AD9235BCP-65EB [ADI]

High Speed ADC USB FIFO Evaluation Kit; 高速ADC的USB FIFO评估套件
AD9235BCP-65EB
型号: AD9235BCP-65EB
厂家: ADI    ADI
描述:

High Speed ADC USB FIFO Evaluation Kit
高速ADC的USB FIFO评估套件

先进先出芯片
文件: 总28页 (文件大小:902K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Speed ADC USB FIFO Evaluation Kit  
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Buffer memory board for capturing digital data  
used with high speed ADC evaluation boards  
to simplify evaluation  
STANDARD  
USB 2.0  
32 kB FIFO depth at 133 MSPS (upgradable)  
Measures performance with ADC Analyzer™  
Real-time FFT and time domain analysis  
Analyzes SNR, SINAD, SFDR, and harmonics  
Simple USB port interface (2.0)  
HSC-ADC-EVALB-SC  
OR  
HSC-ADC-EVALB-DC  
SINGLE OR DUAL  
HIGH-SPEED ADC  
EVALUATION BOARD  
Supporting ADCs with serial port interfaces (SPI®)  
On-board regulator circuit, no power supply required  
6 V, 2 A switching power supply included  
CHB FIFO,  
32K,  
PS  
PS  
REG  
n
Compatible with Windows® 98 (2nd ed.), Windows 2000,  
Windows Me, and Windows XP  
133MHz  
FILTERED  
ANALOG  
INPUT  
+3.0V  
REG  
TIMING  
CIRCUIT  
ADC  
USB  
CTLR  
EQUIPMENT NEEDED  
Analog signal source and antialiasing filter  
Low jitter clock source  
CHA FIFO,  
32K,  
133MHz  
n
CLOCK  
CIRCUIT  
SPI  
SPI  
High speed ADC evaluation board and ADC data sheet  
CLOCK INPUT  
PC running Windows 98 (2nd ed.), Windows 2000,  
Windows Me, or Windows XP  
Latest version of ADC Analyzer  
120-PIN CONNECTOR  
Figure 1.  
USB 2.0 port recommended (USB 1.1-compatible)  
PRODUCT HIGHLIGHTS  
1. Easy to Set Up. Connect the included power supply and  
signal sources to the two evaluation boards. Then connect  
to the PC and evaluate the performance instantly.  
PRODUCT DESCRIPTION  
The high speed ADC FIFO evaluation kit includes the latest  
version of ADC Analyzer and a buffer memory board to capture  
blocks of digital data from the Analog Devices high speed  
analog-to-digital converter (ADC) evaluation boards. The FIFO  
board is connected to the PC through a USB port and is used  
with ADC Analyzer to quickly evaluate the performance of high  
speed ADCs. Users can view an FFT for a specific analog input  
and encode rate to analyze SNR, SINAD, SFDR, and harmonic  
information.  
2. ADIsimADC™. ADC Analyzer supports virtual ADC  
evaluation using ADI proprietary behavioral modeling  
technology. This allows rapid comparison between multiple  
ADCs, with or without hardware evaluation boards. For more  
information, see AN-737 at www.analog.com/ADIsimADC.  
3. USB Port Connection to PC. PC interface is a USB 2.0  
connection (1.1-compatible) to the PC. A USB cable is  
provided in the kit.  
The evaluation kit is easy to set up. Additional equipment needed  
includes an Analog Devices high speed ADC evaluation board,  
a signal source, and a clock source. Once the kit is connected  
and powered, the evaluation is enabled instantly on the PC.  
4. 32 kB FIFO. The FIFO stores data from the ADC for processing.  
A pin-compatible FIFO family is used for easy upgrading.  
5. Up to 133 MSPS Encode Rate on Each Channel. Single-  
channel ADCs with encode rates up to 133 MSPS can be used  
with the FIFO board. Multichannel and demultiplexed output  
ADCs can also be used with the FIFO board with clock rates  
up to 266 MSPS.  
Two versions of the FIFO are available. The HSC-ADC-EVALB-  
DC is used with multichannel ADCs and converters with demulti-  
plexed digital outputs. The HSC-ADC-EVALB-SC evaluation  
board is used with single-channel ADCs. See Table 1 to choose  
the FIFO appropriate for your high speed ADC evaluation  
board.  
6. Supports ADC with Serial Port Interface or SPI. Some ADCs  
include a feature set that can be changed via the SPI. The FIFO  
supports these SPI-driven features through the existing USB  
connection to the computer without additional cabling needed.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Equipment Needed........................................................................... 1  
Product Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
FIFO Evaluation Board Easy Start.................................................. 3  
Requirements ................................................................................ 3  
Easy Start Steps ............................................................................. 3  
Virtual Evaluation Board Easy Start With ADIsimADC ............ 4  
Requirements ................................................................................ 4  
Easy Start Steps ............................................................................. 4  
FIFO 4.1 Data Capture Board Features ......................................... 5  
FIFO 4.1 Supported ADC Evaluation Boards .......................... 6  
Theory of Operation ........................................................................ 9  
Clocking Description................................................................... 9  
SPI Description............................................................................. 9  
Clocking with Interleaved Data................................................ 10  
Connecting to the HSC-ADC-FPGA-4/-8 ............................. 10  
Connecting to the DEMUX BRD ............................................ 10  
Upgrading FIFO Memory ......................................................... 10  
Jumpers ............................................................................................ 11  
Default Settings........................................................................... 11  
Evaluation Board ............................................................................ 13  
Power Supplies............................................................................ 13  
Connection and Setup ............................................................... 13  
FIFO Schematics and PCB Layout............................................... 14  
Schematics................................................................................... 14  
PCB Layout ................................................................................. 21  
Bill of Materials............................................................................... 23  
Ordering Information.................................................................... 25  
Ordering Guide .......................................................................... 25  
ESD Caution................................................................................ 25  
REVISION HISTORY  
2/06—Revision 0: Initial Version  
Rev. 0 | Page 2 of 28  
 
 
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
FIFO EVALUATION BOARD EASY START  
6. Once the cable is connected to both the computer and the  
FIFO board, and power is supplied, the USB drivers start  
to install. To complete the total installation of the FIFO  
drivers, you need to complete the new hardware sequence  
two times. The first Found New Hardware Wizard opens  
with the text message This wizard helps you install  
software for…Pre-FIFO 4.1. Click the recommended  
install, and go to the next screen. A hardware installation  
warning window should then be displayed. Click Continue  
Anyway. The next window that opens should finish the Pre-  
FIFO 4.1 installation. Click Finish. Your computer should  
go through a second Found New Hardware Wizard, and  
the text message, This wizard helps you install software  
for…Analog Devices FIFO 4.1, should be displayed.  
Continue as you did in the previous installation and click  
Continue Anyway. Then click Finish on the next two  
windows. This completes the installation.  
REQUIREMENTS  
FIFO evaluation board, ADC Analyzer, and USB cable  
High speed ADC evaluation board and ADC data sheet  
Power supply for ADC evaluation board  
Analog signal source and appropriate filtering  
Low jitter clock source applicable for specific ADC  
evaluation, typically <1 ps rms  
PC running Windows 98 (2nd ed.), Windows 2000,  
Windows Me, or Windows XP  
PC with a USB 2.0 port recommended (USB 1.1-  
compatible)  
EASY START STEPS  
Note: You need administrative rights for the Windows  
operating systems during the entire easy start procedure.  
It is recommended to complete every step before reverting  
to a normal user mode.  
7. (Optional) Verify in the device manager that Analog  
Devices, FIFO4.1 is listed under the USB hardware.  
1. Install ADC Analyzer from the CD provided in the FIFO  
evaluation kit or download the latest version on the Web.  
For the latest updates to the software, check the Analog  
Devices website at www.analog.com/hsc-FIFO.  
8. Apply power to the evaluation board and check the voltage  
levels at the board level.  
9. Connect the appropriate analog input (which should be  
filtered with a band-pass filter) and low jitter clock signal.  
Make sure the evaluation boards are powered on before  
connecting the analog input and clock.  
2. Connect the FIFO evaluation board to the ADC evaluation  
board. If an adapter is required, insert the adapter between  
the ADC evaluation board and the FIFO board. If using  
the HSC-ADC-EVALB-SC model, connect the evaluation  
board to the bottom two rows of the 120-pin connector,  
closest to the installed IDT FIFO chip. If using an ADC  
with a SPI interface, remove the two 4-pin corner keys so  
that the third row can be connected.  
10. Start ADC Analyzer.  
11. Choose an existing configuration file for the ADC  
evaluation board or create one.  
12. Click Time Data in ADC Analyzer (left-most button under  
the menus). A reconstruction of the analog input is  
3. Connect the provided USB cable to the FIFO evaluation  
board and to an available USB port on the computer.  
displayed. If the expected signal does not appear, or if there  
is only a flat red line, refer to the ADC Analyzer data sheet  
at www.analog.com/hsc-FIFO for more information.  
4. Refer to Table 5 for any jumper changes. Most evaluation  
boards can be used with the default settings.  
5. After verification, connect the appropriate power supplies  
to the ADC evaluation boards. The FIFO evaluation board  
is supplied with a wall mount switching power supply that  
provides a 6 V, 2 A maximum output. Connect the supply  
end to the rated 100 ac to 240 ac wall outlet at 47 Hz to  
63 Hz. The other end is a 2.1 mm inner diameter jack that  
connects to the PCB at J301. Refer to the instructions  
included in the ADC data sheet for more information  
about the ADC evaluation boards power supply and other  
requirements.  
Rev. 0 | Page 3 of 28  
 
 
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
VIRTUAL EVALUATION BOARD EASY START WITH ADIsimADC  
5. In the ADC Modeling dialog box, click the Device tab and  
REQUIREMENTS  
then click the … (Browse) button, adjacent to the dialog  
box. This opens a file browser and displays all of the  
models found in the default directory: c:\program  
files\adc_analyzer\models. If no model files are found,  
follow the on-screen directions or see Step 1 to install  
available models. If you have saved the models somewhere  
other than the default location, use the browser to navigate  
to that location and select the file of interest.  
Requirements include  
Completed installation of ADC Analyzer, Version 4.5.17 or  
later.  
ADIsimADC product model files for the desired converter.  
Models are not installed with the software, but they can be  
downloaded from the ADIsimADC Virtual Evaluation  
Board website at no charge.  
No hardware is required. However, if you wish to compare  
results of a real evaluation board and the model, you can switch  
easily between the two, as outlined in the following Easy Start  
Steps section.  
6. From the menu, click Config > FFT. In the FFT  
Configuration dialog box, ensure that the Encode  
Frequency is set for a valid rate for the simulated device  
under test. If set too low or too high, the model does not run.  
EASY START STEPS  
7. Once a model has been selected, information about the  
model displays on the Device tab of the ADC Modeling  
dialog box. After ensuring that you have selected the right  
model, click the Input tab. This lets you configure the  
input to the model. Click either Sine Wave or Two Tone  
for the input signal.  
1. To get ADC model files, go to www.analog.com/ADIsimADC  
for the product of interest. Download the product of  
interest to a local drive. The default location is c:\program  
files\adc_analyzer\models.  
2. Start ADC Analyzer (see the ADC Analyzer User Manual).  
8. Click Time Data (left-most button under the pull-down  
menus). A reconstruction of the analog input is displayed.  
The model can now be used just as a standard evaluation  
board would be.  
3. From the menu, click Config > Buffer > Model as the  
buffer memory. In effect, the model functions in place of  
the ADC and data capture hardware.  
4. After selecting the model, click the Model button (located  
next to the Stop button) to select and configure which  
converter is to be modeled. A dialog box appears in the  
workspace, where you can select and configure the  
behavior of the model.  
9. The model supports additional features not found when  
testing a standard evaluation board. When using the  
modeling capabilities, it is possible to sweep either the  
analog amplitude or the analog frequency. For more  
information consult the ADC Analyzer User Manual at  
www.analog.com/hsc-FIFO.  
Rev. 0 | Page 4 of 28  
 
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
FIFO 4.1 DATA CAPTURE BOARD FEATURES  
6V SWITCHING  
POWER SUPPLY  
CONNECTION  
IDT72V283 32k  
16-BIT 133MHz FIFO  
TIMING ADJUSTMENT  
JUMPERS  
ON BOARD +3.3V  
REGULATOR  
120-CONNECTOR  
(PARALLEL CMOS  
INPUTS)  
OPTIONAL POWER  
CONNECTION  
IDT72V283 32k⋅  
16-BIT 133MHz FIFO  
USB CONNECTION  
TO COMPUTER  
OPEN SOLDER MASK  
ON ALL DATA AND  
CLOCK LINES FOR  
EASY PROBING  
OPTIONAL SERIAL  
PORT INTERFACE  
CONNECTOR  
RESET SWITCH  
WHEN ENCODE RATE  
IS INTERRUPTED  
µCONTROLLER CRYSTAL  
CLOCK = 24MHz,  
OFF DURING  
DATA CAPTURE  
Figure 2. FIFO Components (Top View)  
Rev. 0 | Page 5 of 28  
 
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
120-CONNECTOR  
(PARALLEL CMOS  
INPUTS)  
TIMING ADJUSTMENT  
JUMPERS  
EPROM TO LOAD  
USB FIRMWARE  
DRIVER CIRCUIT FOR  
SERIAL PORT INTERFACE  
(SPI) LINES  
CYPRESS Fx2 HIGH SPEED  
USB 2.0 µCONTROLLER  
OPTIONAL SERIAL  
PORT INTERFACE  
(SPI) CONNECTOR  
Figure 3. FIFO Components (Bottom View)  
FIFO 4.1 SUPPORTED ADC EVALUATION BOARDS  
The evaluation boards in Table 1 can be used with the high speed ADC FIFO evaluation kit. Some evaluation boards require an adapter between  
the ADC evaluation board connector and the FIFO connector. If an adapter is needed, send an email to highspeed.converters@analog.com with  
the part number of the adapter and a mailing address.  
Table 1. HSC-ADC-EVALB-DC- and HSC-ADC-EVALB-SC-Compatible Evaluation Boards1  
Evaluation Board Model  
AD6644ST/PCB  
Description of ADC  
14-bit, 65 MSPS ADC  
14-bit, 80 MSPS ADC  
14-bit, 105 MSPS ADC  
10-bit, 60 MSPS ADC  
10-bit, 20 MSPS ADC  
10-bit, 20 MSPS ADC  
Dual 10-bit, 20 MSPS ADC1  
10-bit, 40 MSPS ADC  
Octal 10-bit, 65 MSPS ADC  
10-bit, 65 MSPS ADC  
10-bit, 80 MSPS ADC  
10-bit, 105 MSPS ADC  
10-bit, 65 MSPS ADC  
10-bit, 80 MSPS ADC  
10-bit, 105 MSPS ADC  
Dual 10-bit, 80 MSPS ADC  
Dual 10-bit, 105 MSPS ADC  
FIFO Board Version  
Comments  
SC  
SC  
SC  
SC  
SC  
SC  
SC  
SC  
DC  
SC  
SC  
SC  
SC  
SC  
SC  
DC  
DC  
AD6645-80/PCB  
AD6645-105/PCB  
AD9051/PCB  
AD9200SSOP-EVAL  
AD9200TQFP-EVAL  
AD9201-EVAL  
Requires AD9051FFA  
Requires AD922xFFA  
Requires AD922xFFA  
Requires AD922xFFA  
Requires AD922xFFA  
Requires HSC-ADC-FPGA-8  
AD9203-EB  
AD9212-65EB1  
AD9215BCP-65EB  
AD9215BCP-80EB  
AD9215BCP-105EB  
AD9215BRU-65EB  
AD9215BRU-80EB  
AD9215BRU-105EB  
AD9216-80PCB  
AD9216-105PCB  
Rev. 0 | Page 6 of 28  
 
 
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
Evaluation Board Model  
AD9218-105PCB  
AD9218-65PCB  
AD9219-65EB1  
AD9220-EB  
Description of ADC  
FIFO Board Version  
Comments  
10-bit, 105 MSPS ADC  
10-bit, 65 MSPS ADC  
Quad 10-bit, 65 MSPS ADC  
12-bit, 10 MSPS ADC  
Octal 12-bit, 65 MSPS ADC  
12-bit, 65 MSPS ADC  
12-bit, 65 MSPS ADC  
Quad 12-bit, 65 MSPS ADC  
Quad 12-bit, 65 MSPS ADC  
12-bit, 80MSPS ADC  
12-bit, 105MSPS ADC  
12-bit, 125MSPS ADC  
12-bit, 150MSPS ADC  
12-bit, 20 MSPS ADC  
12-bit, 40 MSPS ADC  
12-bit, 65 MSPS ADC  
12-bit, 20 MSPS ADC  
12-bit, 40 MSPS ADC  
12-bit, 65 MSPS ADC  
12-bit, 80 MSPS ADC  
12-bit, 80 MSPS ADC  
12-bit, 20 MSPS ADC  
12-bit, 40 MSPS ADC  
12-bit, 65 MSPS ADC  
Dual 12-bit, 20 MSPS ADC  
Dual 12-bit, 40 MSPS ADC  
Dual 12-bit, 65 MSPS ADC  
Dual 12-bit, 20 MSPS ADC  
Dual 12-bit, 40 MSPS ADC  
Dual 12-bit, 65 MSPS ADC  
14-bit, 40 MSPS ADC  
14-bit, 1.25 MSPS ADC  
14-bit, 3 MSPS ADC  
14-bit, 40 MSPS ADC  
14-bit, 65 MSPS ADC  
14-bit, 20 MSPS ADC  
14-bit, 40 MSPS ADC  
14-bit, 65 MSPS ADC  
14-bit, 80 MSPS ADC  
14-bit, 80 MSPS ADC  
14-bit, 105 MSPS ADC  
14-bit, 125 MSPS ADC  
Dual 14-bit, 65 MSPS ADC  
Dual 14-bit, 20 MSPS ADC  
Dual 14-bit, 40 MSPS ADC  
Dual 14-bit, 65 MSPS ADC  
Quad 14-bit, 50 MSPS ADC  
16-bit, 2.5 MSPS ADC  
8-bit, 32 MSPS ADC  
DC  
DC  
DC  
SC  
DC  
SC  
SC  
DC  
DC  
SC  
SC  
SC  
SC  
SC  
SC  
SC  
SC  
SC  
SC  
SC  
SC  
SC  
Requires HSC-ADC-FPGA-4/-8  
Requires AD922xFFA  
Requires HSC-ADC-FPGA-8  
Requires AD922xFFA  
Requires AD922xFFA  
Requires HSC-ADC-FPGA-4/-8  
Requires HSC-ADC-FPGA-4/-8  
AD9222-65EB1  
AD9226-EB  
AD9226QFP-EB  
AD9228-65EB1  
AD9229-65EB1  
AD9233-80EB  
AD9233-105EB  
AD9233-125EB  
AD9234-EB  
AD9235BCP-20EB  
AD9235BCP-40EB  
AD9235BCP-65EB  
AD9235-20PCB  
AD9235-40PCB  
AD9235-65PCB  
AD9236BRU-80EB  
AD9236BCP-80EB  
AD9237BCP-20EB  
AD9237BCP-40EB  
AD9237BCP-65EB  
AD9238BST-20PCB  
AD9238BST-40PCB  
AD9238BST-65PCB  
AD9238BCP-20EB  
AD9238BCP-40EB  
AD9238BCP-65EB  
AD9240-EB  
SC  
SC  
DC  
DC  
DC  
DC  
DC  
DC  
SC  
SC  
SC  
SC  
SC  
SC  
SC  
SC  
SC  
SC  
SC  
SC  
DC  
DC  
DC  
DC  
DC  
SC  
SC  
SC  
SC  
DC  
DC  
DC  
Requires AD922xFFA  
Requires AD922xFFA  
Requires AD922xFFA  
AD9241-EB  
AD9243-EB  
AD9244-40PCB  
AD9244-65PCB  
AD9245BCP-20EB  
AD9245BCP-40EB  
AD9245BCP-65EB  
AD9245BCP-80EB  
AD9246-80EB  
AD9246-105EB  
AD9246-125EB  
AD9248BST-65EB  
AD9248BCP-20EB  
AD9248BCP-40EB  
AD9248BCP-65EB  
AD9259-50EB1  
AD9260-EB  
Requires HSC-ADC-FPGA-4/-8  
Requires AD922xFFA  
Requires AD922xFFA  
Requires AD922xFFA  
Requires AD9283FFA  
Requires HSC-ADC-FPGA-4/-8  
Requires HSC-ADC-FPGA-9289  
Requires DEMUX BRD  
AD9280-EB  
AD9281-EB  
AD9283/PCB  
AD9287-100EB1  
AD9289-65EB1  
AD9411/PCB  
Dual 8-bit, 28 MSPS ADC  
8-bit, 100 MSPS ADC  
Quad 8-bit, 100 MSPS ADC  
Quad 8-bit, 65 MSPS ADC  
10-bit, 200 MSPS ADC  
Rev. 0 | Page 7 of 28  
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
Evaluation Board Model  
AD9430-CMOS/PCB  
AD9430-LVDS/PCB2  
AD9432/PCB  
Description of ADC  
FIFO Board Version  
Comments  
12-bit, 210 MSPS ADC  
12-bit, 210 MSPS ADC  
12-bit, 105 MSPS ADC  
12-bit, 125 MSPS ADC  
14 bit, 80 MSPS ADC  
DC  
DC  
SC  
SC  
SC  
SC  
SC  
SC  
SC  
SC  
SC  
SC  
SC  
SC  
SC  
SC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
SC  
SC  
DC  
DC  
Requires DEMUX BRD  
AD9433/PCB  
AD9444-CMOS/PCB  
AD9444-LVDS/PCB  
AD9445-IF-LVDS/PCB  
AD9445-BB-LVDS/PCB  
AD9446-80LVDS/PCB  
AD9446-100LVDS/PCB  
AD9460-80EB-IF  
AD9460-80EB-BB  
AD9460-105EB-IF  
AD9460-105EB-BB  
AD9461-130EB-IF  
AD9461-130EB-BB  
AD9480-LVDS/PCB2  
AD9481-PCB  
AD10200/PCB  
AD10201/PCB  
AD10226/PCB  
AD10265/PCB  
AD10465/PCB  
AD10677/PCB  
AD10678/PCB  
AD15252/PCB  
14 bit, 80 MSPS ADC  
14-bit, 125 MSPS ADC  
14-bit, 125 MSPS ADC  
16-bit, 80 MSPS ADC  
16-bit, 100 MSPS ADC  
16-bit, 80 MSPS ADC  
16-bit, 80 MSPS ADC  
16-bit, 105 MSPS ADC  
16-bit, 105 MSPS ADC  
16-bit, 130 MSPS ADC  
16-bit, 130 MSPS ADC  
8-bit, 250 MSPS ADC  
8-bit, 250 MSPS ADC  
Dual 12-bit, 105 MSPS ADC  
Dual 12-bit, 105 MSPS ADC  
Dual 12-bit, 125 MSPS ADC  
Dual 12-bit, 65 MSPS ADC  
Dual 14-bit, 65 MSPS ADC  
16-bit, 65 MSPS ADC  
16-bit, 80 MSPS ADC  
12-bit, Dual 65 MSPS ADC  
12-bit, Quad 65 MSPS ADC  
Requires DEMUX BRD  
Requires GS09066  
Requires GS09066  
Requires GS09066  
Requires GS09066  
Requires GS09066  
Requires GS09066  
Requires GS09066  
AD15452/PCB  
Requires HSC-ADC-FPGA-4/-8  
1 The high speed ADC FIFO evaluation kit can be used to evaluate two channels at a time.  
2 If a DEMUX BRD is needed, send an email to highspeed.converters@analog.com.  
Rev. 0 | Page 8 of 28  
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
THEORY OF OPERATION  
The FIFO evaluation board can be divided into several circuits,  
each of which plays an important part in acquiring digital data  
from the ADC and allows the PC to upload and process that  
data. The evaluation kit is based around the IDT72V283 FIFO  
chip from Integrated Device Technology, Inc (IDT). The system  
can acquire digital data at speeds up to 133 MSPS and data  
record lengths up to 32 kB using the HSC-ADC-EVALB-SC  
FIFO evaluation kit. The HSC-ADC-EVALB-DC, which has  
two FIFO chips, is available to evaluate multichannel ADCs or  
demultiplexed data from ADCs sampling faster than 133 MSPS.  
A USB 2.0 microcontroller communicating with ADC Analyzer  
allows for easy interfacing to newer computers using the USB 2.0  
(USB 1.1-compatible) interface.  
The clock signals are ac-coupled by 0.1 μF capacitors.  
Potentiometer R312 and Potentiometer R315 allow for fine  
tuning the threshold of the LVDS gates. In applications where  
fine-tuning the threshold is critical, these potentiometers can be  
replaced with a higher resistance value to increase the  
adjustment range. Resistors R301, R302, R303, R304, R311,  
R313, R314, and R316 set the static input to each of the  
differential gates to a dc voltage of approximately 1.5 V.  
At assembly, Solder Jumper J310 to Solder Jumper J313 are set  
to bypass the potentiometer. For fine adjustment using the pot,  
the solder jumpers must be removed, and R312 and R315 must  
be populated.  
U302, an XOR gate array, is included in the design to let users  
add gate delays to the FIFO memory chip clock paths. They are  
not required under normal conditions and are bypassed at  
assembly by Jumper J314 and Jumper J315. Jumper J306 and  
Jumper J307 allow the clock signals to be inverted through an  
XOR gate. In the default setting, the clocks are not inverted by  
the XOR gate.  
The process of filling the FIFO chip or chips and reading the  
data back requires several steps. First, ADC Analyzer initiates  
the FIFO chip fill process. The FIFO chips are reset, using a  
master reset signal (MRS). The USB microcontroller is then  
suspended, which turns off the USB oscillator and ensures that  
it does not add noise to the ADC input. After the FIFO chips  
completely fill, the full flags from the FIFO chips send a signal  
to the USB microcontroller to wake up the microcontroller  
from suspend. ADC Analyzer waits for approximately 30 ms  
and then begins the readback process.  
The clock paths described above determine the WRT_CLK1 and  
WRT_CLK2 signals at each FIFO memory chip (U101 and  
U201). The timing options above should let you choose a clock  
signal that meets the setup and hold time requirements to  
capture valid data.  
During the readback process, the acquisition of data from  
FIFO 1 (U201) or FIFO 2 (U101) is controlled via Signal OEA  
and Signal OEB. Because the data outputs of both FIFO chips  
drive the same 16-bit data bus, the USB microcontroller  
controls the OEA and OEB signals to read data from the correct  
FIFO chip. From an application standpoint, ADC Analyzer  
sends commands to the USB microcontroller to initiate a read  
from the correct FIFO chip, or from both FIFO chips in dual or  
demultiplexed mode.  
A clock generator can be applied directly to S1 and/or S3. This  
clock generator should be the same unit that provides the clock  
for the ADC. These clock paths are ac-coupled, so that a sine  
wave generator can be used. DC bias can be adjusted by  
R301/R302 and R303/R304.  
The DS90LV048A differential line receiver is used to square the  
clock signal levels applied externally to the FIFO evaluation  
board. The output of this clock receiver can either directly drive  
the write clock of the IDT72V283 FIFO(s), or first pass through  
the XOR gate timing circuitry described above.  
CLOCKING DESCRIPTION  
Each channel of the buffer memory requires a clock signal to  
capture data. These clock signals are normally provided by the  
ADC evaluation board and are passed along with the data  
through Connector J104 (Pin 37 for both Channel A and  
Channel B). If only a single clock is passed for both channels,  
they can be connected together by Jumper J303.  
SPI DESCRIPTION  
The Cypress IC (U502) supports the HSC SPI standard to allow  
programming of ADCs that have SPI-accessible register maps.  
U102 is a buffer that drives the 4-wire SPI (SCLK, SDI, SDO,  
CSB1) through the 120-pin connector (J104) on the third or top  
row. J502 is an auxiliary SPI connector to monitor the SPI  
signals connected directly to the Cypress IC. For more  
information on this and other functions, consult the user  
manual titled Interfacing to High Speed ADCs via SPI at  
www.analog.com/hsc-FIFO.  
Jumpers J304 and J305 at the output of the LVDS receiver allow  
the output clock to be inverted by the LVDS receiver. By default,  
the clock outputs are inverted by the LVDS receiver.  
The single-ended clock signal from each data channel is  
buffered and converted to a differential CMOS signal by two  
gates of a low voltage differential signal (LVDS) receiver, U301.  
This allows the clock source for each channel to be CMOS,  
TTL, or ECL.  
1 Note that CSB1 is the default CSB line used.  
Rev. 0 | Page 9 of 28  
 
 
 
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
The SPI interface designed on the Cypress IC can communicate  
with up to five different SPI-enabled devices. The CLK and data  
lines are common to all SPI devices. The correct device is  
chosen to communicate by using one of the five active low chip  
select pins. This functionality is controlled by selecting a SPI  
channel in the software.  
CONNECTING TO THE DEMUX BRD  
ADCs that have parallel LVDS outputs require another board  
that is connected between the ADC evaluation board and the  
FIFO data capture card. This board converts parallel LVDS to  
parallel CMOS, using both channels of the FIFO data capture  
card. For more detailed information on this board, send an  
email to highspeed.converters@analog.com  
CLOCKING WITH INTERLEAVED DATA  
ADCs with very high data rates can exceed the capability of a  
single buffer memory channel (~133 MSPS). These converters  
often demultiplex the data into two channels to reduce the rate  
required to capture the data. In these applications, ADC Analyzer  
must interleave the data from both channels to process it as a  
single channel. The user can configure the software to process  
the first sample from Channel A, the second from Channel B,  
and so on, or vice versa. The synchronization circuit included in  
the buffer memory forces a small delay between the write enable  
signals (WENA and WENB) to the FIFO memory chips (Pin 1,  
U101, and U201), ensuring that the data is captured in one  
FIFO before the other. Jumper J401 and Jumper J402 determine  
which FIFO receives WENA and which FIFO receives WENB.  
UPGRADING FIFO MEMORY  
The FIFO evaluation board includes one or two 32 kB FIFOs  
that are capable of 133 MHz clock signals, depending on the  
model number. Pin-compatible FIFO upgrades are available  
from IDT. See Table 2 for the IDT part number matrix.  
Table 2. IDT Part Number Matrix  
Part Number  
FIFO Depth  
FIFO Speed  
133 MHz  
133 MHz  
133 MHz  
133 MHz  
166 MHz  
166 MHz  
166 MHz  
166 MHz  
IDT72V283-L7-5PF (Default ) 32 kB  
IDT72V293-L7-5PF  
IDT72V2103-L7-5PF  
IDT72V2113-L7-5PF  
IDT72V283-L6PF  
IDT72V293-L6PF  
IDT72V2103-L6PF  
IDT72V2113-L6PF  
64 kB  
132 kB  
256 kB  
32 kB  
64 kB  
132 kB  
256 kB  
CONNECTING TO THE HSC-ADC-FPGA-4/-8  
ADCs that have serial LVDS outputs require another board that  
is connected between the ADC evaluation board and the FIFO  
data capture card. This board converts the serial data into  
parallel CMOS so that the FIFO data capture card can accept  
the data. For more detailed information on this board, refer to  
the HSC-ADC-FPGA datasheet at www.analog.com/hsc-FIFO.  
For more information, visit www.idt.com.  
Rev. 0 | Page 10 of 28  
 
 
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
JUMPERS  
Use the legends in Table 3 and Table 4 to configure the jumpers. On the FIFO evaluation board, Channel A is associated with the bottom  
IDT FIFO chip, and Channel B is associated with the top IDT FIFO chip (closest to the Analog Devices logo).  
Table 3. Jumper Legend  
Position  
Description  
In  
Jumper in place (2-pin header).  
Out  
Jumper removed (2-pin header).  
Position 1 or Position 3  
Denotes the position of a 3-pin header. Position 1 is marked on the board.  
Table 4. Solder Jumper Legend  
Position  
Description  
In  
Out  
Solder pads should be connected with 0 Ω resistor.  
Solder pads should not be connected with 0 Ω resistor.  
DEFAULT SETTINGS  
Table 5 lists the default settings for each model of the FIFO evaluation kit. The single channel (SC) model is configured to work with a  
single channel ADC using the bottom FIFO, U201. The dual channel (DC) model is configured to work with demultiplexed ADCs (such  
as the AD9430). Dual channel ADC settings are shown in a separate column, as are settings for the opposite (top) FIFO, U101 for a single  
channel ADC. To align the timing properly, some evaluation boards require modifications to these settings. Refer to the Clocking  
Description section in the Theory of Operation section for more information.  
Another useful way to configure the jumper settings easily for various configurations is to consult ADC Analyzer under Help > About  
HSC_ADC_EVALB, and click Set Up Default Jumper Wizard. Then click the configuration setting that applies to the application of  
interest. A picture of the FIFO board is displayed for that application with a visual of the correct jumper settings already in place.  
Table 5. Jumper Configurations  
Single Channel  
Settings, Default Demultiplexed Dual-Channel  
Jumper # (Bottom)  
Single-Channel  
Settings (Top)1  
Settings  
Settings  
Description  
J303  
J304  
In  
In  
Out  
In  
Out  
In  
In  
In  
Position 2 to Position 4, ties write clocks together  
Position 1 to Position 2, POS3: invert clock out of  
DS90 (U301)  
J305  
J306  
J307  
In  
In  
In  
In  
Position 2 to Position 3, POS3: invert clock out of  
DS90 (U301)  
No invert to encode clock from XOR (U302),  
0 Ω resistor  
No invert to encode clock from XOR (U302),  
0 Ω resistor  
All solder jumpers are shorted with 0 Ω resistors  
(bypass level shifting to input of DS90)  
Out  
Out  
In  
Out  
Out  
In  
Out  
Out  
In  
Out  
Out  
In  
J310 to  
J313  
J314  
In  
In  
In  
In  
Position 1 to Position 2, one XOR gate timing  
delay for top FIFO (U101)  
J315  
In  
In  
In  
In  
Position 1 to Position 2, one XOR gate timing  
delay for bottom FIFO (U201)  
J316  
J401  
In  
In  
In  
In  
In  
In  
In  
In  
Power connected using switching power supply  
Controls if top FIFO (U101) gets write enable  
before or after bottom FIFO, 0 Ω resistor  
J402  
J403  
J404  
J405  
Out  
Out  
In  
Out  
Out  
In  
Out  
Out  
In  
Out  
Out  
In  
Controls if top FIFO (U101) gets write enable  
before or after bottom FIFO, 0 Ω resistor  
Controls if bottom FIFO (U201) gets a write  
enable before or after the top FIFO, 0 Ω resistor  
Controls if bottom FIFO (U201) gets a write  
enable before or after the top FIFO, 0 Ω resistor  
When in, WRT_CLK1 is used to create write enable  
signal for FIFOs, 0 Ω resistor (significant only for  
interleave mode)  
Out  
In  
Out  
Out  
Rev. 0 | Page 11 of 28  
 
 
 
 
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
Single Channel  
Settings, Default Demultiplexed Dual-Channel  
Jumper # (Bottom)  
Single-Channel  
Settings (Top)1  
Settings  
Settings  
Description  
J406  
In  
In  
In  
In  
WRT_CLK2 is used to create write enable signal  
for FIFOs, 0 Ω resistor (significant only for  
interleave mode)  
J503  
In  
In  
In  
In  
Connect enable empty flag of top FIFO (U101)  
to USB MCU, 0 Ω resistor  
J504  
J505  
Out  
In  
Out  
In  
Out  
In  
Out  
In  
N/A  
Connect enable full flag of top FIFO (U101)  
to USB MCU, 0 Ω resistor  
J506  
J602  
J603  
Out  
Out  
In  
Out  
Out  
In  
Out  
Out  
In  
Out  
Out  
In  
N/A  
N/A  
N/A  
1 Some jumpers can be a 0 Ω resistor instead of a physical jumper. This is shown in Table 5 in the jumper description column.  
Rev. 0 | Page 12 of 28  
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
EVALUATION BOARD  
The FIFO provides all of the support circuitry required to  
accept two channels of an ADC’s digital parallel CMOS outputs.  
Each of the various functions and configurations can be selected by  
proper connection of various jumpers (see Table 5). When  
using this in conjunction with an ADC evaluation board, it is  
critical that the signal sources used for the analog input and  
clock have very low phase noise (<1 ps rms jitter) to realize the  
ultimate performance of the converter. Proper filtering of the  
analog input signal to remove harmonics and lower the integrated  
or broadband noise at the input is also necessary to achieve the  
specified noise performance.  
When operating the evaluation board in a non-default  
condition, J316 can be removed to disconnect the switching  
power supply. This enables the user to bias the board  
independently. Use P302 to connect an independent supply to  
the board. A 3.3 V supply is needed with at least a 1 A current  
capability.  
CONNECTION AND SETUP  
The FIFO board has a 120-pin (40-pin, triple row) connector  
that accepts two 16-bit channels of parallel CMOS inputs (see  
Figure 6). For those ADC evaluation boards that have only an  
80-pin (40-pin, double row) connector, it is pertinent for the  
lower two rows of the FIFO’s triple row connector to be connected  
in order for the data to pass to either FIFO channel correctly.  
The top or third row is used to pass SPI signals across to the  
adjacent ADC evaluation board that supports this feature.  
See Figure 5 to Figure 15 for complete schematics and layout plots.  
POWER SUPPLIES  
The FIFO board is supplied with a wall mount switching power  
supply that provides a 6 V, 2 A maximum output. Connect the  
supply to the rated 100 ac to 240 ac wall outlet at 47 Hz to 63 Hz.  
The other end is a 2.1 mm inner diameter jack that connects to  
the PCB at J301. On the PC board, the 6 V supply is then fused  
and conditioned before connecting to the low dropout 3.3 V  
linear regulator that supplies the proper bias to the entire board.  
WALL OUTLET  
100V TO 240V AC  
47Hz TO 63Hz  
3.3V  
+
6V DC  
2A MAX  
SWITCHING  
POWER  
SUPPLY  
CHB  
PARALLEL  
CMOS  
OUTPUTS  
PC  
RUNNING  
ADC  
HSC-ADC-EVALB-DC  
FIFO DATA  
EVALUATION  
BOARD  
CAPTURE  
BOARD  
ROHDE & SCHWARZ,  
SMHU,  
ANALYZER  
BAND-PASS  
FILTER  
XFMR  
INPUT  
2V p-p SIGNAL  
SYNTHESIZER  
CHB  
PARALLEL  
CMOS  
USB  
CONNECTION  
ROHDE & SCHWARZ,  
SMHU,  
OUTPUTS  
CLK  
2V p-p SIGNAL  
SYNTHESIZER  
SPI  
SPI  
SPI  
Figure 4. Example Setup Using Quad ADC Evaluation Board and FIFO Data Capture Board  
Rev. 0 | Page 13 of 28  
 
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
FIFO SCHEMATICS AND PCB LAYOUT  
SCHEMATICS  
ALLOW Fx2 TO CONTROL FIFO’S OUTPUT WIDTH  
PC2: TRISTATED, NORMAL 16-BIT DATA PATH  
PC2: DRIVEN HIGH, 9-BIT OUTPUT ALLOWS  
READING 18 BITS IN TWO READS.  
PC2  
R101  
R102  
0  
10kΩ  
E101  
VCC  
WEN1  
1
2
3
4
5
6
7
8
9
60  
E102  
WEN  
SEN  
DNC  
VCC  
DNC  
IW  
RT  
59  
OE1  
OE  
58  
VCC  
57  
Q17  
Q16  
Q17  
56  
Q16  
55  
GND  
54  
VCC  
GND  
D17  
VCC  
D16  
D15  
D14  
D13  
GND  
D12  
D11  
D10  
D9  
GND  
D1_17  
53  
Q15  
Q14  
Q15  
R108  
DNP  
52  
Q14  
D1_16  
D1_15  
D1_14  
D1_13  
IDT72V283  
TQFP80  
TOP FIFO  
CHANNEL B  
10  
51  
WRT_CLK1  
VCC  
R109  
DNP  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
50  
Q13  
Q12  
Q13  
49  
Q12  
48  
GND  
47  
Q11  
Q10  
Q11  
D1_12  
D1_11  
D1_10  
D1_9  
46  
GND  
45  
Q10  
44  
VCC  
43  
Q9  
Q8  
Q7  
Q9  
D1_8  
42  
D8  
Q8  
41  
VCC  
Q7  
U101  
VCC  
C101  
0.1µF  
C102  
0.1µF  
C103  
0.1µF  
C104  
0.1µF  
C105  
0.1µF  
C106  
0.1µF  
C107  
0.1µF  
C108  
0.1µF  
C109  
0.1µF  
Figure 5. PCB Schematic  
Rev. 0 | Page 14 of 28  
 
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
CMOS INPUTS  
TEST POINTS  
DUT_CLK1  
TEST POINTS  
PLACEMENT OF HEADER KEY HERE  
J104  
J104  
J104  
D1_17  
D1_16  
C1  
A1  
B1  
D1_17  
D1_16  
C2  
A2  
B2  
CLKB  
C3  
A3  
B3  
D1_15  
C4  
A4  
B4  
D1_15  
D1_14  
D1_13  
D1_12  
D1_11  
D1_10  
D1_9  
MSB  
D1_14  
D1_13  
D1_12  
D1_11  
D1_10  
D1_9  
D1_8  
D1_7  
D1_6  
D1_5  
D1_4  
D1_3  
D1_2  
D1_1  
D1_0  
C5  
A5  
B5  
C6  
A6  
B6  
C7  
A7  
B7  
C8  
A8  
B8  
C9  
A9  
B9  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
D1_8  
D1_7  
D1_6  
D1_5  
D1_4  
D1_3  
D1_2  
D1_1  
D1_0  
CHB  
LSB  
CTRL_A  
D2_17  
CTRL_B  
CTRL_B  
CTRL_A  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
C31  
C32  
C33  
C34  
C35  
C36  
C37  
C38  
C39  
C40  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
A32  
A33  
A34  
A35  
A36  
A37  
A38  
A39  
A40  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
B31  
B32  
B33  
B34  
B35  
B36  
B37  
B38  
B39  
B40  
D2_17  
D2_16  
D2_16  
DUT_CLK2  
CLKA  
MSB  
D2_15  
D2_14  
D2_13  
D2_12  
D2_11  
D2_10  
D2_9  
D2_15  
D2_14  
D2_13  
D2_12  
D2_11  
D2_10  
D2_9  
ALL SPI LABELS ARE WITH  
RESPECT TO THE DUT.  
VCC  
20  
19  
1
2
VCC  
OE2  
OE  
A0  
18  
16  
1
Y0  
15  
14  
13  
2
3
4
17  
16  
15  
3
4
5
Y1  
Y2  
Y3  
A1  
A2  
A3  
CSB1  
CSB2  
CHA  
D2_8  
U102  
D2_8  
74VHC541MTC  
D2_7  
SDI  
D2_7  
D2_6  
14  
13  
12  
11  
6
7
8
9
12  
11  
10  
5
6
7
Y4  
Y5  
Y6  
Y7  
A4  
A5  
A6  
A7  
D2_6  
SCLK  
CSB3  
CSB4  
D2_5  
D2_5  
D2_4  
D2_4  
22  
D2_3  
9
8
SDO  
D2_3  
GND  
10  
D2_2  
R103  
10k  
RZ101  
R104  
10kΩ  
D2_2  
D2_1  
D2_1  
D2_0  
D2_0  
LSB  
CTRL_D  
CTRL_C  
CTRL_D  
CTRL_C  
PLACEMENT OF HEADER KEY HERE  
Figure 6. Schematic (Continued)  
Rev. 0 | Page 15 of 28  
 
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
PC3  
R201  
R202  
0  
10kΩ  
E201  
VCC  
WEN2  
1
2
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
E202  
WEN  
SEN  
DNC  
VCC  
DNC  
IW  
RT  
OE  
OE2  
3
VCC  
Q17  
Q16  
GND  
GND  
Q15  
Q14  
VCC  
Q13  
Q12  
GND  
Q11  
GND  
Q10  
VCC  
Q9  
4
Q17  
Q16  
5
6
7
GND  
D17  
VCC  
D16  
D15  
D14  
D13  
GND  
D12  
D11  
D10  
D9  
D2_17  
8
Q15  
Q14  
9
D2_16  
D2_15  
D2_14  
D2_13  
IDT72V283  
TQFP80  
BOTTOM FIFO  
CHANNEL A  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Q13  
Q12  
Q11  
Q10  
D2_12  
D2_11  
D2_10  
D2_9  
Q9  
Q8  
Q7  
D2_8  
D8  
Q8  
VCC  
Q7  
U201  
VCC  
R203  
DNP  
WRT_CLK2  
R204  
DNP  
VCC  
C201  
0.1µF  
C202  
0.1µF  
C203  
0.1µF  
C204  
0.1µF  
C205  
0.1µF  
C206  
0.1µF  
C207  
0.1µF  
C208  
0.1µF  
Figure 7. Schematic (Continued)  
Rev. 0 | Page 16 of 28  
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
1
2
1
2
E D I S P O T O N  
S D A P N E E W T E B P E M R U S J E A C P L  
Figure 8. Schematic (Continued)  
Rev. 0 | Page 17 of 28  
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
Figure 9. Schematic (Continued)  
Rev. 0 | Page 18 of 28  
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
D 7  
8 8  
D 6  
8 7  
D 5  
8 6  
0 D F / 0 P B  
1 D F / 1 P B  
2 D F / 2 P B  
3 D F / 3 P B  
4 D F / 4 P B  
5 D F / 5 P B  
6 D F / 6 P B  
7 D F / 7 P B  
8 D F / 0 P D  
9 D F / 1 P D  
0 1 F / D P D 2  
1 1 D F / 3 P D  
2 1 F / D P D 4  
3 1 F / D P D 5  
4 1 F / D P D 6  
5 1 F / D P D 7  
1 D R X  
D 4  
6 3  
Q 0 4 4  
Q 1 4 5  
Q 2 4 6  
Q 3 4 7  
Q 4 5 4  
Q 5 5 5  
Q 6 5 6  
Q 7 5 7  
Q 8 2 1 0  
Q 9 3 1 0  
Q 1 4 1 0  
Q 1 5 1 0  
Q 1 1 1 2  
Q 1 2 1 2  
Q 1 3 1 2  
Q 1 4 1 2  
5 3  
D 3  
6 2  
D 2  
6 1  
D 1  
6 0  
D 0  
5 9  
T 0  
2 9  
T 1  
3 0  
T 2  
3 1  
5 L C T  
9 8  
6 7  
6 6  
7 1  
7 0  
6 9  
M
N 2 R E  
N 2 R E  
9  
9  
9  
9  
5 1 R 5 2 4 .  
4 L C T  
3 L C T  
5 1 R 4 2 4 .  
T X N E R E  
5 1 R 3 2 4 .  
0
1
2
3
4
5
C G A F * L / L T 2 C  
B G A F * L / L T 1 C  
N 1 R E  
5 1 R 2 2 4 .  
S N W E  
9 . 2 4 1 1 5 R  
A
A L G F * 0 L C T  
S
5 1 R 0 2 4 .  
M R  
9  
E D V R  
R E S E  
3 3  
1 0 k 5 0 R 9  
1 0 k 5 0 R 8  
B K P T  
3 4  
E A  
3 5  
1
T X D  
L
S C  
3 6  
5 2  
0 D R X  
A
S D  
3 7  
5 1  
0
T X D  
O E  
3 8  
5 0  
P U E K A * W  
T E R E S  
N
P S E 3 9  
1
1 0  
9 9  
B S U F F _  
R D  
4 0  
W R 4 1  
D V C C  
2
C S  
4 2  
C C A V  
1 0  
D
G N  
3
N D A G  
1 3  
Figure 10. Schematic (Continued)  
Rev. 0 | Page 19 of 28  
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
VCC  
CONNECTIONS FOR 2M WORD EXTERNAL MEMORY  
EXTERNAL MEMORY OVERRIDES ON BOARD MEMORIES WHEN PLUGGED IN. ONLY A SIDE DATA.  
C601  
0.1µF  
DNP  
J601  
1
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
U601  
D1_8  
D1_9  
DC8  
RENEXT  
QL0  
1
2
20 VCC  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
OUT_EN VCC  
DC9  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
16 Q0  
15 Q1  
14 Q2  
13 Q3  
12 Q4  
11 Q5  
10 Q6  
DC0  
DC3  
2
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
GND  
Q0  
Q1  
D1_10  
D1_11  
D1_12  
D1_13  
D1_14  
D1_15  
DC10  
DC11  
DC12  
DC13  
DC14  
DC15  
QL1  
3
2
3
4
5
6
7
8
3
QL2  
4
DC2  
4
Q2  
QL3  
5
DC6  
5
Q3  
QL4  
6
DC8  
6
Q4  
QL5  
7
DC7  
7
Q5  
QL6  
8
DC11  
DC10  
DC13  
8
Q6  
RZ601  
QL7  
9
9
Q7  
9
Q7  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
10  
D1_0  
D1_1  
D1_2  
D1_3  
D1_4  
D1_5  
D1_6  
D1_7  
DC0  
DC1  
DC2  
DC3  
DC4  
DC5  
DC6  
DC7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
DC14  
DC15  
CLOCK  
RZ605  
74LCX574  
DC4  
DC5  
J602  
DNP  
J603  
DC16  
DC1  
REN2M  
RCLK  
DC9  
J603: ALLOWS 2 MEG BUFFER TO READ BACK DATA  
ON EACH RCLK EDGE.  
J602: ALLOWS 2 MEG BUFFER TO READ BACK 1 DATA  
ON EVERY 3RD RCLK EDGE. J602 IS FOR  
DC17  
DC12  
RZ602  
BACKWARD COMPATABILITY IF NEEDED.  
R603  
0  
D1_16  
D1_17  
DC16  
DC17  
R604  
0Ω  
REN1  
RCLK  
EF1_BHB  
FF1_BHB  
MRS  
WEN1  
WRT_CLK1  
QL0  
QL1  
QL2  
QL3  
QL4  
QL5  
QL6  
QL7  
Figure 11. Schematic (Continued)  
Rev. 0 | Page 20 of 28  
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
PCB LAYOUT  
Figure 12. Layer 1—Primary Side  
Figure 13. Layer 2—Ground Plane  
Rev. 0 | Page 21 of 28  
 
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
Figure 14. Layer 3—Power Plane  
Figure 15. Layer 4—Secondary Side  
Rev. 0 | Page 22 of 28  
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
BILL OF MATERIALS  
Table 6. HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC Bill of Materials  
Item Qty Reference Designation  
Device  
Package  
Description  
Manufacturer  
Mfg Part Number  
1
42  
C101 to C109, C201 to C208,  
C302, C303, C305, C306, C308,  
C310, C311, C402 to C405,  
C503, C506 to C517, C601  
Capacitor  
402  
Ceramic, 0.1 μF, 16 V,  
X5R, 10%  
Panasonic  
ECJ-0EB1C014K  
2
3
2
1
1
2
1
1
2
1
1
1
1
1
C301, C307, C309  
C312, C313  
C501  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Diode  
6032-28  
603  
Tantalum, 10 μF, 16 V, Kemet  
10%  
T491C106K016AS  
ECJ-1VB1A105K  
ECS-T1CY105R  
ECJ-2FB1E225K  
ECJ-0EC1H120J  
S2A  
3
Ceramic, 1 μF, 10 V,  
X5R, 10%  
Panasonic  
4
3216-18  
805  
Tantalum, 1 μF, 16 V,  
20%  
Ceramic, 2.2 μF, 25 V,  
X5R 10%  
Ceramic, 12 pF,  
NPO, 50 V, 5%  
Panasonic  
Panasonic  
Panasonic  
5
C502  
6
C504, C505  
CR301  
402  
7
DO-214AA  
DO-214AB  
603  
Schottky diode,  
50 V, 2 A, SMC  
Micro Commercial  
Group  
8
CR302  
Diode  
Schottky diode,  
30 V, 3 A, SMC  
Micro Commercial  
Group  
SK33MSCT  
9
CR303, CR501  
CR502  
LED  
Green, 4 V 5 m,  
candela  
Switching, 75 V,  
150 mA  
6.0 V, 2.2 A trip current  
resettable fuse  
120-pin, female,  
Panasonic  
Diodes, Inc.  
Tyco, Raychem  
AMP  
LNJ314G8TRA  
1N4148W-7  
10  
11  
12  
13  
14  
Diode  
SOD-123  
1210  
F301  
Fuse  
NANOSMDC110F-2  
650874  
J104  
Connector  
PC mount, right angle  
J301  
Connector 0.08”, PCMT  
Connector 4-pin  
RAPC722, power  
supply connector  
Male, straight,  
100 mil  
Switchcraft  
SAMTEC  
SC1153  
J303  
TSW-1-10-08-GD  
15  
16  
4
8
J304, J305, J314, J315  
J310 to J313, J401, J404, J406,  
J603  
Connector 3-pin  
Connector 603  
Male, straight, 100 mil  
2-pin solder jumper,  
0 Ω, 1/10 W, 5%  
SAMTEC  
Panasonic  
TWS-103-08-G-S  
ERJ-3GEY0R00V  
17  
18  
1
1
J316  
J501  
Connector 2-pin  
Connector 4-pin  
Male, straight, 100 mil  
USB, PC mount, right  
angle, Type B, female  
SAMTEC  
AMP  
TSW-1002-08-G-S  
787780-1  
19  
1
L501  
Ferrite  
Bead  
805  
500 mA, 600 Ω @  
100 MHz  
Steward  
HZ0805E601R-00  
20  
21  
5
8
R101, R201, R524, R603, R604  
R102 to R04, R202, R508, R509,  
R518, R4519  
Resistor  
Resistor  
402  
402  
0 Ω, 1/16 W, 5%  
10 kΩ, 1/16 W, 1%  
Panasonic  
Panasonic  
ERJ-2GE0R00X  
ERJ-2RKF1002X  
22  
10  
R301 to R304, R311, R313,  
R314, R316, R521, R522  
Resistor  
402  
332 Ω, 1/16 W, 1%  
Panasonic  
ERJ-2RKF3320X  
23  
24  
25  
26  
2
2
1
8
R309, R310  
R317, R503  
R401  
R404, R405, R407, R408, R410,  
R411, R413, R414  
Resistor  
Resistor  
Resistor  
Resistor  
402  
402  
402  
402  
1 kΩ, 1/16 W, 1%  
499 Ω, 1/16 W, 1%  
20 kΩ, 1/16 W, 1%  
49.9 Ω, 1/16 W, 1%  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
ERJ-2RKF1002X  
ERJ-2RKF1001X  
ERJ-2RKF4990X  
ERJ-2RKF2002X  
27  
28  
29  
4
1
13  
R406, R409, R412, R415  
R502  
R504, R506, R507, R510 to R515,  
R520, R525, R526  
Resistor  
Resistor  
Resistor  
402  
402  
402  
40.2 Ω, 1/16 W, 1%  
100 kΩ, 1/16 W, 1%  
24.9 Ω, 1/16 W, 1%  
Panasonic  
Panasonic  
Panasonic  
ERJ-2RKF40R2X  
ERJ-2RKF1003X  
ERJ-2RKF24R9X  
30  
31  
3
1
R516, R517, R523  
RZ101  
Resistor  
Resistor  
402  
2 kΩ, 1/16 W, 1%  
Resistor array, 22 Ω,  
1/4 W, 5%  
Panasonic  
Panasonic  
ERJ-2RKF2001X  
EXB-2HV220JX  
32  
1
S501  
Switch  
Momentary (normally Panasonic  
open), 100 GE, 5 mm,  
SPST  
EVQ-PLDA15  
Rev. 0 | Page 23 of 28  
 
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
Item Qty Reference Designation  
Device  
Package  
Description  
Manufacturer  
Mfg Part Number  
33  
1
T301  
Choke  
2020  
10 μH, 5 A, 50 V,  
190 Ω @ 100 MHz  
3.3 V,  
IDT72V283L7-5PF  
74VHC541,  
octal buffer/line  
driver, three-state  
DS90LV048A  
Murata  
DLW5BSN191SQ2L  
341  
2
U101, U201  
IC  
IC  
TQFP80  
SOIC20  
IDT  
IDT72V283L7-5PF  
74VHC541M  
35  
36  
1
1
U102  
U301  
Fairchild  
IC  
SOIC16  
National  
DS90LV048A  
Semiconductor  
37  
38  
39  
40  
41  
1
1
1
1
1
U302  
U401  
U402  
U403  
U501  
IC  
IC  
IC  
IC  
IC  
SOIC14  
SO8M1  
TSSOP20  
SO8M1  
SOT23L5  
74VCX86  
Fairchild  
Motorola  
74VCX86  
MC100EPT22D  
MC100EPT22D  
MC100EP29DT  
MC100EPT23D  
ON Semiconductor MC100EP29DT  
Motorola  
Fairchild  
MC100EPT23D  
NC7SZ32M5  
NC7SZ32M5,  
NC7SZ32, tiny log  
UHS 2-input or gate  
42  
1
U502  
IC  
TQFP128  
CY7C68013  
Cypress  
CY7C68013-128AXC  
or  
CY7C68014A-128AXC  
24LC00P  
SN74LVC2G74DCTR  
43  
44  
1
1
U503  
U504  
IC  
IC  
DIP8  
24LC00P  
Microchip  
Texas Instruments  
DCT_8PIN_06, SN74LVC2G74DCTR,  
D-type flip-flop,  
DCT_8PIN_0.65MM  
5 mm  
45  
46  
1
1
U505  
U601  
IC  
IC  
SOIC 14  
74LVQ04SC, low  
voltage hex inverter  
74LCX574WM-ND,  
74LCX574 octal D-type  
flip-flop  
Fairchild  
Fairchild  
74LVQ04SC  
DIP20/SOL  
74LCX574WM-ND  
47  
1
VR301  
IC  
SOT-223HS  
Crystal  
High accuracy,  
ADP3339AKC-3.3, 3.3 V  
Oscillator, 24 MHz  
0.1” jumpers  
Analog Devices  
ADP3339AKC-3.3  
48  
49  
1
6
Y501  
Crystal  
Connector 100 mil  
jumper  
Ecliptek  
Samtec  
EC-12-24.000M  
SNT-100-BK-G-H  
See schematic for placement  
50  
51  
4
2
Insert from bottom side of  
board  
See schematic for placement  
Standoff  
Plastic mount 7/8” height, standoffs Richco  
standoffs  
CBSB-14-01A-RT  
TSW-104-07-T-S  
Connector Third-row  
header key  
These header inserts  
for J104, Pin 81, and  
Pin 120 are located  
on the edges of the  
top row  
Samtec  
1 Only U201 is populated for the single-channel version (HSC-ADC-EVALB-SC).  
Rev. 0 | Page 24 of 28  
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
ORDERING INFORMATION  
ORDERING GUIDE  
Model  
Description  
HSC-ADC-EVALB-SC  
HSC-ADC-EVALB-DC  
HSC-ADC-FPGA-4/-8  
Single FIFO Version of USB Evaluation Kit  
Dual FIFO Version of USB Evaluation Kit  
Quad/Octal Serial LVDS to Dual Parallel CMOS Interface; supports all Quad/Octal ADCs in this family except  
the AD9289 (not Included in Evaluation Kit)  
HSC-ADC-FPGA-9289  
AD922XFFA1  
AD9283FFA1  
AD9059FFA1  
AD9051FFA1  
LG-0204A1  
Quad Serial LVDS to Dual Parallel CMOS Interface for the AD9289 Only (Not Included in Evaluation Kit)  
Adapter for AD922x Family (Not Included in Evaluation Kit)  
Adapter for the AD9283 and AD9057 (Not Included in Evaluation Kit)  
Adapter for the AD9059 (Not Included in Evaluation Kit)  
Adapter for the AD9051 (Not Included in Evaluation Kit)  
Adapter for the AD10xxx and AD13xxx Families (Not Included in Evaluation Kit)  
1 If an adapter is needed, send an email to highspeed.converters@analog.com.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 25 of 28  
 
 
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
NOTES  
Rev. 0 | Page 26 of 28  
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
NOTES  
Rev. 0 | Page 27 of 28  
HSC-ADC-EVALB-SC/HSC-ADC-EVALB-DC  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
EB05870-0-2/06(0)  
Rev. 0 | Page 28 of 28  
 
 
 
 
 

相关型号:

AD9235BCP-65EBZ

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9235BCPZ-20

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9235BCPZ-40

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9235BCPZ-65

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9235BCPZRL7-20

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9235BCPZRL7-40

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9235BCPZRL7-65

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9235BRU-20

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9235BRU-40

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9235BRU-65

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9235BRURL7-20

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9235BRURL7-40

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI