AD9235BRU-40 [ADI]

12-Bit, 20/40/65 MSPS 3 V A/D Converter; 12位20/40/65 MSPS 3 V A / D转换器
AD9235BRU-40
型号: AD9235BRU-40
厂家: ADI    ADI
描述:

12-Bit, 20/40/65 MSPS 3 V A/D Converter
12位20/40/65 MSPS 3 V A / D转换器

转换器
文件: 总32页 (文件大小:1129K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-Bit, 20/40/65 MSPS  
3 V A/D Converter  
a
AD9235  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
AVDD  
DRVDD  
Single 3 V Supply Operation (2.7 V to 3.6 V)  
SNR = 70 dBc to Nyquist at 65 MSPS  
SFDR = 85 dBc to Nyquist at 65 MSPS  
Low Power: 300 mW at 65 MSPS  
Differential Input with 500 MHz Bandwidth  
On-Chip Reference and SHA  
VIN+  
VIN–  
8-STAGE  
SHA  
MDAC1  
A/D  
1 1/2-BIT PIPELINE  
3
4
16  
REFT  
REFB  
A/D  
DNL = 0.4 LSB  
Flexible Analog Input: 1 V p-p to 2 V p-p Range  
Offset Binary or Twos Complement Data Format  
Clock Duty Cycle Stabilizer  
CORRECTION LOGIC  
12  
OTR  
OUTPUT BUFFERS  
D11  
D0  
APPLICATIONS  
Ultrasound Equipment  
AD9235  
VREF  
IF Sampling in Communications Receivers:  
IS-95, CDMA-One, IMT-2000  
Battery-Powered Instruments  
Hand-Held Scopemeters  
CLOCK  
DUTY CYCLE  
STABLIZER  
MODE  
SELECT  
SENSE  
REF  
SELECT  
0.5V  
Low Cost Digital Oscilloscopes  
CLK  
PDWN  
DGND  
AGND  
MODE  
PRODUCT DESCRIPTION  
PRODUCT HIGHLIGHTS  
The AD9235 is a family of monolithic, single 3 V supply, 12-bit,  
20/40/65 MSPS analog-to-digital converters. This family  
features a high performance sample-and-hold amplifier (SHA)  
and voltage reference. The AD9235 uses a multistage differential  
pipelined architecture with output error correction logic to provide  
12-bit accuracy at 20/40/65 MSPS data rates and guarantee  
no missing codes over the full operating temperature range.  
1. The AD9235 operates from a single 3 V power supply and  
features a separate digital output driver supply to accommodate  
2.5 V and 3.3 V logic families.  
2. Operating at 65 MSPS, the AD9235 consumes a low 300 mW.  
3. The patented SHA input maintains excellent performance  
for input frequencies up to 100 MHz and can be configured  
for single-ended or differential operation.  
The wide bandwidth, truly differential SHA allows a variety of  
user-selectable input ranges and offsets including single-ended  
applications. It is suitable for multiplexed systems that switch  
full-scale voltage levels in successive channels and for sampling  
single-channel inputs at frequencies well beyond the Nyquist rate.  
Combined with power and cost savings over previously available  
analog-to-digital converters, the AD9235 is suitable for applica-  
tions in communications, imaging, and medical ultrasound.  
4. The AD9235 pinout is similar to the AD9214-65, a 10-bit,  
65 MSPS ADC. This allows a simplified upgrade path from  
10 bits to 12 bits for 65 MSPS systems.  
5. The clock DCS maintains overall ADC performance over a  
wide range of clock pulsewidths.  
6. The OTR output bit indicates when the signal is beyond the  
selected input range.  
A single-ended clock input is used to control all internal conversion  
cycles. A duty cycle stabilizer (DCS) compensates for wide  
variations in the clock duty cycle while maintaining excellent  
overall ADC performance. The digital output data is presented  
in straight binary or twos complement formats. An out-of-range  
(OTR) signal indicates an overflow condition that can be used  
with the most significant bit to determine low or high overflow.  
Fabricated on an advanced CMOS process, the AD9235 is available  
in a 28-lead thin shrink small outline package (TSSOP) and a  
32-lead chip scale package (LFCSP) and is specified over the  
industrial temperature range (–40°C to +85°C).  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD9235–SPECIFICATIONS  
(AVDD = 3 V, DRVDD = 2.5 V, Maximum Sample Rate, 2 V p-p Differential Input,  
DC SPECIFICATIONS 1.0 V internal reference, TMIN to TMAX, unless otherwise noted.)  
Test  
AD9235BRU-20  
Max  
AD9235BRU-40  
AD9235BRU/BCP-65  
Parameter  
Temp Level Min Typ  
Min Typ  
Max  
Min Typ  
Max  
Unit  
RESOLUTION  
Full  
VI  
12  
12  
12  
Bits  
ACCURACY  
No Missing Codes Guaranteed  
Offset Error  
Full  
Full  
Full  
Full  
25°C  
Full  
25°C  
VI  
VI  
VI  
IV  
I
12  
12  
12  
Bits  
0.30  
0.30  
0.35  
0.35  
0.45  
0.40  
1.20  
2.40  
0.65  
0.50  
1.20  
2.50  
0.75  
0.50  
1.20  
2.60  
0.80  
% FSR  
% FSR  
LSB  
LSB  
LSB  
Gain Error1  
0.50  
0.35  
0.35  
0.50  
0.40  
0.50  
0.40  
0.35  
0.70  
0.45  
Differential Nonlinearity (DNL)2  
Integral Nonlinearity (INL)2  
IV  
I
0.80  
0.90  
1.30  
LSB  
TEMPERATURE DRIFT  
Offset Error  
Full  
Full  
V
V
2
12  
2
12  
3
12  
ppm/°C  
ppm/°C  
Gain Error1  
INTERNAL VOLTAGE  
REFERENCE  
Output Voltage Error (1 V Mode)  
Load Regulation @ 1.0 mA  
Output Voltage Error (0.5 V Mode)  
Load Regulation @ 0.5 mA  
Full  
Full  
Full  
Full  
VI  
V
V
5
35  
5
35  
5
35  
mV  
mV  
mV  
mV  
0.8  
2.5  
0.1  
0.8  
2.5  
0.1  
0.8  
2.5  
0.1  
V
INPUT REFERRED NOISE  
VREF = 0.5 V  
VREF = 1.0 V  
25°C  
25°C  
V
V
0.54  
0.27  
0.54  
0.27  
0.54  
0.27  
LSB rms  
LSB rms  
ANALOG INPUT  
Input Span, VREF = 0.5 V  
Input Span, VREF = 1.0 V  
Input Capacitance3  
Full  
Full  
Full  
IV  
IV  
V
1
2
7
1
2
7
1
2
7
V p-p  
V p-p  
pF  
REFERENCE INPUT  
RESISTANCE  
Full  
V
7
7
7
kΩ  
POWER SUPPLIES  
Supply Voltages  
AVDD  
Full  
Full  
IV  
IV  
2.7 3.0  
2.25 3.0  
3.6  
3.6  
2.7 3.0  
2.25 3.0  
3.6  
3.6  
2.7 3.0  
2.25 3.0  
3.6  
3.6  
V
V
DRVDD  
Supply Current  
IAVDD2  
Full  
Full  
Full  
V
V
V
30  
2
0.01  
55  
5
0.01  
100  
7
0.01  
mA  
mA  
% FSR  
IDRVDD2  
PSRR  
POWER CONSUMPTION  
DC Input4  
Full  
Full  
Full  
V
VI  
V
90  
95  
1.0  
165  
180  
1.0  
300  
320  
1.0  
mW  
mW  
mW  
Sine Wave Input2  
Standby Power5  
110  
205  
350  
NOTES  
1Gain error and gain temperature coefficient are based on the ADC only (with a fixed 1.0 V external reference).  
2Measured at maximum clock rate, fIN = 2.4 MHz, full-scale sine wave, with approximately 5 pF loading on each output bit.  
3Input capacitance refers to the effective capacitance between one differential input pin and AGND. Refer to Figure 2 for the equivalent analog input structure.  
4Measured with dc input at maximum clock rate.  
5Standby power is measured with a dc input, the CLK pin inactive (i.e., set to AVDD or AGND).  
Specifications subject to change without notice.  
–2–  
REV. B  
AD9235  
DIGITAL SPECIFICATIONS  
Test  
AD9235BRU-20  
AD9235BRU-40  
AD9235BRU/BCP-65  
Parameter  
Temp Level Min  
Typ  
Max Min  
Typ  
Max Min  
Typ  
Max Unit  
LOGIC INPUTS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
Full  
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
V
2.0  
2.0  
2.0  
V
V
µA  
µA  
pF  
0.8  
+10  
+10  
0.8  
+10  
+10  
0.8  
+10  
+10  
–10  
–10  
–10  
–10  
–10  
–10  
2
2
2
LOGIC OUTPUTS*  
DRVDD = 3.3 V  
High-Level Output Voltage  
(IOH = 50 µA)  
High-Level Output Voltage  
(IOH = 0.5 mA)  
Low-Level Output Voltage  
(IOL = 1.6 mA)  
Low-Level Output Voltage  
(IOL = 50 µA)  
DRVDD = 2.5 V  
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
3.29  
3.25  
3.29  
3.25  
3.29  
3.25  
V
V
V
V
0.2  
0.2  
0.2  
0.05  
0.05  
0.05  
High-Level Output Voltage  
(IOH = 50 µA)  
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
2.49  
2.45  
2.49  
2.45  
2.49  
2.45  
V
V
V
V
High-Level Output Voltage  
(IOH = 0.5 mA)  
Low-Level Output Voltage  
(IOL = 1.6 mA)  
Low-Level Output Voltage  
(IOL = 50 µA)  
0.2  
0.2  
0.2  
0.05  
0.05  
0.05  
*Output voltage levels measured with 5 pF load on each output.  
Specifications subject to change without notice.  
SWITCHING SPECIFICATIONS  
Test  
AD9235BRU-20  
AD9235BRU-40  
AD9235BRU/BCP-65  
Parameter  
Temp Level Min  
Typ  
Max Min  
Typ  
Max Min  
Typ  
Max Unit  
CLOCK INPUT PARAMETERS  
Maximum Conversion Rate  
Minimum Conversion Rate  
CLK Period  
Full  
Full  
Full  
Full  
Full  
VI  
V
V
V
V
20  
40  
65  
MSPS  
MSPS  
ns  
ns  
ns  
1
1
1
50.0  
15.0  
15.0  
25.0  
8.8  
8.8  
15.4  
6.2  
6.2  
CLK Pulsewidth High1  
CLK Pulsewidth Low1  
DATA OUTPUT PARAMETERS  
Output Delay2 (tPD  
)
Full  
Full  
Full  
Full  
Full  
V
V
V
V
V
3.5  
7
1.0  
0.5  
3.0  
3.5  
7
1.0  
0.5  
3.0  
3.5  
7
1.0  
0.5  
3.0  
ns  
Cycles  
ns  
ps rms  
ms  
Pipeline Delay (Latency)  
Aperture Delay (tA)  
Aperture Uncertainty Jitter (tJ)  
Wake-Up Time3  
OUT-OF-RANGE RECOVERY  
TIME  
Full  
V
1
1
2
Cycles  
NOTES  
1For the AD9235-65 model only, with duty cycle stabilizer enabled. DCS function not applicable for -20 and -40 models.  
2Output delay is measured from CLK 50% transition to DATA 50% transition, with 5 pF load on each output.  
3Wake-up time is dependent on value of decoupling capacitors; typical values shown with 0.1 µF and 10 µF capacitors on REFT and REFB.  
Specifications subject to change without notice.  
N+1  
N
N+2  
N+8  
N–1  
N+3  
t
A
ANALOG  
INPUT  
N+7  
N+4  
N+6  
N+5  
CLK  
DATA  
OUT  
N–9  
N–8  
N–7  
N–6  
N–5  
N–4  
N–3  
N–2  
N–1  
N
tPD = 6.0ns MAX  
2.0ns MIN  
Figure 1. Timing Diagram  
–3–  
REV. B  
AD9235–SPECIFICATIONS  
(AVDD = 3 V, DRVDD = 2.5 V, Maximum Sample Rate, 2 V p-p Differential Input, AIN = –0.5 dBFS,  
1.0 V internal reference, TMIN to TMAX, unless otherwise noted.)  
AC SPECIFICATIONS  
Test  
AD9235BRU-20  
AD9235BRU-40  
AD9235BRU/BCP-65  
Parameter  
Temp Level Min  
Typ  
Max Min  
Typ  
Max Min  
Typ  
Max Unit  
SIGNAL-TO-NOISE RATIO  
fINPUT = 2.4 MHz  
25°C  
Full  
25°C  
Full  
25°C  
Full  
25°C  
25°C  
V
IV  
I
IV  
I
IV  
I
V
70.8  
70.4  
70.6  
70.6  
70.5  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
f
INPUT = 9.7 MHz  
70.0  
fINPUT = 19.6 MHz  
fINPUT = 32.5 MHz  
fINPUT = 100 MHz  
69.9  
70.3  
70.4  
68.7 69.7  
70.1  
68.7  
68.5  
70.5  
68.3  
SIGNAL-TO-NOISE RATIO  
AND DISTORTION  
fINPUT = 2.4 MHz  
25°C  
Full  
25°C  
Full  
25°C  
Full  
25°C  
25°C  
V
IV  
I
IV  
I
IV  
I
V
70.6  
70.3  
70.5  
70.4  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
f
INPUT = 9.7 MHz  
69.9  
fINPUT = 19.6 MHz  
fINPUT = 32.5 MHz  
fINPUT = 100 MHz  
69.7  
70.2  
70.3  
68.3 69.5  
69.9  
68.6  
68.3  
67.8  
TOTAL HARMONIC  
DISTORTION  
fINPUT = 2.4 MHz  
fINPUT = 9.7 MHz  
25°C  
Full  
25°C  
Full  
25°C  
Full  
25°C  
25°C  
V
IV  
I
IV  
I
IV  
I
V
–88.0  
–86.0 –79.0  
–87.4  
–89.0  
–87.5  
dBc  
dBc  
dBc  
dBc  
dBc  
fINPUT = 19.6 MHz  
fINPUT = 32.5 MHz  
fINPUT = 100 MHz  
–85.5 –79.0  
–86.0  
–81.8 –74.0 dBc  
–82.0  
–78.0  
dBc  
dBc  
–84.0  
–82.5  
WORST HARMONIC  
(Second or Third)  
fINPUT = 9.7 MHz  
fINPUT = 19.6 MHz  
fINPUT = 32.5 MHz  
Full  
Full  
Full  
IV  
IV  
IV  
–90.0 –80.0  
dBc  
dBc  
–90.0 –80.0  
–83.5 –74.0 dBc  
SPURIOUS FREE DYNAMIC  
RANGE  
fINPUT = 2.4 MHz  
fINPUT = 9.7 MHz  
25°C  
Full  
25°C  
Full  
25°C  
Full  
25°C  
25°C  
V
IV  
I
IV  
I
IV  
I
V
92.0  
88.5  
91.0  
92.0  
92.0  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
80.0  
fINPUT = 19.6 MHz  
fINPUT = 32.5 MHz  
fINPUT = 100 MHz  
80.0  
89.0  
90.0  
74.0 83.0  
85.0  
84.0  
85.0  
80.5  
Specifications subject to change without notice.  
–4–  
REV. B  
AD9235  
ABSOLUTE MAXIMUM RATINGS1  
With  
EXPLANATION OF TEST LEVELS  
100% production tested.  
I
Pin Name  
Respect to Min Max  
Unit  
II 100% production tested at 25°C and sample tested at  
specified temperatures.  
ELECTRICAL  
AVDD  
DRVDD  
AGND  
AVDD  
Digital Outputs  
CLK, MODE  
VIN+, VIN–  
VREF  
SENSE  
REFB, REFT  
PDWN  
III Sample tested only.  
AGND  
DGND  
DGND  
DRVDD  
DGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
–0.3 +3.9  
–0.3 +3.9  
–0.3 +0.3  
–3.9 +3.9  
–0.3 DRVDD + 0.3  
–0.3 AVDD + 0.3  
–0.3 AVDD + 0.3  
–0.3 AVDD + 0.3  
–0.3 AVDD + 0.3  
–0.3 AVDD + 0.3  
–0.3 AVDD + 0.3  
V
V
V
V
V
V
V
V
V
V
V
IV Parameter is guaranteed by design and characterization testing.  
V
Parameter is a typical value only.  
VI 100% production tested at 25°C; guaranteed by design and  
characterization testing for industrial temperature range;  
100% production tested at temperature extremes for military  
devices.  
ENVIRONMENTAL2  
Operating Temperature  
Junction Temperature  
Lead Temperature (10 sec)  
Storage Temperature  
–40 +85  
150  
300  
–65 +150  
°C  
°C  
°C  
°C  
NOTES  
1Absolute maximum ratings are limiting values to be applied individually and  
beyond which the serviceability of the circuit may be impaired. Functional  
operability is not necessarily implied. Exposure to absolute maximum rating  
conditions for an extended period of time may affect device reliability.  
2Typical thermal impedances (28-lead TSSOP), θJA = 67.7°C/W; (32-lead LFCSP),  
θ
JA = 32.5°C/W, θJC = 32.71°C/W. These measurements were taken on a 4-layer  
board in still air, in accordance with EIA/JESD51-1.  
ORDERING GUIDE  
Temperature Range Package Description  
Model  
Package Option  
AD9235BRU-20  
AD9235BRU-40  
AD9235BRU-65  
AD9235BCP-20*  
AD9235BCP-40*  
AD9235BCP-65*  
AD9235-20PCB  
AD9235-40PCB  
AD9235-65PCB  
AD9235BCP-20EB  
AD9235BCP-40EB  
AD9235BCP-65EB  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
32-Lead Lead Frame Chip Scale Package (LFCSP) (Contact Factory) CP-32  
32-Lead Lead Frame Chip Scale Package (LFCSP) (Contact Factory) CP-32  
32-Lead Lead Frame Chip Scale Package (LFCSP)  
TSSOP Evaluation Board  
TSSOP Evaluation Board  
RU-28  
RU-28  
RU-28  
CP-32  
TSSOP Evaluation Board  
LFCSP Evaluation Board (Contact Factory)  
LFCSP Evaluation Board (Contact Factory)  
LFCSP Evaluation Board  
*It is recommended that the exposed paddle be soldered to the ground plane. There is an increased reliability of the solder joints and maximum thermal capability of  
the package is achieved with exposed paddle soldered to the customer board.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD9235 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. B  
–5–  
AD9235  
PIN CONFIGURATION  
28-Lead TSSOP  
32-Lead LFCSP  
OTR  
MODE  
SENSE  
VREF  
REFB  
REFT  
AVDD  
AGND  
VIN+  
D11 (MSB)  
D10  
1
2
3
4
5
6
7
8
9
28  
27  
26  
25  
24  
D9  
D8  
DNC 1  
CLK 2  
DNC 3  
PDWN 4  
DNC 5  
DNC 6  
24 VREF  
23 SENSE  
22 MODE  
21 OTR  
20 D11(MSB)  
19 D10  
PIN 1  
INDICATOR  
DRVDD  
AD9235  
TOP VIEW  
(Not to Scale)  
23 DGND  
AD9235  
22  
D7  
TOP VIEW  
(Not to Scale)  
21 D6  
20 D5  
(LSB)D0 7  
D1 8  
18 D9  
17 D8  
VIN– 10  
D4  
D3  
D2  
19  
18  
17  
AGND  
AVDD  
11  
12  
CLK 13  
14  
16 D1  
PDWN  
15 D0 (LSB)  
PIN FUNCTION DESCRIPTIONS  
Description  
Pin Number  
Mnemonic  
28-Lead  
TSSOP  
32-Lead  
LFCSP  
1
21  
OTR  
Out-of-Range Indicator.  
2
3
4
5
22  
23  
24  
25  
MODE  
SENSE  
VREF  
REFB  
REFT  
AVDD  
AGND  
VIN+  
Data Format and Clock Duty Cycle Stabilizer (DCS) Mode Selection.  
Reference Mode Selection.  
Voltage Reference Input/Output.  
Differential Reference (–).  
Differential Reference (+).  
Analog Power Supply.  
6
26  
7, 12  
8, 11  
9
27, 32  
28, 31  
29  
Analog Ground.  
Analog Input Pin (+).  
10  
30  
VIN–  
Analog Input Pin (–).  
13  
2
CLK  
Clock Input Pin.  
14  
4
PDWN  
Power-Down Function Selection (Active High).  
15–22,  
25–28  
23  
7-14,  
17-20  
15  
D0 (LSB)–D11(MSB) Data Output Bits.  
DGND  
Digital Output Ground.  
24  
16  
DRVDD  
Digital Output Driver Supply. Must be decoupled to DGND with a minimum  
0.1 µF capacitor. Recommended decoupling is 0.1 µF in parallel with 10 µF.  
Do Not Connect.  
1, 3, 5, 6  
DNC  
–6–  
REV. B  
AD9235  
DEFINITIONS OF SPECIFICATIONS  
Signal-to-Noise and Distortion (SINAD)*  
Analog Bandwidth (Full Power Bandwidth)  
The analog input frequency at which the spectral power of the  
fundamental frequency (as determined by the FFT analysis) is  
reduced by 3 dB.  
The ratio of the rms signal amplitude (set 0.5 dB below full scale)  
to the rms value of the sum of all other spectral components below  
the Nyquist frequency, including harmonics but excluding dc.  
Effective Number of Bits (ENOB)  
Aperture Delay (tA)  
The delay between the 50% point of the rising edge of the clock  
and the instant at which the analog input is sampled.  
The effective number of bits for a device for sine wave inputs at  
a given input frequency can be calculated directly from its mea-  
sured SINAD using the following formula  
Aperture Jitter (tJ)  
The sample-to-sample variation in aperture delay.  
N = SINAD 1.76 6.02  
(
)
Signal-to-Noise Ratio (SNR)*  
Integral Nonlinearity (INL)  
The ratio of the rms signal amplitude (set at 0.5 dB below  
full scale) to the rms value of the sum of all other spectral  
components below the Nyquist frequency, excluding the first six  
harmonics and dc.  
The deviation of each individual code from a line drawn from  
negative full scale through positive full scale. The point used as  
negative full scale occurs 1/2 LSB before the first code transi-  
tion. Positive full scale is defined as a level 1 1/2 LSBs beyond  
the last code transition. The deviation is measured from the  
middle of each particular code to the true straight line.  
Spurious Free Dynamic Range (SFDR)*  
The difference in dB between the rms amplitude of the input signal  
and the peak spurious signal.  
Differential Nonlinearity (DNL, No Missing Codes)  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. Guaranteed  
no missing codes to 12-bit resolution indicates that all 4096 codes  
must be present over all operating ranges.  
Two-Tone SFDR*  
The ratio of the rms value of either input tone to the rms value  
of the peak spurious component. The peak spurious component  
may or may not be an IMD product.  
Clock Pulsewidth and Duty Cycle  
Offset Error  
Pulsewidth high is the minimum amount of time that the clock  
pulse should be left in the Logic 1 state to achieve rated perfor-  
mance. Pulsewidth low is the minimum time the clock pulse  
should be left in the low state. At a given clock rate, these speci-  
fications define an acceptable clock duty cycle.  
The major carry transition should occur for an analog value 1/2 LSB  
below VIN+ = VIN–. Offset error is defined as the deviation of  
the actual transition from that point.  
Gain Error  
The first code transition should occur at an analog value 1/2  
LSB above negative full scale. The last transition should occur  
at an analog value 1 1/2 LSB below the positive full scale. Gain  
error is the deviation of the actual difference between first and  
last code transitions and the ideal difference between first and  
last code transitions.  
Minimum Conversion Rate  
The clock rate at which the SNR of the lowest analog signal  
frequency drops by no more than 3 dB below the guaranteed limit.  
Maximum Conversion Rate  
The clock rate at which parametric testing is performed.  
Output Propagation Delay (tPD  
)
Temperature Drift  
The delay between the clock logic threshold and the time when  
all bits are within valid logic levels.  
The temperature drift for offset error and gain error specifies the  
maximum change from the initial (25°C) value to the value at  
TMIN or TMAX  
.
Out-of-Range Recovery Time  
The time it takes for the ADC to reacquire the analog input after  
a transition from 10% above positive full scale to 10% above  
negative full scale, or from 10% below negative full scale to 10%  
below positive full scale.  
Power Supply Rejection Ratio  
The change in full scale from the value with the supply at the  
minimum limit to the value with the supply at its maximum  
limit.  
Total Harmonic Distortion (THD)*  
The ratio of the rms sum of the first six harmonic components  
to the rms value of the measured input signal.  
*AC specifications may be reported in dBc (degrades as signal levels are lowered) or in dBFS (always related back to converter full scale).  
REV. B  
–7–  
AD9235  
Equivalent Circuits  
DRVDD  
AVDD  
D11–D0,  
OTR  
VIN+, VIN–  
Figure 4. Equivalent Digital Output Circuit  
Figure 2. Equivalent Analog Input Circuit  
AVDD  
AVDD  
MODE  
CLK,  
PDWN  
20k  
Figure 3. Equivalent MODE Input Circuit  
Figure 5. Equivalent Digital Input Circuit  
–8–  
REV. B  
AD9235  
Typical Performance Characteristics  
(AVDD = 3.0 V, DRVDD = 2.5 V, fSAMPLE = 65 MSPS with DCS Disabled, TA = 25C, 2 V Differential Input, AIN = –0.5 dBFS, VREF = 1.0 V,  
unless otherwise noted.)  
0
–20  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
SNR = 70.3dBc  
SFDR (2V DIFF)  
SINAD = 70.2dBc  
ENOB = 11.4 BITS  
THD = –86.3dBc  
SFDR = 89.9dBc  
–40  
SNR (2V SE)  
–60  
–80  
SNR (2V DIFF)  
–100  
SFDR (2V SE)  
45  
–120  
0.0  
6.5  
13.0  
19.5  
26.0  
32.5  
40  
50  
55  
SAMPLE RATE MSPS)  
60  
65  
FREQUENCY (MHz)  
(
TPC 1. Single Tone 8K FFT with fIN = 10 MHz  
TPC 4. AD9235-65: Single Tone SNR/SFDR vs. fCLK with  
fIN = Nyquist (32.5 MHz)  
100  
95  
0
SNR = 69.4dBc  
SINAD = 69.1dBc  
ENOB = 11.2 BITS  
–20  
–40  
THD = –81.0dBc  
SFDR = 83.8dBc  
90  
85  
SFDR (2V DIFF)  
80  
SNR (2V SE)  
SNR (2V DIFF)  
75  
70  
65  
–60  
–80  
60  
SFDR (2V SE)  
–100  
55  
50  
–120  
20  
25  
30  
35  
40  
65.0  
71.5  
78.0  
84.5  
91.0  
SAMPLE RATE (MSPS)  
FREQUENCY (MHz)  
TPC 5. AD9235-40: Single Tone SNR/SFDR vs. fCLK with  
fIN = Nyquist (20 MHz)  
TPC 2. Single Tone 8K FFT with fIN = 70 MHz  
0
100  
SNR = 68.5dBc  
SINAD = 66.5dBc  
ENOB = 10.8 BITS  
THD = –71.0dBc  
SFDR = 71.2dBc  
SFDR (2V DIFF)  
95  
–20  
–40  
90  
85  
SFDR (2V SE)  
80  
–60  
75  
70  
65  
60  
55  
50  
SNR (2V SE)  
–80  
SNR (2V DIFF)  
–100  
–120  
97.5  
104.0  
110.5  
117.0  
123.5  
130.0  
0
5
10  
15  
20  
FREQUENCY (MHz)  
SAMPLE RATE (MSPS)  
TPC 6. AD9235-20: Single Tone SNR/SFDR vs. fCLK with  
fIN = Nyquist (10 MHz)  
TPC 3. Single Tone 8K FFT with fIN = 100 MHz  
REV. B  
–9–  
AD9235  
95  
90  
85  
80  
75  
100  
90  
80  
70  
60  
50  
40  
SFDR  
SFDR  
SINGLE-ENDED (dBFS)  
DIFFERENTIAL (dBFS)  
SFDR  
SFDR  
DIFFERENTIAL (dBc)  
SNR  
DIFFERENTIAL (dBFS)  
SNR  
SINGLE-ENDED (dBFS)  
SFDR  
SINGLE-ENDED (dBc)  
SNR  
25  
SNR  
SINGLE-ENDED (dBc)  
70  
65  
SNR  
DIFFERENTIAL (dBc)  
0
50  
75  
100  
125  
–30  
–25  
–20  
–15  
–10  
–5  
20  
Input Frequency (MHz)  
A
(dBFS)  
IN  
TPC 10. AD9235-65: SNR/SFDR vs. fIN  
TPC 7. AD9235-65: Single Tone SNR/SFDR vs. AIN with  
fIN = Nyquist (32.5 MHz)  
95  
90  
85  
80  
75  
100  
SFDR  
DIFFERENTIAL (dBFS)  
SFDR  
90  
SFDR  
SFDR  
SINGLE-ENDED  
DIFFERENTIAL  
SNR  
DIFFERENTIAL  
(dBFS)  
(dBFS)  
(dBc)  
80  
70  
60  
50  
40  
SNR  
SINGLE-ENDED  
(dBFS)  
SFDR  
SINGLE-ENDED  
(dBc)  
SNR  
DIFFERENTIAL (dBc)  
SNR  
70  
65  
SNR  
SINGLE-ENDED (dBc)  
0
50  
75  
100  
125  
25  
–30  
–25  
–20  
–15  
–10  
–5  
0
Input Frequency (MHz)  
A
(dBFS)  
IN  
TPC 11. AD9235-40: SNR/SFDR vs. fIN  
TPC 8. AD9235-40: Single Tone SNR/SFDR vs. AIN with  
fIN = Nyquist (20 MHz)  
95  
90  
85  
80  
75  
100  
SFDR DIFFERENTIAL (dBFS)  
SFDR  
SFDR  
90  
80  
70  
60  
50  
40  
DIFFERENTIAL (dBc)  
SFDR  
SINGLE-ENDED (dBFS)  
SFDR  
SINGLE-ENDED  
(dBc)  
SNR  
DIFFERENTIAL (dBFS)  
SNR  
SINGLE-ENDED (dBFS)  
SNR  
DIFFERENTIAL  
(dBc)  
SNR  
70  
65  
SNR  
SINGLE-ENDED (dBc)  
0
50  
75  
100  
125  
25  
–30  
–25  
–20  
–15  
(dBFS)  
–10  
–5  
0
A
Input Frequency (MHz)  
IN  
TPC 12. AD9235-20: SNR/SFDR vs. fIN  
TPC 9. AD9235-20: Single Tone SNR/SFDR vs. AIN with  
fIN = Nyquist (10 MHz)  
–10–  
REV. B  
AD9235  
95  
90  
0
SNR = 64.6dBFS  
SFDR = 81.6dBFS  
2V SFDR  
1V SFDR  
–20  
85  
80  
75  
70  
–40  
–60  
–80  
2V SNR  
1V SNR  
–100  
65  
60  
–120  
–24  
–21  
–18  
–15  
(dBFS)  
–12  
–9  
–6  
32.5  
39.0  
45.5  
52.0  
58.5  
65.0  
A
IN  
FREQUENCY (MHz)  
TPC 13. Dual Tone 8K FFT with fIN1 = 45 MHz and  
TPC 16. Dual Tone SNR/SFDR vs. AIN with fIN1 = 45 MHz  
and fIN2 = 46 MHz  
f
IN2 = 46 MHz  
95  
0
–20  
2V SFDR  
SNR = 64.3dBFS  
SFDR = 81.1dBFS  
90  
1V SFDR  
85  
80  
75  
–40  
–60  
–80  
2V SNR  
1V SNR  
70  
–100  
65  
60  
–24  
–120  
65.0  
–21  
–18  
–15  
(dBFS)  
–12  
–9  
–6  
71.5  
78.0  
84.5  
91.0  
97.5  
A
FREQUENCY (MHz)  
IN  
TPC 14. Dual Tone 8K FFT with fIN1 = 69 MHz and  
fIN2 = 70 MHz  
TPC 17. Dual Tone SNR/SFDR vs. AIN with fIN1 = 69 MHz  
and fIN2 = 70 MHz  
0
95  
SNR = 62.5dBFS  
SFDR = 75.6dBFS  
2V SFDR  
90  
–20  
–40  
1V SFDR  
85  
80  
75  
–60  
–80  
2V SNR  
1V SNR  
70  
–100  
65  
–120  
60  
–24  
–21  
–18  
–15  
–12  
–9  
–6  
130.0  
136.5  
143.0  
149.5  
156.0  
162.5  
FREQUENCY (MHz)  
A
(dBFS)  
IN  
TPC 18. Dual Tone SNR/SFDR vs. AIN with fIN1 = 144 MHz  
and fIN2 = 145 MHz  
TPC 15. Dual Tone 8K FFT with fIN1 = 144 MHz and  
fIN2 = 145 MHz  
REV. B  
–11–  
AD9235  
20  
15  
12.2  
11.7  
11.2  
10.7  
10.2  
9.7  
75  
AD9235-40:  
2V SINAD  
AD9235-20:  
2V SINAD  
72  
69  
66  
63  
60  
AD9235-65: 2V SINAD  
AD9235-40: 1V SINAD  
10  
5
AD9235-20: 1V SINAD  
AD9235-65: 1V SINAD  
0
–5  
–10  
–15  
–20  
0
10  
20  
30  
40  
50  
60  
–40  
–20  
0
20  
40  
60  
80  
SAMPLE RATE (MSPS)  
TEMPERATURE (C)  
TPC 19. SINAD vs. fCLK with fIN = Nyquist  
TPC 22. A/D Gain vs. Temperature Using an  
External Reference  
1.0  
90  
SFDR: DCS ON  
0.8  
0.6  
80  
SFDR: DCS OFF  
SINAD: DCS ON  
0.4  
70  
60  
50  
40  
30  
0.2  
0.0  
SINAD: DCS OFF  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
35  
40  
45  
50  
55  
60  
65  
DUTY CYCLE (%)  
TPC 20. SINAD/SFDR vs. Clock Duty Cycle  
TPC 23. Typical INL  
90  
1.0  
0.8  
0.6  
0.4  
SFDR 2V DIFF  
85  
80  
SFDR 1V DIFF  
75  
0.2  
0.0  
SINAD 2V DIFF  
70  
65  
60  
55  
50  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
SINAD 1V DIFF  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
SAMPLE RATE (MSPS)  
TPC 21. SINAD/SFDR vs. Temperature with fIN = 32.5 MHz  
TPC 24. Typical DNL  
–12–  
REV. B  
AD9235  
APPLYING THE AD9235  
H
THEORY OF OPERATION  
The AD9235 architecture consists of a front-end sample and  
hold amplifier (SHA) followed by a pipelined switched capacitor  
ADC. The pipelined ADC is divided into three sections, consisting  
of a 4-bit first stage followed by eight 1.5-bit stages and a final 3-bit  
flash. Each stage provides sufficient overlap to correct for flash  
errors in the preceding stages. The quantized outputs from each  
stage are combined into a final 12-bit result in the digital correction  
logic. The pipelined architecture permits the first stage to operate  
on a new input sample while the remaining stages operate on pre-  
ceding samples. Sampling occurs on the rising edge of the clock.  
T
T
T
5pF  
5pF  
VIN+  
VIN–  
C
PAR  
C
PAR  
T
H
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched capacitor DAC  
and interstage residue amplifier (MDAC). The residue amplifier  
magnifies the difference between the reconstructed DAC output and  
the flash input for the next stage in the pipeline. One bit of redun-  
dancy is used in each stage to facilitate digital correction of flash  
errors. The last stage simply consists of a flash ADC.  
Figure 6. Switched-Capacitor SHA Input  
An internal differential reference buffer creates positive and  
negative reference voltages, REFT and REFB, respectively, that  
define the span of the ADC core. The output common mode of  
the reference buffer is set to midsupply, and the REFT and  
REFB voltages and span are defined as follows:  
The input stage contains a differential SHA that can be ac- or  
dc-coupled in differential or single-ended modes. The output-  
staging block aligns the data, carries out the error correction, and  
passes the data to the output buffers. The output buffers are  
powered from a separate supply, allowing adjustment of the  
output voltage swing. During power-down, the output buffers  
go into a high impedance state.  
REFT = 1 2 AVDD +VREF  
(
)
REFB = 1 2 AVDD VREF  
(
)
Span = 2 × REFT REFB = 2 ×VREF  
(
)
It can be seen from the equations above that the REFT and  
REFB voltages are symmetrical about the midsupply voltage  
and, by definition, the input span is twice the value of the  
VREF voltage.  
ANALOG INPUT  
The analog input to the AD9235 is a differential switched  
capacitor SHA that has been designed for optimum performance  
while processing a differential input signal. The SHA input can  
support a wide common-mode range and maintain excellent  
performance, as shown in Figure 7. An input common-mode  
voltage of midsupply will minimize signal-dependant errors and  
provide optimum performance.  
–90  
–85  
–80  
–75  
–70  
–65  
–60  
–55  
–50  
90  
85  
80  
75  
70  
65  
60  
55  
50  
THD 2.5MHz 2V DIFF  
THD 35MHz 2V DIFF  
SNR 2.5MHz 2V DIFF  
Referring to Figure 6, the clock signal alternatively switches the  
SHA between sample mode and hold mode. When the SHA is  
switched into sample mode, the signal source must be capable  
of charging the sample capacitors and settling within one-half of  
a clock cycle. A small resistor in series with each input can help  
reduce the peak transient current required from the output stage  
of the driving source. Also, a small shunt capacitor can be placed  
across the inputs to provide dynamic charging currents. This  
passive network will create a low-pass filter at the ADC’s input;  
therefore, the precise values are dependant upon the application.  
In IF undersampling applications, any shunt capacitors should  
be removed. In combination with the driving source impedance,  
they would limit the input bandwidth.  
SNR 35MHz 2V DIFF  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
COMMON-MODE LEVEL (V)  
Figure 7. AD9235-65: SNR, THD vs. Common-Mode Level  
The internal voltage reference can be pin-strapped to fixed values  
of 0.5 V or 1.0 V, or adjusted within the same range as discussed  
in the Internal Reference Connection section. Maximum SNR  
performance will be achieved with the AD9235 set to the largest  
input span of 2 V p-p. The relative SNR degradation will be 3 dB  
when changing from 2 V p-p mode to 1 V p-p mode.  
For best dynamic performance, the source impedances driving  
VIN+ and VIN– should be matched such that common-mode  
settling errors are symmetrical. These errors will be reduced by  
the common-mode rejection of the ADC.  
REV. B  
–13–  
AD9235  
The SHA may be driven from a source that keeps the signal  
peaks within the allowable range for the selected reference volt-  
age. The minimum and maximum common-mode input levels  
are defined as follows:  
The signal characteristics must be considered when selecting a  
transformer. Most RF transformers will saturate at frequencies  
below a few MHz, and excessive signal power can also cause core  
saturation, which leads to distortion.  
Single-Ended Input Configuration  
VCMMIN =VREF /2  
A single-ended input may provide adequate performance in  
cost-sensitive applications. In this configuration, there will be a  
degradation in SFDR and in distortion performance due to the  
large input common-mode swing. However, if the source  
impedances on each input are matched, there should be little effect  
on SNR performance. Figure 10 details a typical single-ended  
input configuration.  
VCMMAX = (AVDD +VREF)/2  
The minimum common-mode input level allows the AD9235 to  
accommodate ground-referenced inputs.  
Although optimum performance is achieved with a differential  
input, a single-ended source may be driven into VIN+ or VIN–.  
In this configuration, one input will accept the signal, while the  
opposite input should be set to midscale by connecting it to an  
appropriate reference. For example, a 2 V p-p signal may be  
applied to VIN+ while a 1 V reference is applied to VIN–. The  
AD9235 will then accept an input signal varying between 2 V and  
0 V. In the single-ended configuration, distortion performance may  
degrade significantly as compared to the differential case. However,  
the effect will be less noticeable at lower input frequencies and  
in the lower speed grade models (AD9235-40 and AD9235-20).  
AVDD  
1k  
22⍀  
VIN+  
0.33F  
2Vp-p  
49.9⍀  
1k⍀  
15pF  
AD9235  
1k⍀  
1k⍀  
22⍀  
+
VIN–  
AGND  
10F  
0.1F  
15pF  
Differential Input Configurations  
Figure 10. Single-Ended Input Configuration  
As previously detailed, optimum performance will be achieved  
while driving the AD9235 in a differential input configuration.  
For baseband applications, the AD8138 differential driver provides  
excellent performance and a flexible interface to the ADC. The  
output common-mode voltage of the AD8138 is easily set to  
AVDD/2, and the driver can be configured in a Sallen Key filter  
topology to provide band limiting of the input signal.  
CLOCK INPUT CONSIDERATIONS  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals, and as a result may be sensitive to  
clock duty cycle. Commonly a 5% tolerance is required on the  
clock duty cycle to maintain dynamic performance character-  
istics. The AD9235 contains a clock duty cycle stabilizer (DCS)  
that retimes the nonsampling edge, providing an internal clock  
signal with a nominal 50% duty cycle. This allows a wide range  
of clock input duty cycles without affecting the performance of the  
AD9235. As shown in TPC 20, noise and distortion perfor-  
mance are nearly flat over a 30% range of duty cycle.  
1Vp-p  
49.9  
499⍀  
AVDD  
VIN+  
22⍀  
499⍀  
523⍀  
15pF  
AD9235  
AD8138  
499⍀  
The duty cycle stabilizer uses a delay-locked loop (DLL) to  
create the nonsampling edge. As a result, any changes to the  
sampling frequency will require approximately 100 clock cycles  
to allow the DLL to acquire and lock to the new rate.  
1k⍀  
22⍀  
VIN–  
AGND  
1k⍀  
0.1F  
15pF  
High speed, high resolution ADCs are sensitive to the quality of  
the clock input. The degradation in SNR at a given full-scale  
input frequency (fINPUT) due only to aperture jitter (tJ) can be  
calculated with the following equation.  
Figure 8. Differential Input Configuration Using  
the AD8138  
At input frequencies in the second Nyquist zone and above, the  
performance of most amplifiers will not be adequate to achieve  
the true performance of the AD9235. This is especially true in  
IF undersampling applications where frequencies in the 70 MHz  
to 100 MHz range are being sampled. For these applications,  
differential transformer coupling is the recommended input  
configuration, as shown in Figure 9.  
SNR Degradation = 20 × log10 1 2 × π × f  
× tJ  
[
]
INPUT  
In the equation, the rms aperture jitter, tJ, represents the root-  
sum square of all jitter sources, which include the clock input,  
analog input signal, and ADC aperture jitter specification. Under-  
sampling applications are particularly sensitive to jitter.  
The clock input should be treated as an analog signal in cases  
where aperture jitter may affect the dynamic range of the AD9235.  
Power supplies for clock drivers should be separated from the  
ADC output driver supplies to avoid modulating the clock signal  
with digital noise. Low jitter, crystal-controlled oscillators make  
the best clock sources. If the clock is generated from another  
type of source (by gating, dividing, or other methods), it should  
be retimed by the original clock at the last step.  
AVDD  
22  
VIN+  
15pF  
2V p-p  
49.9⍀  
AD9235  
22⍀  
VIN–  
AGND  
15pF  
1k⍀  
1k⍀  
0.1F  
Figure 9. Differential Transformer-Coupled Configuration  
–14–  
REV. B  
AD9235  
POWER DISSIPATION AND STANDBY MODE  
As shown in Figure 11, the power dissipated by the AD9235 is  
proportional to its sample rate. The digital power dissipation  
does not vary substantially between the three speed grades  
because it is determined primarily by the strength of the digital  
drivers and the load on each output bit. The maximum DRVDD  
current can be calculated as  
Low power dissipation in standby mode is achieved by shutting  
down the reference, reference buffer, and biasing networks. The  
decoupling capacitors on REFT and REFB are discharged when  
entering standby mode, and then must be recharged when returning  
to normal operation. As a result, the wake-up time is related to the  
time spent in standby mode and shorter standby cycles will result  
in proportionally shorter wake-up times. With the recommended  
0.1 µF and 10 µF decoupling capacitors on REFT and REFB, it  
takes approximately 1 sec to fully discharge the reference buffer  
decoupling capacitors and 3 ms to restore full operation.  
IDRVDD =VDRVDD × CLOAD × fCLK × N  
where N is the number of output bits, 12 in the case of the  
AD9235. This maximum current occurs when every output bit  
switches on every clock cycle, i.e., a full-scale square wave at the  
Nyquist frequency, fCLK/2. In practice, the DRVDD current will  
be established by the average number of output bits switching,  
which will be determined by the encode rate and the characteris-  
tics of the analog input signal.  
DIGITAL OUTPUTS  
The AD9235 output drivers can be configured to interface with  
2.5 V or 3.3 V logic families by matching DRVDD to the digital  
supply of the interfaced logic. The output drivers are sized to  
provide sufficient output current to drive a wide variety of logic  
families. However, large drive currents tend to cause current  
glitches on the supplies that may affect converter performance.  
Applications requiring the ADC to drive large capacitive loads  
or large fan-outs may require external buffers or latches.  
325  
300  
AD9235-65  
275  
250  
225  
200  
As detailed in Table II, the data format can be selected for  
either offset binary or twos complement.  
Timing  
The AD9235 provides latched data outputs with a pipeline delay of  
seven clock cycles. Data outputs are available one propagation  
delay (tPD) after the rising edge of the clock signal. Refer to  
Figure 1 for a detailed timing diagram.  
175  
AD9235-40  
150  
125  
100  
AD9235-20  
The length of the output data lines and loads placed on them should  
be minimized to reduce transients within the AD9235; these  
transients can detract from the converter’s dynamic performance.  
75  
50  
0.0  
10  
20  
30  
40  
50  
60  
SAMPLE RATE (MSPS)  
The lowest typical conversion rate of the AD9235 is 1 MSPS. At  
clock rates below 1 MSPS, dynamic performance may degrade.  
Figure 11. Total Power vs. Sample Rate with fIN = 10 MHz  
VOLTAGE REFERENCE  
For the AD9235-20 speed grade, the digital power consumption  
can represent as much as 10% of the total dissipation. Digital  
power consumption can be minimized by reducing the capacitive  
load presented to the output drivers. The data in Figure 11 was  
taken with a 5 pF load on each output driver.  
A stable and accurate 0.5 V voltage reference is built into the  
AD9235. The input range can be adjusted by varying the reference  
voltage applied to the AD9235, using either the internal reference  
or an externally applied reference voltage. The input span of the  
ADC tracks reference voltage changes linearly.  
The analog circuitry is optimally biased so that each speed grade  
provides excellent performance while affording reduced power  
consumption. Each speed grade dissipates a baseline power at  
low sample rates that increases linearly with the clock frequency.  
If the ADC is being driven differentially through a transformer, the  
reference voltage can be used to bias the center tap (common-  
mode voltage).  
Internal Reference Connection  
By asserting the PDWN pin high, the AD9235 is placed in  
standby mode. In this state, the ADC will typically dissipate 1 mW  
if the CLK and analog inputs are static. During standby, the  
output drivers are placed in a high impedance state. Reassert-  
ing the PDWN pin low returns the AD9235 into its normal  
operational mode.  
A comparator within the AD9235 detects the potential at the  
SENSE pin and configures the reference into one of four possible  
states, which are summarized in Table I. If SENSE is grounded,  
Table I. Reference Configuration Summary  
Selected  
Mode  
SENSE  
Voltage  
Internal Switch  
Position  
Resulting  
VREF (V)  
Resulting Differential  
Span (V p-p)  
External Reference  
AVDD  
VREF  
0.2 V to VREF  
AGND to 0.2 V  
N/A  
SENSE  
SENSE  
Internal Divider  
N/A  
0.5  
2 × External Reference  
Internal Fixed Reference  
Programmable Reference  
Internal Fixed Reference  
1.0  
0.5 × (1 + R2/R1)  
1.0  
2 × VREF (See Figure 13)  
2.0  
REV. B  
–15–  
AD9235  
reference amplifier switch is connected to the internal resistor  
divider (see Figure 12), setting VREF to 1 V. Connecting the  
SENSE pin to VREF switches the reference amplifier output to  
the SENSE pin, completing the loop and providing a 0.5 V  
reference output. If a resistor divider is connected as shown in  
Figure 13, the switch will again be set to the SENSE pin. This  
will put the reference amplifier in a noninverting mode with the  
VREF output defined as follows.  
External Reference Operation  
The use of an external reference may be necessary to enhance the  
gain accuracy of the ADC or improve thermal drift characteristics.  
When multiple ADCs track one another, a single reference  
(internal or external) may be necessary to reduce gain matching  
errors to an acceptable level. A high precision external reference  
may also be selected to provide lower gain and offset temperature  
drift. Figure 14 shows the typical drift characteristics of the  
internal reference in both 1 V and 0.5 V modes.  
VREF = 0.5 × 1+ R2 R1  
(
)
1.2  
VIN+  
VIN–  
1.0  
REFT  
0.1F  
VREF= 1.0V  
0.8  
ADC  
CORE  
10F  
VREF= 0.5V  
0.1F  
REFB  
0.6  
0.4  
0.2  
0.0  
0.1F  
VREF  
0.5V  
10F  
0.1F  
SELECT  
LOGIC  
SENSE  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (C)  
AD9235  
Figure 14. Typical VREF Drift  
When the SENSE pin is tied to AVDD, the internal reference  
will be disabled, allowing the use of an external reference. An  
internal reference buffer will load the external reference with an  
equivalent 7 kload. The internal buffer will still generate the  
positive and negative full-scale references, REFT and REFB, for  
the ADC core. The input span will always be twice the value of  
the reference voltage; therefore, the external reference must be  
limited to a maximum of 1 V.  
Figure 12. Internal Reference Configuration  
In all reference configurations, REFT and REFB drive the A/D  
conversion core and establish its input span. The input range of  
the ADC always equals twice the voltage at the reference pin for  
either an internal or an external reference.  
VIN+  
If the internal reference of the AD9235 is used to drive multiple  
converters to improve gain matching, the loading of the reference  
by the other converters must be considered. Figure 15 depicts  
how the internal reference voltage is affected by loading.  
VIN–  
REFT  
0.1F  
ADC  
CORE  
10F  
0.1F  
REFB  
0.05  
0.00  
0.1F  
VREF  
0.5V  
10F  
0.1F  
–0.05  
SELECT  
LOGIC  
0.5V ERROR (%)  
R2  
SENSE  
R1  
–0.10  
1V ERROR (%)  
–0.15  
AD9235  
–0.20  
Figure 13. Programmable Reference Configuration  
–0.25  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
LOAD (mA)  
Figure 15. VREF Accuracy vs. Load  
–16–  
REV. B  
AD9235  
OPERATIONAL MODE SELECTION  
The AUXCLK input should be selected in applications requiring  
the lowest jitter and SNR performance (i.e., IF undersampling  
characterization). It allows the user to apply a clock input signal that  
is 4× the target sample rate of the AD9235. A low-jitter, differential  
divide-by-4 counter, the MC100LVEL33D, provides a 1× clock  
output that is subsequently returned back to the CLK input via  
JP9. For example, a 260 MHz signal (sinusoid) will be divided  
down to a 65 MHz signal for clocking the ADC. Note that R1 must  
be removed with the AUXCLK interface. Lower jitter is often  
achieved with this interface since many RF signal generators  
display improved phase noise at higher output frequencies and the  
slew rate of the sinusoidal output signal is 4× that of a 1× signal  
of equal amplitude.  
As discussed earlier, the AD9235 can output data in either  
offset binary or twos complement format. There is also a provision  
for enabling or disabling the clock duty cycle stabilizer (DCS).  
The MODE pin is a multilevel input that controls the data format  
and DCS state. The input threshold values and corresponding  
mode selections are outlined below.  
Table II. Mode Selection  
MODE  
Voltage  
Data  
Format  
Duty Cycle  
Stabilizer  
AVDD  
Twos Complement  
Twos Complement  
Offset Binary  
Disabled  
Enabled  
Enabled  
Disabled  
2/3 AVDD  
1/3 AVDD  
AGND (Default)  
Complete schematics and layout plots follow and demonstrate the  
proper routing and grounding techniques that should be applied  
at the system level.  
Offset Binary  
The MODE pin is internally pulled down to AGND by a  
20 kresistor.  
LFCSP EVALUATION BOARD  
The typical bench setup used to evaluate the ac performance  
of the AD9235 is similar to the TSSOP Evaluation Board  
connections (refer to the schematics for connection details).  
The AD9235 can be driven single-ended or differentially  
through a transformer. Separate power pins are provided to  
isolate the DUT from the support circuitry. Each input con-  
figuration can be selected by proper connection of various  
jumpers (refer to the schematics).  
TSSOP EVALUATION BOARD  
The AD9235 evaluation board provides all of the support  
circuitry required to operate the ADC in its various modes and  
configurations. The converter can be driven differentially,  
through an AD8138 driver or a transformer, or single-ended.  
Separate power pins are provided to isolate the DUT from the  
support circuitry. Each input configuration can be selected by  
proper connection of various jumpers (refer to the schematics).  
Figure 16 shows the typical bench characterization setup used to  
evaluate the ac performance of the AD9235. It is critical that  
signal sources with very low phase noise (<1 ps rms jitter) be used  
to realize the ultimate performance of the converter. Proper  
filtering of the input signal, to remove harmonics and lower the  
integrated noise at the input, is also necessary to achieve the  
specified noise performance.  
An alternative differential analog input path using an AD8351  
op amp is included in the layout but is not populated in pro-  
duction. Designers interested in evaluating the op amp with  
the ADC should remove C15, R12, and R3 and populate the  
op amp circuit. The passive network between the AD8351  
outputs and the AD9235 allows the user to optimize the fre-  
quency response of the op amp for the application.  
3V  
3V  
3V  
3V  
+
+
+
+
AVDD GND DUT GND DUT  
AVDD DRVDD  
DVDD  
J1  
S4  
XFMR  
INPUT  
HP8644, 2V p-p  
SIGNAL SYNTHESIZER  
BAND-PASS  
FILTER  
REFIN  
DATA  
CAPTURE  
AND  
AD9235  
TSSOP EVALUATION BOARD  
PROCESSING  
CLOCK  
DIVIDER  
10MHz  
REFOUT  
S1  
HP8644, 2V p-p  
CLOCK SYNTHESIZER  
CLOCK  
Figure 16. TSSOP Evaluation Board Connections  
REV. B  
–17–  
AD9235  
Figure 17. TSSOP Evaluation Board Schematic, DUT  
–18–  
REV. B  
AD9235  
O R S  
H E A D E R R I G H T A N G L E M A L E N O E J E C T  
1N5712  
1 N 5 7 1 2  
Figure 18. TSSOP Evaluation Board Schematic, Clock Inputs and Output Buffering  
REV. B  
–19–  
AD9235  
Figure 19. TSSOP Evaluation Board Schematic, Analog Inputs  
–20–  
REV. B  
AD9235  
DACLK  
DVDD  
1
2
28  
C30  
DD0  
DD1  
DD2  
DD3  
DD4  
DD5  
DD6  
DD7  
DD8  
DD9  
DD10  
DD11  
MSB–DB11  
DB10  
CLOCK  
DVDD  
C31  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
0.1F  
0.01F  
3
C29  
DB19  
DCOM  
NC3  
C46  
4
DB8  
AD9762  
0.1F  
0.01F  
5
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
NC1  
NC2  
AVDD  
TP18  
WHT  
S6  
6
COMP2  
IOUTA  
IOUTB  
ACOM  
COMP1  
FSADJ  
REFIO  
REFLO  
SLEEP  
7
U4  
8
9
49.9ꢃ  
R29  
0.1F  
C56  
10  
11  
12  
13  
14  
C55  
22pF  
C51  
R30  
2kꢃ  
0.1F  
49.9ꢃ  
R28  
C49  
0.1F  
C54  
22pF  
Figure 20. TSSOP Evaluation Board Schematic, Optional D/A Converter  
Figure 21. TSSOP Evaluation Board Layout, Primary Side  
REV. B  
–21–  
AD9235  
Figure 22. TSSOP Evaluation Board Layout, Secondary Side  
Figure 23. TSSOP Evaluation Board Layout, Ground Plane  
–22–  
REV. B  
AD9235  
_
Figure 24. TSSOP Evaluation Board Power Plane  
Figure 25. TSSOP Evaluation Board Layout, Primary Silkscreen  
–23–  
REV. B  
AD9235  
Figure 26. TSSOP Evaluation Board Layout, Secondary Silkscreen  
–24–  
REV. B  
AD9235  
P 2  
5 . 0 V  
2 . 5 V  
P M V A  
V D L  
G N D  
2 . 5 V  
3 . 0 V  
V D D R  
G N D  
D D A V  
D 8  
D 9  
D 1  
1 7  
1 8  
8
D 0 7  
D 1 0  
D N C  
6
1 9  
2 0  
2 1  
2 2  
2 3  
D N C  
D 1 1  
O T  
5
R
W N P D  
4
D N C  
M O D E  
S E N S E  
V R E F  
3
C L K  
2
D N C  
1
2 4  
Figure 27. LFCSP Evaluation Board Schematic, Analog Inputs and DUT  
–25–  
REV. B  
AD9235  
Figure 28. LFCSP Evaluation Board Schematic, Digital Path  
–26–  
REV. B  
AD9235  
Figure 29. LFCSP Evaluation Board Schematic, Clock Input  
–27–  
REV. B  
AD9235  
Figure 30. LFCSP Evaluation Board Layout, Primary Side  
Figure 32. LFCSP Evaluation Board Layout, Ground Plane  
Figure 31. LFCSP Evaluation Board Layout, Secondary Side  
Figure 33. LFCSP Evaluation Board Layout, Power Plane  
–28–  
REV. B  
AD9235  
Figure 34. LFCSP Evaluation Board Layout,  
Primary Silkscreen  
Figure 35. LFCSP Evaluation Board Layout,  
Secondary Silkscreen  
REV. B  
–29–  
AD9235  
Table III. LFCSP Evaluation Board Bill of Materials  
Item  
Qty.  
Omit1  
Reference Designator  
Device  
Package  
Value  
Recommended  
Vendor/Part Number  
Supplied  
by ADI  
1
18  
C1, C5, C7, C8, C9, C11,  
C12, C13, C15, C16, C31,  
C33, C34, C36, C37, C41,  
C43, C47  
Chip Capacitor  
0603  
0.1 µF  
8
2
C6, C18, C27, C17, C28,  
C35, C45, C44  
2
3
8
8
C2, C3, C4, C10, C20,  
C22, C25, C29  
C46, C24  
Tantalum Capacitor  
Chip Capacitor  
TAJD  
0603  
10 µF  
C14, C30, C32, C38, C39,  
C40, C48, C49  
0.001 µF  
4
5
6
3
1
9
C19, C21, C23  
C26  
Chip Capacitor  
Chip Capacitor  
Header  
0603  
10 pF  
10 pF  
0603  
E31, E35, E43, E44, E50,  
E51, E52, E53  
EHOLE  
Jumper Blocks  
2
1
E1, E45  
7
8
2
J1, J2  
L1  
SMA Connector/50 Ω  
SMA  
0603  
Inductor  
10 nH  
Coilcraft/0603CS-  
10NXGBU  
9
1
1
5
P2  
Terminal Block  
TB6  
Wieland/25.602.2653.0,  
z5-530-0625-0  
10  
11  
P12  
Header Dual 20-Pin  
RT Angle  
HEADER40  
0603  
Digi-Key S2131-20-ND  
R3, R12, R23, R28, RX  
R37, R22, R42, R16, R17,  
R27  
Chip Resistor  
0 Ω  
6
12  
13  
2
R4, R15  
Chip Resistor  
Chip Resistor  
0603  
0603  
33 Ω  
1 kΩ  
14  
R5, R6, R7, R8, R13, R20,  
R21, R24, R25, R26, R30,  
R31, R32, R36  
14  
15  
2
1
R10, R11  
Chip Resistor  
Chip Resistor  
0603  
0603  
36 Ω  
50 Ω  
R29  
R19  
1
16  
2
RP1, RP2  
Resistor Pack  
ADT1-1WT  
R_742  
220 Ω  
Digi-Key  
CTS/742C163220JTR  
17  
18  
1
1
T1  
U1  
AWT1-1T  
TSSOP-48  
Mini-Circuits  
74LVTH162374  
CMOS Register  
19  
20  
21  
22  
23  
24  
25  
1
1
1
U4  
AD9235BCP ADC (DUT) CSP-32  
Analog Devices, Inc.  
Fairchild  
X
U5  
74VCX86M  
SOIC-14  
PCB  
PCB  
AD92XXBCP/PCB  
AD8351 Op Amp  
MACOM Transformer  
Chip Resistor  
Analog Devices, Inc.  
Analog Devices, Inc.  
MACOM/ETC1-1-13  
X
X
1
1
5
3
U3  
MSOP-8  
ETC1-1-13  
0603  
T2  
1-1 TX  
SELECT  
25 Ω  
R9, R1, R2, R38, R39  
R18, R14, R35  
Chip Resistor  
0603  
–30–  
REV. B  
AD9235  
Table III. LFCSP Evaluation Board Bill of Materials (continued)  
Item  
Qty.  
Omit1  
Reference Designator  
Device  
Package  
Value  
Recommended  
Vendor/Part Number  
Supplied  
by ADI  
26  
2
R40, R41  
R34  
Chip Resistor  
Chip Resistor  
Chip Resistor  
0603  
10 k  
1.2 kΩ  
100 Ω  
27  
1
28  
1
R33  
Total  
82  
34  
1These items are included in the PCB design but are omitted at assembly.  
OUTLINE DIMENSIONS  
28-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-28)  
Dimensions shown in millimeters  
9.80  
9.70  
9.60  
28  
15  
14  
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65  
BSC  
1.20  
MAX  
0.15  
0.05  
0.75  
0.60  
0.45  
8ꢁ  
0ꢁ  
0.30  
0.19  
0.20  
0.09  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-153AE  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
(CP-32)  
Dimensions shown in millimeters  
5.00  
BSC SQ  
0.60 MAX  
PIN 1  
0.60 MAX  
INDICATOR  
25  
24  
32  
1
PIN 1  
INDICATOR  
0.50  
BSC  
3.25  
3.10  
2.95  
4.75  
BSC SQ  
TOP  
VIEW  
BOTTOM  
VIEW  
SQ  
0.50  
0.40  
0.30  
17  
16  
8
9
3.50  
REF  
0.80 MAX  
0.65 NOM  
12MAX  
0.05 MAX  
0.02 NOM  
1.00  
0.90  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2  
REV. B  
–31–  
AD9235  
Revision History  
Location  
Page  
5/03—Data Sheet changed from REV. A to REV. B.  
Added CP-32 Package (LFCSP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UNIVERSAL  
Changes to Several Pin Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UNIVERSAL  
Changes to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to PRODUCT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to PRODUCT HIGHLIGHTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Replaced Figure 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Changes to PIN FUNCTION DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
New DEFINITIONS OF SPECIFICATIONS section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Changes to TPCs 1–12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Changes to THEORY OF OPERATION section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Changes to ANALOG INPUT section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Changes to Single-ended Input Configuration section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Replaced Figure 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Changes to CLOCK INPUT CONSIDERATIONS section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Changes to Table I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Changes to POWER DISSIPATION AND STANDBY MODE section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Changes to DIGITAL OUTPUTS section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Changes to Timing section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Changes to Figure 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Changes to Figures 16–26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Added LFCSP Evaluation Board section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Inserted Figures 27–35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Added Table III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
8/02—Data Sheet changed from REV. 0 to REV. A.  
Updated RU-28 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
–32–  
REV. B  

相关型号:

AD9235BRU-65

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9235BRURL7-20

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9235BRURL7-40

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9235BRURL7-65

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9235BRUZ-20

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9235BRUZ-40

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9235BRUZ-65

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9235BRUZRL7-20

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9235BRUZRL7-40

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9235BRUZRL7-65

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9236

12-Bit, 80 MSPS, 3V A/D Converter
ADI

AD9236BCP-80

12-Bit, 80 MSPS, 3V A/D Converter
ADI