/W  
R/W  
R/W  
6
SPARE_REG_12_6  
RTERM  
(vti_high_imp): 0 = vti normal mode, 1= vti  
input common-mode is high impedance.  
0x0  
[5:4]  
Termination Resistance.  
00: Open.  
0x0  
01: 200 Ohm.  
10: 100 Ohm.  
[3:0]  
7
RESERVED  
ENABLE_CLOCK  
RESERVED  
KGAIN_VAL[7:0]  
KGAIN_VAL[15:8]  
RESERVED  
KGAIN_VAL[21:16]  
BCENTER_OFFSET  
RESERVED[9:8]  
DIVM_RC  
Reserved.  
Clock Enable for the VCO ADC Digital.  
Reserved.  
floor(kgain) – (2^8)*Kgain1 – (2^16)*Kgain2  
floor(kgain/2^8) – (2^8)*Kgain2  
Reserved.  
floor(kgain/2^16)  
Offset Value for Bcenter.  
Reserved.  
Wait Time for C Measurement. Valid range is 125- 0x0  
255. This multiplied by the fs/8 clock period  
determines the time between falling edge of  
C_RESET to falling edge of C_CLK for C ramp.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R
R/W  
R/W  
R
0xBB3 CAL_EN  
[6:0]  
[7:0]  
[7:0]  
[7:6]  
[5:0]  
[7:2]  
[1:0]  
[7:0]  
0xBBA KGAIN_VAL0  
0xBBB KGAIN_VAL1  
0xBBC KGAIN_VAL2  
0xBC3 BCENTER_1  
0xBC8 DIVM_RC  
R/W  
Temperature Diode Control Registers  
0xC01 TRM_TEMP_DIODE  
[7:0]  
TRM_TEMP_DIODE  
0x0  
R/W  
00: Default.  
11: Temp sensor: Enable sense 1x and 20x diode  
voltages.  
0xC04 TOP_REF_MONITOR  
[7:4]  
[3:2]  
RESERVED  
SPI_SEL_MON_TEMP  
Reserved.  
0x0  
0x0  
R
R/W  
00: Default.  
01: Temp Sensor: measure 1x diode (also set  
trm_temp_diode[7:0] = 3).  
10: Temp sensor: measure 20x diode (also set  
trm_temp_diode[7:0] = 3).  
11: Temp sensor: measure GND.  
Reserved.  
[1:0]  
RESERVED  
0x0  
R/W  
On-Chip PLL Configuration Registers  
0xD02 RESET_REG  
[7:2]  
RESERVED  
Reserved.  
0x0  
0x0  
R
1
D_CAL_RESET  
Resets Vco Calibration. Rising edge starts VCO  
momcap calibration.  
R/W  
0
[7:2]  
[1:0]  
RESERVED  
RESERVED  
D_REFIN_DIV  
Reserved.  
Reserved.  
0x0  
0x4  
0x0  
R/W  
R
0xD03 INPUT_MISC_REG  
Programmable Predivider Value (1,2,3,4) (Also  
called /R in some documentation).  
R/W  
00: /1.  
01: /2.  
10: /3.  
11: /4.  
0xD04 CHARGEPUMP_REG_0 [7:6]  
[5:0]  
RESERVED  
Reserved.  
0x0  
R/W  
D_CP_CURRENT  
RESERVED  
D_DIVIDE_CONTROL  
Charge Pump Current  
Reserved.  
Programmable Divide by N Value (2-50)  
0x13 R/W  
0x0  
0x6  
0xD09 DIVIDER_REG  
[7:6]  
[5:0]  
R/W  
R/W  
Rev. 0 | Page 86 of 93  
Data Sheet  
AD9083  
Addr. Name  
0xD0C VCO_CAL_LOCK_REG  
Bits  
[7:6]  
[5:4]  
Bit Name  
RESERVED  
D_CONTROL_HS_FB_DIV  
Description  
Reserved.  
Hs Feedback Divider (/P)  
00: /5.  
Reset Access  
0x0  
0x2  
R
R/W  
01: /7.  
10: /8.  
11: /11.  
[3:0]  
[7:6]  
[5:0]  
RESERVED  
RESERVED  
D_FILT_CBIG  
Reserved.  
Reserved.  
0x6  
0x0  
0x20 R/W  
R
R
0xD21 FILT_MAIN_0  
0xD22 FILT_MAIN_1  
the large capacitor in filter: .5pF + 9.5pF*N  
(0<N<63).  
the resistor control for filter: nonlinear. R = 31k 0xFA R/W  
ohm/(1+!<0>+2*!<1>+4*!<2>+8*!<3>+16*!<4>  
+32*!<5>+64*!<6>+128*!<7>, or Resistor_code  
= 256 - 31k/R (123 < R <31k).  
[7:0]  
D_FILT_R  
0xD23 FILT_MAIN_2  
0xD40 CLOCK_PD  
[7:6]  
[5:0]  
RESERVED  
D_FILT_CSMALL  
Reserved.  
0x0  
0x22 R/W  
R
the small capacitor in filter. .83pF+.87pF*M  
(0<M<63).  
[7:4]  
3
[2:0]  
RESERVED  
SPI_PLL_BYP  
RESERVED  
RESERVED  
Reserved.  
Bypass On-chip PLL.  
Reserved.  
0x0  
0x0  
0x0  
0x0  
R
R/W  
R/W  
R
0xD41 CLOCK_DIVIDER_CNTR [7:5]  
L
Reserved.  
[4:3]  
SPI_CNTRL_HS_DIV  
Select Divider for Vco Outputs.  
0x0  
R/W  
00: /6.  
01: /8.  
10: /10.  
11: Not supported.  
Reserved.  
Reserved.  
[2:0]  
[7:5]  
RESERVED  
RESERVED  
0x7  
0x0  
R/W  
R
0xD44 Clock_PLL_READY_  
CNTRL  
4
3
2
SPI_OUTOFLOCK_RST  
SPI_LOCK_VALID_RST  
PLL_OUTOFLOCK  
Reset F/F for Slow Lock Coming Out of Lock.  
Reset F/F for Slow Lock Valid Signal.  
1: Lock Slow Transitioned Low (PLL Out of Lock); 0x0  
Once the PLL is in lock, if the PLL goes out of  
lock (output "pll_lock_slow" transitions low),  
pll_outoflock will transition high and stay high  
until spi_outoflock_rst is set high then low.  
0x0  
0x0  
R/W  
R/W  
R
1
PLL_LOCK_VALID  
1: Lock Slow Transitioned High (PLL in Lock);  
Once the PLL achieves lock (output  
0x0  
R
"pll_lock_slow" transitions high), pll_lock_valid  
will transition high and stay high until  
spi_lock_valid_rst is set high then low.  
0
[7:6]  
[5:0]  
RESERVED  
RESERVED  
SPI_DIV_JTX_PLL  
Reserved.  
Reserved.  
Adjust Divider for Refclk to JTX_PLL.  
00000: NC.  
0x0  
0x0  
0x2  
R
R
R/W  
0xD4A JTX_PLL_REFCLK_DIV  
00001: NC.  
00010: /2.  
00011: /3.  
00100: /4.  
00101: /5.  
00110: /6.  
00111: /7.  
01000: /8.  
01001: /9.  
Rev. 0 | Page 87 of 93  
AD9083  
Data Sheet  
Addr. Name  
Bits  
Bit Name  
Description  
01010: /10.  
01011: /11.  
01100: /12.  
01101: /13.  
01110: /14.  
01111: /15.  
10000: /16.  
10001: /17.  
10010: /18.  
10011: /19.  
10100: /20.  
10101: /21.  
10110: /22.  
10111: /23.  
11000: /24.  
11001: /25.  
11010: /26.  
11011: /27.  
11100: /28.  
11101: /29.  
11110: /30.  
11111: /31.  
Reserved.  
Reset Access  
0xD4D SYSREF_IGNORE  
7
6
RESERVED  
0x0  
R
SPI_SYSREF_IGNORE_START Start ignoring sysrefs. This bit will self clear once 0x0  
count expires. The first posedge of sysref after  
R/W  
the start is passed through, thereafter they are  
masked until ignore count expires. The bit will  
self-clear once masking is over.  
5
SPI_SYSREF_IGNORE_ENABLE Master enable for sysref_ignore block. This also 0x0  
R/W  
R/W  
R/W  
acts as a clock gating signal for the FFs in the  
block.  
[4:1]  
0
SPI_SYSREF_IGNORE_COUNT Number of sysrefs to ignore. Value to be  
programmed is N-1, e.g. 0 will ignore 1 sysref,  
0xF will ignore 16 sysrefs.  
0x0  
0x0  
SPI_SYSREF_DISABLE  
Master disable for sysref, asynchronous – can  
affect duty cycle of sysref edge closest to bit  
transition.  
G/H Sync Mode Control Registers  
0xE20 TRIGGER_DELAY_VAL_0 [7:0]  
TRIGGER_DELAY  
Delay in Trigger Pulse in terms of cic_clk cycles. 0x0  
This delay is a common delay for all path.  
R/W  
R
0xE21 TRIGGER_DELAY_VAL_1 [7:0]  
I_TRIGGER_DELAY  
Hardware computed value of Delay in Trigger  
Pulse in terms of cic_clk cycles. This delay is a  
common delay for all path.  
0x0  
0xE24 G_H_SYNC_MODE_VAL [7:5]  
4
RESERVED  
TRIG_NCO_RESET_EN  
Reserved.  
0x0  
R
R/W  
Enable/Disable for NCO Reset Based on G/H Trig. 0x0  
1-Enables periodic reset of NCO based on G/H  
Trig. Upon the arrival of G/H Trig NCO resets are  
periodically generated at the period of "H".  
0-Disables NCO reset based on G/H Trig.  
3
2
RESERVED  
DELAY_AUTO_INCR  
Reserved.  
0x0  
R
R/W  
Auto Increment Trigger Delay after each trigger 0x0  
out for calibration purpose.  
Rev. 0 | Page 88 of 93  
Data Sheet  
AD9083  
Addr. Name  
Bits  
Bit Name  
Description  
Reset Access  
[1:0]  
G_H_SYNC_MODE  
Mode Selection for G H Sync.  
00: Sysref Based Synchronization.  
0x0  
R/W  
01: Trigger Based Synchronization with exclusive  
trigger.  
10: Trigger Based Synchronization with sysref  
repurposed.  
11: Direct Pulse Mode.  
Reserved.  
0xE25 G_H_SYNC_SYSREF_  
FUNC_VAL  
[7:1]  
0
RESERVED  
0x0  
0x0  
0xE  
R
SYSREF_FUNC  
AVERAGER_DELAY  
Flag for Sysref Function for Mode 2 with sysref  
repurposed.  
Moving Averager Strobe Delay in terms of  
number of clock cycles of cic_clk. Indicates the  
amount of delay to be incurred on the strobe for  
moving averager.  
R/W  
R/W  
0xE26 TRIG_AVG_DELAY_VAL [7:0]  
Strobe is initiated by G/H trig, and this register  
indicates the amount of delay on that strobe.  
0xE27 TRIG_AVG_DELAY_G_V [7:0]  
AL  
0xE28 TRIG_NCO_DELAY_VAL [7:0]  
AVERAGER_G_DELAY  
NCO_DELAY  
Moving Averager Strobe Delay to account for G 0x0  
value in terms of cic_clk cycles.  
R/W  
R/W  
NCO Strobe/Reset Delay in terms of cic_clk  
cycles. Indicates the amount of delay to be  
incurred on the strobe/Reset for NCO.  
Strobe is initiated by G/H trig, and this register  
indicates the amount of delay on that strobe for  
NCO.  
0x0  
0xE30 TRIG_DELAY_OVERWRI [7:4]  
TE  
RESERVED  
Reserved.  
0x0  
0x0  
0x0  
0x0  
0x0  
R
3
2
1
0
OVERWRITE_TRIGGER_DELAY 1: Overwrite the TRIGGER delay 0 : Don't  
overwrite the delay value.  
R/W  
R/W  
R/W  
R/W  
OVERWRITE_NCO_DELAY  
1: Overwrite the NCO delay 0 : Don't overwrite  
the delay value.  
1: Overwrite the Averager delay 0 : Don't  
overwrite the delay value.  
1: Overwrite the Averager G delay 0 : Don't  
overwrite the delay value.  
OVERWRITE_AVERAGER_  
DELAY  
OVERWRITE_AVERAGER_G_  
DELAY  
Rev. 0 | Page 89 of 93  
AD9083  
Data Sheet  
APPLICATIONS INFORMATION  
EVALUATION BOARD INFORMATION  
LTM8074  
VOUT  
5V TO 40V  
1.0V  
DVDD  
AVDD  
For information regarding the AD9083 evaluation board, visit  
https://wiki.analog.com/resources/eval/ad9083.  
AVDD1P8  
POWER DELIVERY NETWORK  
The power supplies needed to power the AD9083 are shown in  
Table 31.  
LTM8074  
VOUT  
1.8V  
DVDD1P8  
Table 31. Typical Power Supplies for AD9083  
Figure 93. Simplified Power Solution for the AD9083  
Domain  
Voltage (V)  
Tolerance (%)  
The user can employ several different decoupling capacitors to  
cover both high and low frequencies. These capacitors must be  
located close to the point of entry at the PCB level and close to  
the devices, with minimal trace lengths.  
AVDD  
AVDD1P8  
DVDD  
1.0  
1.8  
1.0  
1.8  
5
5
5
5
DVDD1P8  
LAYOUT GUIDELINES  
The evaluation board uses the power delivery network shown  
in Figure 93. Ferrite beads are used to isolate each of the supply  
domains. The ferrite beads are sized to limit the IR drop across  
it such that the 5% regulation specification can still be  
maintained. The DVDD supply does not use a ferrite due to its  
high current draw.  
The ADC evaluation board can be used as a guide to follow  
good layout practices. The evaluation board layout is done in  
such a way as to  
Minimize coupling between the analog inputs.  
Minimize clock coupling to the analog inputs.  
Provide enough power and ground planes for the various  
supply domains while reducing cross coupling.  
Provide adequate thermal relief to the ADC.  
The AD9083 can be driven directly from the dc-to-dc  
converter. Note that this approach has risks in that more power  
supply noise could be injected into the power supply domains  
of the ADC. To minimize noise, follow the layout guidelines of  
the dc-to-dc converter.  
Figure 94 shows the overall layout scheme used for the AD9083  
evaluation board.  
Rev. 0 | Page 90 of 93  
 
 
 
 
 
 
Data Sheet  
AD9083  
Figure 94. AD9083EBZ Layout Showing AVDD Plane (Layer 3)  
Figure 95. AD9083EBZ Layout Showing AVDD1P8 Plane (Layer 4)  
Rev. 0 | Page 91 of 93  
 
AD9083  
Data Sheet  
Figure 96. AD9083EBZ Layout Showing DVDD and DVDD1P8 Planes (Layer 6)  
Rev. 0 | Page 92 of 93  
Data Sheet  
AD9083  
OUTLINE DIMENSIONS  
9.10  
9.00 SQ  
8.90  
A1 BALL  
CORNER  
A1 BALL  
INDICATORꢀ  
AREA  
10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
7.20 REF  
SQ  
G
H
J
0.80  
BSC  
K
0.90  
BSC  
TOP VIEW  
BOTTOM VIEW  
1.076  
1.006  
0.946  
DETAIL A  
DETAIL A  
1.400  
1.346  
1.236  
0.34 NOM  
0.29 MIN  
SIDE VIEW  
0.53  
0.48  
0.43  
SEATING  
PLANE  
COPLANARITY  
0.12  
Ø
Figure 97. 100-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-100-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range2  
Package Description  
Package Option  
AD9083BBCZ  
AD9083BBCZ-RL7  
AD9083EBZ  
−40°C to +115°C  
−40°C to +115°C  
100-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
100-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
Evaluation board for AD9083  
BC–100–8  
BC–100–8  
1 Z = RoHS Compliant Part  
2 Specified TJ start-up at TJ = 40°C is guaranteed.  
©2021 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D22923-1/21(0)  
Rev. 0 | Page 93 of 93  
 
 

相关型号:

AD9083EBZ

16-Channel, 125 MHz Bandwidth, JESD204B Analog-to-Digital Converter
ADI

AD9100

Ultrahigh Speed Monolithic Track-and-Hold
ADI

AD9100*

Ultrahigh Speed Monolithic Track-and-Hold
ADI

AD9100AD

Ultrahigh Speed Monolithic Track-and-Hold
ADI

AD9100AE

IC TRACK AND HOLD AMPLIFIER, 0.02 us ACQUISITION TIME, CQCC28, CERAMIC, LCC-28, Sample and Hold Circuit
ADI

AD9100JD

Ultrahigh Speed Monolithic Track-and-Hold
ADI

AD9100SD

Ultrahigh Speed Monolithic Track-and-Hold
ADI

AD9100SD/883B

IC TRACK AND HOLD AMPLIFIER, 0.02 us ACQUISITION TIME, CDIP28, SKINNY, SIDE BRAZED, CERAMIC, DIP-28, Sample and Hold Circuit
ADI

AD9100SE/883B

IC TRACK AND HOLD AMPLIFIER, 0.02 us ACQUISITION TIME, CQCC28, CERAMIC, LCC-28, Sample and Hold Circuit
ADI

AD9101

125 MSPS Monolithic Sampling Amplifier
ADI

AD9101AE

125 MSPS Monolithic Sampling Amplifier
ADI

AD9101AR

125 MSPS Monolithic Sampling Amplifier
ADI