AD9363ABCZ [ADI]

Radio frequency (RF) 2 × 2 transceiver with integrated 12-bit DACs and ADCs;
AD9363ABCZ
型号: AD9363ABCZ
厂家: ADI    ADI
描述:

Radio frequency (RF) 2 × 2 transceiver with integrated 12-bit DACs and ADCs

文件: 总32页 (文件大小:523K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RF Agile Transceiver  
Data Sheet  
AD9363  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
RX1B_P,  
RX1B_N  
Radio frequency (RF) 2 × 2 transceiver with integrated 12-bit  
DACs and ADCs  
Wide bandwidth: 325 MHz to 3.8 GHz  
Supports time division duplex (TDD) and frequency division  
duplex (FDD) operation  
AD9363  
RX1A_P,  
RX1A_N  
ADC  
RX1C_P,  
RX1C_N  
RX2B_P,  
RX2B_N  
P0_D11/  
TX_D5_x TO P0_D0/  
TX_D0_x  
Tunable channel bandwidth (BW): up to 20 MHz  
Receivers: 6 differential or 12 single-ended inputs  
Superior receiver sensitivity with a noise figure: 3 dB  
Receive (Rx) gain control  
RX2A_P,  
RX2A_N  
ADC  
RX2C_P,  
RX2C_N  
RX LO  
TX LO  
TX_MON1  
P1_D11/  
Real-time monitor and control signals for manual gain  
Independent automatic gain control (AGC)  
Dual transmitters: 4 differential outputs  
Highly linear broadband transmitter  
Transmit (Tx) error vector magnitude (EVM): −34 dB  
Tx noise: ≤−157 dBm/Hz noise floor  
Tx monitor: 66 dB dynamic range with 1 dB accuracy  
Integrated fractional N synthesizers  
2.4 Hz local oscillator (LO) step size  
TX1A_P,  
TX1A_N  
DAC  
DAC  
RX_D5_x TO P1_D0/  
RX_D0_x  
TX1B_P,  
TX1B_N  
TX_MON2  
TX2A_P,  
TX2A_N  
TX2B_P,  
TX2B_N  
RADIO  
SWITCHING  
GPO  
SPI  
CTRL  
PLLs  
CLK_OUT  
CTRL  
AUXADC AUXDACx  
XTALN  
CMOS/LVDS digital interface  
NOTES  
1. SPI, CTRL, P0_D11/TX_D5_x TO P0_D0/TX_D0_x, P1_D11/  
RX_D5_x TO P1_D0/RX_D0_x, AND RADIO SWITCHING  
CONTAIN MULTIPLE PINS.  
APPLICATIONS  
3G enterprise femtocell base stations  
4G femtocell base stations  
Figure 1.  
Wireless video transmission  
GENERAL DESCRIPTION  
The AD9363 is a high performance, highly integrated RF agile  
transceiver designed for use in 3G and 4G femtocell applications.  
Its programmability and wideband capability make it ideal for a  
broad range of transceiver applications. The device combines an  
RF front end with a flexible mixed-signal baseband section and  
integrated frequency synthesizers, simplifying design-in by  
providing a configurable digital interface to a processor. The  
AD9363 operates in the 325 MHz to 3.8 GHz range, covering  
most licensed and unlicensed bands. Channel bandwidths from  
less than 200 kHz to 20 MHz are supported.  
sample rate.  
The transmitters use a direct conversion architecture that achieves  
high modulation accuracy with ultralow noise. This transmitter  
design produces a best-in-class Tx EVM of −34 dB, allowing  
significant system margin for the external power amplifier (PA)  
selection. The on-board Tx power monitor can be used as a  
power detector, enabling highly accurate Tx power  
measurements.  
The fully integrated phase-locked loops (PLLs) provide low  
power fractional N frequency synthesis for all receive and  
transmit channels. Channel isolation, demanded by FDD  
systems, is integrated into the design. All voltage controlled  
oscillators (VCOs) and loop filter components are integrated.  
The two independent direct conversion receivers have state-of-  
the-art noise figure and linearity. Each Rx subsystem includes  
independent automatic gain control (AGC), dc offset correction,  
quadrature correction, and digital filtering, thereby eliminating  
the need for these functions in the digital baseband. The AD9363  
also has flexible manual gain modes that can be externally  
controlled. Two high dynamic range ADCs per channel digitize  
the received I and Q signals and pass them through configurable  
decimation filters and 128-tap finite impulse response (FIR)  
filters to produce a 12-bit output signal at the appropriate  
The core of the AD9363 can be powered directly from a 1.3 V  
regulator. The IC is controlled via a standard 4-wire serial port  
and four real-time I/O control pins. Comprehensive power-down  
modes are included to minimize power consumption during  
normal use. The AD9363 is packaged in a 10 mm × 10 mm,  
144-ball chip scale package ball grid array (CSP_BGA).  
Rev. D  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2016 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
AD9363  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
2.4 GHz Frequency Band .......................................................... 24  
Theory of Operation ...................................................................... 28  
General......................................................................................... 28  
Receiver........................................................................................ 28  
Transmitter .................................................................................. 28  
Clock Input Options .................................................................. 28  
Synthesizers................................................................................. 28  
Digital Data Interface................................................................. 29  
Enable State Machine................................................................. 29  
SPI Interface................................................................................ 30  
Control Pins ................................................................................ 30  
GPO Pins (GPO_3 to GPO_0)................................................. 30  
Auxiliary Converters.................................................................. 30  
Packaging and Ordering Information ......................................... 32  
Outline Dimensions................................................................... 32  
Ordering Guide .......................................................................... 32  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Current Consumption—VDD_INTERFACE........................... 8  
Current Consumption—VDDD1P3_DIG and VDDAx  
(Combination of All 1.3 V Supplies) ....................................... 11  
Absolute Maximum Ratings ..................................................... 15  
Reflow Profile.............................................................................. 15  
Thermal Resistance .................................................................... 15  
ESD Caution................................................................................ 15  
Pin Configuration and Function Descriptions........................... 16  
Typical Performance Characteristics ........................................... 20  
800 MHz Frequency Band......................................................... 20  
REVISION HISTORY  
11/2016—Revision D: Initial Version  
Rev. D | Page 2 of 32  
 
Data Sheet  
AD9363  
SPECIFICATIONS  
Electrical characteristics at VDD_GPO = 3.3 V, VDD_INTERFACE = 1.8 V, and all other VDDx pins (VDDA1P3_TX_LO, VDDA1P3_  
TX_VCO_LDO, VDDA1P3_RX_LO, VDDA1P3_RX_VCO_LDO, VDDA1P3_RX_RF, VDDA1P3_RX_TX, VDDA1P3_TX_LO_BUFFER,  
VDDA1P3_TX_SYNTH, VDDA1P3_RX_SYNTH, VDDD1P3_DIG, and VDDA1P3_BB) = 1.3 V, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter1  
RECEIVERS, GENERAL  
Center Frequency  
Rx Bandwidth  
Gain  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
325  
3800 MHz  
20  
MHz  
Minimum  
Maximum  
0
dB  
dB  
dB  
dB  
dB  
74.5  
73.0  
72.0  
1
At 800 MHz  
At 2300 MHz (RX1A_x, RX2A_x)  
At 2300 MHz (RX1B_x, RX1C_x, RX2B_x, RX2C_x)  
Gain Step  
Received Signal Strength Indicator  
Range  
Accuracy  
RSSI  
100  
2
dB  
dB  
RECEIVERS, 800 MHz  
Noise Figure  
Third-Order Input Intermodulation  
Intercept Point  
NF  
IIP3  
2.5  
−18  
dB  
dBm  
Maximum Rx gain  
Maximum Rx gain  
Second-Order Input Intermodulation  
Intercept Point  
Local Oscillator (LO) Leakage  
Quadrature  
IIP2  
40  
dBm  
dBm  
Maximum Rx gain  
−122  
At Rx front-end input  
Gain Error  
0.2  
%
Phase Error  
Modulation Accuracy (EVM)  
Input Return Loss  
0.2  
−34  
−10  
Degrees  
dB  
dB  
19.2 MHz reference clock  
S11  
RX1x_x to RX2x_x Isolation  
RX1A_x to RX2A_x, RX1C_x to RX2C_x  
RX1B_x to RX2B_x  
70  
55  
dB  
dB  
RX2_x to RX1_x Isolation  
RX2A_x to RX1A_x, RX2C_x to RX1C_x  
RX2B_x to RX1B_x  
70  
55  
dB  
dB  
RECEIVERS, 2.4 GHz  
Noise Figure  
Third-Order Input Intermodulation  
Intercept Point  
NF  
IIP3  
3
−14  
dB  
dBm  
Maximum Rx gain  
Maximum Rx gain  
Second-Order Input Intermodulation  
Intercept Point  
Local Oscillator (LO) Leakage  
Quadrature  
IIP2  
45  
dBm  
dBm  
Maximum Rx gain  
−110  
At Rx front-end input  
Gain Error  
0.2  
%
Phase Error  
Modulation Accuracy (EVM)  
Input Return Loss  
0.2  
−34  
−10  
Degrees  
dB  
dB  
40 MHz reference clock  
S11  
RX1x_x to RX2x_x Isolation  
RX1A_x to RX2A_x, RX1C_x to RX2C_x  
RX1B_x to RX2B_x  
65  
50  
dB  
dB  
Rev. D | Page 3 of 32  
 
AD9363  
Data Sheet  
Parameter1  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
RX2x_x to RX1x_x Isolation  
RX2A_x to RX1A_x, RX2C_x to RX1C_x  
RX2B_x to RX1B_x  
65  
50  
dB  
dB  
RECEIVERS, 3.5 GHz  
Noise Figure  
Third-Order Input Intermodulation  
Intercept Point  
NF  
IIP3  
3.3  
−15  
dB  
dBm  
Maximum Rx gain  
Maximum Rx gain  
Second-Order Input Intermodulation  
Intercept Point  
Local Oscillator (LO) Leakage  
Quadrature  
IIP2  
44  
dBm  
dBm  
Maximum Rx gain  
−100  
At Rx front-end input  
Gain Error  
0.2  
%
Phase Error  
Modulation Accuracy (EVM)  
Input Return Loss  
0.2  
−34  
−10  
Degrees  
dB  
dB  
40 MHz reference clock  
S11  
RX1x_x to RX2x_x Isolation  
RX1A_x to RX2A_x, RX1C_x to RX2C_x  
RX1B_x to RX2B_x  
60  
48  
dB  
dB  
RX2x_x to RX1x_x Isolation  
RX2A_x to RX1A_x, RX2C_x to RX1C_x  
RX2B_x to RX1B_x  
60  
48  
dB  
dB  
TRANSMITTERS, GENERAL  
Center Frequency  
325  
3800 MHz  
Tx Bandwidth  
20  
MHz  
dB  
dB  
Power Control Range  
Power Control Resolution  
TRANSMITTERS, 800 MHz  
Output Return Loss  
Maximum Output Power  
Modulation Accuracy (EVM)  
90  
0.25  
S22  
−10  
8
−34  
23  
dB  
dBm  
dB  
1 MHz tone into 50 Ω load  
19.2 MHz reference clock  
Third-Order Output Intermodulation  
Intercept Point  
OIP3  
dBm  
Carrier Leakage  
−50  
−32  
dBc  
dBc  
0 dB attenuation  
40 dB attenuation  
Noise Floor  
−157  
dBm/Hz 90 MHz offset  
Isolation  
TX1x_x to TX2x_x  
TX2x_x to TX1x_x  
TRANSMITTERS, 2.4 GHz  
Output Return Loss  
Maximum Output Power  
Modulation Accuracy (EVM)  
50  
50  
dB  
dB  
S22  
−10  
7.5  
−34  
19  
dB  
dBm  
dB  
1 MHz tone into 50 Ω load  
40 MHz reference clock  
Third-Order Output Intermodulation  
Intercept Point  
OIP3  
dBm  
Carrier Leakage  
−50  
−32  
dBc  
dBc  
0 dB attenuation  
40 dB attenuation  
Noise Floor  
−156  
dBm/Hz 90 MHz offset  
Isolation  
TX1x_x to TX2x_x  
TX2x_x to TX1x_x  
TRANSMITTERS, 3.5 GHz  
Output Return Loss  
Maximum Output Power  
Modulation Accuracy (EVM)  
50  
50  
dB  
dB  
S22  
−10  
7.0  
−34  
dB  
dBm  
dB  
1 MHz tone into 50 Ω load  
40 MHz reference clock  
Rev. D | Page 4 of 32  
Data Sheet  
AD9363  
Parameter1  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Third-Order Output Intermodulation  
Intercept Point  
OIP3  
18  
dBm  
Carrier Leakage  
−50  
−31  
dBc  
dBc  
0 dB attenuation  
40 dB attenuation  
Noise Floor  
Isolation  
−154  
dBm/Hz 90 MHz offset  
TX1 to TX2  
TX2 to TX1  
50  
50  
dB  
dB  
1 When referencing a single function of a multifunction pin in the parameters, only the portion of the pin name that is relevant to the specification is listed. For full pin  
names of multifunction pins, refer to the Pin Configuration and Function Descriptions section.  
Table 2.  
Parameter1  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
TX MONITOR INPUTS  
(TX_MON1, TX_MON2)  
Maximum Input Level  
Dynamic Range  
Accuracy  
4
66  
1
dBm  
dB  
dB  
LO SYNTHESIZER  
LO Frequency Step  
Integrated Phase Noise  
REFERENCE CLOCK (REF_CLK)  
2.4  
0.3  
Hz  
°rms  
2.4 GHz, 40 MHz reference clock  
100 Hz to 100 MHz  
REF_CLK is the input to the  
XTALN pin  
Input Frequency Range  
Input Signal Level  
AUXILIARY ADC  
Resolution  
10  
80  
MHz  
External oscillator  
1.3  
12  
V p-p AC-coupled external oscillator  
Bits  
Input Voltage  
Minimum  
Maximum  
0.05  
VDDA1P3_BB −  
0.05  
V
V
AUXILIARY DAC  
Resolution  
10  
Bits  
Output Voltage  
Minimum  
0.5  
V
Maximum  
Output Current  
VDD_GPO − 0.3  
10  
V
mA  
DIGITAL SPECIFICATIONS  
(CMOS)  
Logic Inputs  
Input Voltage High  
VDD_INTERFACE ×  
0.8  
0
VDD_INTERFACE  
V
V
Input Voltage Low  
VDD_INTERFACE ×  
0.2  
Input Current High  
Input Current Low  
Logic Outputs  
−10  
−10  
+10  
+10  
μA  
μA  
Output Voltage High  
VDD_INTERFACE ×  
0.8  
0
VDD_INTERFACE  
V
V
Output Voltage Low  
VDD_INTERFACE ×  
0.2  
DIGITAL SPECIFICATIONS (LVDS)  
Logic Inputs  
Input Voltage Range  
825  
1575  
+100  
mV  
mV  
Each differential input in the  
pair  
Input Differential Voltage  
Threshold  
−100  
Rev. D | Page 5 of 32  
AD9363  
Data Sheet  
Parameter1  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Receiver Differential Input  
100  
Ω
Impedance  
Logic Outputs  
Output Voltage High  
Output Voltage Low  
Output Differential  
Voltage  
1375  
mV  
mV  
mV  
1025  
150  
Programmable in 75 mV steps  
Output Offset Voltage  
GENERAL-PURPOSE OUTPUTS  
Output Voltage High  
Output Voltage Low  
Output Current  
SPI TIMING  
1200  
10  
mV  
VDD_GPO × 0.8  
0
VDD_GPO  
VDD_GPO × 0.2  
V
V
mA  
VDD_INTERFACE = 1.8 V  
SPI_CLK  
Period  
Pulse Width  
SPI_EN Setup to First  
SPI_CLK Rising Edge  
tCP  
tMP  
tSC  
20  
9
1
ns  
ns  
ns  
Last SPI_CLK Falling Edge to  
SPI_ENB Hold  
tHC  
0
ns  
SPI_DI  
Data Input Setup to  
SPI_CLK  
Data Input Hold to  
SPI_CLK  
tS  
2
1
ns  
ns  
tH  
SPI_CLK Rising Edge to  
Output Data Delay  
4-Wire Mode  
3-Wire Mode  
Bus Turnaround Time, Read  
(Master)  
tCO  
tCO  
tHZM  
3
3
tH  
8
8
ns  
ns  
ns  
tCO (MAX)  
After baseband processors  
(BBP) drives the last address bit  
Bus Turnaround Time, Read  
(Slave)  
tHZS  
0
tCO (MAX)  
ns  
After AD9363 drives the last  
data bit  
DIGITAL DATA TIMING (CMOS),  
VDD_INTERFACE = 1.8 V  
DATA_CLK_x Clock Period  
DATA_CLK_x and FB_CLK_x  
Pulse Width  
tCP  
tMP  
16.276  
45% of tCP  
ns  
ns  
61.44 MHz  
55% of tCP  
Tx Data  
TX_FRAME_x, P0_Dx, and  
P1_Dx  
Setup to FB_CLK_x  
Hold to FB_CLK_x  
DATA_CLK_x to Data Bus  
Output Delay  
tSTX  
tHTX  
tDDRX  
1
0
0
ns  
ns  
ns  
1.5  
1.0  
DATA_CLK_x to  
tDDDV  
0
ns  
RX_FRAME_x Delay  
Pulse Width  
ENABLE  
TXNRX  
tENPW  
tTXNRXPW  
tCP  
tCP  
ns  
ns  
FDD independent enable state  
machine (ENSM) mode  
TXNRX Setup to ENABLE  
Bus Turnaround Time  
Before Rx  
After Rx  
Capacitive Load  
Capacitive Input  
tTXNRXSU  
0
ns  
TDD ENSM mode  
TDD mode  
tRPRE  
tRPST  
2 × tCP  
2 × tCP  
ns  
ns  
pF  
pF  
3
3
Rev. D | Page 6 of 32  
Data Sheet  
AD9363  
Parameter1  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DIGITAL DATA TIMING (CMOS),  
VDD_INTERFACE = 2.5 V  
DATA_CLK_x Clock Period  
DATA_CLK_x and FB_CLK_x  
Pulse Width  
tCP  
tMP  
16.276  
45% of tCP  
ns  
ns  
61.44 MHz  
55% of tCP  
Tx Data  
TX_FRAME_x, P0_Dx, and P1_Dx  
Setup to FB_CLK_x  
Hold to FB_CLK_x  
DATA_CLK_x to Data Bus  
Output Delay  
tSTX  
tHTX  
tDDRX  
1
0
0.25  
ns  
ns  
ns  
1.25  
1.25  
DATA_CLK_x to  
tDDDV  
0.25  
ns  
RX_FRAME_x Delay  
Pulse Width  
ENABLE  
TXNRX  
TXNRX Setup to ENABLE  
Bus Turnaround Time  
Before Rx  
tENPW  
tTXNRXPW  
tTXNRXSU  
tCP  
tCP  
0
ns  
ns  
ns  
FDD independent ENSM mode  
TDD ENSM mode  
TDD mode  
tRPRE  
tRPST  
2 × tCP  
2 × tCP  
ns  
ns  
pF  
pF  
After Rx  
Capacitive Load  
Capacitive Input  
DIGITAL DATA TIMING (LVDS)  
DATA_CLK_x Clock Period  
DATA_CLK_x and FB_CLK_x  
Pulse Width  
3
3
tCP  
tMP  
4.069  
45% of tCP  
ns  
ns  
245.76 MHz  
55% of tCP  
Tx Data  
TX_FRAME_x and TX_Dx  
Setup to FB_CLK_x  
Hold to FB_CLK_x  
DATA_CLK_x to Data Bus  
Output Delay  
tSTX  
tHTX  
tDDRX  
1
0
0
ns  
ns  
ns  
1.5  
1.0  
DATA_CLK_x to  
tDDDV  
0
ns  
RX_FRAME_x Delay  
Pulse Width  
ENABLE  
TXNRX  
TXNRX Setup to ENABLE  
Bus Turnaround Time  
Before Rx  
tENPW  
tTXNRXPW  
tTXNRXSU  
tCP  
tCP  
0
ns  
ns  
ns  
FDD independent ENSM mode  
TDD ENSM mode  
tRPRE  
tRPST  
2 × tCP  
2 × tCP  
ns  
ns  
pF  
pF  
After Rx  
Capacitive Load  
Capacitive Input  
SUPPLY CHARACTERISTICS  
1.3 V Main Supply  
VDD_INTERFACE Supply  
CMOS  
3
3
1.267  
1.3  
1.33  
V
1.2  
1.8  
1.3  
2.5  
2.5  
3.465  
V
V
V
LVDS  
VDD_GPO Supply  
3.3  
When unused, must be set to  
1.3 V  
Current Consumption  
VDDx, Sleep Mode  
VDD_GPO  
180  
50  
µA  
μA  
Sum of all input currents  
No load  
1 When referencing a single function of a multifunction pin in the parameters, only the portion of the pin name that is relevant to the specification is listed. For full pin  
names of multifunction pins, refer to the Pin Configuration and Function Descriptions section.  
Rev. D | Page 7 of 32  
 
AD9363  
Data Sheet  
CURRENT CONSUMPTION—VDD_INTERFACE  
Table 3. VDD_INTERFACE = 1.2 V  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SLEEP MODE  
45  
μA  
Power applied, device disabled  
ONE Rx CHANNEL, ONE Tx CHANNEL, DOUBLE  
DATA RATE (DDR)  
LTE10  
Single Port  
Dual Port  
2.9  
2.7  
mA  
mA  
30.72 MHz data clock, CMOS  
15.36 MHz data clock, CMOS  
LTE20  
Dual Port  
5.2  
1.3  
mA  
mA  
30.72 MHz data clock, CMOS  
7.68 MHz data clock, CMOS  
TWO Rx CHANNELS, TWO Tx CHANNELS, DDR  
LTE3  
Dual Port  
LTE10  
Single Port  
Dual Port  
LTE20  
4.6  
5.0  
mA  
mA  
61.44 MHz data clock, CMOS  
30.72 MHz data clock, CMOS  
Dual Port  
GSM  
8.2  
0.2  
3.3  
mA  
mA  
mA  
61.44 MHz data clock, CMOS  
1.08 MHz data clock, CMOS  
20 MHz data clock, CMOS  
Dual Port  
WiMAX 8.75 MHz  
Dual Port  
WiMAX 10 MHz  
Single Port  
TDD Rx  
0.5  
3.6  
3.8  
mA  
mA  
mA  
22.4 MHz data clock, CMOS  
22.4 MHz data clock, CMOS  
44.8 MHz data clock, CMOS  
TDD Tx  
FDD  
WiMAX 20 MHz  
Dual Port  
FDD  
6.7  
mA  
44.8 MHz data clock, CMOS  
Rev. D | Page 8 of 32  
 
Data Sheet  
AD9363  
Table 4. VDD_INTERFACE = 1.8 V  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SLEEP MODE  
84  
μA  
Power applied, device disabled  
ONE Rx CHANNEL, ONE Tx CHANNEL, DDR  
LTE10  
Single Port  
Dual Port  
4.5  
4.1  
mA  
mA  
30.72 MHz data clock, CMOS  
15.36 MHz data clock, CMOS  
LTE20  
Dual Port  
8.0  
2.0  
mA  
mA  
30.72 MHz data clock, CMOS  
7.68 MHz data clock, CMOS  
TWO Rx CHANNELS, TWO Tx CHANNELS, DDR  
LTE3  
Dual Port  
LTE10  
Single Port  
Dual Port  
LTE20  
8.0  
7.5  
mA  
mA  
61.44 MHz data clock, CMOS  
30.72 MHz data clock, CMOS  
Dual Port  
GSM  
14.0  
0.3  
mA  
mA  
mA  
61.44 MHz data clock, CMOS  
1.08 MHz data clock, CMOS  
20 MHz data clock, CMOS  
Dual Port  
WiMAX 8.75 MHz  
Dual Port  
WiMAX 10 MHz  
Single Port  
TDD Rx  
5.0  
0.7  
5.6  
6.0  
mA  
mA  
mA  
22.4 MHz data clock, CMOS  
22.4 MHz data clock, CMOS  
44.8 MHz data clock, CMOS  
TDD Tx  
FDD  
WiMAX 20 MHz  
Dual Port  
FDD  
10.7  
mA  
44.8 MHz data clock, CMOS  
Rev. D | Page 9 of 32  
AD9363  
Data Sheet  
Table 5. VDD_INTERFACE = 2.5 V  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SLEEP MODE  
150  
μA  
Power applied, device disabled  
ONE Rx CHANNEL, ONE Tx CHANNEL, DDR  
LTE10  
Single Port  
Dual Port  
6.5  
6.0  
mA  
mA  
30.72 MHz data clock, CMOS  
15.36 MHz data clock, CMOS  
LTE20  
Dual Port  
11.5  
3.0  
mA  
mA  
30.72 MHz data clock, CMOS  
7.68 MHz data clock, CMOS  
TWO Rx CHANNELS, TWO Tx CHANNELS, DDR  
LTE3  
Dual Port  
LTE10  
Single Port  
Dual Port  
LTE20  
11.5  
10.0  
mA  
mA  
61.44 MHz data clock, CMOS  
30.72 MHz data clock, CMOS  
Dual Port  
GSM  
20.0  
0.5  
mA  
mA  
mA  
61.44 MHz data clock, CMOS  
1.08 MHz data clock, CMOS  
20 MHz data clock, CMOS  
Dual Port  
WiMAX 8.75 MHz  
Dual Port  
WiMAX 10 MHz  
Single Port  
TDD Rx  
7.3  
1.3  
8.0  
8.7  
mA  
mA  
mA  
22.4 MHz data clock, CMOS  
22.4 MHz data clock, CMOS  
44.8 MHz data clock, CMOS  
TDD Tx  
FDD  
WiMAX 20 MHz  
Dual Port  
FDD  
15.3  
mA  
44.8 MHz data clock, CMOS  
Rev. D | Page 10 of 32  
Data Sheet  
AD9363  
CURRENT CONSUMPTION—VDDx (COMBINATION OF ALL 1.3 V SUPPLIES)  
Table 6. TDD Mode, 800 MHz  
Parameter  
ONE Rx CHANNEL  
5 MHz BW  
10 MHz BW  
20 MHz BW  
TWO Rx CHANNELS  
5 MHz BW  
10 MHz BW  
20 MHz BW  
ONE Tx CHANNEL  
5 MHz BW  
7 dBm  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Continuous Rx  
180  
210  
260  
mA  
mA  
mA  
Continuous Rx  
Continuous Tx  
265  
315  
405  
mA  
mA  
mA  
340  
190  
mA  
mA  
−27 dBm  
10 MHz BW  
7 dBm  
−27 dBm  
360  
220  
mA  
mA  
20 MHz BW  
7 dBm  
−27 dBm  
400  
250  
mA  
mA  
TWO Tx CHANNELS  
5 MHz BW  
7 dBm  
Continuous Tx  
550  
260  
mA  
mA  
−27 dBm  
10 MHz BW  
7 dBm  
−27 dBm  
600  
310  
mA  
mA  
20 MHz BW  
7 dBm  
−27 dBm  
660  
370  
mA  
mA  
Rev. D | Page 11 of 32  
 
AD9363  
Data Sheet  
Table 7. TDD Mode, 2.4 GHz  
Parameter  
ONE Rx CHANNEL  
5 MHz BW  
10 MHz BW  
20 MHz BW  
TWO Rx CHANNELS  
5 MHz BW  
10 MHz BW  
20 MHz BW  
ONE Tx CHANNEL  
5 MHz BW  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Continuous Rx  
175  
200  
240  
mA  
mA  
mA  
Continuous Rx  
Continuous Tx  
260  
305  
390  
mA  
mA  
mA  
7 dBm  
−27 dBm  
350  
160  
mA  
mA  
10 MHz BW  
7 dBm  
−27 dBm  
380  
220  
mA  
mA  
20 MHz BW  
7 dBm  
−27 dBm  
410  
260  
mA  
mA  
TWO Tx CHANNELS  
5 MHz BW  
Continuous Tx  
7 dBm  
−27 dBm  
580  
280  
mA  
mA  
10 MHz BW  
7 dBm  
−27 dBm  
635  
330  
mA  
mA  
20 MHz BW  
7 dBm  
−27 dBm  
690  
390  
mA  
mA  
Rev. D | Page 12 of 32  
Data Sheet  
AD9363  
Table 8. FDD Mode, 800 MHz  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
ONE Rx CHANNEL, ONE Tx CHANNEL  
5 MHz BW  
7 dBm  
−27 dBm  
10 MHz BW  
7 dBm  
−27 dBm  
20 MHz BW  
7 dBm  
−27 dBm  
Continuous Rx and Tx  
Continuous Rx and Tx  
Continuous Rx and Tx  
490  
345  
mA  
mA  
540  
395  
mA  
mA  
615  
470  
mA  
mA  
TWO Rx CHANNELS, ONE Tx CHANNEL  
5 MHz BW  
7 dBm  
−27 dBm  
10 MHz BW  
7 dBm  
−27 dBm  
20 MHz BW  
7 dBm  
−27 dBm  
555  
410  
mA  
mA  
625  
480  
mA  
mA  
740  
600  
mA  
mA  
ONE Rx CHANNEL, TWO Tx CHANNELS  
5 MHz BW  
7 dBm  
−27 dBm  
685  
395  
mA  
mA  
10 MHz BW  
7 dBm  
−27 dBm  
755  
465  
mA  
mA  
20 MHz BW  
7 dBm  
−27 dBm  
850  
570  
mA  
mA  
TWO Rx CHANNELS, TWO Tx CHANNELS  
5 MHz BW  
7 dBm  
−27 dBm  
10 MHz BW  
7 dBm  
−27 dBm  
20 MHz BW  
7 dBm  
790  
495  
mA  
mA  
885  
590  
mA  
mA  
1020  
730  
mA  
mA  
−27 dBm  
Rev. D | Page 13 of 32  
AD9363  
Data Sheet  
Table 9. FDD Mode, 2.4 GHz  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
ONE Rx CHANNEL, ONE Tx CHANNEL  
5 MHz BW  
7 dBm  
−27 dBm  
10 MHz BW  
7 dBm  
−27 dBm  
20 MHz BW  
7 dBm  
−27 dBm  
Continuous Rx and Tx  
Continuous Rx and Tx  
Continuous Rx and Tx  
Continuous Rx and Tx  
500  
350  
mA  
mA  
540  
390  
mA  
mA  
620  
475  
mA  
mA  
TWO Rx CHANNELS, ONE Tx CHANNEL  
5 MHz BW  
7 dBm  
−27 dBm  
10 MHz BW  
7 dBm  
−27 dBm  
20 MHz BW  
7 dBm  
−27 dBm  
590  
435  
mA  
mA  
660  
510  
mA  
mA  
770  
620  
mA  
mA  
ONE Rx CHANNEL, TWO Tx CHANNELS  
5 MHz BW  
7 dBm  
−27 dBm  
10 MHz BW  
7 dBm  
−27 dBm  
20 MHz BW  
7 dBm  
−27 dBm  
730  
425  
mA  
mA  
800  
500  
mA  
mA  
900  
600  
mA  
mA  
TWO Rx CHANNELS, TWO Tx CHANNELS  
5 MHz BW  
7 dBm  
−27 dBm  
10 MHz BW  
7 dBm  
−27 dBm  
20 MHz BW  
7 dBm  
820  
515  
mA  
mA  
900  
595  
mA  
mA  
1050  
740  
mA  
mA  
−27 dBm  
Rev. D | Page 14 of 32  
Data Sheet  
AD9363  
ABSOLUTE MAXIMUM RATINGS  
REFLOW PROFILE  
The AD9363 reflow profile is in accordance with the JEDEC  
JESD20 criteria for Pb-free devices. The maximum reflow  
temperature is 260°C.  
Table 10.  
Parameter  
Rating  
VDDx to VSSx  
−0.3 V to +1.4 V  
−0.3 V to +3.0 V  
−0.3 V to +3.9 V  
−0.3 V to  
VDD_INTERFACE + 0.3 V  
THERMAL RESISTANCE  
VDD_INTERFACE to VSSx  
VDD_GPO to VSSx  
Logic Inputs and Outputs to VSSx  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment.  
Careful attention to PCB thermal design is required.  
Input Current to Any Pin Except  
Supplies  
RF Inputs (Peak Power)  
Tx Monitor Input Power (Peak Power)  
Package Power Dissipation  
10 mA  
θ
JA is the natural convection junction to ambient thermal  
resistance measured in a one cubic foot sealed enclosure.  
JC is the junction to case thermal resistance.  
2.5 dBm  
9 dBm  
θ
(TJMAX − TA)/θJA  
110°C  
Maximum Junction Temperature (TJMAX  
)
Table 11. Thermal Resistance  
Temperature Range  
Operating  
Storage  
Package  
Type  
Airflow Velocity  
(m/sec)  
2
3
−40°C to +85°C  
−65°C to +150°C  
260°C  
θJA  
θJC  
Unit  
°C/W  
°C/W  
°C/W  
BC-144-71  
0
32.3  
29.6  
27.8  
9.6  
1.0  
2.5  
N/A4  
Reflow  
N/A4  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
1 Per JEDEC JESD51-7, plus JEDEC JESD51-5 2S2P test board.  
2 Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).  
3 Per MIL-STD-883, Method 1012.1.  
4 N/A means not applicable.  
ESD CAUTION  
Rev. D | Page 15 of 32  
 
 
 
 
AD9363  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
VDDA1P1_  
TX_VCO  
A
B
C
D
E
F
RX2A_N  
VSSA  
RX2A_P  
VSSA  
VSSA  
DNC  
VSSA  
GPO_3  
TX_MON2  
GPO_2  
VSSA  
GPO_1  
TX2A_N  
GPO_0  
VSSA  
TX2A_P  
VDD_GPO  
VSSA  
TX2B_N  
TX2B_P  
VSSA  
VSSA  
VDDA1P3_  
TX_VCO_  
LDO  
VDDA1P3_  
TX_LO  
TX_VCO_  
LDO_OUT  
AUXDAC1  
AUXDAC2  
TEST/  
ENABLE  
RX2C_P  
RX2C_N  
CTRL_IN0  
CTRL_IN1  
CTRL_IN2  
VSSA  
VSSA  
VSSA  
VSSA  
VSSD  
VDDA1P3_ VDDA1P3_  
RX_RF  
P0_D9/  
TX_D4_P  
P0_D7/  
TX_D3_P  
P0_D5/  
TX_D2_P  
P0_D3/  
TX_D1_P  
P0_D1/  
TX_D0_P  
CTRL_OUT0 CTRL_IN3  
RX_TX  
VDDA1P3_  
TX_LO_  
BUFFER  
VDDA1P3_  
RX_LO  
P0_D11/  
TX_D5_P  
P0_D8/  
TX_D4_N  
P0_D6/  
TX_D3_N  
P0_D4/  
TX_D2_N  
P0_D2/  
TX_D1_N  
P0_D0/  
TX_D0_N  
RX2B_P  
CTRL_OUT1 CTRL_OUT2 CTRL_OUT3  
CTRL_OUT6 CTRL_OUT5 CTRL_OUT4  
VDDA1P3_  
RX_VCO_  
LDO  
P0_D10/  
TX_D5_N  
VDDD1P3_  
DIG  
RX2B_N  
VSSA  
VSSA  
VSSD  
VSSD  
FB_CLK_P  
FB_CLK_N  
VSSD  
VSSD  
RX_VCO_ VDDA1P1_  
LDO_OUT  
RX_  
FRAME_N  
RX_  
FRAME_P  
TX_  
FRAME_P  
DATA_  
CLK_P  
G
H
J
CTRL_OUT7 EN_AGC  
ENABLE  
VSSA  
VSSD  
RX_VCO  
P1_D11/  
RX_D5_P  
TX_  
FRAME_N  
DATA_  
CLK_N  
VDD_  
INTERFACE  
RX1B_P  
VSSA  
VSSA  
TXNRX  
SPI_DI  
VSSA  
VSSD  
VDDA1P3_  
RX_SYNTH  
P1_D10/  
RX_D5_N  
P1_D9/  
RX_D4_P  
P1_D7/  
RX_D3_P  
P1_D5/  
RX_D2_P  
P1_D3/  
RX_D1_P  
P1_D1/  
RX_D0_P  
RX1B_N  
RX1C_P  
RX1C_N  
RX1A_P  
VSSA  
VSSA  
SPI_CLK  
RESET  
CLK_OUT  
SPI_EN  
SPI_DO  
VSSA  
VDDA1P3_ VDDA1P3_  
TX_SYNTH  
P1_D8/  
RX_D4_N  
P1_D6/  
RX_D3_N  
P1_D4/  
RX_D2_N  
P1_D2/  
RX_D1_N  
P1_D0/  
RX_D0_N  
K
L
VSSD  
VSSA  
BB  
VSSA  
VSSA  
RBIAS  
AUXADC  
TX_MON1  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
DNC  
RX1A_N  
DNC  
VSSA  
TX1A_P  
TX1A_N  
TX1B_P  
TX1B_N  
XTALN  
M
ANALOG I/O  
DIGITAL I/O  
DC POWER  
GROUND  
DO NOT CONNECT  
Figure 2. Pin Configuration, Top View  
Table 12. Pin Function Descriptions  
Pin No.  
Type1 Mnemonic  
Description  
A1, A2  
I
RX2A_N, RX2A_P  
Receive Channel 2 Differential A Inputs. Alternatively, each pin can be used as a  
single-ended input. Unused pins must be tied to ground.  
A3, M3, M11  
NC  
DNC  
Do Not Connect. Do not connect to these pins.  
A4, A6, A12,  
B1, B2, B12,  
C2, C7 to C12,  
F3, G1, H2, H3,  
H5, H6, J2, K2,  
L2, L3, L7 to  
L12, M4, M6  
GND  
VSSA  
Analog Ground. Tie these pins directly to the VSSD digital ground on the PCB  
(one ground plane).  
A5  
I
TX_MON2  
Transmit Channel 2 Power Monitor Input. If this pin is unused, tie it to ground.  
Transmit Channel 2 Differential A Outputs. Unused pins must be tied to 1.3 V.  
Transmit Channel 2 Differential B Outputs. Unused pins must be tied to 1.3 V.  
Transmit VCO Supply Input. Connect to B11.  
Auxiliary DAC 1 Output. If using the auxiliary DAC, connect a 0.1 µF capacitor from  
this pin to ground.  
A7, A8  
A9, A10  
A11  
O
O
P
O
TX2A_N, TX2A_P  
TX2B_N, TX2B_P  
VDDA1P1_TX_VCO  
AUXDAC1  
B3  
B4 to B7  
B8  
O
I
GPO_3 to GPO_0  
VDD_GPO  
3.3 V Capable General-Purpose Outputs.  
2.5 V to 3.3 V Supply for the AUXDAC and General-Purpose Output Pins. If the  
VDD_GPO supply is not used, this supply must be set to 1.3 V.  
B9  
B10  
B11  
I
I
O
VDDA1P3_TX_LO  
VDDA1P3_TX_VCO_LDO  
TX_VCO_LDO_OUT  
Transmit Local Oscillator (LO) 1.3 V Supply Input.  
Transmit VCO LDO 1.3 V Supply Input. Connect to B9.  
Transmit VCO LDO Output. Connect to A11 and to a 1 μF bypass capacitor in series  
with a 1 Ω resistor to ground.  
C1, D1  
C3  
I
RX2C_P, RX2C_N  
AUXDAC2  
Receive Channel 2 Differential C Inputs. Alternatively, use each pin as a single-ended  
input. Unused pins must be tied to ground.  
Auxiliary DAC 2 Output. If using the auxiliary DAC, connect a 0.1 µF capacitor from  
this pin to ground.  
O
C4  
I
I
TEST/ENABLE  
CTRL_IN0 to CTRL_IN3  
Test Input. Ground this pin for normal operation.  
Control Inputs. Use these pins for manual Rx gain and Tx attenuation control.  
Rev. D | Page 16 of 32  
C5, C6, D5, D6  
 
Data Sheet  
AD9363  
Pin No.  
D2  
D3  
Type1 Mnemonic  
Description  
I
VDDA1P3_RX_RF  
VDDA1P3_RX_TX  
Receiver 1.3 V Supply Input. Connect to D3.  
Receiver and Transmitter 1.3 V Supply Input.  
I
D4, E4 to E6,  
F4 to F6, G4  
O
CTRL_OUT0, CTRL_OUT1 to Control Outputs. These pins are multipurpose outputs that have programmable  
CTRL_OUT3, CTRL_OUT6 to functionality.  
CTRL_OUT4, CTRL_OUT7  
D7  
I/O  
I/O  
I/O  
I/O  
I/O  
P0_D9/TX_D4_P  
P0_D7/TX_D3_P  
P0_D5/TX_D2_P  
P0_D3/TX_D1_P  
P0_D1/TX_D0_P  
VSSD  
Digital Data Port 0, Data Bit 9/Transmit Differential Input Bus, Data Bit 4. This is a dual  
function pin. As P0_D9, it functions as part of the 12-bit bidirectional parallel CMOS  
level Data Port 0. Alternatively, as TX_D4_P, it functions as part of the LVDS 6-bit Tx  
differential input bus with internal LVDS termination.  
Digital Data Port 0, Data Bit 7/Transmit Differential Input Bus, Data Bit 3. This is a dual  
function pin. As P0_D7, it functions as part of the 12-bit bidirectional parallel CMOS  
level Data Port 0. Alternatively, as TX_D3_P, it functions as part of the LVDS 6-bit Tx  
differential input bus with internal LVDS termination.  
Digital Data Port 0, Data Bit 5/Transmit Differential Input Bus, Data Bit 2. This is a dual  
function pin. As P0_D5, it functions as part of the 12-bit bidirectional parallel CMOS  
level Data Port 0. Alternatively, as TX_D2_P, it functions as part of the LVDS 6-bit Tx  
differential input bus with internal LVDS termination.  
Digital Data Port 0, Data Bit 3/Transmit Differential Input Bus, Data Bit 1. This is a dual  
function pin. As P0_D3, it functions as part of the 12-bit bidirectional parallel CMOS  
level Data Port 0. Alternatively, as TX_D1_P, it functions as part of the LVDS 6-bit Tx  
differential input bus with internal LVDS termination.  
D8  
D9  
D10  
D11  
Digital Data Port 0, Data Bit 1/Transmit Differential Input Bus, Data Bit 0. This is a dual  
function pin. As P0_D1, it functions as part of the 12-bit bidirectional parallel CMOS  
level Data Port 0. Alternatively, as TX_D0_P, it functions as part of the LVDS 6-bit Tx  
differential input bus with internal LVDS termination.  
Digital Ground. Tie these pins directly to the VSSA analog ground on the PCB (one  
ground plane).  
D12, F7, F9,  
F11, G12, H7,  
H10, K12  
GND  
I
E1, F1  
RX2B_P, RX2B_N  
VDDA1P3_RX_LO  
Receive Channel 2 Differential B Inputs. Alternatively, each pin can be used as a  
single-ended input. Unused pins must be tied to ground.  
Receive LO 1.3 V Supply Input.  
E2  
E3  
E7  
I
I
VDDA1P3_TX_LO_BUFFER Transmitter LO Buffer 1.3 V Supply Input.  
Digital Data Port 0, Data Bit 11/Transmit Differential Input Bus, Data Bit 5. This is a  
I/O  
P0_D11/TX_D5_P  
P0_D8/TX_D4_N  
P0_D6/TX_D3_N  
P0_D4/TX_D2_N  
P0_D2/TX_D1_N  
P0_D0/TX_D0_N  
VDDA1P3_RX_VCO_LDO  
dual function pin. As P0_D11, it functions as part of the 12-bit bidirectional parallel  
CMOS level Data Port 0. Alternatively, as TX_D5_P, it functions as part of the LVDS 6-  
bit Tx differential input bus with internal LVDS termination.  
Digital Data Port 0, Data Bit 8/Transmit Differential Input Bus, Data Bit 4. This is a dual  
function pin. As P0_D8, it functions as part of the 12-bit bidirectional parallel CMOS  
level Data Port 0. Alternatively, as TX_D4_N, it functions as part of the LVDS 6-bit Tx  
differential input bus with internal LVDS termination.  
Digital Data Port 0, Data Bit 6/Transmit Differential Input Bus, Data Bit 3. This is a dual  
function pin. As P0_D6, it functions as part of the 12-bit bidirectional parallel CMOS  
level Data Port 0. Alternatively, as TX_D3_N, it functions as part of the LVDS 6-bit Tx  
differential input bus with internal LVDS termination.  
Digital Data Port 0, Data Bit 4/Transmit Differential Input Bus, Data Bit 2. This is a dual  
function pin. As P0_D4, it functions as part of the 12-bit bidirectional parallel CMOS  
level Data Port 0. Alternatively, as TX_D2_N, it functions as part of the LVDS 6-bit Tx  
differential input bus with internal LVDS termination.  
Digital Data Port 0, Data Bit 2/Transmit Differential Input Bus, Data Bit 1. This is a dual  
function pin. As P0_D2, it functions as part of the 12-bit bidirectional parallel CMOS  
level Data Port 0. Alternatively, as TX_D1_N, it functions as part of the LVDS 6-bit Tx  
differential input bus with internal LVDS termination.  
Digital Data Port 0, Data Bit 0/Transmit Differential Input Bus, Data Bit 0. This is a dual  
function pin. As P0_D0, it functions as part of the 12-bit bidirectional parallel CMOS  
level Data Port 0. Alternatively, as TX_D0_N, it functions as part of the LVDS 6-bit Tx  
differential input bus with internal LVDS termination.  
E8  
I/O  
I/O  
I/O  
I/O  
I/O  
I
E9  
E10  
E11  
E12  
F2  
Receive VCO LDO 1.3 V Supply Input. Connect to E2.  
Rev. D | Page 17 of 32  
AD9363  
Data Sheet  
Pin No.  
Type1 Mnemonic  
Description  
F8  
I/O  
P0_D10/TX_D5_N  
Digital Data Port 0, Data Bit 10/Transmit Differential Input Bus, Data Bit 5. This is a  
dual function pin. As P0_D10, it functions as part of the 12-bit bidirectional parallel  
CMOS level Data Port 0. Alternatively, as TX_D5_N, it functions as part of the LVDS 6-  
bit Tx differential input bus with internal LVDS termination.  
F10, G10  
I
FB_CLK_P, FB_CLK_N  
Feedback Clock Inputs. These pins receive the FB_CLK signal that clocks in Tx data. In  
CMOS mode, use FB_CLK_P as the input and tie FB_CLK_N to ground.  
F12  
G2  
I
O
VDDD1P3_DIG  
RX_VCO_LDO_OUT  
1.3 V Digital Supply Input.  
Receive VCO LDO Output. Connect to G3 and to a 1 μF bypass capacitor in series  
with a 1 Ω resistor to ground.  
G3  
G5  
G6  
I
I
I
VDDA1P1_RX_VCO  
EN_AGC  
ENABLE  
Receive VCO Supply Input. Connect to G2.  
Manual Control Input for Automatic Gain Control (AGC).  
Control Input. This pin moves the device through various operational states.  
G7, G8  
O
RX_FRAME_N,  
RX_FRAME_P  
Receive Digital Data Framing Outputs. These pins transmit the RX_FRAME signal that  
indicates whether the Rx output data is valid. In CMOS mode, use RX_FRAME_P as  
the output and leave RX_FRAME_N unconnected.  
G9, H9  
I
TX_FRAME_P,  
TX_FRAME_N  
Transmit Digital Data Framing Inputs. These pins receive the TX_FRAME signal that  
indicates when Tx data is valid. In CMOS mode, use TX_FRAME_P as the input and tie  
TX_FRAME_N to ground.  
G11, H11  
O
DATA_CLK_P,  
DATA_CLK_N  
Receive Data Clock Outputs. These pins transmit the DATA_CLK signal that the BBP  
uses to clock the Rx data. In CMOS mode, use DATA_CLK_P as the output and leave  
DATA_CLK_N unconnected.  
H1, J1  
H4  
I
RX1B_P, RX1B_N  
TXNRX  
Receive Channel 1 Differential B Inputs. Alternatively, use each pin as a single-ended  
input. Unused pins must be tied to ground.  
Enable State Machine Control Signal. This pin controls the data port bus direction. A  
logic low selects the Rx direction; a logic high selects the Tx direction.  
I
H8  
I/O  
P1_D11/RX_D5_P  
Digital Data Port P1, Data Bit 11/Receive Differential Output Bus, Data Bit 5. This is a  
dual function pin. As P1_D11, it functions as part of the 12-bit bidirectional parallel  
CMOS level Data Port 1. Alternatively, as RX_D5_P, it functions as part of the LVDS 6-  
bit Rx differential output bus with internal LVDS termination.  
H12  
J3  
J4  
I
I
I
VDD_INTERFACE  
VDDA1P3_RX_SYNTH  
SPI_DI  
1.2 V to 2.5 V Supply for Digital I/O Pins (1.8 V to 2.5 V in LVDS Mode).  
Receiver Synthesizer 1.3 V Supply Input.  
SPI Serial Data Input.  
J5  
I
SPI_CLK  
SPI Clock Input.  
J6  
O
CLK_OUT  
Output Clock. This pin can be configured to output either a buffered version of the  
external input clock (the digital controlled crystal oscillator (DCXO)) or a divided-  
down version of the internal ADC sample clock (ADC_CLK).  
J7  
I/O  
I/O  
I/O  
I/O  
I/O  
P1_D10/RX_D5_N  
P1_D9/RX_D4_P  
P1_D7/RX_D3_P  
P1_D5/RX_D2_P  
P1_D3/RX_D1_P  
Digital Data Port 1, Data Bit 10/Receive Differential Output Bus, Data Bit 5. This is a  
dual function pin. As P1_D10, it functions as part of the 12-bit bidirectional parallel  
CMOS level Data Port 1. Alternatively, as RX_D5_N, it functions as part of the LVDS 6-  
bit Rx differential output bus with internal LVDS termination.  
Digital Data Port 1, Data Bit 9/Receive Differential Output Bus, Data Bit 4. This is a  
dual function pin. As P1_D9, it functions as part of the 12-bit bidirectional parallel  
CMOS level Data Port 1. Alternatively, as RX_D4_P, it functions as part of the LVDS 6-  
bit Rx differential output bus with internal LVDS termination.  
Digital Data Port 1, Data Bit 7/Receive Differential Output Bus, Data Bit 3. This is a  
dual function pin. As P1_D7, it functions as part of the 12-bit bidirectional parallel  
CMOS level Data Port 1. Alternatively, as RX_D3_P, it functions as part of the LVDS 6-  
bit Rx differential output bus with internal LVDS termination.  
Digital Data Port 1, Data Bit 5/Receive Differential Output Bus, Data Bit 2. This is a  
dual function pin. As P1_D5, it functions as part of the 12-bit bidirectional parallel  
CMOS level Data Port 1. Alternatively, as RX_D2_P, it functions as part of the LVDS 6-  
bit Rx differential output bus with internal LVDS termination.  
J8  
J9  
J10  
J11  
Digital Data Port 1, Data Bit 3/Receive Differential Output Bus, Data Bit 1. This is a  
dual function pin. As P1_D3, it functions as part of the 12-bit bidirectional parallel  
CMOS level Data Port 1. Alternatively, as RX_D1_P, it functions as part of the LVDS 6-  
bit Rx differential output bus with internal LVDS termination.  
Rev. D | Page 18 of 32  
Data Sheet  
AD9363  
Pin No.  
Type1 Mnemonic  
Description  
J12  
I/O  
P1_D1/RX_D0_P  
Digital Data Port 1, Data Bit 1/Receive Differential Output Bus, Data Bit 0. This is a  
dual function pin. As P1_D1, it functions as part of the 12-bit bidirectional parallel  
CMOS level Data Port 1. Alternatively, as RX_D0_P, it functions as part of the LVDS 6-  
bit Rx differential output bus with internal LVDS termination.  
K1, L1  
K3  
I
I
I
RX1C_P, RX1C_N  
VDDA1P3_TX_SYNTH  
VDDA1P3_BB  
Receive Channel 1 Differential C Inputs. Alternatively, use each pin as a single-ended  
input. Tie unused pins to ground.  
Transmitter Synthesizer 1.3 V Supply Input. Connect this pin to a 1.3 V regulator  
through a separate trace to a common supply point.  
Baseband 1.3 V Supply Input. Connect this pin to a 1.3 V regulator through a  
separate trace to a common supply point.  
K4  
K5  
K6  
K7  
I
RESET  
Asynchronous Reset Input. A logic low resets the device.  
SPI Enable. Set this pin to logic low to enable the SPI bus.  
I
SPI_EN  
I/O  
P1_D8/RX_D4_N  
Digital Data Port 1, Data Bit 8/Receive Differential Output Bus, Data Bit 4. This is a  
dual function pin. As P1_D8, it functions as part of the 12-bit bidirectional parallel  
CMOS level Data Port 1. Alternatively, as RX_D4_N, it functions as part of the LVDS 6-  
bit Rx differential output bus with internal LVDS termination.  
K8  
I/O  
I/O  
I/O  
I/O  
I
P1_D6/RX_D3_N  
P1_D4/RX_D2_N  
P1_D2/RX_D1_N  
P1_D0/RX_D0_N  
RBIAS  
Digital Data Port 1, Data Bit 6/Receive Differential Output Bus, Data Bit 3. This is a  
dual function pin. As P1_D6, it functions as part of the 12-bit bidirectional parallel  
CMOS level Data Port 1. Alternatively, as RX_D3_N, it functions as part of the LVDS 6-  
bit Rx differential output bus with internal LVDS termination.  
Digital Data Port 1, Data Bit 4/Receive Differential Output Bus, Data Bit 2. This is a  
dual function pin. As P1_D4, it functions as part of the 12-bit bidirectional parallel  
CMOS level Data Port 1. Alternatively, as RX_D2_N, it functions as part of the LVDS 6-  
bit Rx differential output bus with internal LVDS termination.  
Digital Data Port 1, Data Bit 2/Receive Differential Output Bus, Data Bit 1. This is a  
dual function pin. As P1_D2, it functions as part of the 12-bit bidirectional parallel  
CMOS level Data Port 1. Alternatively, as RX_D1_N, it functions as part of the LVDS 6-  
bit Rx differential output bus with internal LVDS termination.  
Digital Data Port 1, Data Bit 0/Receive Differential Output Bus, Data Bit 0. This is a  
dual function pin. As P1_D0, it functions as part of the 12-bit bidirectional parallel  
CMOS level Data Port 1. Alternatively, as RX_D0_N, it functions as part of the LVDS 6-  
bit Rx differential output bus with internal LVDS termination.  
K9  
K10  
K11  
L4  
Bias Input Reference. Connect this pin through a 14.3 kΩ (1% tolerance) resistor to  
ground.  
L5  
L6  
M1, M2  
I
O
I
AUXADC  
SPI_DO  
RX1A_P, RX1A_N  
Auxiliary ADC Input. If this pin is unused, tie it to ground.  
SPI Serial Data Output in 4-Wire Mode, High-Z in 3-Wire Mode.  
Receive Channel 1 Differential A Inputs. Alternatively, use each pin as a single-ended  
input. Tie unused pins to ground.  
M5  
I
TX_MON1  
Transmit Channel 1 Power Monitor Input. If this pin is unused, tie it to ground.  
Transmit Channel 1 Differential A Outputs. Tie unused pins to 1.3 V.  
Transmit Channel 1 Differential B Outputs. Tie unused pins to 1.3 V.  
Reference Frequency Connection. Connect the external clock source to XTALN.  
M7, M8  
M9, M10  
M12  
O
O
I
TX1A_P, TX1A_N  
TX1B_P, TX1B_N  
XTALN  
1 I is input, NC is not connected, GND is ground, O is output, P is power, and I/O is input/output.  
Rev. D | Page 19 of 32  
 
AD9363  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
ATTEN is the attenuation setting. fLO_RX and fLO_TX are the receive and transmit local oscillator frequencies, respectively.  
800 MHZ FREQUENCY BAND  
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
–4  
–8  
–12  
–16  
–56 –54 –52 –50 –48 –46 –44 –42 –40 –38 –36  
700  
750  
800  
850  
900  
INTERFERER POWER LEVEL (dBm)  
RF FREQUENCY (MHz)  
Figure 3. Rx Noise Figure vs. RF Frequency  
Figure 6. Rx EVM vs. Interferer Power Level, LTE 10 MHz Signal of Interest  
with PIN = −90 dBm, 5 MHz OFDM Blocker at 17.5 MHz Offset  
5
4
14  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
12  
3
10  
8
2
1
6
0
4
–1  
–2  
–3  
2
0
–47  
–100 –90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
–43  
–39  
–35  
–31  
–27  
–23  
Rx INPUT POWER (dBm)  
INTERFERER POWER LEVEL (dBm)  
Figure 4. RSSI Error vs. Rx Input Power, LTE 10 MHz Modulation  
(Referenced to −50 dBm Input Power at 800 MHz)  
Figure 7. Rx Noise Figure vs. Interferer Power Level, Enhanced Data Rates for  
GSM Evolution (EDGE) Signal of Interest with PIN = −90 dBm, Continuous  
Wave (CW) Blocker at 3 MHz Offset, Gain Index = 64  
0
80  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
78  
–5  
–10  
–15  
–20  
–25  
–30  
76  
74  
72  
70  
68  
66  
72  
68  
64  
60  
56  
52  
48  
44  
40  
36  
32  
700  
750  
800  
850  
900  
INTERFERER POWER LEVEL (dBm)  
Rx LO FREQUENCY (MHz)  
Figure 5. Rx EVM vs. Interferer Power Level, LTE 10 MHz Signal of Interest  
with PIN = −82 dBm, 5 MHz Orthogonal Frequency Division Multiplexing  
(OFDM) Blocker at 7.5 MHz Offset  
Figure 8. Rx Gain vs. Rx LO Frequency, Gain Index = 76 (Maximum Setting)  
Rev. D | Page 20 of 32  
 
 
Data Sheet  
AD9363  
0
–20  
20  
15  
10  
5
–40  
0
–60  
–5  
–40°C  
–80  
+25°C  
+85°C  
–10  
–15  
–20  
–25  
–100  
–120  
0
2000  
4000  
6000  
8000  
10000  
12000  
20  
28  
36  
44  
52  
60  
68  
76  
Rx GAIN INDEX  
FREQUENCY (MHz)  
Figure 9. Third-Order Input Intercept Point (IIP3) vs. Rx Gain Index,  
f1 = 1.45 MHz, f2 = 2.89 MHz, GSM Mode  
Figure 12. Rx Emission at LNA Input vs. Frequency, DC to 12 GHz, fLO_RX = 800  
MHz, LTE 10 MHz, fLO_TX = 860 MHz  
10.0  
100  
90  
80  
70  
60  
50  
40  
30  
–40°C  
+25°C  
+85°C  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
20  
–40°C  
10  
+25°C  
+85°C  
0
700  
750  
800  
850  
900  
20  
28  
36  
44  
52  
60  
68  
76  
Tx LO FREQUENCY (MHz)  
Rx GAIN INDEX  
Figure 10. Second-Order Input Intercept Point (IIP2) vs. Rx Gain Index,  
f1 = 2.00 MHz, f2 = 2.01 MHz, GSM Mode  
Figure 13. Tx Output Power vs. Tx LO Frequency, Attenuation Setting = 0 dB,  
Single-Tone Output  
–100  
0.5  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
0.4  
+85°C  
–105  
–110  
–115  
–120  
–125  
–130  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
700  
750  
800  
850  
900  
0
10  
20  
30  
40  
50  
Rx LO FREQUENCY (MHz)  
ATTENUATION SETTING (dB)  
Figure 14. Tx Power Control Step Linearity Error vs. Attenuation Setting  
Figure 11. Rx LO Leakage vs. Rx LO Frequency  
Rev. D | Page 21 of 32  
AD9363  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
ATT 0dB  
ATT 3dB  
ATT 6dB  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
–100  
–15  
–10  
–5  
0
5
10  
15  
700  
750  
800  
850  
900  
FREQUENCY OFFSET FROM CARRIER FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 15. Tx Output Power vs. Frequency Offset from Carrier Frequency,  
LO_TX = 800 MHz, LTE 10 MHz Downlink (Digital Attenuation Variations Shown)  
Figure 18. Tx Second-Order Harmonic Distortion (HD2) vs. Frequency  
f
0.5  
–20  
–40°C  
+25°C  
+85°C  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
0.4  
0.3  
0.2  
0.1  
0
700  
750  
800  
850  
900  
700  
750  
800  
850  
900  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 16. Integrated Tx LO Phase Noise vs. Frequency, 19.2 MHz REF_CLK  
Figure 19. Tx Third-Order Harmonic Distortion (HD3) vs. Frequency  
–30  
30  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
–40°C  
+25°C  
+85°C  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
25  
20  
15  
10  
5
0
700  
750  
800  
850  
900  
0
4
8
12  
16  
20  
FREQUENCY (MHz)  
Tx ATTENUATION SETTING (dB)  
Figure 17. Tx Carrier Rejection vs. Frequency  
Figure 20. Tx Third-Order Output Intercept Point (OIP3) vs. Tx Attenuation Setting  
Rev. D | Page 22 of 32  
Data Sheet  
AD9363  
170  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–40°C  
+25°C  
+85°C  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
165  
160  
155  
150  
145  
140  
0
3
6
9
12  
15  
700  
750  
800  
850  
900  
Tx ATTENUATION SETTING (dB)  
FREQUENCY (MHz)  
Figure 22. Tx Single Sideband Rejection vs. Frequency,  
1.5375 MHz Offset  
Figure 21. Tx Signal-to-Noise Ratio (SNR) vs. Tx Attenuation Setting,  
LTE 10 MHz Signal of Interest with Noise Measured at 90 MHz Offset  
Rev. D | Page 23 of 32  
AD9363  
Data Sheet  
2.4 GHZ FREQUENCY BAND  
0
–5  
4.0  
–40°C  
+25°C  
+85°C  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
–10  
–15  
–20  
–25  
–30  
0.5  
–40°C  
+25°C  
+85°C  
0
–60  
–55  
–50  
–45  
–40  
–35  
–30  
–25  
–20  
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700  
RF FREQUENCY (MHz)  
INTERFERER POWER LEVEL (dBm)  
Figure 23. Rx Noise Figure vs. RF Frequency  
Figure 26. Rx EVM vs. Interferer Power Level, LTE 20 MHz Signal of Interest  
with PIN = −75 dBm, LTE 20 MHz Blocker at 40 MHz Offset  
5
80  
–40°C  
–40°C  
+25°C  
+85°C  
+25°C  
+85°C  
4
3
78  
76  
74  
72  
70  
68  
2
1
0
–1  
–2  
–3  
66  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700  
INPUT POWER (dBm)  
Rx LO FREQUENCY (MHz)  
Figure 27. Rx Gain vs. Rx LO Frequency, Gain Index = 76 (Maximum Setting)  
Figure 24. RSSI Error vs. Input Power (Referenced to −50 dBm Input Power  
at 2.4 GHz)  
20  
0
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
15  
10  
–5  
–10  
–15  
–20  
–25  
5
0
–5  
–10  
–15  
–20  
–25  
–30  
20  
28  
36  
44  
52  
60  
68  
76  
–72 –68 –64 –60 –56 –52 –48 –44 –40 –36 –32 –28  
Rx GAIN INDEX  
INTERFERER POWER LEVEL (dBm)  
Figure 28. Third-Order Input Intercept Point (IIP3) vs. Rx Gain Index,  
f1 = 30 MHz, f2 = 61 MHz  
Figure 25. Rx EVM vs. Interferer Power Level, LTE 20 MHz Signal of Interest  
with PIN = −75 dBm, LTE 20 MHz Blocker at 20 MHz Offset  
Rev. D | Page 24 of 32  
 
Data Sheet  
AD9363  
80  
70  
60  
50  
40  
30  
20  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
20  
28  
36  
44  
52  
60  
68  
76  
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700  
Rx GAIN INDEX  
Tx LO FREQUENCY (MHz)  
Figure 32. Tx Output Power vs. Tx LO Frequency, Attenuation Setting = 0 dB,  
Single-Tone Output  
Figure 29. Second-Order Input Intercept Point (IIP2) vs. Rx Gain Index,  
f1 = 60 MHz, f2 = 61 MHz  
0.5  
–100  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
0.4  
+85°C  
–105  
–110  
–115  
–120  
–125  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–130  
0
10  
20  
30  
40  
50  
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700  
ATTENUATION SETTING (dB)  
Rx LO FREQUENCY (MHz)  
Figure 30. Rx Local Oscillator (LO) Leakage vs. Rx LO Frequency  
Figure 33. Tx Power Control Step Linearity Error vs. Attenuation Setting  
0
–20  
0
ATT 0dB  
ATT 3dB  
ATT6dB  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
2000  
4000  
6000  
8000  
10000  
12000  
–25 –20 –15 –10  
–5  
0
5
10  
15  
20  
25  
FREQUENCY (MHz)  
FREQUENCY OFFSET FROM CARRIER FREQUENCY (MHz)  
Figure 31. Rx Emission at LNA Input vs. Frequency, DC to 12 GHz,  
LO_RX = 2.4 GHz, LTE 20 MHz, fLO_TX = 2.46 GHz  
Figure 34. Tx Output Power vs. Frequency Offset from Carrier Frequency,  
f
f
LO_TX = 2.3 GHz, LTE 20 MHz Downlink (Digital Attenuation  
Variations Shown)  
Rev. D | Page 25 of 32  
AD9363  
Data Sheet  
0.5  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–40°C  
+25°C  
+85°C  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
0.4  
0.3  
0.2  
0.1  
0
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700  
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 35. Integrated Tx LO Phase Noise vs. Frequency, 40 MHz REF_CLK  
Figure 37. Tx Second-Order Harmonic Distortion (HD2) vs. Frequency  
–30  
–20  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700  
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 36. Tx Carrier Rejection vs. Frequency  
Figure 38. Tx Third-Order Harmonic Distortion (HD3) vs. Frequency  
Rev. D | Page 26 of 32  
Data Sheet  
AD9363  
30  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–40°C  
+25°C  
+85°C  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
25  
20  
15  
10  
5
0
0
4
8
12  
16  
20  
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700  
Tx ATTENUATION SETTING (dB)  
FREQUENCY (MHz)  
Figure 41. Tx Single Sideband Rejection vs. Frequency,  
3.075 MHz Offset  
Figure 39. Tx Third-Order Output Intercept Point (OIP3) vs. Tx Attenuation Setting  
160  
–40°C  
+25°C  
158  
+85°C  
156  
154  
152  
150  
148  
146  
144  
142  
140  
0
3
6
9
12  
15  
Tx ATTENUATION SETTING (dB)  
Figure 40. Tx Signal-to-Noise Ratio (SNR) vs. Tx Attenuation Setting,  
LTE 20 MHz Signal of Interest with Noise Measured at 90 MHz Offset  
Rev. D | Page 27 of 32  
AD9363  
Data Sheet  
THEORY OF OPERATION  
GENERAL  
TRANSMITTER  
The AD9363 is a highly integrated radio frequency (RF)  
transceiver capable of being configured for a wide range of  
applications. The device integrates all RF, mixed-signal, and  
digital blocks necessary to provide all transceiver functions in a  
single device. Programmability allows this broadband transceiver  
to be adapted for use with multiple communication standards,  
including FDD and TDD systems. This programmability also  
allows the device to interface to various BBPs using a single 12-  
bit parallel data port, dual 12-bit parallel data ports, or a 12-bit  
low voltage differential signaling (LVDS) interface.  
The transmitter section consists of two identical and indepen-  
dently controlled channels that provide all digital processing,  
mixed-signal, and RF blocks necessary to implement a direct  
conversion system while sharing a common frequency synthe-  
sizer. The digital data received from the BBP passes through a  
fully programmable 128-tap FIR filter with interpolation options.  
The FIR output is sent to a series of interpolation filters that  
provide additional filtering and data rate interpolation prior to  
reaching the DAC. Each 12-bit DAC has an adjustable sampling  
rate. Both the I and Q channels are fed to the RF block for  
upconversion.  
The AD9363 also provides self calibration and AGC systems to  
maintain a high performance level under varying temperatures  
and input signal conditions. In addition, the device includes  
several test modes that allow system designers to insert test tones  
and create internal loopback modes to debug their designs  
during prototyping and optimize their radio configuration for a  
specific application.  
After being converted to baseband analog signals, the I and Q  
signals are filtered to remove sampling artifacts and provide band  
shaping, and then they are passed to the upconversion mixers.  
At this point, the I and Q signals are recombined and modulated  
on the carrier frequency for transmission to the output stage.  
The output stage provides attenuation control that provides a  
range of output levels while keeping the output impedance at 50 Ω.  
A wide range of attenuation adjustment with fine granularity is  
included to help designers optimize SNR.  
RECEIVER  
The receiver section contains all blocks necessary to receive RF  
signals and convert them to digital data that is usable by a BBP.  
Two independently controlled channels can receive signals from  
different sources, allowing the device to be used in multiple  
input, multiple output (MIMO) systems while sharing a  
common frequency synthesizer.  
Self calibration circuitry is included in the transmit channel to  
provide internal adjustment capability. The transmitter also  
provides a Tx monitor block that receives the transmitter output  
and routes it back through an unused receiver channel to the  
BBP for signal monitoring. The Tx monitor blocks are available  
only in TDD mode operation while the receiver is idle.  
Each channel has three inputs that can be multiplexed to the  
signal chain, making the AD9363 suitable for use in diversity  
systems with multiple antenna inputs. The receiver is a direct  
conversion system that contains a low noise amplifier (LNA)  
followed by matched in-phase (I) and quadrature (Q) amplifiers,  
mixers, and band shaping filters that downconvert received  
signals to baseband for digitization. External LNAs can also  
be interfaced to the device, allowing designers the flexibility to  
customize the receiver front end for their specific application.  
CLOCK INPUT OPTIONS  
The AD9363 uses a reference clock provided by an external  
oscillator or clock distribution device (such as the AD9548)  
connected to the XTALN pin. The frequency of this reference  
clock can vary from 10 MHz to 80 MHz. This reference clock  
supplies the synthesizer blocks that generate all data clocks,  
sample clocks, and local oscillators inside the device.  
Gain control is achieved by following a preprogrammed gain  
index map that distributes gain among the blocks for optimal  
performance at each level. This gain control can be achieved by  
enabling the internal AGC in either fast or slow mode or by  
using manual gain control, allowing the BBP to make the gain  
adjustments as needed. Additionally, each channel contains  
independent RSSI measurement capability, dc offset tracking,  
and all circuitry necessary for self calibration.  
SYNTHESIZERS  
RF PLLs  
The AD9363 contains two identical synthesizers to generate the  
required LO signals for the RF signal paths—one for the receiver  
and one for the transmitter. PLL synthesizers are fractional N  
designs that incorporate completely integrated VCOs and loop  
filters. In TDD mode, the synthesizers turn on and off as appropri-  
ate for the Rx and Tx frames. In FDD mode, the Tx PLL and the  
Rx PLL can be activated at the same time. These PLLs require no  
external components.  
The receivers include 12-bit, sigma-delta (Σ-Δ) ADCs and adjust-  
able sample rates that produce data streams from the received  
signals. The digitized signals can be conditioned further by a  
series of decimation filters and a fully programmable 128-tap  
FIR filter with additional decimation settings. The sample rate  
of each digital filter block can also be adjusted by changing the  
decimation factors to produce the desired output data rate.  
Rev. D | Page 28 of 32  
 
 
 
 
 
 
Data Sheet  
AD9363  
BB PLL  
ENABLE STATE MACHINE  
The AD9363 also contains a baseband PLL (BB PLL) synthesizer  
that generates all baseband related clock signals. These signals  
include the ADC and DAC sampling clocks, the DATA_CLK signal  
(see the Digital Data Interface section), and all data framing  
signals. The BB PLL is programmed from 700 MHz to 1400 MHz  
based on the data rate and sample rate requirements of the system.  
The AD9363 transceiver includes an ENSM that allows real-  
time control over the current state of the device. The device can  
be placed in several different states during normal operation,  
including  
Wait—power save, synthesizers disabled  
Sleep—wait with all clocks and the BB PLL disabled  
Tx—Tx signal chain enabled  
Rx—Rx signal chain enabled  
FDD—Tx and Rx signal chains enabled  
Alert—synthesizers enabled  
DIGITAL DATA INTERFACE  
The AD9363 data interface uses parallel data ports (P0 and P1)  
to transfer data between the device and the BBP. The data ports  
can be configured in either single-ended CMOS format or dif-  
ferential LVDS format. Both formats can be configured in multiple  
arrangements to match system requirements for data ordering  
and data port connections. These arrangements include single  
port data bus, dual port data bus, single data rate, double data  
rate, and various combinations of data ordering to transmit data  
from different channels across the bus at appropriate times.  
The ENSM has two control modes: SPI control and pin control.  
SPI Control Mode  
In SPI control mode, the ENSM is controlled asynchronously by  
writing to SPI registers to advance the current state to the next  
state. SPI control is considered asynchronous to the DATA_CLK  
signal because the SPI clock can be derived from a different  
clock reference and can still function properly. The SPI control  
ENSM mode is recommended when real-time control of the  
synthesizers is not necessary. SPI control can be used for real-  
time control as long as the BBP can perform timed SPI writes  
accurately.  
Bus transfers are controlled using simple hardware handshake  
signaling. The two ports can be operated in either bidirectional  
(TDD) mode or in full duplex (FDD) mode, where half the bits  
are used for transmitting data and half are used for receiving  
data. The interface can also be configured to use only one of the  
data ports for applications that do not require high data rates  
and require fewer interface pins.  
Pin Control Mode  
DATA_CLK Signal  
In pin control mode, the enable functions of the ENABLE pin  
and the TXNRX pin allow real-time control of the current state.  
The ENSM allows TDD or FDD operation, depending on the  
configuration of the corresponding SPI register. The ENABLE  
and TXNRX pin control mode is recommended if the BBP has  
extra control outputs that can be controlled in real time, allow-  
ing a simple 2-wire interface to control the state of the device.  
To advance the current state of the ENSM to the next state,  
drive the enable function of the ENABLE pin by either a pulse  
(edge detected internally) or a level.  
The AD9363 outputs the DATA_CLK signal that the BBP uses  
to sample receiver data. The signal is synchronized with the  
receiver data such that data transitions occur out of phase with  
DATA_CLK. The DATA_CLK can be set to a rate that provides  
single data rate (SDR) timing, where data is sampled on each rising  
clock edge, or it can be set to provide double data rate (DDR)  
timing, where data is captured on both rising and falling clock  
edges. SDR or DDR timing applies to operation using either a  
single port or both ports.  
When a pulse is used, it must have a minimum pulse width of  
one cycle of the FB_CLK signal. In level mode, the ENABLE  
and TXNRX pins are also edge detected by the AD9363 and  
must meet the same minimum pulse width requirement of one  
cycle of the FB_CLK signal.  
FB_CLK Signal  
For transmit data, the interface uses the FB_CLK signal as the  
timing reference. The FB_CLK signal allows source synchro-  
nous timing with rising edge capture for burst control signals  
and either rising edge capture (SDR mode) or both edge capture  
(DDR mode) for transmit signal bursts. The FB_CLK signal  
must have the same frequency and duty cycle as DATA_CLK.  
In FDD mode, the ENABLE and TXNRX pins can be remapped  
to serve as real-time Rx and Tx data transfer control signals. In  
this mode, the ENABLE pin assumes the receive on (RXON)  
function (controls when the Rx path is enabled and disabled), and  
the TXNRX pin assumes the transmit on (TXON) function  
(controls when the Tx path is enabled and disabled). The ENSM  
must be controlled by SPI writes in this mode while the ENABLE  
and TXNRX pins control all data flow. For more information  
about RXON and TXON, see the AD9363 reference manual,  
available from Integrated Wideband RF Transceiver Design  
Resources.  
RX_FRAME and TX_FRAME Signals  
The device generates an RX_FRAME output signal whenever  
the receiver outputs valid data. This signal has two modes: level  
mode (the RX_FRAME signal stays high as long as the data is  
valid) and pulse mode (the RX_FRAME signal pulses with a 50%  
duty cycle). Similarly, the BBP must provide a TX_FRAME  
signal that indicates the beginning of a valid data transmission  
with a rising edge. Like the RX_FRAME signal, the TX_FRAME  
signal stays high throughout the burst or it pulses with a 50% duty  
cycle.  
Rev. D | Page 29 of 32  
 
 
AD9363  
Data Sheet  
SPI INTERFACE  
AUXILIARY CONVERTERS  
AUXADC  
The AD9363 uses a serial peripheral interface (SPI) to communi-  
cate with the BBP. The SPI can be configured as a 4-wire interface  
with dedicated receive and transmit ports, or it can be configured  
as a 3-wire interface with a bidirectional data communication  
port. This bus allows the BBP to set all device control parameters  
using a simple address data serial bus protocol.  
The AD9363 contains an auxiliary ADC that monitors system  
functions such as temperature or power output. The converter is  
12 bits wide and has an input range of 0.05 V to VDDA1P3_BB −  
0.05 V. When enabled, the ADC is free running. SPI reads  
provide the last value latched at the ADC output. A multiplexer in  
front of the ADC allows the user to select between the AUXADC  
input pin and a built-in temperature sensor.  
Write commands follow a 24-bit format. The first six bits set the  
bus direction and number of bytes to transfer. The next 10 bits set  
the address where data is to be written. The final eight bits are the  
data to be transferred to the specified register address (MSB to  
LSB). The AD9363 also supports an LSB first format that allows  
the commands to be written in LSB to MSB format. In this mode,  
the register addresses are incremented for multibyte writes.  
AUXDAC1 and AUXDAC2  
The AD9363 contains two identical auxiliary DACs that can  
provide power amplifier (PA) bias or other system functionality.  
The auxiliary DACs are 10 bits wide, have an output voltage range  
of 0.5 V to VDD_GPO − 0.3 V and a current drive of 10 mA, and  
can be directly controlled by the internal ENSM.  
Read commands follow a similar format with the exception that  
the first 16 bits are transferred on the SPI_DI pin, and the final  
eight bits are read from the AD9363, either on the SPI_DO pin  
in 4-wire mode or on the SPI_DI pin in 3-wire mode.  
POWERING THE AD9363  
The AD9363 must be powered by the following three supplies:  
the analog supply (VDDx = 1.3 V), the interface supply (VDD_  
INTERFACE = 1.8 V), and the GPO supply (VDD_GPO = 3.3 V).  
CONTROL PINS  
Control Outputs (CTRL_OUT7 to CTRL_OUT0)  
For applications requiring optimal noise performance, split and  
source the 1.3 V analog supply from low noise, low dropout  
(LDO) regulators. Figure 42 shows the recommended method.  
3.3V  
The AD9363 provides eight simultaneous real-time output  
signals for use as interrupts to the BBP. These outputs can  
be configured to output a number of internal settings and  
measurements that the BBP uses when monitoring trans-ceiver  
performance in different situations. The control output pointer  
register selects the information that is output to these pins, and  
the control output enable register determines which signals are  
activated for monitoring by the BBP. Signals used for manual  
gain mode, calibration flags, state machine states, and the ADC  
output are among the outputs that can be monitored on these  
pins.  
ADP2164  
1.8V  
ADP1755  
ADP1755  
1.3V_A  
1.3V_B  
Figure 42. Low Noise Power Solution for the AD9363  
For applications where board space is at a premium, and  
optimal noise performance is not an absolute requirement,  
provide the 1.3 V analog rail directly from a switcher, and adopt  
a more integrated power management unit (PMU) approach.  
Figure 43 shows this approach.  
Control Inputs (CTRL_IN3 to CTRL_IN0)  
The AD9363 provides four edge detected control input pins. In  
manual gain mode, the BBP uses these pins to change the gain  
table index in real time.  
1.3V  
ADP5040  
ADP1755  
VDDx  
GPO PINS (GPO_3 TO GPO_0)  
LDO  
1.2A  
BUCK  
The AD9363 provides four 3.3 V capable general-purpose logic  
output pins: GPO_3, GPO_2, GPO_1, and GPO_0. These pins  
control other peripheral devices such as regulators and switches  
via the AD9363 SPI bus, or they function as slaves for the  
internal AD9363 state machine.  
AD9363  
1.8V  
3.3V  
300mA  
LDO  
VDD_INTERFACE  
300mA  
LDO  
VDD_GPO  
Figure 43. Space Optimized Power Solution for the AD9363  
Rev. D | Page 30 of 32  
 
 
 
 
 
 
Data Sheet  
AD9363  
APPLICATIONS INFORMATION  
For additional information about how to program the AD9363  
device, see the AD9363 reference manual, and for additional  
information about the AD9363 registers, see the AD9363  
register map reference manual, both of which are available by  
registering at the Integrated Wideband RF Transceiver Design  
Resources web page and clicking Download the AD9363  
Design File Package. The register map is provided as a  
convenient and informational resource about low level  
operation of the device; however, it is not recommended for  
creating user software.  
Analog Devices, Inc., provides complete drivers for the AD9363  
for both bare metal/no operating system (no OS) and Linux  
operating systems. The AD9361, AD9363, and AD9364 share  
the same application program interface (API). For the AD9361  
drivers, visit the following online locations:  
Linux wiki page  
No OS wiki page  
For support for these drivers, visit the following online  
locations:  
Linux Engineer Zone® page  
No OS Engineer Zone page  
Rev. D | Page 31 of 32  
AD9363  
Data Sheet  
PACKAGING AND ORDERING INFORMATION  
OUTLINE DIMENSIONS  
10.10  
A1 BALL  
CORNER  
10.00 SQ  
9.90  
A1 BALL  
CORNER  
12 11 10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
8.80 SQ  
G
H
J
0.80  
K
L
M
0.60  
REF  
TOP VIEW  
DETAIL A  
BOTTOM VIEW  
1.70 MAX  
1.00 MIN  
DETAIL A  
0.32 MIN  
0.50  
0.45  
0.40  
COPLANARITY  
0.12  
SEATING  
PLANE  
BALL DIAMETER  
COMPLIANT TO JEDEC STANDARDS MO-275-EEAB-1.  
Figure 44. 144-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-144-7)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
BC-144-7  
BC-144-7  
AD9363ABCZ  
AD9363ABCZ-REEL  
ADRV9363-W/PCBZ  
−40°C to +85°C  
−40°C to +85°C  
144-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
144-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
Evaluation Board, 325 MHz to 3800 MHz Matching Circuits  
1 Z = RoHS Compliant Part.  
©2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10558-0-11/16(D)  
Rev. D | Page 32 of 32  
 
 
 

相关型号:

AD9363ABCZ-REEL

Radio frequency (RF) 2 × 2 transceiver with integrated 12-bit DACs and ADCs
ADI

AD9364

Point to point communication systems
ADI

AD9364BBCZ

1 x 1 RF Agile Transceiver
ADI

AD9364BBCZREEL

Point to point communication systems
ADI

AD9371

Dual differential transmitters
ADI

AD9371BBCZ

Dual differential transmitters
ADI

AD9371BBCZ-REEL

Dual differential transmitters
ADI

AD9375

Integrated, Dual RF Transceiver with Observation Path
ADI

AD9375BBCZ

Integrated, Dual RF Transceiver with Observation Path
ADI

AD9375BBCZ-REEL

Integrated, Dual RF Transceiver with Observation Path
ADI

AD9380

Analog/HDMI Dual-Display Interface
ADI

AD9380/PCB

Analog/HDMI Dual-Display Interface
ADI