AD9244_17 [ADI]

14-Bit, 40 MSPS/65 MSPS A/D Converter;
AD9244_17
型号: AD9244_17
厂家: ADI    ADI
描述:

14-Bit, 40 MSPS/65 MSPS A/D Converter

文件: 总37页 (文件大小:996K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
14-Bit, 40 MSPS/65 MSPS A/D Converter  
AD9244  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
AVDD  
REFT REFB  
DRVDD  
14-bit, 40 MSPS/65 MSPS ADC  
Low power  
550 mW at 65 MSPS  
AD9244  
VIN+  
VIN–  
DFS  
OTR  
300 mW at 40 MSPS  
14  
10-STAGE  
PIPELINE ADC  
SHA  
On-chip reference and sample-and-hold  
750 MHz analog input bandwidth  
SNR > 73 dBc to Nyquist @ 65 MSPS  
SFDR > 86 dBc to Nyquist @ 65 MSPS  
Differential nonlinearity error = 0.7 LSB  
Guaranteed no missing codes over full temperature range  
1 V to 2 V p-p differential full-scale analog input range  
Single 5 V analog supply, 3.3 V/5 V driver supply  
Out-of-range indicator  
CLK+  
CLK–  
DCS  
OUTPUT  
REGISTER  
TIMING  
14  
D13 TO D0  
OEB  
REFERENCE  
Straight binary or twos complement output data  
Clock duty cycle stabilizer  
Output-enable function  
48-lead LQFP package  
AGND CML  
VR VREF SENSE REF DGND  
GND  
Figure 1.  
APPLICATIONS  
Fabricated on an advanced CMOS process, the AD9244 is  
available in a 48-lead LQFP and is specified for operation over  
the industrial temperature range (–40°C to +85°C).  
Communication subsystems (microcell, picocell)  
Medical and high-end imaging equipment  
Test and measurement equipment  
PRODUCT HIGHLIGHTS  
1. Low Power—The AD9244, at 550 mW, consumes a fraction  
of the power of currently available ADCs in existing high  
speed solutions.  
GENERAL DESCRIPTION  
The AD9244 is a monolithic, single 5 V supply, 14-bit,  
40 MSPS/65 MSPS ADC with an on-chip, high performance  
sample-and-hold amplifier (SHA) and voltage reference.  
2. IF Sampling—The AD9244 delivers outstanding  
performance at input frequencies beyond the first Nyquist  
zone. Sampling at 65 MSPS with an input frequency of  
100 MHz, the AD9244 delivers 71 dB SNR and 86 dB SFDR.  
3. Pin Compatibility—The AD9244 offers a seamless  
migration from the 12-bit, 65 MSPS AD9226.  
4. On-Board Sample-and-Hold (SHA)—The versatile SHA  
input can be configured for either single-ended or  
differential inputs.  
5. Out-of-Range (OTR) Indicator—The OTR output bit  
indicates when the input signal is beyond the AD9244s  
input range.  
6. Single Supply—The AD9244 uses a single 5 V power  
supply, simplifying system power supply design. It also  
features a separate digital output driver supply to  
accommodate 3.3 V and 5 V logic families.  
The AD9244 uses a multistage differential pipelined architec-  
ture with output error correction logic to provide 14-bit  
accuracy at 40 MSPS/65 MSPS data rates, and guarantees no  
missing codes over the full operating temperature range.  
The AD9244 has an on-board, programmable voltage reference.  
An external reference can also be used to suit the dc accuracy  
and temperature drift requirements of the application.  
A differential or single-ended clock input controls all internal  
conversion cycles. The digital output data can be presented in  
straight binary or in twos complement format. An out-of-range  
(OTR) signal indicates an overflow condition that can be used  
with the most significant bit to determine low or high overflow.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
 
AD9244* PRODUCT PAGE QUICK LINKS  
Last Content Update: 09/27/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
TOOLS AND SIMULATIONS  
Visual Analog  
AD9244 IBIS Models  
EVALUATION KITS  
REFERENCE MATERIALS  
AD9244 Evaluation Board  
Technical Articles  
DOCUMENTATION  
Buffer Adapts Single-ended Signals for Differential Inputs  
Application Notes  
Correlating High-Speed ADC Performance to Multicarrier  
3G Requirements  
AN-1142: Techniques for High Speed ADC PCB Layout  
AN-282: Fundamentals of Sampled Data Systems  
AN-345: Grounding for Low-and-High-Frequency Circuits  
DNL and Some of its Effects on Converter Performance  
Matching An ADC To A Transformer  
MS-2210: Designing Power Supplies for High Speed ADC  
AN-501: Aperture Uncertainty and ADC System  
Performance  
DESIGN RESOURCES  
AD9244 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
AN-715: A First Approach to IBIS Models: What They Are  
and How They Are Generated  
AN-737: How ADIsimADC Models an ADC  
AN-741: Little Known Characteristics of Phase Noise  
AN-742: Frequency Domain Response of Switched-  
Capacitor ADCs  
AN-756: Sampled Systems and the Effects of Clock Phase  
Noise and Jitter  
DISCUSSIONS  
View all AD9244 EngineerZone Discussions.  
AN-807: Multicarrier WCDMA Feasibility  
AN-808: Multicarrier CDMA2000 Feasibility  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
AN-827: A Resonant Approach to Interfacing Amplifiers to  
Switched-Capacitor ADCs  
AN-835: Understanding High Speed ADC Testing and  
Evaluation  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
AN-905: Visual Analog Converter Evaluation Tool Version  
1.0 User Manual  
AN-935: Designing an ADC Transformer-Coupled Front  
End  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
Data Sheet  
AD9244: 14-Bit, 40/65 MSPS A/D Converter Data Sheet  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD9244  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Terminology .......................................................................................9  
Typical Application Circuits ......................................................... 11  
Typical Performance Characteristics ........................................... 12  
Theory of Operation ...................................................................... 17  
Analog Input and Reference Overview................................... 17  
Analog Input Operation............................................................ 18  
Reference Operation .................................................................. 20  
Digital Inputs and Outputs ....................................................... 21  
Evaluation Board ............................................................................ 26  
Analog Input Configuration..................................................... 26  
Reference Configuration ........................................................... 26  
Clock Configuration.................................................................. 26  
Outline Dimensions....................................................................... 36  
Ordering Guide .......................................................................... 36  
Functional Block Diagram .............................................................. 1  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
DC Specifications ......................................................................... 3  
AC Specifications.......................................................................... 4  
Digital Specifications ................................................................... 5  
Switching Specifications .............................................................. 6  
Absolute Maximum Ratings............................................................ 7  
Explanation of Test Levels........................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
REVISION HISTORY  
12/05—Rev. B to Rev. C  
2/05—Rev. A to Rev. B  
Updated Format..................................................................Universal  
Changes to Figure 45...................................................................... 19  
Added Single-Ended Input Configuration Section.................... 19  
Added Reference Decoupling Section ......................................... 25  
Changes to Figure 65...................................................................... 28  
Changes to Figure 66...................................................................... 29  
Changes to Figure 67...................................................................... 30  
Added Table 15 ............................................................................... 34  
Updated Format..................................................................Universal  
Changes to Table 1.............................................................................3  
Changes to Table 2.............................................................................4  
Reformatted Table 5 ..........................................................................7  
Changes to Table 6.............................................................................8  
Changes to Figure 12...................................................................... 12  
Changed Captions on Figure 18 and Figure 21.......................... 13  
Changes to Figure 35, Figure 38, Figure 39................................. 16  
Changes to Table 9.......................................................................... 18  
Changes to Table 13 ....................................................................... 26  
Changes to Ordering Guide.......................................................... 36  
6/03—Rev. 0 to Rev. A  
Changes to AC Specifications..........................................................3  
Updated Ordering Guide .................................................................6  
Updated Outline Dimensions....................................................... 33  
6/02—Revision 0: Initial Version  
Rev. C | Page 2 of 36  
 
AD9244  
SPECIFICATIONS  
DC SPECIFICATIONS  
AVDD = 5 V, DRVDD = 3 V, fSAMPLE = 65 MSPS (–65) or 40 MSPS (–40), differential clock inputs, VREF = 2 V, external reference,  
differential analog inputs, unless otherwise noted.  
Table 1.  
Test  
AD9244BST-65  
Typ  
AD9244BST-40  
Min Typ  
14  
Parameter  
Temp Level Min  
Max  
Max Unit  
RESOLUTION  
Full  
VI  
14  
Bits  
DC ACCURACY  
No Missing Codes  
Offset Error  
Full  
Full  
Full  
Full  
25°C  
Full  
Full  
VI  
VI  
VI  
VI  
V
Guaranteed  
0.3  
0.6  
Guaranteed  
0.3  
0.6  
Bits  
1.4 % FSR  
2.0 % FSR  
1.0 LSB  
LSB  
1.4  
2.0  
1.0  
Gain Error1  
Differential Nonlinearity (DNL)2  
0.7  
1.4  
0.6  
1.3  
Integral Nonlinearity (INL)2  
V
LSB  
VI  
−4  
+4  
−4  
+4  
LSB  
TEMPERATURE DRIFT  
Offset Error  
Full  
Full  
Full  
V
V
V
2.0  
2.3  
25  
2.0  
2.3  
25  
ppm/°C  
ppm/°C  
ppm/°C  
Gain Error (EXT VREF)1  
Gain Error (INT VREF)3  
INTERNAL VOLTAGE REFERENCE  
Output Voltage Error (2 VREF)  
Load Regulation @ 1 mA  
Output Voltage Error (1 VREF)  
Load Regulation @ 0.5 mA  
Input Resistance  
INPUT REFERRED NOISE  
VREF = 2 V  
Full  
Full  
Full  
Full  
Full  
VI  
V
IV  
V
2ꢀ  
15  
2ꢀ  
15  
mV  
mV  
mV  
mV  
kΩ  
0.5  
0.5  
0.25  
5
0.25  
5
V
25°C  
25°C  
V
V
0.8  
1.5  
0.8  
1.5  
LSB rms  
LSB rms  
VREF = 1 V  
ANALOG INPUT  
Input Voltage Range (Differential)  
VREF = 2 V  
VREF = 1 V  
Common-Mode Voltage  
Input Capacitance4  
Input Bias Current5  
Analog Bandwidth (Full Power)  
POWER SUPPLIES  
Supply Voltages  
Full  
Full  
Full  
25°C  
25°C  
25°C  
V
V
V
V
V
V
2
1
2
1
V p-p  
V p-p  
V
pF  
μA  
0.5  
4
0.5  
4
10  
500  
750  
10  
500  
750  
MHz  
AVDD  
DRVDD  
Full  
Full  
IV  
IV  
4.75  
2.7  
5
5.25  
5.25  
4.75  
2.7  
5
5.25  
5.25  
V
V
Supply Current  
IAVDD  
IDRVDD  
PSRR  
Full  
Full  
Full  
V
V
V
10ꢀ  
12  
0.05  
64  
8
0.05  
mA  
mA  
% FSR  
POWER CONSUMPTION  
DC Input6  
Sine Wave Input  
Full  
Full  
V
VI  
550  
5ꢀ0  
300  
345  
mW  
mW  
640  
370  
1 Gain error is based on the ADC only (with a fixed 2.0 V external reference).  
2 Measured at maximum clock rate, fIN = 2.4 MHz, full-scale sine wave, with approximately 5 pF loading on each output bit.  
3 Includes internal voltage reference error.  
4 Input capacitance refers to the effective capacitance between one differential input pin and AGND. Refer to Figure 7 for the equivalent analog input structure.  
5 Input bias current is due to the input looking like a resistor that is dependent on the clock rate.  
6 Measured with dc input at maximum clock rate.  
Rev. C | Page 3 of 36  
 
 
 
 
AD9244  
AC SPECIFICATIONS  
AVDD = 5 V, DRVDD = 3 V, fSAMPLE = 65 MSPS (–65) or 40 MSPS (–40), differential clock inputs, VREF = 2 V, external reference,  
AIN = –0.5 dBFS, differential analog inputs, unless otherwise noted.  
Table 2.  
Test  
AD9244BST-65  
AD9244BST-40  
Parameter  
SNR1  
fIN = 2.4 MHz  
Temp  
Level  
Min  
72.4  
72.0  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Full  
25°C  
Full  
25°C  
Full  
25°C  
Full  
25°C  
Full  
25°C  
25°C  
25°C  
VI  
I
IV  
V
VI  
I
IV  
I
IV  
V
V
V
73.4  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
74.8  
73.7  
75.3  
fIN = 15.5 MHz (–1 dBFS)  
fIN = 20 MHz  
72.1  
74.7  
fIN = 32.5 MHz  
70.8  
6ꢀ.ꢀ  
73.0  
fIN = 70 MHz  
72.2  
71.2  
67.2  
fIN = 100 MHz  
fIN = 200 MHz  
SINAD1  
72.8  
68.3  
fIN = 2.4 MHz  
Full  
25°C  
Full  
25°C  
Full  
25°C  
Full  
25°C  
25°C  
25°C  
VI  
I
VI  
I
IV  
I
IV  
V
V
V
72.2  
73.2  
72  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
74.7  
72.6  
75.1  
74.4  
fIN = 20 MHz  
fIN = 32.5 MHz  
fIN = 70 MHz  
70.6  
6ꢀ.7  
71.ꢀ  
71  
5ꢀ.8  
fIN = 100 MHz  
fIN = 200 MHz  
ENOB  
72.4  
56.3  
fIN = 2.4 MHz  
Full  
25°C  
Full  
25°C  
Full  
25°C  
Full  
25°C  
25°C  
25°C  
VI  
I
VI  
I
IV  
I
IV  
V
V
V
11.7  
11.ꢀ  
11.7  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
12.1  
12.2  
12.1  
fIN = 20 MHz  
fIN = 32.5 MHz  
fIN = 70 MHz  
11.4  
11.3  
11.8  
11.7  
11.5  
ꢀ.6  
fIN = 100 MHz  
fIN = 200 MHz  
THD1  
11.7  
ꢀ.1  
fIN = 2.4 MHz  
Full  
25°C  
Full  
25°C  
Full  
25°C  
Full  
25°C  
25°C  
25°C  
VI  
I
VI  
I
IV  
I
IV  
V
V
V
−78.4  
−80.7  
−80.4  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
−ꢀ0.0  
−8ꢀ.7  
−8ꢀ.4  
fIN = 20 MHz  
fIN = 32.5 MHz  
fIN = 70 MHz  
−7ꢀ.2  
−78.7  
−84.6  
−84.1  
−83.0  
−60.7  
fIN = 100 MHz  
fIN = 200 MHz  
−83.2  
−56.6  
Rev. C | Page 4 of 36  
 
 
AD9244  
Test  
AD9244BST-65  
AD9244BST-40  
Parameter  
WORST HARMONIC (SECOND or THIRD)1  
Temp  
Level  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
fIN = 2.4 MHz  
fIN = 20 MHz  
fIN = 32.5 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
V
V
V
V
V
V
−ꢀ4.5  
−ꢀ3.7  
−ꢀ2.8  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
−86.5  
−86.1  
−86.2  
−60.7  
−84.5  
−56.6  
fIN = 200 MHz  
SFDR1  
fIN = 2.4 MHz  
Full  
25°C  
Full  
25°C  
Full  
25°C  
Full  
25°C  
Full  
25°C  
25°C  
25°C  
VI  
I
IV  
V
IV  
I
IV  
I
IV  
V
V
V
78.6  
83  
82.5  
81.4  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
ꢀ4.5  
ꢀ0  
ꢀ3.7  
ꢀ1.8  
fIN = 15.5 MHz (–1 dBFS)  
fIN = 20 MHz  
fIN = 32.5 MHz  
80.0  
7ꢀ.5  
86.4  
fIN = 70 MHz  
86.1  
86.2  
60.7  
fIN = 100 MHz  
fIN = 200 MHz  
84.5  
56.6  
1 AC specifications can be reported in dBc (degrades as signal levels are lowered) or in dBFS (always related back to converter full scale).  
DIGITAL SPECIFICATIONS  
AVDD = 5 V, DRVDD = 3 V, VREF = 2 V, external reference, unless otherwise noted.  
Table 3.  
Test  
AD9244BST-65  
AD9244BST-40  
Parameter  
Temp  
Level  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
DIGITAL INPUTS  
Logic 1 Voltage (OEB, DRVDD = 3 V)  
Logic 1 Voltage (OEB, DRVDD = 5 V)  
Logic 0 Voltage (OEB)  
Logic 1 Voltage (DFS, DCS)  
Logic 0 Voltage (DFS, DCS)  
Input Current  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
IV  
IV  
V
2
3.5  
2
3.5  
V
V
V
V
V
μA  
pF  
0.8  
0.8  
3.5  
3.5  
0.8  
10  
0.8  
10  
Input Capacitance  
5
5
CLOCK INPUT PARAMETERS  
Differential Input Voltage  
CLK− Voltage1  
Internal Clock Common-Mode  
Single-Ended Input Voltage  
Logic 1 Voltage  
Logic 0 Voltage  
Input Capacitance  
Input Resistance  
Full  
Full  
Full  
IV  
IV  
V
0.4  
0.25  
0.4  
0.25  
V p-p  
V
V
1.6  
1.6  
Full  
Full  
Full  
Full  
IV  
IV  
V
2
2
V
V
pF  
kΩ  
0.8  
0.8  
5
100  
5
100  
V
DIGITAL OUTPUTS (DRVDD = 5 V)  
Logic 1 Voltage (IOH = 50 μA)  
Logic 0 Voltage (IOL = 50 μA)  
Logic 1 Voltage (IOH = 0.5 mA)  
Logic 0 Voltage (IOL = 1.6 mA)  
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
4.5  
2.4  
4.5  
2.4  
V
V
V
V
0.1  
0.4  
0.1  
0.4  
Rev. C | Page 5 of 36  
 
AD9244  
Test  
Level  
AD9244BST-65  
Typ Max  
AD9244BST-40  
Typ Max  
Parameter  
Temp  
Min  
2.ꢀ5  
2.8  
Min  
2.ꢀ5  
2.8  
Unit  
DIGITAL OUTPUTS (DRVDD = 3 V)2  
Logic 1 Voltage (IOH = 50 μA)  
Logic 0 Voltage (IOL = 50 μA)  
Logic 1 Voltage (IOH = 0.5 mA)  
Logic 0 Voltage (IOL = 1.6 mA)  
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
V
V
V
V
0.05  
0.4  
0.05  
0.4  
1 See the Clock Overview section for more details.  
2 Output voltage levels measured with 5 pF load on each output.  
SWITCHING SPECIFICATIONS  
AVDD = 5 V, DRVDD = 3 V, unless otherwise noted.  
Table 4.  
Test  
AD9244BST-65  
AD9244BST-40  
Parameter  
Temp  
Level  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
CLOCK INPUT PARAMETERS  
Maximum Conversion Rate  
Minimum Conversion Rate  
Clock Period1  
Clock Pulse Width High2  
Clock Pulse Width Low2  
Clock Pulse Width High3  
Clock Pulse Width Low3  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
VI  
V
V
V
V
V
V
65  
40  
MHz  
kHz  
ns  
ns  
ns  
500  
500  
15.4  
4
4
6.ꢀ  
6.ꢀ  
25  
4
4
11.3  
11.3  
ns  
ns  
DATA OUTPUT PARAMETERS  
4
Output Delay (tPD  
)
Full  
Full  
Full  
Full  
Full  
Full  
V
V
V
V
V
V
3.5  
7
3.5  
7
ns  
Pipeline Delay (Latency)  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter)  
Output Enable Delay  
8
8
Clock cycles  
ns  
ps rms  
ns  
1.5  
0.3  
15  
2
1.5  
0.3  
15  
1
OUT-OF-RANGE RECOVERY TIME  
Clock cycles  
1 The clock period can be extended to 2 μs with no degradation in specified performance at 25°C.  
2 With duty cycle stabilizer enabled.  
3 With duty cycle stabilizer disabled.  
4 Measured from clock 50% transition to data 50% transition with 5 pF load on each output.  
N + 3  
N + 2  
N + 1  
N + 4  
N
N + 5  
ANALOG INPUT  
N + 6  
N + 9  
N + 7  
N + 8  
tA  
CLOCK  
DATA OUT N – 9  
N – 8  
N – 7  
N – 6  
N – 5  
N – 4  
N – 3  
N – 2  
N – 1  
N
N + 1  
tPD  
Figure 2. Input Timing  
Rev. C | Page 6 of 36  
 
 
 
 
AD9244  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
With  
Respect to  
Parameter  
ELECTRICAL  
AVDD  
DRVDD  
AGND  
Rating  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to  
absolute maximum ratings for extended periods may affect  
device reliability.  
AGND  
DGND  
DGND  
DRVDD  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DGND  
DGND  
DGND  
–0.3 V to +6.5 V  
−0.3 V to +6.5 V  
–0.3 V to +0.3 V  
–6.5 V to +6.5 V  
AVDD  
REFGND  
CLK+, CLK–, DCS  
DFS  
VIN+, VIN–  
VREF  
SENSE  
REFB, REFT  
CML  
VR  
OTR  
D0 to D13  
OEB  
–0.3 V to +0.3 V  
–0.3 V to AVDD + 0.3 V  
–0.3 V to AVDD + 0.3 V  
–0.3 V to AVDD + 0.3 V  
–0.3 V to AVDD + 0.3 V  
–0.3 V to AVDD + 0.3 V  
–0.3 V to AVDD + 0.3 V  
–0.3 V to AVDD + 0.3 V  
–0.3 V to AVDD + 0.3 V  
–0.3 V to DRVDD + 0.3 V  
–0.3 V to DRVDD + 0.3 V  
–0.3 V to DRVDD + 0.3 V  
EXPLANATION OF TEST LEVELS  
Table 6.  
Test  
Level Description  
I
100% production tested.  
II  
100% production tested at 25°C and sample tested at  
specified temperatures.  
III  
Sample tested only.  
IV  
Parameter is guaranteed by design and characterization  
testing.  
ENVIRONMENTAL1  
V
Parameter is a typical value only.  
Junction Temperature  
Storage Temperature  
Operating Temperature  
Lead Temperature (10 sec)  
150°C  
VI  
100% production tested at 25°C; guaranteed by design  
and characterization testing for industrial temperature  
range; 100% production tested at temperature extremes  
for military devices.  
−65°C to +150°C  
−40°C to +85°C  
300°C  
1 Typical thermal impedances; θJA = 50.0°C/W; θJC = 17.0°C/W. These  
measurements were taken on a 4-layer board in still air, in accordance with  
EIA/JESD51-7.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. C | Page 7 of 36  
 
 
AD9244  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
48 47 46 45 44 43 42 41 40 39 38 37  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
AGND  
SENSE  
DFS  
PIN 1  
2
AGND  
3
4
AVDD  
AVDD  
AGND  
CLK–  
CLK+  
NIC  
AVDD  
AGND  
AGND  
AVDD  
DGND  
DRVDD  
OTR  
5
AD9244  
TOP VIEW  
(Not to Scale)  
6
7
8
9
OEB  
10  
11  
12  
D0 (LSB)  
D1  
D13 (MSB)  
D12  
D2  
D11  
13 14 15 16 17 18 19 20 21 22 23 24  
Figure 3. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, 2, 5, 32, 33  
AGND  
Analog Ground.  
3, 4, 31, 34  
AVDD  
CLK–, CLK+  
NIC  
OEB  
D0 (LSB)  
D1 to D3,  
D4 to Dꢀ,  
D10 to D12  
Analog Supply Voltage.  
Differential Clock Inputs.  
No Internal Connection.  
Digital Output Enable (Active Low).  
Least Significant Bit, Digital Output.  
Digital Outputs.  
6, 7  
8, 44  
10  
11 to 13,  
16 to 21,  
24 to 26  
14, 22, 30  
15, 23, 2ꢀ  
27  
28  
35  
36  
37  
DGND  
DRVDD  
D13 (MSB)  
OTR  
DFS  
SENSE  
VREF  
Digital Ground.  
Digital Supply Voltage.  
Most Significant Bit, Digital Output.  
Out-of-Range Indicator (Logic 1 Indicates OTR).  
Data Format Select. Connect to AGND for straight binary, AVDD for twos complement.  
Internal Reference Control.  
Internal Reference.  
38  
3ꢀ to 42  
43  
REFGND  
REFB, REFT  
DCS  
Reference Ground.  
Internal Reference Decoupling.  
50% Duty Cycle Stabilizer. Connect to AVDD to activate 50% duty cycle stabilizer, AGND for  
external control of both clock edges.  
45  
46, 47  
48  
CML  
VIN+, VIN–  
VR  
Common-Mode Reference (0.5 × AVDD).  
Differential Analog Inputs.  
Internal Bias Decoupling.  
Rev. C | Page 8 of 36  
 
AD9244  
TERMINOLOGY  
Analog Bandwidth (Full Power Bandwidth)  
The analog input frequency at which the spectral power of the  
fundamental frequency (as determined by the FFT analysis) is  
reduced by 3 dB.  
IF Sampling  
Due to the effects of aliasing, an ADC is not necessarily limited  
to Nyquist sampling. Higher sampled frequencies are aliased  
down into the first Nyquist zone (DC − fCLOCK/2) on the output  
of the ADC. Care must be taken that the bandwidth of the sam-  
pled signal does not overlap Nyquist zones and alias onto itself.  
Nyquist sampling performance is limited by the bandwidth of  
the input SHA and clock jitter (noise caused by jitter increases  
as the input frequency increases).  
Aperture Delay  
The delay between the 50% point of the rising edge of the clock  
and the instant at which the analog input is sampled.  
Aperture Uncertainty (Jitter)  
The sample-to-sample variation in aperture delay.  
Integral Nonlinearity (INL)  
INL refers to the deviation of each individual code from a line  
drawn from negative full scale through positive full scale. The  
point used as negative full scale occurs ½ LSB before the first  
code transition. Positive full scale is defined as a level 1½ LSB  
beyond the last code transition. The deviation is measured from  
the middle of each particular code to the true straight line.  
Differential Analog Input Voltage Range  
The peak-to-peak differential voltage must be applied to the  
converter to generate a full-scale response. Peak differential  
voltage is computed by observing the voltage on a single pin  
and subtracting the voltage from the other pin, which is 180°  
out of phase. Peak-to-peak differential is computed by rotating  
the input phase 180° and taking the peak measurement again. The  
difference is then found between the two peak measurements.  
Minimum Conversion Rate  
The clock rate at which the SNR of the lowest analog signal  
frequency drops by no more than 3 dB below the guaranteed limit.  
Differential Nonlinearity (DNL, No Missing Codes)  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. Guaranteed  
no missing codes to 14-bit resolution indicates that all 16,384  
codes must be present over all operating ranges.  
Maximum Conversion Rate  
The clock rate at which parametric testing is performed.  
Nyquist Sampling  
When the frequency components of the analog input are below  
the Nyquist frequency (fCLOCK/2).  
Dual-Tone SFDR1  
The ratio of the rms value of either input tone to the rms value  
of the peak spurious component. The peak spurious component  
may or may not be an IMD product.  
Out-of-Range Recovery Time  
The time it takes for the ADC to reacquire the analog input  
after a transition from 10% above positive full scale to 10%  
above negative full scale, or from 10% below negative full scale  
to 10% below positive full scale.  
Effective Number of Bits (ENOB)  
The ENOB for a device for sine wave inputs at a given input  
frequency can be calculated directly from its measured SINAD by  
Power Supply Rejection Ratio (PSRR)  
The change in full scale from the value with the supply at its  
minimum limit to the value with the supply at its maximum limit.  
N = (SINAD − 1.76)/6.02  
Gain Error  
The first code transition should occur at an analog value ½ LSB  
above negative full scale. The last code transition should occur  
at an analog value 1½ LSB below the nominal full scale. Gain  
error is the deviation of the actual difference between first and  
last code transitions and the ideal difference between first and  
last code transitions.  
Signal-to-Noise-and-Distortion (SINAD)1  
The ratio of the rms signal amplitude to the rms value of the  
sum of all other spectral components below the Nyquist  
frequency, including harmonics, but excluding dc.  
Signal-to-Noise Ratio (SNR)1  
Common-Mode Rejection Ratio (CMRR)  
The ratio of the rms signal amplitude to the rms value of the  
sum of all other spectral components below the Nyquist  
frequency, excluding the first six harmonics and dc.  
Common-mode (CM) signals appearing on VIN+ and VIN–  
are ideally rejected by the differential front end of the ADC.  
With a full-scale CM signal driving both VIN+ and VIN–,  
CMRR is the ratio of the amplitude of the full-scale input CM  
signal to the amplitude of signal that is not rejected, expressed  
in dBFS.1  
Rev. C | Page ꢀ of 36  
 
AD9244  
Spurious-Free Dynamic Range (SFDR)1  
Total Harmonic Distortion (THD)1  
The difference in dB between the rms amplitude of the input  
signal and the peak spurious signal.  
The ratio of the rms sum of the first six harmonic components  
to the rms value of the measured input signal.  
Temperature Drift  
Offset Error  
The temperature drift for offset error and gain error specifies  
the maximum change from initial (25°C) value to the value at  
The major carry transition should occur for an analog value  
½ LSB below VIN+ = VIN−. Offset error is defined as the  
deviation of the actual transition from that point.  
TMIN or TMAX.  
1 AC specifications can be reported in dBc (degrades as signal levels are  
lowered) or in dBFS (always related back to converter full scale).  
Rev. C | Page 10 of 36  
 
AD9244  
TYPICAL APPLICATION CIRCUITS  
DRVDD DRVDD  
AVDD  
DGND  
AGND  
Figure 4. D0 to D13, OTR  
Figure 7. VIN+, VIN−  
AVDD  
DRVDD  
200Ω  
200Ω  
DGND  
AGND  
Figure 5. Three-State (OEB)  
Figure 8. DFS, DCS, SENSE  
AVDD  
AVDD  
200Ω  
CLK  
BUFFER  
AGND  
AGND  
Figure 6. CLK+, CLK−  
Figure 9. VREF, REFT, REFB, VR, CML  
Rev. C | Page 11 of 36  
 
AD9244  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD = 5.0 V, DRVDD = 3.0 V, fSAMPLE = 65 MSPS with CLK duty cycle stabilizer enabled, TA = 25°C, differential analog input, common-  
mode voltage (VCM) = 2.5 V, input amplitude (AIN) = −0.5 dBFS, VREF = 2.0 V external, FFT length = 8K, unless otherwise noted.  
0
100  
90  
80  
70  
60  
50  
40  
SNR = 74.8dBc  
SFDR = 93.6dBc  
–20  
SFDR (dBFS)  
SFDR (dBc)  
–40  
SNR (dBFS)  
–60  
SFDR = 90dBc  
REFERENCE LINE  
SNR (dBc)  
–80  
–100  
–120  
0
5
10  
15  
20  
25  
30 32.5  
–30  
–25  
–20  
–15  
–10  
–5  
0
0
0
FREQUENCY (MHz)  
A
(dBFS)  
IN  
Figure 13. Single-Tone SNR/SFDR vs. AIN, fIN = 5 MHz  
Figure 10. Single-Tone FFT, fIN = 5 MHz  
100  
90  
80  
70  
60  
50  
40  
0
–20  
SNR = 74.0dBc  
SFDR = 87.0dBc  
SFDR (dBFS)  
–40  
SNR (dBFS)  
SFDR (dBc)  
–60  
SFDR = 90dBc  
REFERENCE LINE  
–80  
–100  
–120  
SNR (dBc)  
30  
–25  
–20  
–15  
–10  
–5  
0
5.0  
10.0  
15.0  
20.0  
25.0  
30.0 32.5  
A
(dBFS)  
FREQUENCY (MHz)  
IN  
Figure 11. Single-Tone FFT, fIN = 31 MHz  
Figure 14. Single-Tone SNR/SFDR vs. AIN, fIN = 31 MHz  
0
–20  
100  
90  
80  
70  
60  
50  
40  
SNR = 66.5dBc  
SFDR = 74.0dBc  
SFDR (dBFS)  
–40  
SNR (dBFS)  
SFDR (dBc)  
–60  
SFDR = 90dBc  
REFERENCE LINE  
–80  
SNR (dBc)  
–100  
–120  
0
5
10  
15  
20  
25  
30  
–30  
–25  
–20  
–15  
–10  
–5  
FREQUENCY (MHz)  
A
(dBFS)  
IN  
Figure 15. Single-Tone SNR/SFDR vs. AIN, fIN = 190 MHz, fSAMPLE = 61.44 MSPS  
Figure 12. Single-Tone FFT, fIN = 190 MHz, fSAMPLE = 61.44 MSPS  
Rev. C | Page 12 of 36  
 
AD9244  
75  
73  
71  
69  
67  
65  
75  
73  
71  
69  
67  
65  
12.2  
11.9  
11.5  
11.2  
10.8  
10.5  
2V SPAN  
2V SPAN  
1V SPAN  
1V SPAN  
0
20  
40  
60  
80  
100  
120  
140  
0
0
0
20  
20  
20  
40  
60  
80  
100  
120  
140  
140  
140  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
Figure 16. SINAD/ENOB vs. Input Frequency  
Figure 19. SNR vs. Input Frequency  
–100  
–95  
–90  
–85  
–80  
–75  
100  
95  
90  
85  
80  
75  
1V SPAN  
1V SPAN  
2V SPAN  
2V SPAN  
100  
0
20  
40  
60  
80  
120  
140  
40  
60  
80  
100  
120  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
Figure 20. SFDR vs. Input Frequency  
Figure 17. THD vs. Input Frequency  
–92  
–90  
–88  
–86  
–84  
–82  
–80  
–78  
–76  
–74  
77  
75  
73  
71  
69  
67  
+25°C  
–40°C  
+25°C  
–40°C  
+85°C  
+85°C  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
140  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
Figure 21. THD vs. Temperature and Input Frequency, DCS Disabled  
Figure 18. SNR vs. Temperature and Input Frequency, DCS Disabled  
Rev. C | Page 13 of 36  
AD9244  
–100  
–95  
–90  
–85  
–80  
100  
95  
90  
85  
80  
75  
60  
65  
60  
FOURTH  
HARMONIC  
SFDR, DCS ON  
THIRD  
HARMONIC  
SFDR, DCS OFF  
SNR, DCS ON  
SECOND  
HARMONIC  
SNR, DCS OFF  
–75  
0
20  
40  
60  
80  
100  
120  
140  
30  
35  
40  
45  
50  
55  
60  
65  
70  
INPUT FREQUENCY (MHz)  
DUTY CYCLE (%)  
Figure 22. Harmonics vs. Input Frequency  
Figure 25. SNR/SFDR vs. Duty Cycle, fIN = 2.5 MHz  
76  
75  
74  
73  
72  
71  
12.33  
12.17  
12.00  
11.83  
11.67  
11.50  
11.34  
100  
96  
92  
88  
84  
80  
fIN = 2MHz  
fIN = 2MHz  
fIN = 10MHz  
fIN = 10MHz  
fIN = 20MHz  
fIN = 20MHz  
70  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
SAMPE RATE (MSPS)  
SAMPLE RATE (MSPS)  
Figure 23. SINAD/ENOB vs. Sample Rate  
Figure 26. SFDR vs. Sample Rate  
1.5  
1.0  
1.0  
0.8  
0.6  
0.4  
0.5  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
0
4096  
8192  
12288  
16384  
0
4096  
8192  
12288  
16384  
CODES (14-Bit)  
CODES (14-Bit)  
Figure 24. Typical INL  
Figure 27. Typical DNL  
Rev. C | Page 14 of 36  
 
AD9244  
0
–20  
100  
90  
80  
70  
60  
50  
40  
SNR = 67.5dBc  
SFDR = 93.2dBc  
SFDR (dBFS)  
SFDR (dBc)  
–40  
SNR (dBFS)  
–60  
SFDR = 90dBc  
REFERENCE LINE  
–80  
SNR (dBc)  
–100  
–120  
0
5.0  
10.0  
15.0  
20.0  
25.0  
30.0 32.5  
–30  
–25  
–20  
–15  
(dBFS)  
–10  
–5  
–5  
–5  
FREQUENCY (MHz)  
A
IN  
Figure 28. Dual-Tone FFT with fIN−1 = 44.2 MHz and  
fIN−2 = 45.6 MHz (AIN1 = AIN2 = –6.5 dBFS)  
Figure 31. Dual-Tone SNR/SFDR vs. AIN with  
fIN−1 = 44.2 MHz and fIN−2 = 45.6 MHz  
0
20  
100  
90  
80  
70  
60  
50  
40  
SNR = 67.0dBc  
SFDR = 78.2dBc  
SFDR (dBFS)  
40  
SNR (dBFS)  
SFDR (dBc)  
60  
SFDR = 90dBc  
REFERENCE LINE  
80  
100  
120  
SNR (dBc)  
0
5.0  
10.0  
15.0  
20.0  
25.0  
30.0 32.5  
–30  
–25  
–20  
–15  
(dBFS)  
–10  
FREQUENCY (MHz)  
A
IN  
Figure 29. Dual-Tone FFT with fiN−1 = 69.2 MHz and  
fIN−2 = 70.6 MHz (AIN1 = AIN2 = –6.5 dBFS)  
Figure 32. Dual-Tone SNR/SFDR vs. AIN with  
fIN−1 = 69.2 MHz and= fIN−2 = 70.6 MHz  
0
–20  
100  
90  
80  
70  
60  
50  
40  
SNR = 65.0dBc  
SFDR = 69.1dBc  
SFDR (dBFS)  
–40  
SNR (dBFS)  
–60  
SFDR (dBc)  
SFDR = 90dBc  
REFERENCE LINE  
–80  
–100  
–120  
SNR (dBc)  
0
5.0  
10.0  
15.0  
20.0  
25.0  
30.0 32.5  
–30  
–25  
–20  
–15  
(dBFS)  
–10  
FREQUENCY (MHz)  
A
IN  
Figure 30. Dual-Tone FFT with fIN−1 = 139.2 MHz and  
fIN−2 = 140.7 MHz (AIN1 = AIN2 = –6.5 dBFS)  
Figure 33. Dual-Tone SNR/SFDR vs. AIN with  
fIN−1 = 139.2 MHz and fIN−2 = 140.7 MHz  
Rev. C | Page 15 of 36  
AD9244  
0
100  
90  
80  
70  
60  
50  
40  
SNR = 62.6dBc  
SFDR = 60.7dBc  
–20  
SFDR (dBFS)  
–40  
SNR (dBFS)  
–60  
SFDR (dBc)  
–80  
SFDR = 90dBc  
REFERENCE LINE  
–100  
SNR (dBc)  
–25  
–120  
0
5
10  
15  
20  
25  
30.0 32.5  
–30  
–20  
–15  
(dBFS)  
–10  
–5  
FREQUENCY (MHz)  
A
IN  
Figure 34. Dual-Tone with fIN−1 = 239.1 MHz and  
fIN−2 = 240.7 MHz (AIN−1 = AIN−2 = –6.5 dBFS)  
Figure 37. Dual-Tone SNR/SFDR vs. AIN with  
fIN−1 = 239.1 MHz and fIN−2 = 240.7 MHz  
0
–10  
–20  
–30  
–40  
–50  
–60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
SNR = 71.3dBc  
THD = –90.8dBc  
SFDR (dBFS)  
SNR (dBFS)  
SFDR = 90dBc  
REFERENCE LINE  
SFDR (dBc)  
NOTE: SPUR FLOOR  
BELOW 90dBFS @ 240MHz  
–70  
–80  
–90  
–100  
–110  
–120  
SNR (dBc)  
0
5
10  
15  
20  
25  
30  
–21  
–18  
–15  
–12  
–9  
(dBFS)  
–6  
–3  
0
FREQUENCY (MHz)  
A
IN  
Figure 35. Driving ADC Inputs with Transformer and Balun,  
fIN = 240 MHz, AIN = –8.5 dBFS  
Figure 38. Driving ADC Inputs with Transformer and  
Balun SNR/SFDR vs. AIN, fIN = 240 MHz  
105  
95  
90  
85  
80  
75  
70  
65  
60  
55  
SFDR (dBFS)  
SFDR (dBc)  
100  
95  
90  
85  
80  
75  
70  
65  
SFDR = 90dBc  
REFERENCE LINE  
SNR (dBFS)  
SNR (dBc)  
0
50  
100  
150  
200  
250  
–21  
–18  
–15  
–12  
–9  
–6  
–3  
0
INPUT FREQUENCY (MHz)  
A
(dBFS)  
IN  
Figure 39. Driving ADC Inputs with Transformer and  
Balun SNR/SFDR vs. AIN, fIN = 190 MHz  
Figure 36. CMRR vs. Input Frequency (AIN = 0 dBFS and CML = 2.5 V)  
Rev. C | Page 16 of 36  
AD9244  
THEORY OF OPERATION  
2.5V  
1.5V  
The AD9244 is a high performance, single-supply 14-bit ADC.  
In addition to high dynamic range Nyquist sampling, it is  
designed for excellent IF undersampling performance with an  
analog input as high as 240 MHz.  
AD9244  
VIN+  
33Ω  
50V  
20pF  
0.1μF  
REFT  
REFB  
VIN–  
33Ω  
+
0.1μF  
0.1μF  
10μF  
The AD9244 uses a calibrated 10-stage pipeline architecture  
with a patented, wideband, input sample-and-hold amplifier  
(SHA) implemented on a cost-effective CMOS process. Each  
stage of the pipeline, excluding the last, consists of a low resolu-  
tion flash ADC along with a switched capacitor DAC and  
interstage residue amplifier (MDAC). The MDAC amplifies the  
difference between the reconstructed DAC output and the flash  
input for the next stage in the pipeline. One bit of redundancy is  
used in each of the stages to facilitate digital correction of flash  
errors. The last stage simply consists of a flash ADC.  
2V  
VREF  
2.5V  
1.5V  
+
10μF  
0.1μF  
SENSE  
REFGND  
Figure 40. 2 V p-p Differential Input, Common-Mode Voltage = 2 V  
3.0V  
AD9244  
2.0V  
33Ω  
VIN+  
20pF  
0.1μF  
REFT  
REFB  
VIN–  
33Ω  
+
The pipeline architecture allows a greater throughput rate at the  
expense of pipeline delay or latency. While the converter cap-  
tures a new input sample every clock cycle, it takes eight clock  
cycles for the conversion to be fully processed and appear at the  
output, as illustrated in Figure 2. This latency is not a concern  
in many applications. The digital output, together with the OTR  
indicator, is latched into an output buffer to drive the output  
pins. The output drivers of the AD9244 can be configured to  
interface with 5 V or 3.3 V logic families.  
0.1μF  
0.1μF  
10μF  
2V  
VREF  
+
10μF  
0.1μF  
SENSE  
REFGND  
Figure 41. 2 V p-p Single-Ended Input, Common-Mode Voltage = 2 V  
AD9244  
2.5V  
0.1pF  
3.0V  
2.0V  
33Ω  
33Ω  
VIN+  
The AD9244 has a duty clock stabilizer (DCS) that generates its  
own internal falling edge to create an internal 50% duty cycle  
clock, independent of the externally applied duty cycle. Control  
of straight binary or twos complement output format is accom-  
plished with the DFS pin.  
50Ω  
20pF  
0.1μF  
0.1μF  
0.1μF  
REFT  
REFB  
VIN–  
+
10μF  
2V  
VREF  
3.0V  
2.0V  
+
10μF  
0.1μF  
SENSE  
The ADC samples the analog input on the rising edge of the  
clock. While the clock is low, the input SHA is in sample mode.  
When the clock transitions to a high logic level, the SHA goes  
into the hold mode. System disturbances just prior to or imme-  
diately after the rising edge of the clock and/or excessive clock  
jitter can cause the SHA to acquire the wrong input value and  
should be minimized.  
REFGND  
Figure 42. 2 V p-p Differential Input, Common-Mode Voltage = 2.5 V  
Figure 43 is a simplified model of the AD9244 analog input,  
showing the relationship between the analog inputs, VIN+,  
VIN–, and the reference voltage, VREF. Note that this is only a  
symbolic model and that no actual negative voltages exist inside  
the AD9244. Similar to the voltages applied to the top and bot-  
tom of the resistor ladder in a flash ADC, the value VREF/2  
defines the minimum and maximum input voltages to the  
ADC core.  
ANALOG INPUT AND REFERENCE OVERVIEW  
The differential input span of the AD9244 is equal to the poten-  
tial at the VREF pin. The VREF potential can be obtained from  
the internal AD9244 reference or an external source.  
AD9244  
In differential applications, the center point of the input span is  
the common-mode level of the input signals. In single-ended  
applications, the center point is the dc potential applied to one  
input pin while the signal is applied to the opposite input pin.  
Figure 40 to Figure 42 show various system configurations.  
+VREF/2  
VIN+  
V
14  
CORE  
ADC  
CORE  
+
VIN–  
–VREF/2  
Figure 43. Equivalent Analog Input of AD9244  
Rev. C | Page 17 of 36  
 
 
 
 
 
AD9244  
The range of valid inputs for VIN+ and VIN− is any combination  
that satisfies Equation 2, Equation 3, and Equation 4.  
A differential input structure allows the user to easily configure the  
inputs for either single-ended or differential operation. The ADCs  
input structure allows the dc offset of the input signal to be varied  
independent of the input span of the converter. Specifically, the  
input to the ADC core can be defined as the difference of the  
voltages applied at the VIN+ and VIN– input pins.  
For additional information showing the relationship between  
VIN+, VIN–, VREF, and the analog input range of the AD9244,  
see Table 8 and Table 9.  
ANALOG INPUT OPERATION  
Therefore, the equation  
Figure 44 shows the equivalent analog input of the AD9244,  
which consists of a 750 MHz differential SHA. The differential  
input structure of the SHA is flexible, allowing the device to be  
configured for either a differential or single-ended input. The  
analog inputs VIN+ and VIN– are interchangeable, with the  
exception that reversing the inputs to the VIN+ and VIN– pins  
results in a data inversion (complementing the output word).  
V
CORE = (VIN+) – (VIN−)  
(1)  
defines the output of the differential input stage and provides  
the input to the ADC core. The voltage, VCORE, must satisfy the  
condition  
−VREF/2 < VCORE < VREF/2  
(2)  
where VREF is the voltage at the VREF pin.  
S
In addition to the limitations placed on the input voltages VIN+  
and VIN– by Equation 1 and Equation 2, boundaries on the  
inputs also exist based on the power supply voltages according  
to the conditions  
S
C
C
C
C
S
H
H
VIN+  
VIN–  
C
C
S
PIN, PAR  
H
S
AGND − 0.3 V < VIN+ < AVDD + 0.3 V  
AGND − 0.3 V < VIN− < AVDD + 0.3 V  
(3)  
(4)  
PIN, PAR  
where:  
S
AGND is nominally 0 V.  
AVDD is nominally 5 V.  
Figure 44. Analog Input of AD9244 SHA  
Table 8. Analog Input Configuration Summary  
Input  
Input  
Input Range (V)  
Input CM  
Voltage (V)  
1.0  
Connection  
Single-Ended  
Coupling Span (V) VIN+1  
VIN−1  
Comments  
DC or AC  
1.0  
2.0  
0.5 to 1.5  
1 to 3  
1.0  
2.0  
Best for stepped input response applications.  
2.0  
Optimum noise performance for single-ended  
mode often requires low distortion op amp  
with VCC > 5 V due to its headroom issues.  
Differential  
DC or AC  
1.0  
2.0  
2.25 to 2.75  
2.0 to 3.0  
2.75 to 2.25  
3.0 to 2.0  
2.5  
2.5  
Optimum full-scale THD and SFDR performance  
well beyond the ADC’s Nyquist frequency.  
Optimum noise performance for differential  
mode. Preferred mode for applications.  
1VIN+ and VINcan be interchanged if data inversion is required.  
Table 9. Reference Configuration Summary  
Reference Operating Mode  
Connect  
SENSE  
SENSE  
R1  
R2  
SENSE  
VREF  
To  
Resulting VREF (V)  
Input Span (VIN+ − VIN−) (V p-p)  
Internal  
Internal  
Internal  
VREF  
AGND  
VREF and SENSE  
SENSE and REFGND  
AVDD  
1
2
1
2
1 ≤ VREF ≤ 2.0  
VREF = (1 + R1/R2)  
1 ≤ VREF ≤ 2.0  
1 ≤ SPAN ≤ 2  
(SPAN = VREF)  
SPAN = EXTERNAL REF  
External  
EXTERNAL REF  
Rev. C | Page 18 of 36  
 
 
 
 
 
AD9244  
Differentially Driving the Analog Inputs  
The optimum noise and dc linearity performance for either  
differential or single-ended inputs is achieved with the largest  
input signal voltage span (that is, 2 V input span) and matched  
input impedance for VIN+ and VIN–. Only a slight degradation  
in dc linearity performance exists between the 2 V and 1 V  
input spans; however, the SNR is lower in the 1 V input span.  
The AD9244 has a very flexible input structure, allowing it to  
interface with single-ended or differential inputs.  
The optimum mode of operation, analog input range, and associ-  
ated interface circuitry is determined by the particular applications  
performance requirements as well as power supply options.  
When the ADC is driven by an op amp and a capacitive load is  
switched onto the output of the op amp, the output momentar-  
ily drops due to its effective output impedance. As the output  
recovers, ringing can occur. To remedy the situation, a series  
resistor, RS, can be inserted between the op amp and the SHA  
input, as shown in Figure 45. A shunt capacitance also acts like  
a charge reservoir, sinking or sourcing the additional charge  
required by the sampling capacitor, CS, further reducing current  
transients seen at the op amp’s output.  
Differential operation requires that VIN+ and VIN− be  
simultaneously driven with two equal signals that are 180°out of  
phase with each other.  
Differential modes of operation (ac-coupled or dc-coupled input)  
provide the best SFDR performance over a wide frequency range.  
They should be considered for the most demanding spectral-  
based applications; that is, direct IF conversion to digital.  
Because not all applications have a signal precondition for  
differential operation, there is often a need to perform a single-  
ended-to-differential conversion. In systems that do not require  
dc coupling, an RF transformer with a center tap is the best  
method for generating differential input signals for the AD9244.  
This provides the benefit of operating the ADC in the differen-  
tial mode without contributing additional noise or distortion.  
An RF transformer also has the added benefit of providing  
electrical isolation between the signal source and the ADC.  
V
CC  
R
33Ω  
S
AD9244  
VIN+  
C
S
20pF  
VIN–  
V
EE  
R
33Ω  
S
0.1μF  
5Ω  
VREF  
+
10μF  
0.1μF  
SENSE  
REFCOM  
The differential input characterization was performed using the  
configuration in Figure 46. The circuit uses a Mini-Circuits® RF  
transformer, model T1-1T, which has an impedance ratio of 1:1.  
This circuit assumes that the signal source has a 50 Ω source  
impedance. The secondary center tap of the transformer allows  
a dc common-mode voltage to be added to the differential input  
signal. In Figure 46, the center tap is connected to a resistor  
divider providing a half supply voltage. It could also be  
connected to the CML pin of the AD9244. For IF sampling  
applications (70 MHz < fIN < 200 MHz), it is recommended that  
the 20 pF differential capacitor between VIN+ and VIN− be  
reduced or removed.  
Figure 45. Resistors Isolating SHA Input from Op Amp  
The optimum size of this resistor is dependent on several  
factors, including the ADC sampling rate, the selected op amp,  
and the particular application. In most applications, a 30 Ω to  
100 Ω resistor is sufficient.  
For noise-sensitive applications, the very high bandwidth of the  
AD9244 can be detrimental, and the addition of a series resistor  
and/or shunt capacitor can help limit the wideband noise at the  
ADCs input by forming a low-pass filter. The source impedance  
driving VIN+ and VIN− should be matched. Failure to provide  
matching can result in degradation of the SNR, THD, and SFDR  
performance.  
AVDD  
R
33Ω  
S
1kΩ  
AD9244  
VIN+  
Single-Ended Input Configuration  
0.1μF  
0.1μF  
0.1μF  
A single-ended input can provide adequate performance in  
cost-sensitive applications. In this configuration, there is  
degradation in distortion performance due to large input  
common-mode swing. However, if the source impedances on  
each input are matched, there should be little effect on SNR  
performance.  
REFT  
+
50Ω  
20pF  
10μF  
0.1μF  
1kΩ  
REFB  
VIN–  
MINI-CIRCUITS  
T1–1T  
R
S
33Ω  
Figure 46. Transformer-Coupled Input  
The internal reference can be used to drive the inputs. Figure 45  
shows an example of VREF driving VIN−. In this operating  
mode, a 5 Ω resistor and a 0.1 μF capacitor must be connected  
between VREF and VIN−, as shown in Figure 45, to limit the  
reference noise sampled by the analog input.  
Rev. C | Page 1ꢀ of 36  
 
 
AD9244  
The actual reference voltages used by the internal circuitry of  
the AD9244 appear on the REFT and REFB pins. The voltages  
on these pins are symmetrical about midsupply or CML. For  
proper operation, it is necessary to add a capacitor network to  
decouple these pins. Figure 49 shows the recommended  
decoupling network. The turn-on time of the reference voltage  
appearing between REFT and REFB is approximately 10 ms and  
should be taken into consideration in any power-down mode of  
operation. The VREF pin should be bypassed to the REFGND  
pin with a 10 μF tantalum capacitor in parallel with a low  
inductance 0.1 μF ceramic capacitor.  
The circuit in Figure 47 shows a method for applying a differential,  
direct-coupled signal to the AD9244. An AD8138 amplifier is used  
to derive a differential signal from a single-ended signal.  
10μF  
+
5V  
10  
μ
F
F
0.1μF  
0.1μF  
+
10μ  
1kΩ 1kΩ  
AVDD  
VIN+  
499Ω  
33Ω  
1V p-p  
0V  
0.1μF  
475Ω  
499Ω  
REFT  
+
0.1μF  
0.1μF  
10μF  
0.1μF  
AD8138  
499Ω  
AD9244  
20pF  
VREF  
REFT  
50Ω  
REFB  
+
+
1
10μF  
0.1μF  
0.1μF  
10μF  
AD9244  
VIN–  
33Ω  
REFGND REFB  
0.1μF  
1
LOCATE AS CLOSE AS POSSIBLE TO REFT/REFB PINS.  
Figure 47. Direct-Coupled Drive Circuit with AD8138 Differential Op Amp  
Figure 49. Reference Decoupling  
REFERENCE OPERATION  
Pin-Programmable Reference  
The AD9244 contains a band gap reference that provides a pin-  
strappable option to generate either a 1 V or 2 V output. With  
the addition of two external resistors, the user can generate  
reference voltages between 1 V and 2 V. Another alternative is  
to use an external reference for designs requiring enhanced  
accuracy and/or drift performance, as described later in this  
section. Figure 48 shows a simplified model of the internal  
voltage reference of the AD9244. A reference amplifier buffers a  
1 V fixed reference. The output from the reference amplifier,  
A1, appears on the VREF pin. As stated earlier, the voltage on  
the VREF pin determines the full-scale differential input span  
of the ADC.  
By shorting the VREF pin directly to the SENSE pin, the inter-  
nal reference amplifier is placed in a unity gain mode, and the  
resulting VREF output is 1 V. By shorting the SENSE pin directly to  
the REFGND pin, the internal reference amplifier is configured  
for a gain of 2, and the resulting VREF output is 2 V.  
Resistor-Programmable Reference  
Figure 50 shows an example of how to generate a reference  
voltage other than 1.0 V or 2.0 V with the addition of two  
external resistors. Use the equation  
VREF = 1 V × (1 + R1/R2)  
(5)  
AD9244  
TO  
to determine the appropriate values for R1 and R2. These resistors  
should be in the 2 kΩ to 10 kΩ range. For the example shown, R1  
equals 2.5 kΩ and R2 equals 5 kΩ. From the previous equation, the  
resulting reference voltage on the VREF pin is 1.5 V. This sets the  
differential input span to 1.5 V p-p. The midscale voltage can also  
be set to VREF by connecting VIN− to VREF.  
ADC  
REFT  
A2  
2.5V  
REFB  
VREF  
AD9244  
VIN+  
A1  
3.25V  
1.75V  
33Ω  
1V  
R
R
20pF  
0.1μF  
2.5V  
VIN–  
REFT  
REFB  
33Ω  
SENSE  
1.5V  
+
VREF  
0.1μF  
0.1μF  
10μF  
DISABLE  
A1  
+
R1  
2.5kΩ  
R2  
5kΩ  
10μF  
0.1μF  
LOGIC  
SENSE  
REFGND  
REFGND  
Figure 48. Equivalent Reference Circuit  
Figure 50. Resistor-Programmable Reference  
(1.5 V p-p Input Span, Differential Input with VCM = 2.5 V)  
The voltage appearing at the VREF pin and the state of the  
internal reference amplifier, A1, are determined by the voltage  
present at the SENSE pin. The logic circuitry contains compara-  
tors that monitor the voltage at the SENSE pin. The various  
reference modes are summarized in Table 9 and are described  
in the next few sections.  
Rev. C | Page 20 of 36  
 
 
 
 
 
AD9244  
Using an External Reference  
Digital Outputs  
To use an external reference, the internal reference must be dis-  
abled by connecting the SENSE pin to AVDD. The AD9244  
contains an internal reference buffer, A2 (see Figure 48), that  
simplifies the drive requirements of an external reference. The  
external reference must be able to drive a 5 kΩ ( 20%) load.  
The bandwidth of the reference is deliberately left small to  
minimize the reference noise contribution. As a result, it is not  
possible to drive VREF externally with high frequencies.  
Table 10 details the relationship among the ADC input, OTR,  
and digital output format.  
Data Format Select (DFS)  
The AD9244 can be programmed for straight binary or twos  
complement data on the digital outputs. Connect the DFS pin to  
AGND for straight binary and to AVDD for twos complement.  
Digital Output Driver Considerations  
Figure 51 shows an example of an external reference driving  
both VIN– and VREF. In this case, both the common-mode  
voltage and input span are directly dependent on the value of  
VREF. Both the input span and the center of the input span are  
equal to the external VREF. Thus, the valid input range extends  
from (VREF + VREF/2) to (VREF − VREF/2). For example, if  
the Precision Reference Part REF191, a 2.048 V external refer-  
ence, is used, the input span is 2.048 V. In this case, 1 LSB of the  
AD9244 corresponds to 0.125 mV.  
The AD9244 output drivers can be configured to interface with  
5 V or 3.3 V logic families by setting DRVDD to 5 V or 3.3 V,  
respectively. The output drivers are sized to provide sufficient  
output current to drive a wide variety of logic families.  
However, large drive currents tend to cause glitches on the  
supplies and can affect converter performance. Applications  
requiring the ADC to drive large capacitive loads or large  
fanouts can require external buffers or latches.  
It is essential that a minimum of a 10 μF capacitor, in parallel  
with a 0.1 μF low inductance ceramic capacitor, decouple the  
reference output to AGND.  
AD9244  
VIN+  
VREF + VREF/2  
33Ω  
VREF – VREF/2  
20pF  
0.1μF  
VREF  
5V  
REFT  
REFB  
VIN–  
+
33Ω  
+
0.1μF  
10μF  
0.1μF  
0.1μF  
10μF  
VREF  
0.1μF  
AVDD  
SENSE  
Figure 51. Using an External Reference  
DIGITAL INPUTS AND OUTPUTS  
Table 10. Output Data Format  
Input (V)  
Condition (V)  
< –VREF/2 − 0.5 LSB  
= −VREF/2  
Binary Output Mode  
00 0000 0000 0000  
00 0000 0000 0000  
10 0000 0000 0000  
11 1111 1111 1111  
11 1111 1111 1111  
Twos Complement Mode  
10 0000 0000 0000  
10 0000 0000 0000  
00 0000 0000 0000  
01 1111 1111 1111  
01 1111 1111 1111  
OTR  
VIN+ – VIN−  
VIN+ – VIN−  
VIN+ – VIN−  
VIN+ – VIN−  
VIN+ – VIN−  
1
0
0
0
1
= 0  
= +VREF/2 − 1.0 LSB  
> +VREF/2 − 0.5 LSB  
Rev. C | Page 21 of 36  
 
 
 
AD9244  
Out of Range (OTR)  
Digital Output Enable Function (OEB)  
An out-of-range condition exists when the analog input voltage  
is beyond the input range of the ADC. OTR is a digital output  
that is updated along with the data output corresponding to the  
particular sampled input voltage. Thus, OTR has the same pipe-  
line latency as the digital data. OTR is low when the analog  
input voltage is within the analog input range and high when  
the analog input voltage exceeds the input range, as shown in  
Figure 52. OTR remains high until the analog input returns to  
within the input range and another conversion is completed.  
The AD9244 has three-state ability. If the OEB pin is low, the  
output data drivers are enabled. If the OEB pin is high, the out-  
put data drivers are placed in a high impedance state. The  
three-state ability is not intended for rapid access to the data  
bus. Note that OEB is referenced to the digital supplies  
(DRVDD) and should not exceed that supply voltage.  
Clock Overview  
The AD9244 has a flexible clock interface that accepts either a  
single-ended or differential clock. An internal bias voltage  
facilitates ac coupling using two external capacitors. To remain  
backward compatible with the single-pin clock scheme of the  
AD9226, the AD9244 can be operated with a dc-coupled,  
single-pin clock by grounding the CLK− pin and driving CLK+.  
By logically AND’ing OTR with the MSB and its complement,  
overrange high or underrange low conditions can be detected.  
Table 11 is a truth table for the overrange/underrange circuit in  
Figure 53, which uses NAND gates. Systems requiring  
programmable gain conditioning of the AD9244 can after eight  
clock cycles detect an OTR condition, thus eliminating gain  
selection iterations. In addition, OTR can be used for digital  
offset and gain calibration.  
When the CLK− pin is not grounded, the CLK+ and CLK– pins  
function as a differential clock receiver. When CLK+ is greater  
than CLK–, the SHA is in hold mode; when CLK+ is less than  
CLK–, the SHA is in track mode (see Figure 54 for timing). The  
rising edge of the clock (CLK+ – CLK–) switches the SHA from  
track to hold, and timing jitter on this transition should be mini-  
mized, especially for high frequency analog inputs.  
+FS – 1 LSB  
OTR DATA OUTPUTS  
1
0
0
1111 1111 1111 OTR  
1111 1111 1111  
1111 1111 1110  
–FS + 1/2 LSB  
CLK–  
0
0
1
0000 0000 0001  
0000 0000 0000  
0000 0000 0000  
–FS  
–FS – 1/2 LSB  
+FS  
CLK+  
+FS – 1/2 LSB  
SHA IN  
HOLD  
SHA IN  
TRACK  
Figure 52. OTR Relation to Input Voltage and Output Data  
Table 11. Output Data Format  
OTR  
MSB  
Analog Input Is  
Within range  
Within range  
Underrange  
Overrange  
CLK–  
CLK+  
0
0
1
1
0
1
0
1
Figure 54. SHA Timing  
It is often difficult to maintain a 50% duty cycle to the ADC,  
especially when driving the clock with a single-ended or sine  
wave input. To ease the constraint of providing an accurate 50%  
clock, the ADC has an optional internal duty cycle stabilizer  
(DCS) that allows the rising clock edge to pass through with  
minimal jitter, and interpolates the falling edge, independent of  
the input clock falling edge. The DCS is described in greater  
detail in the Clock Stabilizer (DCS) section.  
MSB  
OTR  
MSB  
OVER = 1  
UNDER = 1  
Figure 53. Overrange/Underrange Logic  
Rev. C | Page 22 of 36  
 
 
 
 
AD9244  
Clock Input Modes  
CLK+  
CLK–  
Figure 55 to Figure 59 illustrate the modes of operation of the  
clock receiver. Figure 55 shows a differential clock directly  
coupled to CLK+ and CLK–. In this mode, the common mode  
of the CLK+ and CLK– signals should be close to 1.6 V. Figure 56  
illustrates a single-ended clock input. The capacitor decouples  
the internal bias voltage on the CLK– pin (about 1.6 V), estab-  
lishing a threshold for the CLK+ pin. Figure 57 provides  
backward compatibility with the AD9226. In this mode, CLK−  
is grounded, and the threshold for CLK+ is 1.5 V. Figure 58  
shows a differential clock ac-coupled by connecting through  
two capacitors. AC coupling a single-ended clock can also be  
accomplished using the circuit in Figure 59.  
AD9244  
1.6V  
0.1μF  
AGND  
Figure 56. Single-Ended Clock Input, DC-Coupled  
CLK+  
AD9244  
CLK–  
AGND  
Figure 57. Single-Ended Input, Retains Pin Compatibility with AD9226  
When using the differential clock circuits of Figure 55 or Figure 58,  
if CLK− drops below 250 mV, the mode of the clock receiver  
may change, causing conversion errors. It is essential that CLK−  
remains above 250 mV when the clock is ac-coupled or dc-coupled.  
CLK+  
AD9244  
CLK–  
100pF  
TO 0.1μF  
Clock Input Considerations  
Figure 58. Differential Clock Input, AC-Coupled  
The analog input is sampled on the rising edge of the clock.  
Timing variations, or jitter, on this edge causes the sampled  
input voltage to be in error by an amount proportional to the  
slew rate of the input signal and to the amount of the timing  
variation. Thus, to maintain the excellent high frequency SFDR  
and SNR characteristics of the AD9244, it is essential that the  
clock edge be kept as clean as possible.  
0.1μF  
CLK+  
AD9244  
1.6V  
CLK–  
0.1μF  
AGND  
The clock should be treated like an analog signal. Clock drivers  
should not share supplies with digital logic or noisy circuits.  
The clock traces should not run parallel to noisy traces. Using a  
pair of symmetrically routed, differential clock signals can help  
to provide immunity from common-mode noise coupled from  
the environment.  
Figure 59. Single-Ended Clock Input, AC-Coupled  
Clock Power Dissipation  
Most of the power dissipated by the AD9244 is from the analog  
power supplies. However, lower clock speeds reduce digital  
supply current. Figure 60 shows the relationship between power  
and clock rate.  
The clock receiver functions like a differential comparator. At  
the CLK inputs, a slowly changing clock signal results in more  
jitter than a rapidly changing one. Driving the clock with a low  
amplitude sine wave input is not recommended. Running a high  
speed clock through a divider circuit provides a fast rise/fall  
time, resulting in the lowest jitter in most systems.  
600  
550  
AD9244-65  
500  
450  
400  
350  
CLK+  
AD9244  
CLK–  
AD9244-40  
300  
250  
200  
Figure 55. Differential Clock Input, DC-Coupled  
0
10  
20  
30  
40  
50  
60  
70  
SAMPLE RATE (MHz)  
Figure 60. Power Consumption vs. Sample Rate  
Rev. C | Page 23 of 36  
 
 
 
 
 
 
 
AD9244  
Clock Stabilizer (DCS)  
Analog Supply Decoupling  
The clock stabilizer circuit in the AD9244 desensitizes the ADC  
from clock duty cycle variations. System clock constraints are  
eased by internally restoring the clock duty cycle to 50%,  
independent of the clock input duty cycle. Low jitter on the  
rising edge (sampling edge) of the clock is preserved while the  
falling edge is generated on-chip.  
The AD9244 features separate analog and digital supply and  
ground circuits, helping to minimize digital corruption of  
sensitive analog signals. In general, AVDD (analog power)  
should be decoupled to AGND (analog ground). The AVDD  
and AGND pins are adjacent to one another. Figure 61 shows  
the recommended decoupling for each pair of analog supplies;  
0.1 μF ceramic chip and 10 μF tantalum capacitors should pro-  
vide adequately low impedance over a wide frequency range.  
The decoupling capacitors (especially 0.1 μF) should be located  
as close to the pins as possible.  
It may be desirable to disable the clock stabilizer, or necessary  
when the clock frequency is varied or completely stopped. Note  
that stopping the clock is not recommended with ac-coupled  
clocks. Once the clock frequency is changed, more than 100  
clock cycles may be required for the clock stabilizer to settle to  
the new speed. When the stabilizer is disabled, the internal  
switching is directly affected by the clock state. If CLK+ is high,  
the SHA is in hold mode; if CLK+ is low, the SHA is in track  
mode. Figure 25 shows the benefits of using the clock stabilizer.  
Connecting DCS to AVDD implements the internal clock  
stabilization function in the AD9244. If the DCS pin is  
connected to ground, the AD9244 uses both edges of the  
external clock in its internal timing circuitry (see the  
AVDD  
+
1
0.1μF  
10μF  
AD9244  
AGND  
1
LOCATE AS CLOSE AS POSSIBLE TO SUPPLY PINS.  
Figure 61. Analog Supply Decoupling  
Digital Supply Decoupling  
The digital activity on the AD9244 falls into two categories:  
correction logic and output drivers. The internal correction  
logic draws relatively small surges of current, mainly during  
the clock transitions. The output drivers draw large current  
impulses when the output bits change state. The size and  
duration of these currents are a function of the load on the  
output bits; large capacitive loads should be avoided.  
Specifications section for timing requirements).  
Grounding and Decoupling  
Analog and Digital Grounding  
Proper grounding is essential in high speed, high resolution  
systems. Multilayer printed circuit boards (PCBs) are recom-  
mended to provide optimal grounding and power distribution.  
For the digital decoupling shown in Figure 62, 0.1 μF ceramic  
chip and 10 μF tantalum capacitors are appropriate. The  
decoupling capacitors (especially 0.1 μF) should be located as  
close to the pins as possible. Reasonable capacitive loads on the  
data pins are less than 20 pF per bit. Applications involving  
greater digital loads should consider increasing the digital  
decoupling and/or using external buffers/latches.  
The use of power and ground planes offers distinct advantages,  
including:  
The minimization of the loop area encompassed by a signal  
and its return path  
The minimization of the impedance associated with ground  
and power paths  
A complete decoupling scheme also includes large tantalum or  
electrolytic capacitors on the power supply connector to reduce  
low frequency ripple to insignificant levels.  
The inherent distributed capacitor formed by the power  
plane, PCB material, and ground plane  
It is important to design a layout that minimizes noise from  
coupling onto the input signal. Digital input signals should not  
be run in parallel with input signal traces and should be routed  
away from the input circuitry. While the AD9244 features sepa-  
rate analog and digital ground pins, it should be treated as an  
analog component. The AGND and DGND pins must be joined  
together directly under the AD9244. A solid ground plane  
under the ADC is acceptable if the power and ground return  
currents are carefully managed.  
DRVDD  
+
1
10μF  
0.1μF  
AD9244  
DGND  
1
LOCATE AS CLOSE AS POSSIBLE TO SUPPLY PINS.  
Figure 62. Digital Supply Decoupling  
Rev. C | Page 24 of 36  
 
 
 
AD9244  
Reference Decoupling  
VR  
The VREF pin should be bypassed to the REFGND pin with a  
10 μF tantalum capacitor in parallel with a low inductance  
0.1 μF ceramic capacitor. It is also necessary to add a capacitor  
network to decouple the REFT and REFB pins. Figure 49 shows  
the recommended decoupling networks.  
VR is an internal bias point on the AD9244. It must be  
decoupled to AGND with a 0.1 μF capacitor.  
CML  
VR  
AD9244  
0.1μF  
0.1μF  
CML  
Figure 63. CML/VR Decoupling  
The AD9244 has a midsupply reference point. This is used  
within the internal architecture of the AD9244 and must be  
decoupled with a 0.1 μF capacitor. It sources or sinks a load of  
up to 300 μA. If more current is required, the CML pin should  
be buffered with an amplifier.  
Rev. C | Page 25 of 36  
AD9244  
EVALUATION BOARD  
ANALOG INPUT CONFIGURATION  
REFERENCE CONFIGURATION  
Table 12 provides a summary of the analog input configuration.  
The analog inputs of the AD9244 on the evaluation board can  
be driven differentially through a transformer via Connector S4,  
or through the AD8138 amplifier via Connector S2, or they can  
be driven single-ended directly via Connector S3. When using  
the transformer or AD8138 amplifier, a single-ended source can  
be used, as both of these devices are configured on the AD9244  
evaluation board to convert single-ended signals to differential  
signels.  
As described in the Analog Input and Reference Overview  
section, the AD9244 can be configured to use its own internal  
or an external reference. An external reference, D3, and refer-  
ence buffer, U5, are included on the AD9244 evaluation board.  
Jumper JP8 and Jumper JP22 to Jumper JP24 can be used to  
select the desired reference configuration (see Table 13).  
CLOCK CONFIGURATION  
The AD9244 evaluation board was designed to achieve optimal  
performance as well as to be easily configurable by the user. To  
configure the clock input, begin by connecting the correct com-  
bination of solderable jumpers (see Table 14). The specific  
jumper configuration is dependent on the application and can  
be determined by referring to the Clock Input Modes section. If  
the differential clock input mode is selected, an external sine  
wave generator applied to S5 can be used as the clock source.  
The clock buffer/drive MC10EL16 from ON Semiconductor® is  
used on the evaluation board to buffer and square the clock  
input. If the single-ended clock configuration is used, an exter-  
nal clock source can be applied to S1.  
Optimal AD9244 performance is achieved above 500 kHz by  
using the input transformer. To drive the AD9244 via the trans-  
former, connect solderable Jumper JP45 and Jumper JP46. DC  
bias is provided by Resistor R8 and Resistor R28. The evaluation  
board has positions for through-hole and surface-mount  
transformers.  
For applications requiring lower frequencies or dc applications,  
the AD8138 can be used. The AD8138 provides good distortion  
and noise performance, as well as input buffering up to 30 MHz.  
For more information, refer to the AD8138 data sheet. To use  
the AD8138 to drive the AD9244, remove the transformer (T1  
or T4) and connect solderable Jumper JP42 and Jumper JP43.  
The AD9244 evaluation board generates a buffered clock at  
TTL/CMOS levels for use with a data capture system, such as  
the HSC-ADC-EVAL-SC system. The clock buffering is pro-  
vided by U4 and U7 and is configured by Jumper JP3,  
Jumper JP4, Jumper JP9, and Jumper JP18 (see Table 14).  
The AD9244 can be driven single-ended directly via S3 and can  
be ac-coupled or dc-coupled by removing or inserting JP5. To  
run the evaluation board in this way, remove the transformer  
(T1 or T4) and connect solderable Jumper JP40 and Jumper JP41.  
Resistor R40, Resistor R41, Resistor R8, and Resistor R28 are  
used to bias the AD9244 inputs to the correct common-mode  
levels in this application.  
Table 12. Analog Input Jumper Configuration  
Analog Input  
Input Connector Jumpers Notes  
Differential: Transformer S4  
45, 46  
R8, R28 provide dc bias; optimal for 500 kHz.  
Differential: Amplifier  
Single-Ended  
S2  
S3  
42, 43  
5, 40, 41  
Remove T1 or T4; used for low input frequencies.  
Remove T1 or T4. JP5: connected for dc-coupled, not connected for ac-coupling.  
Table 13. Reference Jumper Configuration  
Reference  
Internal  
Internal  
Internal  
External  
Voltage  
Jumpers  
23  
24  
25  
8, 22  
Notes  
2 V  
1 V  
JP8 not connected  
JP8 not connected  
JP8 not connected; VREF = 1 + R1/R2  
Set VREF with R26  
1 V ≤ VREF ≤ 2 V  
1 V ≤ VREF ≤ 2 V  
Rev. C | Page 26 of 36  
 
 
 
AD9244  
Table 14. Clock Jumper Configuration  
Clock Input  
Input Connector  
Jumpers  
DUT CLOCK  
Differential  
Single-Ended  
ADꢀ226-Compatible  
DATA CAPTURE CLOCK  
Internal  
S5  
S1  
S1  
11, 13  
12, 15  
12, 14  
Differential DUT Clock  
Single-Ended DUT Clock  
External  
N/A  
N/A  
S6  
ꢀ, 18A  
ꢀ, 18B  
3 or 4  
5V  
5V  
3V  
3V  
+
+
+
+
AVDD  
GND DUT GND DUT  
AVDD DVDD  
DVDD  
SIGNAL SYNTHESIZER  
S4  
2.5MHz  
BAND-PASS FILTER  
REFIN  
2.5MHz, 0.8V p-p  
HP8644  
INPUT  
xFMR  
AD9244  
OUTPUT  
BUSS  
J1  
DSP  
EQUIPMENT  
EVALUATION BOARD  
CLK SYNTHESIZER  
65MHz, 1V p-p  
HP8644  
S1/S5  
INPUT  
CLOCK  
10MHz  
REFOUT  
CLOCK  
DIVIDER  
Figure 64. Evaluation Board Connections  
Rev. C | Page 27 of 36  
 
AD9244  
C W  
Figure 65. AD9244 Evaluation Board, ADC, External Reference, and Power Supply Circuitry  
Rev. C | Page 28 of 36  
AD9244  
R S T O C E J  
E
N E O A L M E L N A G H T G R R I A D H E E  
Figure 66. AD9244 Evaluation Board, Clock Input, and Digital Output Buffer Circuitry  
Rev. C | Page 2ꢀ of 36  
AD9244  
AVDD  
C7  
R40  
1kΩ  
JP5  
C9  
SINGLE  
INPUT  
0.1μF  
S3  
JP42  
JP40  
JP45  
R5  
R41  
1kΩ  
49.9Ω 0.33μF  
C15  
10μF  
10V  
C44  
DNP  
R21  
33Ω  
AVDD  
R32  
AVDD  
VIN+  
VIN–  
+
C24  
20pF  
10kΩ  
R22  
33Ω  
JP46  
JP41  
JP43  
C69  
0.1μF  
R33  
10kΩ  
C8  
0.1μF  
C43  
DNP  
R37  
499Ω  
3
R46  
33Ω  
V+  
4
1
8
–IN  
OUT+  
R34  
U2  
2
V
OCM  
523Ω  
AD8138  
AMP INPUT  
S2  
OUT–  
+IN  
R47  
33Ω  
R35  
5
V–  
6
499Ω  
R31  
49.9Ω  
ADT4-6T  
T4  
1
3
P
S
6
5
4
R36  
499Ω  
AVDD  
NC= 2  
XFMRINPUT  
S4  
CW  
T1-1TX65  
NC = 5  
R28  
2kΩ  
5
4
1
P
S
2
R24  
49.9Ω  
3
C25  
0.33μF  
C16  
0.1μF  
R8  
500Ω  
T1  
Figure 67. AD9244 Evaluation Board, Analog Input Circuitry  
Rev. C | Page 30 of 36  
AD9244  
Figure 68. AD9244 Evaluation Board, PCB Assembly, Top  
Figure 69. AD9244 Evaluation Board, PCB Assembly, Bottom  
Rev. C | Page 31 of 36  
AD9244  
Figure 70. AD9244 Evaluation Board, PCB Layer 1 (Top)  
Figure 71. AD9244 Evaluation Board, PCB Layer 2 (Ground Plane)  
Rev. C | Page 32 of 36  
AD9244  
Figure 72. AD9244 Evaluation Board, PCB Layer 3 (Power Plane)  
Figure 73. AD9244 Evaluation Board, PCB Layer 4 (Bottom)  
Rev. C | Page 33 of 36  
AD9244  
Table 15. Evaluation Board Bill of Materials  
Item Qty. Reference Designator  
Description  
Tantalum capacitors BCASE  
Chip capacitors 1206  
Package  
Value  
10 ꢁF  
0.1 ꢁF  
1
2
11  
28  
C1, C3, C4, C5, C15, C20, C21, C22, C23, C26, C27  
C2, C7, C8, C10, C11, C12, C13, C14, C16, C17, C18, C1ꢀ, C28, C2ꢀ,  
C31, C32, C33, C34, C35, C36, C37, C38, C50, C52, C53, C5ꢀ, C61, C6ꢀ  
3
4
5
6
7
8
4
2
1
3
5
2
1
1
1
12  
11  
1
4
6
1
2
5
2
1
2
2
1
2
2
6
3
4
1
3
1
2
1
2
4
6
1
1
1
1
4
2
4
1
1
1
1
1
2
C6, C47, C48, C58  
Cꢀ, C25  
C24  
C30, C46, C4ꢀ  
C3ꢀ, C40, C41, C42, C45  
C43, C44  
C60  
D3  
Tantalum capacitors DCASE  
22 ꢁF  
0.33 ꢁF  
20 pF  
0.1 ꢁF  
0.001 ꢁF  
DNP1  
0.01 μF  
1.2 V  
Chip capacitors  
Chip capacitor  
Chip capacitors  
Chip capacitors  
DNP1  
1206  
0805  
0805  
0805  
0805  
Chip capacitor  
Diode  
Header male  
Headers  
1206  
10  
11  
12  
13  
14  
15  
16  
17  
18  
1ꢀ  
20  
21  
22  
23  
24  
25  
26  
27  
28  
2ꢀ  
30  
31  
32  
33  
34  
35  
36  
37  
38  
3ꢀ  
40  
40a  
41  
42  
43  
44  
45  
46  
47  
48  
4ꢀ  
SOT-23 Can  
40 PIN RA  
JPRBLK02  
J1  
Header  
JP1, JP2, JP3, JP4, JP5, JP6, JP8, JPꢀ, JP22, JP23, JP24, JP25  
JP11, JP12, JP13, JP14, JP15, JP40, JP41, JP42, JP43, JP45, JP46  
JP18  
L1, L2, L3, L4  
R1, R5, R11, R24, R2ꢀ, R31  
R2  
R3, R4  
R6, R10, R40, R41, R42  
R7, Rꢀ  
R8  
R12, R13  
R14, R15  
R16  
R17, R20  
R18, R1ꢀ  
R21, R22, R23, R25, R46, R47  
R26, R27, R28  
R30, R32, R33, R38  
R34  
R35, R36, R37  
R3ꢀ  
R43, R44  
R45  
RP1, RP2  
RP3, RP4, RP5, RP6  
S1, S2, S3, S4, S5, S6  
T1  
T4  
TB1  
TB1a  
TP1, TP2, TP3, TP4  
TP5, TP7  
Solder jumpers  
Header  
Chip inductors  
Chip resistors  
Potentiometer  
DNP1  
JPRBLK03  
LC1210  
RC07CUP  
RV32ꢀꢀUP  
RC07CUP  
1206  
FBEAD  
4ꢀ.ꢀ Ω  
5 kΩ  
DNP1  
1 kΩ  
Chip resistors  
Chip resistors  
Chip resistor  
Chip resistors  
Chip resistors  
Chip resistor  
Chip resistors  
Chip resistors  
Chip resistors  
Potentiometers  
Chip resistors  
Chip resistor  
Chip resistors  
Chip resistor  
Chip resistors  
Potentiometer  
Resistor packs  
Resistor packs  
1206  
1206  
1206  
1206  
1206  
1206  
1206  
1206  
RV32ꢀꢀUP  
1206  
1206  
1206  
1206  
22 Ω  
500 Ω  
113 Ω  
ꢀ0 Ω  
2.55 kΩ  
2 kΩ  
4 kΩ  
33 Ω  
2 kΩ  
10 kΩ  
523 Ω  
4ꢀꢀ Ω  
4ꢀ.ꢀ Ω  
100 Ω  
10 kΩ  
22 Ω  
1206  
RV32ꢀꢀUP  
RCTS766  
RCA74204  
22 Ω  
SMA connectors 50 Ω SMA200UP  
Transformer  
Transformer  
Header  
DIP06RCUP  
MINI_CD637 ADT4-6T  
TBLK06REM  
T1-1TX65  
Header  
Test points  
Test points  
Test points  
ADꢀ244  
AD8138 amplifier  
ECL divider  
Hex inverter  
AD822 op amp  
Octal registers  
LOOPTP  
LOOPMINI  
LOOPTP  
LQFP-48  
R-8  
RED  
WHT  
BLK  
ADꢀ244  
AD8138  
MC10EL16  
74VHC04MTC  
AD822  
TP11, TP12, TP13, TP14  
U1  
U2  
U3  
U4  
U5  
U6, U7  
SO8  
TSSOP14  
SOIC-8  
SOL20  
74VHC541  
Rev. C | Page 34 of 36  
AD9244  
Item Qty. Reference Designator  
Description  
Package  
Value  
50  
51  
14  
2
Sockets for through resistors  
C56, C57  
Solder sockets  
DNP1  
Total 183  
1 Do not place.  
Rev. C | Page 35 of 36  
 
AD9244  
OUTLINE DIMENSIONS  
0.75  
0.60  
0.45  
9.00  
BSC SQ  
1.60  
MAX  
37  
48  
36  
1
PIN 1  
7.00  
BSC SQ  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
25  
12  
0.15  
0.05  
13  
24  
SEATING  
PLANE  
0.08 MAX  
COPLANARITY  
0.27  
0.22  
0.17  
VIEW A  
0.50  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BBC  
Figure 74. 48-Lead Low Profile Quad Flat Package [LQFP]  
(ST-48)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADꢀ244BST-65  
Temperature Range  
Package Description  
Package Option  
ST-48  
ST-48  
ST-48  
ST-48  
ST-48  
ST-48  
ST-48  
ST-48  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
48-Lead Low Profile Quad Flat Package (LQFP)  
48-Lead Low Profile Quad Flat Package (LQFP)  
48-Lead Low Profile Quad Flat Package (LQFP)  
48-Lead Low Profile Quad Flat Package (LQFP)  
48-Lead Low Profile Quad Flat Package (LQFP)  
48-Lead Low Profile Quad Flat Package (LQFP)  
48-Lead Low Profile Quad Flat Package (LQFP)  
48-Lead Low Profile Quad Flat Package (LQFP)  
Evaluation Board  
ADꢀ244BSTRL-65  
ADꢀ244BSTZ-651  
ADꢀ244BSTZRL-651  
ADꢀ244BST-40  
ADꢀ244BSTRL-40  
ADꢀ244BSTZ-401  
ADꢀ244BSTZRL-401  
ADꢀ244-65PCB  
ADꢀ244-40PCB  
Evaluation Board  
1 Z = Pb-free part.  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C02404-0-12/05(C)  
Rev. C | Page 36 of 36  
 
 
 

相关型号:

AD9245

14-Bit, 80 MSPS, 3 V A/D Converter
ADI

AD9245BCP-20EB

14-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 3 V A/D Converter
ADI

AD9245BCP-40EB

14-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 3 V A/D Converter
ADI

AD9245BCP-65EB

14-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 3 V A/D Converter
ADI

AD9245BCP-80

14-Bit, 80 MSPS, 3 V A/D Converter
ADI

AD9245BCP-80EB

14-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 3 V A/D Converter
ADI

AD9245BCPRL7-80

14-Bit, 80 MSPS, 3 V A/D Converter
ADI

AD9245BCPZ-20

14-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS 3 V A/D Converter
ADI

AD9245BCPZ-202

14-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 3 V A/D Converter
ADI

AD9245BCPZ-40

14-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS 3 V A/D Converter
ADI

AD9245BCPZ-40

1-CH 14-BIT FLASH METHOD ADC, PARALLEL ACCESS, QCC32, ROHS COMPLIANT, EXPOSED PAD, MO-220-VHHD-2, LFCSP-32
ROCHESTER

AD9245BCPZ-402

14-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 3 V A/D Converter
ADI