AD9364BBCZ [ADI]

1 x 1 RF Agile Transceiver;
AD9364BBCZ
型号: AD9364BBCZ
厂家: ADI    ADI
描述:

1 x 1 RF Agile Transceiver

电信 电信集成电路
文件: 总32页 (文件大小:522K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RF Agile Transceiver  
AD9364  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
RF 1 × 1 transceiver with integrated 12-bit DACs and ADCs  
Band: 70 MHz to 6.0 GHz  
Supports time division duplex (TDD) and frequency division  
duplex (FDD) operation  
Tunable channel bandwidth (BW): <200 kHz to 56 MHz  
3-band receiver: 3 differential or 6 single-ended inputs  
Superior receiver sensitivity with a noise figure of <2.5 dB  
Rx gain control  
AD9364  
RXB_P,  
RXB_N  
RXA_P,  
RXA_N  
ADC  
P0_[D11:D0]/  
TX_[D5:D0]  
RXC_P,  
RXC_N  
Rx LO  
Tx LO  
P1_[D11:D0]/  
RX_[D5:D0]  
TX_MON  
TXA_P,  
TXA_N  
DAC  
TXB_P,  
TXB_N  
Real-time monitor and control signals for manual gain  
Independent automatic gain control  
2-band differential output transmitter  
Highly linear broadband transmitter  
Tx EVM: ≤−40 dB  
RADIO  
GPO  
PLLs  
SWITCHING  
SPI  
CTRL  
CLK_OUT  
CTRL  
AUXADC AUXDACx  
XTALN  
NOTES  
1. SPI, CTRL, P0_[D11:D0]/TX_[D5:D0], P1_[D11:D0]/RX_[D5:D0],  
AND RADIO SWITCHING CONTAIN MULTIPLE PINS.  
Tx noise: ≤−157 dBm/Hz noise floor  
Tx monitor: ≥66 dB dynamic range with 1 dB accuracy  
Integrated fractional-N synthesizers  
Figure 1.  
2.4 Hz maximum local oscillator (LO) step size  
Multichip synchronization  
CMOS/LVDS digital interface  
APPLICATIONS  
Point to point communication systems  
Femtocell/picocell/microcell base stations  
General-purpose radio systems  
GENERAL DESCRIPTION  
The AD9364 is a high performance, highly integrated radio fre-  
quency (RF) Agile Transceiver™ designed for use in 3G and 4G base  
station applications. Its programmability and wideband capability  
make it ideal for a broad range of transceiver applications.  
and 128-tap FIR filters to produce a 12-bit output signal at the  
appropriate sample rate.  
The transmitter uses a direct conversion architecture that achieves  
high modulation accuracy with ultralow noise. This transmitter  
design produces a Tx EVM of ≤−40 dB, allowing significant system  
margin for the external power amplifier (PA) selection. The on-  
board transmit (Tx) power monitor can be used as a power  
detector, enabling highly accurate Tx power measurements.  
The device combines an RF front end with a flexible mixed-signal  
baseband section and integrated frequency synthesizers, simpli-  
fying design-in by providing a configurable digital interface to a  
processor. The AD9364 operates in the 70 MHz to 6.0 GHz range,  
covering most licensed and unlicensed bands. Channel bandwidths  
from less than 200 kHz to 56 MHz are supported.  
The fully integrated phase-locked loops (PLLs) provide low  
power fractional-N frequency synthesis for all Rx and Tx channels.  
All VCO and loop filter components are integrated.  
The direct conversion receiver has state-of-the-art noise figure  
and linearity. The receive (Rx) subsystem includes independent  
automatic gain control (AGC), dc offset correction, quadrature  
correction, and digital filtering, thereby eliminating the need for  
these functions in the digital baseband. The AD9364 also has  
flexible manual gain modes that can be externally controlled.  
Two high dynamic range ADCs digitize the received I and Q  
signals and pass them through configurable decimation filters  
The core of the AD9364 can be powered directly from a 1.3 V  
regulator. The IC is controlled via a standard 4-wire serial port and  
four real-time input control pins. Comprehensive power-down  
modes are included to minimize power consumption during  
normal use. The AD9364 is packaged in a 10 mm × 10 mm,  
144-ball chip scale package ball grid array (CSP_BGA).  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2013–2014 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD9364  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
5.5 GHz Frequency Band .......................................................... 24  
Theory of Operation ...................................................................... 28  
General......................................................................................... 28  
Receiver........................................................................................ 28  
Transmitter.................................................................................. 28  
Clock Input Options .................................................................. 28  
Synthesizers................................................................................. 29  
Digital Data Interface................................................................. 29  
Enable State Machine..................................................................... 29  
SPI Interface................................................................................ 30  
Control Pins ................................................................................ 30  
GPO Pins (GPO_3 to GPO_0)................................................. 30  
Auxiliary Converters.................................................................. 30  
Packaging and Ordering Information ......................................... 31  
Outline Dimensions................................................................... 31  
Ordering Guide .......................................................................... 31  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Current Consumption—VDD_Interface.................................. 7  
Current Consumption—VDDD1P3_DIG and VDDAx  
(Combination of All 1.3 V Supplies) ......................................... 8  
Absolute Maximum Ratings ..................................................... 10  
Reflow Profile.............................................................................. 10  
Thermal Resistance .................................................................... 10  
ESD Caution................................................................................ 10  
Pin Configuration and Function Descriptions........................... 11  
Typical Performance Characteristics ........................................... 15  
800 MHz Frequency Band......................................................... 15  
2.4 GHz Frequency Band .......................................................... 20  
REVISION HISTORY  
2/14—Revision B: Initial Version  
Rev. B | Page 2 of 32  
 
Data Sheet  
AD9364  
SPECIFICATIONS  
Electrical characteristics at VDD_GPO = 3.3 V, VDD_INTERFACE = 1.8 V, and all other VDDx pins = 1.3 V, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter1  
RECEIVER, GENERAL  
Center Frequency  
Gain  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
70  
6000  
MHz  
Minimum  
0
dB  
dB  
dB  
dB  
dB  
dB  
Maximum  
74.5  
73.0  
72.0  
65.5  
1
At 800 MHz  
At 2300 MHz, RXA  
At 2300 MHz, RXB, RXC  
At 5500 MHz, RXA  
Gain Step  
Received Signal Strength  
Indicator  
RSSI  
Range  
Accuracy  
100  
2
dB  
dB  
RECEIVER, 800 MHz  
Noise Figure  
NF  
2
dB  
Maximum Rx gain  
Maximum Rx gain  
Third-Order Input Intermod-  
ulation Intercept Point  
IIP3  
−18  
dBm  
Second-Order Input Intermod- IIP2  
ulation Intercept Point  
40  
dBm  
dBm  
Maximum Rx gain  
Local Oscillator (LO) Leakage  
Quadrature  
−122  
At Rx front-end input  
Gain Error  
0.2  
%
Phase Error  
0.2  
Degrees  
dB  
Modulation Accuracy (EVM)  
Input S11  
−42  
−10  
19.2 MHz reference clock  
dB  
RECEIVER, 2.4 GHz  
Noise Figure  
NF  
3
dB  
Maximum Rx gain  
Maximum Rx gain  
Third-Order Input Intermod-  
ulation Intercept Point  
IIP3  
−14  
dBm  
Second-Order Input Intermod- IIP2  
ulation Intercept Point  
45  
dBm  
dBm  
Maximum Rx gain  
Local Oscillator (LO) Leakage  
Quadrature  
−110  
At Rx front-end input  
Gain Error  
0.2  
%
Phase Error  
0.2  
Degrees  
dB  
Modulation Accuracy (EVM)  
Input S11  
−42  
−10  
40 MHz reference clock  
dB  
RECEIVER, 5.5 GHz  
Noise Figure  
NF  
3.8  
dB  
Maximum Rx gain  
Maximum Rx gain  
Third-Order Input Intermod-  
ulation Intercept Point  
IIP3  
−17  
dBm  
Second-Order Input Intermod- IIP2  
ulation Intercept Point  
42  
dBm  
dBm  
Maximum Rx gain  
Local Oscillator (LO) Leakage  
Quadrature  
−95  
At Rx front-end input  
Gain Error  
0.2  
%
Phase Error  
0.2  
Degrees  
dB  
Modulation Accuracy (EVM)  
−37  
40 MHz reference clock  
(doubled internally for RF  
synthesizer)  
Input S11  
−10  
dB  
TRANSMITTER—GENERAL  
Center Frequency  
70  
6000  
MHz  
dB  
Power Control Range  
Power Control Resolution  
90  
0.25  
dB  
Rev. B | Page 3 of 32  
 
AD9364  
Data Sheet  
Parameter1  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
TRANSMITTER, 800 MHz  
Output S22  
−10  
8
dB  
Maximum Output Power  
Modulation Accuracy (EVM)  
dBm  
dB  
1 MHz tone into 50 Ω load  
19.2 MHz reference clock  
−40  
23  
Third-Order Output Intermod-  
ulation Intercept Point  
OIP3  
dBm  
Carrier Leakage  
−50  
dBc  
0 dB attenuation  
40 dB attenuation  
90 MHz offset  
−32  
dBc  
Noise Floor  
−157  
dBm/Hz  
TRANSMITTER, 2.4 GHz  
Output S22  
−10  
7.5  
dB  
Maximum Output Power  
Modulation Accuracy (EVM)  
dBm  
dB  
1 MHz tone into 50 Ω load  
40 MHz reference clock  
−40  
19  
Third-Order Output Intermod-  
ulation Intercept Point  
OIP3  
dBm  
Carrier Leakage  
−50  
dBc  
0 dB attenuation  
40 dB attenuation  
90 MHz offset  
−32  
dBc  
Noise Floor  
−156  
dBm/Hz  
TRANSMITTER, 5.5 GHz  
Output S22  
−10  
6.5  
dB  
Maximum Output Power  
Modulation Accuracy (EVM)  
dBm  
dB  
7 MHz tone into 50 Ω load  
−36  
40 MHz reference clock  
(doubled internally for RF  
synthesizer)  
Third-Order Output Intermod-  
ulation Intercept Point  
OIP3  
17  
dBm  
Carrier Leakage  
−50  
dBc  
0 dB attenuation  
40 dB attenuation  
90 MHz offset  
−30  
dBc  
Noise Floor  
−151.5  
dBm/Hz  
TX MONITOR INPUT (TX_MON)  
Maximum Input Level  
Dynamic Range  
4
dBm  
dB  
66  
1
Accuracy  
dB  
LO SYNTHESIZER  
LO Frequency Step  
2.4  
Hz  
2.4 GHz, 40 MHz reference  
clock  
Integrated Phase Noise  
800 MHz  
0.13  
° rms  
100 Hz to 100 MHz, 30.72 MHz  
reference clock (doubled  
internally for RF synthesizer)  
2.4 GHz  
5.5 GHz  
0.37  
0.59  
° rms  
° rms  
100 Hz to 100 MHz, 40 MHz  
reference clock  
100 Hz to 100 MHz, 40 MHz  
reference clock (doubled  
internally for RF synthesizer)  
REFERENCE CLOCK (REF_CLK)  
REF_CLK is either the input to  
the XTALP/XTALN pins or a  
line directly to the XTALN pin  
Input  
Frequency Range  
19  
10  
50  
80  
MHz  
MHz  
V p-p  
Crystal input  
External oscillator  
Signal Level  
AUXILIARY CONVERTERS  
ADC  
1.3  
12  
AC-coupled external oscillator  
Resolution  
Bits  
Input Voltage  
Minimum  
0.05  
V
V
Maximum  
VDDA1P3_BB − 0.05  
DAC  
Resolution  
10  
Bits  
Rev. B | Page 4 of 32  
Data Sheet  
AD9364  
Parameter1  
Output Voltage  
Minimum  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
0.5  
V
Maximum  
VDD_GPO − 0.3  
10  
V
Output Current  
DIGITAL SPECIFICATIONS (CMOS)  
Logic Inputs  
Input Voltage  
High  
mA  
VDD_INTERFACE × 0.8  
VDD_INTERFACE  
V
V
Low  
0
VDD_INTERFACE × 0.2  
Input Current  
High  
−10  
−10  
+10  
+10  
μA  
μA  
Low  
Logic Outputs  
Output Voltage  
High  
VDD_INTERFACE × 0.8  
V
V
Low  
VDD_INTERFACE × 0.2  
DIGITAL SPECIFICATIONS (LVDS)  
Logic Inputs  
Input Voltage Range  
825  
1575  
+100  
mV  
mV  
Each differential input in the  
pair  
Input Differential Voltage  
Threshold  
−100  
Receiver Differential Input  
Impedance  
100  
Logic Outputs  
Output Voltage  
High  
1375  
mV  
mV  
mV  
Low  
1025  
150  
Output Differential Voltage  
Programmable in 75 mV  
steps  
Output Offset Voltage  
GENERAL-PURPOSE OUTPUTS  
Output Voltage  
High  
1200  
10  
mV  
VDD_GPO × 0.8  
V
Low  
VDD_GPO × 0.2  
V
Output Current  
SPI TIMING  
mA  
VDD_INTERFACE = 1.8 V  
SPI_CLK  
Period  
tCP  
20  
9
ns  
ns  
ns  
Pulse Width  
tMP  
SPI_ENB Setup to First SPI_CLK tSC  
Rising Edge  
1
Last SPI_CLK Falling Edge to  
SPI_ENB Hold  
tHC  
0
ns  
SPI_DI  
Data Input Setup to  
SPI_CLK  
tS  
2
1
ns  
ns  
Data Input Hold to SPI_CLK  
tH  
SPI_CLK Rising Edge to Output  
Data Delay  
4-Wire Mode  
tCO  
3
8
ns  
ns  
ns  
3-Wire Mode  
tCO  
3
8
Bus Turnaround Time, Read  
tHZM  
tH  
tCO (max)  
After baseband processor  
(BBP) drives the last address  
bit  
Bus Turnaround Time, Read  
tHZS  
0
tCO (max)  
ns  
After the AD9364 drives the  
last data bit  
Rev. B | Page 5 of 32  
AD9364  
Data Sheet  
Parameter1  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DIGITAL DATA TIMING (CMOS),  
VDD_INTERFACE = 1.8 V  
DATA_CLK Clock Period  
tCP  
16.276  
ns  
ns  
61.44 MHz  
DATA_CLK and FB_CLK Pulse  
Width  
tMP  
45% of tCP  
55% of tCP  
Tx Data  
TX_FRAME, P0_D, and P1_D  
Setup to FB_CLK  
Hold to FB_CLK  
tSTX  
tHTX  
1
0
0
ns  
ns  
ns  
DATA_CLK to Data Bus Output tDDRX  
Delay  
1.5  
1.0  
DATA_CLK to RX_FRAME  
Delay  
tDDDV  
0
ns  
Pulse Width  
ENABLE  
tENPW  
tCP  
tCP  
ns  
ns  
TXNRX  
tTXNRXPW  
FDD independent ENSM  
mode  
TXNRX Setup to ENABLE  
Bus Turnaround Time  
Before Rx  
tTXNRXSU  
0
ns  
TDD ENSM mode  
tRPRE  
tRPST  
2 × tCP  
2 × tCP  
ns  
ns  
pF  
pF  
TDD mode  
TDD mode  
After Rx  
Capacitive Load  
Capacitive Input  
3
3
DIGITAL DATA TIMING (CMOS),  
VDD_INTERFACE = 2.5 V  
DATA_CLK Clock Period  
tCP  
16.276  
ns  
ns  
61.44 MHz  
DATA_CLK and FB_CLK Pulse  
Width  
tMP  
45% of tCP  
55% of tCP  
Tx Data  
TX_FRAME, P0_D, and P1_D  
Setup to FB_CLK  
Hold to FB_CLK  
tSTX  
tHTX  
1
0
0
ns  
ns  
ns  
DATA_CLK to Data Bus Output tDDRX  
Delay  
1.2  
1.0  
DATA_CLK to RX_FRAME  
Delay  
tDDDV  
0
ns  
Pulse Width  
ENABLE  
tENPW  
tCP  
tCP  
ns  
ns  
TXNRX  
tTXNRXPW  
FDD independent ENSM  
mode  
TXNRX Setup to ENABLE  
Bus Turnaround Time  
Before Rx  
tTXNRXSU  
0
ns  
TDD ENSM mode  
tRPRE  
tRPST  
2 × tCP  
2 × tCP  
ns  
ns  
pF  
pF  
TDD mode  
TDD mode  
After Rx  
Capacitive Load  
3
3
Capacitive Input  
DIGITAL DATA TIMING (LVDS)  
DATA_CLK Clock Period  
tCP  
4.069  
ns  
ns  
245.76 MHz  
DATA_CLK and FB_CLK Pulse  
Width  
tMP  
45% of tCP  
55% of tCP  
Tx Data  
TX_FRAME and TX_D  
Setup to FB_CLK  
Hold to FB_CLK  
tSTX  
tHTX  
1
ns  
ns  
ns  
0
DATA_CLK to Data Bus Output tDDRX  
Delay  
0.25  
1.25  
1.25  
DATA_CLK to RX_FRAME  
Delay  
tDDDV  
0.25  
ns  
Pulse Width  
ENABLE  
tENPW  
tCP  
tCP  
ns  
ns  
TXNRX  
tTXNRXPW  
FDD independent ENSM  
mode  
TXNRX Setup to ENABLE  
tTXNRXSU  
0
ns  
TDD ENSM mode  
Rev. B | Page 6 of 32  
Data Sheet  
AD9364  
Parameter1  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Bus Turnaround Time  
Before Rx  
tRPRE  
tRPST  
2 × tCP  
ns  
ns  
pF  
pF  
After Rx  
2 × tCP  
Capacitive Load  
Capacitive Input  
SUPPLY CHARACTERISTICS  
1.3 V Main Supply Voltage  
3
3
1.267  
1.3  
1.33  
V
VDD_INTERFACE Supply  
Nominal Settings  
CMOS  
1.2  
1.8  
−5  
2.5  
2.5  
+5  
V
LVDS  
V
VDD_INTERFACE Tolerance  
%
Tolerance is applicable to  
any voltage setting  
VDD_GPO Supply Nominal  
Setting  
1.3  
−5  
3.3  
+5  
V
When unused, must be set  
to 1.3 V  
VDD_GPO Tolerance  
%
Tolerance is applicable to  
any voltage setting  
Current Consumption  
VDDx, Sleep Mode  
VDD_GPO  
180  
50  
μA  
μA  
Sum of all input currents  
No load  
1 When referencing a single function of a multifunction pin in the parameters, only the portion of the pin name that is relevant to the specification is listed. For full pin  
names of multifunction pins, refer to the Pin Configuration and Function Descriptions section.  
CURRENT CONSUMPTION—VDD_INTERFACE  
Table 2. VDD_INTERFACE = 1.2 V  
Parameter  
Min  
Min  
Min  
Typ  
Max  
Max  
Max  
Unit  
Test Conditions/Comments  
SLEEP MODE  
45  
μA  
Power applied, device disabled  
RX AND TX, DOUBLE DATA RATE (DDR)  
LTE 10 MHz  
Single Port  
Dual Port  
LTE 20 MHz  
Dual Port  
2.9  
2.7  
mA  
mA  
30.72 MHz data clock, CMOS  
15.36 MHz data clock, CMOS  
5.2  
mA  
30.72 MHz data clock, CMOS  
Table 3. VDD_INTERFACE = 1.8 V  
Parameter  
SLEEP MODE  
Typ  
Unit  
Test Conditions/Comments  
84  
μA  
Power applied, device disabled  
RX AND TX, DDR  
LTE 10 MHz  
Single Port  
Dual Port  
LTE 20 MHz  
Dual Port  
4.5  
4.1  
mA  
mA  
30.72 MHz data clock, CMOS  
15.36 MHz data clock, CMOS  
8.0  
mA  
30.72 MHz data clock, CMOS  
Table 4. VDD_INTERFACE = 2.5 V  
Parameter  
Typ  
Unit  
Test Conditions/Comments  
SLEEP MODE  
150  
μA  
Power applied, device disabled  
RX AND TX, DDR  
LTE 10 MHz  
Single Port  
Dual Port  
6.5  
6.0  
mA  
mA  
30.72 MHz data clock, CMOS  
15.36 MHz data clock, CMOS  
LTE 20 MHz  
Dual Port  
11.5  
mA  
30.72 MHz data clock, CMOS  
Rev. B | Page 7 of 32  
 
AD9364  
Data Sheet  
CURRENT CONSUMPTION—VDDD1P3_DIG AND VDDAx (COMBINATION OF ALL 1.3 V SUPPLIES)  
Table 5. 800 MHz, TDD Mode  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
RX  
5 MHz Bandwidth  
10 MHz Bandwidth  
20 MHz Bandwidth  
TX  
180  
210  
260  
mA  
mA  
mA  
Continuous Rx  
Continuous Rx  
Continuous Rx  
5 MHz Bandwidth  
7 dBm  
−27 dBm  
340  
190  
mA  
mA  
Continuous Tx  
Continuous Tx  
10 MHz Bandwidth  
7 dBm  
−27 dBm  
360  
220  
mA  
mA  
Continuous Tx  
Continuous Tx  
20 MHz Bandwidth  
7 dBm  
−27 dBm  
400  
250  
mA  
mA  
Continuous Tx  
Continuous Tx  
Table 6. TDD Mode, 2.4 GHz  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
RX  
5 MHz Bandwidth  
10 MHz Bandwidth  
20 MHz Bandwidth  
TX  
175  
200  
240  
mA  
mA  
mA  
Continuous Rx  
Continuous Rx  
Continuous Rx  
5 MHz Bandwidth  
7 dBm  
−27 dBm  
350  
160  
mA  
mA  
Continuous Tx  
Continuous Tx  
10 MHz Bandwidth  
7 dBm  
−27 dBm  
380  
220  
mA  
mA  
Continuous Tx  
Continuous Tx  
20 MHz Bandwidth  
7 dBm  
−27 dBm  
410  
260  
mA  
mA  
Continuous Tx  
Continuous Tx  
Table 7. TDD Mode, 5.5 GHz  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
RX  
5 MHz Bandwidth  
40 MHz Bandwidth  
TX  
175  
275  
mA  
mA  
Continuous Rx  
Continuous Rx  
5 MHz Bandwidth  
7 dBm  
−27 dBm  
400  
240  
mA  
mA  
Continuous Tx  
Continuous Tx  
40 MHz Bandwidth  
7 dBm  
−27 dBm  
490  
385  
mA  
mA  
Continuous Tx  
Continuous Tx  
Rev. B | Page 8 of 32  
 
Data Sheet  
AD9364  
Table 8. FDD Mode, 800 MHz  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Test Conditions/Comments  
Test Conditions/Comments  
RX AND TX  
5 MHz Bandwidth  
7 dBm  
−27 dBm  
10 MHz Bandwidth  
7 dBm  
−27 dBm  
20 MHz Bandwidth  
7 dBm  
490  
345  
mA  
mA  
540  
395  
mA  
mA  
615  
470  
mA  
mA  
−27 dBm  
Table 9. FDD Mode, 2.4 GHz  
Parameter  
Min  
Typ  
Max  
Unit  
RX AND TX  
5 MHz Bandwidth  
7 dBm  
−27 dBm  
10 MHz Bandwidth  
7 dBm  
−27 dBm  
20 MHz Bandwidth  
7 dBm  
500  
350  
mA  
mA  
540  
390  
mA  
mA  
620  
475  
mA  
mA  
−27 dBm  
Table 10. FDD Mode, 5.5 GHz  
Parameter  
Min  
Typ  
Max  
Unit  
RX AND TX  
5 MHz Bandwidth  
7 dBm  
−27 dBm  
550  
385  
mA  
mA  
Rev. B | Page 9 of 32  
AD9364  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
REFLOW PROFILE  
The AD9364 reflow profile is in accordance with the JEDEC  
JESD20 criteria for Pb-free devices. The maximum reflow  
temperature is 260°C.  
Table 11.  
Parameter  
Rating  
VDDx to VSSx  
VDD_INTERFACE to VSSx  
VDD_GPO to VSSx  
Logic Inputs and Outputs to  
VSSx  
−0.3 V to +1.4 V  
−0.3 V to +3.0 V  
−0.3 V to +3.9 V  
−0.3 V to VDD_INTERFACE + 0.3 V  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Input Current to Any Pin  
Except Supplies  
RF Inputs (Peak Power)  
Tx Monitor Input Power (Peak  
Power)  
Package Power Dissipation  
10 mA  
Table 12. Thermal Resistance  
Airflow  
2.5 dBm  
9 dBm  
Package  
Type  
Velocity  
(m/sec)  
1, 2  
1, 3  
1, 4  
1, 2  
θJA  
θJC  
9.6  
θJB  
20.2  
ΨJT  
Unit  
°C/W  
°C/W  
°C/W  
144-Ball  
CSP_BGA  
0
32.3  
29.6  
27.8  
0.27  
0.43  
0.57  
(TJMAX − TA)/θJA  
110°C  
1.0  
2.5  
Maximum Junction  
Temperature (TJMAX  
Operating Temperature Range −40°C to +85°C  
Storage Temperature Range −65°C to +150°C  
)
1 Per JEDEC JESD51-7, plus JEDEC JESD51-5 2S2P test board.  
2 Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).  
3 Per MIL-STD 883, Method 1012.1.  
4 Per JEDEC JESD51-8 (still air).  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
ESD CAUTION  
Rev. B | Page 10 of 32  
 
 
 
 
 
Data Sheet  
AD9364  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
VDDA1P3_ VDDA1P3_ VDDA1P3_ VDDA1P3_ VDDA1P1_  
TX_EXT_  
LO_IN  
VSSA  
VSSA  
NC  
VSSA  
VSSA  
VSSA  
A
B
C
D
E
F
RX_TX  
RX_TX  
RX_TX  
RX_TX  
TX_VCO  
VDDA1P3_  
TX_VCO_  
LDO  
VDDA1P3_  
TX_LO  
TX_VCO_  
LDO_OUT  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
AUXDAC1  
AUXDAC2  
GPO_3  
GPO_2  
GPO_1  
GPO_0  
VDD_GPO  
VSSA  
VSSA  
VSSD  
TEST/  
ENABLE  
CTRL_IN0  
CTRL_IN1  
CTRL_IN2  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VDDA1P3_ VDDA1P3_  
RX_RF  
P0_D9/  
P0_D7/  
P0_D5/  
P0_D3/  
P0_D1/  
CTRL_OUT0 CTRL_IN3  
RX_TX  
TX_D4_P  
TX_D3_P  
TX_D2_P  
TX_D1_P  
TX_D0_P  
VDDA1P3_  
TX_LO_  
BUFFER  
VDDA1P3_  
RX_LO  
P0_D11/  
P0_D8/  
P0_D6/  
P0_D4/  
P0_D2/  
P0_D0/  
TX_D0_N  
CTRL_OUT1 CTRL_OUT2 CTRL_OUT3  
CTRL_OUT6 CTRL_OUT5 CTRL_OUT4  
TX_D5_P  
TX_D4_N  
TX_D3_N  
TX_D2_N  
TX_D1_N  
VDDA1P3_  
RX_VCO_  
LDO  
P0_D10/  
TX_D5_N  
VDDD1P3_  
DIG  
VSSA  
VSSD  
VSSD  
FB_CLK_P  
FB_CLK_N  
VSSD  
VSSD  
RX_EXT_  
LO_IN  
RX_VCO_  
LDO_OUT  
VDDA1P1_  
RX_VCO  
RX_  
FRAME_N  
RX_  
FRAME_P  
TX_  
FRAME_P  
DATA_  
CLK_P  
CTRL_OUT7  
TXNRX  
EN_AGC  
SYNC_IN  
SPI_CLK  
RESETB  
AUXADC  
TX_MON  
ENABLE  
VSSA  
VSSD  
G
H
J
P1_D11/  
RX_D5_P  
TX_  
FRAME_N  
DATA_  
CLK_N  
VDD_  
INTERFACE  
RXB_P  
RXB_N  
RXC_P  
RXC_N  
RXA_P  
VSSA  
VSSA  
VSSA  
VSSA  
RXA_N  
VSSA  
VSSD  
VDDA1P3_  
RX_SYNTH  
P1_D10/  
P1_D9/  
P1_D7/  
P1_D5/  
P1_D3/  
P1_D1/  
RX_D0_P  
SPI_DI  
CLK_OUT  
SPI_ENB  
SPI_DO  
VSSA  
RX_D5_N  
RX_D4_P  
RX_D3_P  
RX_D2_P  
RX_D1_P  
VDDA1P3_ VDDA1P3_  
TX_SYNTH  
P1_D8/  
P1_D6/  
P1_D4/  
P1_D2/  
P1_D0/  
K
L
VSSD  
VSSA  
BB  
RX_D4_N  
RX_D3_N  
RX_D2_N  
RX_D1_N  
RX_D0_N  
VSSA  
RBIAS  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
M
NC  
VSSA  
TXA_P  
TXA_N  
TXB_P  
TXB_N  
XTALP  
XTALN  
ANALOG I/O  
DIGITAL I/O  
DC POWER  
GROUND  
NO CONNECT  
Figure 2. Pin Configuration, Top View  
Table 13. Pin Function Descriptions  
Pin No.  
Type1 Mnemonic  
Description  
A1, A2, A4 to  
A6, B1, B2,  
I
VSSA  
Analog Ground. Tie these pins directly to the VSSD digital ground on the printed  
circuit board (one ground plane).  
B12, C1, C2,  
C7 to C12, D1,  
E1, F1, F3, H2,  
H3, H6, J2, K2,  
L2, L3, L7 to  
L12, M4, M6  
A3, M3  
A7 to A10, D3  
A11  
NC  
NC  
No Connect. Do not connect to these pins.  
1.3 V Supply Input.  
Transmit VCO Supply Input. Connect to B11.  
External Transmit Local Oscillator (LO) Input. When this pin is unused, tie it to  
ground.  
I
I
I
VDDA1P3_RX_TX  
VDDA1P1_TX_VCO  
TX_EXT_LO_IN  
A12  
B3  
B4 to B7  
B8  
O
O
I
AUXDAC1  
GPO_3 to GPO_0  
VDD_GPO  
Auxiliary DAC 1 Output.  
3.3 V Capable General-Purpose Outputs.  
2.5 V to 3.3 V Supply for the Auxiliary DAC and General-Purpose Output Pins.  
When the VDD_GPO supply is not used, this supply must be set to 1.3 V.  
B9  
I
VDDA1P3_TX_LO  
Transmit LO 1.3 V Supply Input.  
B10  
B11  
I
O
VDDA1P3_TX_VCO_LDO  
TX_VCO_LDO_OUT  
Transmit VCO LDO 1.3 V Supply Input. Connect to B9.  
Transmit VCO LDO Output. Connect B11 to A11 and a 1 μF bypass capacitor in  
series with a 1 Ω resistor to ground.  
C3  
C4  
O
I
AUXDAC2  
TEST/ENABLE  
Auxiliary DAC 2 Output.  
Test Input. Ground this pin for normal operation.  
Rev. B | Page 11 of 32  
 
AD9364  
Data Sheet  
Pin No.  
Type1 Mnemonic  
Description  
C5, C6, D5, D6  
I
CTRL_IN0 to CTRL_IN3  
Control Inputs. Use C5, C6, D5, and D6 for manual Rx gain and Tx attenuation  
control.  
D2  
I
VDDA1P3_RX_RF  
Receiver 1.3 V Supply Input. Connect to D3.  
D4, E4 to E6,  
F4 to F6, G4  
O
CTRL_OUT0, CTRL_OUT1 to  
CTRL_OUT3, CTRL_OUT6 to  
CTRL_OUT4, CTRL_OUT7  
Control Outputs. These pins are multipurpose outputs that have programmable  
functionality.  
D7  
I/O  
I/O  
I/O  
I/O  
I/O  
I
P0_D9/TX_D4_P  
P0_D7/TX_D3_P  
P0_D5/TX_D2_P  
P0_D3/TX_D1_P  
P0_D1/TX_D0_P  
VSSD  
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.  
As P0_D9, it functions as part of the 12-bit, bidirectional, parallel CMOS level  
Data Port 0. Alternatively, this pin (TX_D4_P) can function as part of the LVDS 6-  
bit Tx differential input bus with internal LVDS termination.  
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.  
As P0_D7, it functions as part of the 12-bit bidirectional parallel CMOS level Data  
Port 0. Alternatively, this pin (TX_D3_P) can function as part of the LVDS 6-bit Tx  
differential input bus with internal LVDS termination.  
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.  
As P0_D5, it functions as part of the 12-bit, bidirectional, parallel CMOS level  
Data Port 0. Alternatively, this pin (TX_D2_P) can function as part of the LVDS  
6-bit Tx differential input bus with internal LVDS termination.  
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.  
As P0_D3, it functions as part of the 12-bit, bidirectional, parallel CMOS level  
Data Port 0. Alternatively, this pin (TX_D1_P) can function as part of the LVDS  
6-bit Tx differential input bus with internal LVDS termination.  
D8  
D9  
D10  
D11  
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.  
As P0_D1, it functions as part of the 12-bit bidirectional parallel CMOS level Data  
Port 0. Alternatively, this pin (TX_D0_P) can function as part of the LVDS 6-bit Tx  
differential input bus with internal LVDS termination.  
Digital Ground. Tie these pins directly to the VSSA analog ground on the printed  
circuit board (one ground plane).  
D12, F7, F9,  
F11, G12, H7,  
H10, K12  
E2  
E3  
E7  
I
I
VDDA1P3_RX_LO  
VDDA1P3_TX_LO_BUFFER  
P0_D11/TX_D5_P  
Receive LO 1.3 V Supply Input.  
1.3 V Supply Input.  
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.  
As P0_D11, it functions as part of the 12-bit, bidirectional, parallel CMOS level  
Data Port 0. Alternatively, this pin (TX_D5_P) can function as part of the LVDS  
6-bit Tx differential input bus with internal LVDS termination.  
I/O  
E8  
I/O  
I/O  
I/O  
I/O  
I/O  
I
P0_D8/TX_D4_N  
P0_D6/TX_D3_N  
P0_D4/TX_D2_N  
P0_D2/TX_D1_N  
P0_D0/TX_D0_N  
VDDA1P3_RX_VCO_LDO  
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.  
As P0_D8, it functions as part of the 12-bit, bidirectional, parallel CMOS level  
Data Port 0. Alternatively, this pin (TX_D4_N) can function as part of the LVDS  
6-bit Tx differential input bus with internal LVDS termination.  
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.  
As P0_D6, it functions as part of the 12-bit, bidirectional, parallel CMOS level  
Data Port 0. Alternatively, this pin (TX_D3_N) can function as part of the LVDS  
6-bit Tx differential input bus with internal LVDS termination.  
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.  
As P0_D4, it functions as part of the 12-bit, bidirectional, parallel CMOS level  
Data Port 0. Alternatively, this pin (TX_D2_N) can function as part of the LVDS  
6-bit Tx differential input bus with internal LVDS termination.  
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.  
As P0_D2, it functions as part of the 12-bit, bidirectional, parallel CMOS level  
Data Port 0. Alternatively, this pin (TX_D1_N) can function as part of the LVDS  
6-bit Tx differential input bus with internal LVDS termination.  
E9  
E10  
E11  
E12  
F2  
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.  
As P0_D0, it functions as part of the 12-bit, bidirectional, parallel CMOS level  
Data Port 0. Alternatively, this pin (TX_D0_N) can function as part of the LVDS  
6-bit Tx differential input bus with internal LVDS termination.  
Receive VCO LDO 1.3 V Supply Input. Connect F2 to E2.  
Rev. B | Page 12 of 32  
Data Sheet  
AD9364  
Pin No.  
Type1 Mnemonic  
I/O P0_D10/TX_D5_N  
Description  
F8  
Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin.  
As P0_D10, it functions as part of the 12-bit, bidirectional, parallel CMOS level  
Data Port 0. Alternatively, this pin (TX_D5_N) can function as part of the LVDS  
6-bit Tx differential input bus with internal LVDS termination.  
F10, G10  
I
FB_CLK_P, FB_CLK_N  
Feedback Clock. These pins receive the FB_CLK signal that clocks in Tx data. In  
CMOS mode, use FB_CLK_P as the input and tie FB_CLK_N to ground.  
F12  
G1  
G2  
I
I
O
VDDD1P3_DIG  
RX_EXT_LO_IN  
RX_VCO_LDO_OUT  
1.3 V Digital Supply Input.  
External Receive LO Input. When this pin is unused, tie it to ground.  
Receive VCO LDO Output. Connect this pin directly to G3 and a 1 μF bypass  
capacitor in series with a 1 Ω resistor to ground.  
G3  
G5  
I
I
VDDA1P1_RX_VCO  
EN_AGC  
Receive VCO Supply Input. Connect this pin directly to G2 only.  
Manual Control Input for Automatic Gain Control (AGC).  
G6  
I
ENABLE  
Control Input. This pin moves the device through various operational states.  
G7, G8  
O
RX_FRAME_N, RX_FRAME_P  
Receive Digital Data Framing Output Signal. These pins transmit the RX_FRAME  
signal that indicates whether the Rx output data is valid. In CMOS mode, use  
RX_FRAME_P as the output and leave RX_FRAME_N unconnected.  
G9, H9  
G11, H11  
H1, J1  
I
TX_FRAME_P, TX_FRAME_N  
DATA_CLK_P, DATA_CLK_N  
RXB_P, RXB_N  
Transmit Digital Data Framing Input Signal. These pins receive the TX_FRAME  
signal that indicates when Tx data is valid. In CMOS mode, use TX_FRAME_P as  
the input and tie TX_FRAME_N to ground.  
Receive Data Clock Output. These pins transmit the DATA_CLK signal that is used  
by the BBP to clock Rx data. In CMOS mode, use DATA_CLK_P as the output and  
leave DATA_CLK_N unconnected.  
Receive Channel Differential Input B. Alternatively, each pin can be used as a  
single-ended input. These inputs experience degraded performance above  
3 GHz. Unused pins must be tied to ground.  
O
I
H4  
H5  
H8  
I
TXNRX  
Enable State Machine Control Signal. This pin controls the data port bus direction.  
Logic low selects the Rx direction; logic high selects the Tx direction.  
Input to Synchronize Digital Clocks Between Multiple AD9364 Devices. If this pin  
is unused, it must be tied to ground.  
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.  
As P1_D11, it functions as part of the 12-bit bidirectional parallel CMOS level  
Data Port 1. Alternatively, this pin (RX_D5_P) can function as part of the LVDS  
6-bit Rx differential output bus with internal LVDS termination.  
I
SYNC_IN  
I/O  
P1_D11/RX_D5_P  
H12  
J3  
J4  
I
I
I
I
VDD_INTERFACE  
VDDA1P3_RX_SYNTH  
SPI_DI  
1.2 V to 2.5 V Supply for Digital I/O Pins (1.8 V to 2.5 V in LVDS Mode).  
1.3 V Supply Input.  
SPI Serial Data Input.  
SPI Clock Input.  
J5  
SPI_CLK  
J6  
O
CLK_OUT  
Output Clock. This pin can be configured to output either a buffered version of the  
external input clock, the DCXO, or a divided-down version of the internal ADC_CLK.  
J7  
I/O  
I/O  
I/O  
I/O  
I/O  
P1_D10/RX_D5_N  
P1_D9/RX_D4_P  
P1_D7/RX_D3_P  
P1_D5/RX_D2_P  
P1_D3/RX_D1_P  
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.  
As P1_D10, it functions as part of the 12-bit bidirectional parallel CMOS level  
Data Port 1. Alternatively, this pin (RX_D5_N) can function as part of the LVDS  
6-bit Rx differential output bus with internal LVDS termination.  
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.  
As P1_D9, it functions as part of the 12-bit bidirectional parallel CMOS level  
Data Port 1. Alternatively, this pin (RX_D4_P) can function as part of the LVDS  
6-bit Rx differential output bus with internal LVDS termination.  
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.  
As P1_D7, it functions as part of the 12-bit bidirectional parallel CMOS level  
Data Port 1. Alternatively, this pin (RX_D3_P) can function as part of the LVDS  
6-bit Rx differential output bus with internal LVDS termination.  
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.  
As P1_D5, it functions as part of the 12-bit bidirectional parallel CMOS level  
Data Port 1. Alternatively, this pin (RX_D2_P) can function as part of the LVDS  
6-bit Rx differential output bus with internal LVDS termination.  
J8  
J9  
J10  
J11  
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.  
As P1_D3, it functions as part of the 12-bit bidirectional parallel CMOS level  
Data Port 1. Alternatively, this pin (RX_D1_P) can function as part of the LVDS  
6-bit Rx differential output bus with internal LVDS termination.  
Rev. B | Page 13 of 32  
AD9364  
Data Sheet  
Pin No.  
Type1 Mnemonic  
Description  
J12  
I/O  
P1_D1/RX_D0_P  
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.  
As P1_D1, it functions as part of the 12-bit bidirectional parallel CMOS level  
Data Port 1. Alternatively, this pin (RX_D0_P) can function as part of the LVDS  
6-bit Rx differential output bus with internal LVDS termination.  
K1, L1  
I
RXC_P, RXC_N  
Receive Channel Differential Input C. Alternatively, each pin can be used as a  
single-ended input. These inputs experience degraded performance above  
3 GHz. Unused pins must be tied to ground.  
K3  
K4  
K5  
K6  
K7  
I
I
I
I
VDDA1P3_TX_SYNTH  
VDDA1P3_BB  
RESETB  
SPI_ENB  
P1_D8/RX_D4_N  
1.3 V Supply Input.  
1.3 V Supply Input.  
Asynchronous Reset. Logic low resets the device.  
SPI Enable Input. Set this pin to logic low to enable the SPI bus.  
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.  
As P1_D8, it functions as part of the 12-bit bidirectional parallel CMOS level  
Data Port 1. Alternatively, this pin (RX_D4_N) can function as part of the LVDS  
6-bit Rx differential output bus with internal LVDS termination.  
I/O  
K8  
I/O  
I/O  
I/O  
I/O  
I
P1_D6/RX_D3_N  
P1_D4/RX_D2_N  
P1_D2/RX_D1_N  
P1_D0/RX_D0_N  
RBIAS  
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.  
As P1_D6, it functions as part of the 12-bit bidirectional parallel CMOS level  
Data Port 1. Alternatively, this pin (RX_D3_N) can function as part of the LVDS  
6-bit Rx differential output bus with internal LVDS termination.  
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.  
As P1_D4, it functions as part of the 12-bit bidirectional parallel CMOS level  
Data Port 1. Alternatively, this pin (RX_D2_N) can function as part of the LVDS  
6-bit Rx differential output bus with internal LVDS termination.  
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.  
As P1_D2, it functions as part of the 12-bit bidirectional parallel CMOS level  
Data Port 1. Alternatively, this pin (RX_D1_N) can function as part of the LVDS  
6-bit Rx differential output bus with internal LVDS termination.  
Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin.  
As P1_D0, it functions as part of the 12-bit bidirectional parallel CMOS level Data  
Port 1. Alternatively, this pin (RX_D0_N) can function as part of the LVDS 6-bit Rx  
differential output bus with internal LVDS termination.  
K9  
K10  
K11  
L4  
Bias Input Reference. Connect this pin through a 14.3 kΩ (1% tolerance) resistor  
to ground.  
L5  
L6  
M1, M2  
I
O
I
AUXADC  
SPI_DO  
RXA_ P, RXA_N  
Auxiliary ADC Input. If this pin is unused, tie it to ground.  
SPI Serial Data Output in 4-Wire Mode, High-Z in 3-Wire Mode.  
Receive Channel Differential Input A. Alternatively, each pin can be used as a  
single-ended input. Unused pins must be tied to ground.  
M5  
I
TX_MON  
Transmit Channel Power Monitor Input. If this pin is unused, tie it to ground.  
Transmit Channel Differential Output A. Unused pins must be tied to 1.3 V.  
Transmit Channel Differential Output B. Unused pins must be tied to 1.3 V.  
Reference Frequency Crystal Connections. When a crystal is used, connect it  
between these two pins. When an external clock source is used, connect it to  
XTALN and leave XTALP unconnected.  
M7, M8  
M9, M10  
M11, M12  
O
O
I
TXA_P, TXA_N  
TXB_P, TXB_N  
XTALP, XTALN  
1 I is input, O is output, I/O is input/output, NC is not connected.  
Rev. B | Page 14 of 32  
 
Data Sheet  
AD9364  
TYPICAL PERFORMANCE CHARACTERISTICS  
800 MHZ FREQUENCY BAND  
0
–5  
4.0  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–75 –70 –65 –60 –55 –50 –45 –40 –35 –30 –25  
700  
750  
800  
850  
900  
INPUT POWER (dBm)  
FREQUENCY (MHz)  
Figure 3. Rx Noise Figure vs. Frequency  
Figure 6. Rx EVM vs. Input Power, 64 QAM LTE 10 MHz Mode,  
19.2 MHz REF_CLK  
5
4
0
–40°C  
+25°C  
+85°C  
–5  
–40°C  
+25°C  
+85°C  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
3
2
1
0
–1  
–2  
–3  
–100 –90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 4. RSSI Error vs. Input Power, LTE 10 MHz Modulation  
(Referenced to −50 dBm Input Power at 800 MHz)  
Figure 7. Rx EVM vs. Input Power, GSM Mode, 30.72 MHz REF_CLK (Doubled  
Internally for RF Synthesizer)  
3
0
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
2
1
0
–5  
–10  
–15  
–20  
–25  
–30  
–1  
–2  
–3  
72  
68  
64  
60  
56  
52  
48  
44  
40  
36  
32  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
INPUT POWER (dBm)  
INTERFERER POWER LEVEL (dBm)  
Figure 5. RSSI Error vs. Input Power, EDGE Modulation  
(Referenced to −50 dBm Input Power at 800 MHz)  
Figure 8. Rx EVM vs. Interferer Power Level, LTE 10 MHz Signal of Interest with  
PIN = −82 dBm, 5 MHz OFDM Blocker at 7.5 MHz Offset  
Rev. B | Page 15 of 32  
 
 
AD9364  
Data Sheet  
0
20  
15  
–40°C  
+25°C  
+85°C  
10  
–4  
–8  
5
0
–5  
–40°C  
+25°C  
+85°C  
–10  
–15  
–20  
–25  
–12  
–16  
–56 –54 –52 –50 –48 –46 –44 –42 –40 –38 –36  
20  
28  
36  
44  
52  
60  
68  
76  
Rx GAIN INDEX  
INTERFERER POWER LEVEL (dBm)  
Figure 12. Third-Order Input Intercept Point (IIP3) vs. Rx Gain Index,  
f1 = 1.45 MHz, f2 = 2.89 MHz, GSM Mode  
Figure 9. Rx EVM vs. Interferer Power Level, LTE 10 MHz Signal of Interest with  
PIN = −90 dBm, 5 MHz OFDM Blocker at 17.5 MHz Offset  
14  
100  
90  
–40°C  
+25°C  
+85°C  
12  
10  
8
80  
70  
–40°C  
+25°C  
+85°C  
60  
50  
40  
30  
20  
10  
0
6
4
2
0
–47  
20  
28  
36  
44  
52  
60  
68  
76  
–43  
–39  
–35  
–31  
–27  
–23  
INTERFERER POWER LEVEL (dBm)  
Rx GAIN INDEX  
Figure 10. Rx Noise Figure vs. Interferer Power Level, EDGE Signal of Interest  
with PIN = −90 dBm, CW Blocker at 3 MHz Offset, Gain Index = 64  
Figure 13. Second-Order Input Intercept Point (IIP2) vs. Rx Gain Index,  
f1 = 2.00 MHz, f2 = 2.01 MHz, GSM Mode  
80  
–100  
–40°C  
–40°C  
+25°C  
+85°C  
+25°C  
+85°C  
78  
–105  
–110  
–115  
–120  
–125  
–130  
76  
74  
72  
70  
68  
66  
700  
750  
800  
850  
900  
700  
750  
800  
850  
900  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 11. Rx Gain vs. Frequency, Gain Index = 76 (Maximum Setting)  
Figure 14. Rx Local Oscillator (LO) Leakage vs. Frequency  
Rev. B | Page 16 of 32  
Data Sheet  
AD9364  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
ATT 0dB  
ATT 3dB  
ATT 6dB  
–20  
–40  
–60  
–80  
–100  
–120  
0
2000  
4000  
6000  
8000  
10000  
12000  
–15  
–10  
–5  
0
5
10  
15  
FREQUENCY (MHz)  
FREQUENCY OFFSET (MHz)  
Figure 15. Rx Emission at LNA Input, DC to 12 GHz, fLO_RX = 800 MHz,  
LTE 10 MHz, fLO_TX = 860 MHz  
Figure 18. Tx Spectrum vs. Frequency Offset from Carrier Frequency, fLO_TX  
800 MHz, LTE 10 MHz Downlink (Digital Attenuation Variations Shown)  
=
10.0  
20  
–40°C  
+25°C  
+85°C  
ATT 0dB  
ATT 3dB  
ATT 6dB  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
0
–20  
–40  
–60  
–80  
–100  
700  
750  
800  
850  
900  
FREQUENCY (MHz)  
FREQUENCY OFFSET (MHz)  
Figure 16. Tx Output Power vs. Frequency, Attenuation Setting = 0 dB,  
Single Tone Output  
Figure 19. Tx Spectrum vs. Frequency Offset from Carrier Frequency, fLO_TX =  
800 MHz, GSM Downlink (Digital Attenuation Variations Shown), 3 MHz Range  
0.5  
20  
–40°C  
+25°C  
0.4  
+85°C  
ATT 0dB  
0
ATT 3dB  
ATT 6dB  
0.3  
0.2  
–20  
0.1  
–40  
–60  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–80  
–100  
–120  
0
10  
20  
30  
40  
50  
–6  
–4  
–2  
0
2
4
6
ATTENUATION SETTING (dB)  
FREQUENCY OFFSET (MHz)  
Figure 17. Tx Power Control Linearity Error vs. Attenuation Setting  
Figure 20. Tx Spectrum vs. Frequency Offset from Carrier Frequency, fLO_TX  
=
800 MHz, GSM Downlink (Digital Attenuation Variations Shown), 12 MHz Range  
Rev. B | Page 17 of 32  
AD9364  
Data Sheet  
–20  
–25  
–30  
–35  
–40  
–45  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
–50  
0
5
10  
15  
20  
25  
30  
35  
40  
700  
750  
800  
850  
900  
ATTENUATION SETTING (dB)  
FREQUENCY (MHz)  
Figure 21. Tx EVM vs. Transmitter Attenuation Setting, fLO_TX  
800 MHz, LTE 10 MHz, 64 QAM Modulation, 19.2 MHz REF_CLK  
=
Figure 24. Integrated Tx LO Phase Noise vs. Frequency, 30.72 MHz REF_CLK  
(Doubled Internally for RF Synthesizer)  
–30  
–20  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–40°C  
–25  
+25°C  
+85°C  
–30  
–35  
–40  
–45  
–50  
700  
750  
800  
850  
900  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
ATTENUATION SETTING (dB)  
Figure 22. Tx EVM vs. Transmitter Attenuation Setting, fLO_TX = 800 MHz, GSM  
Modulation, 30.72 MHz REF_CLK (Doubled Internally for RF Synthesizer)  
Figure 25. Tx Carrier Rejection vs. Frequency  
0.5  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–40°C  
+25°C  
+85°C  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
0.4  
0.3  
0.2  
0.1  
0
700  
750  
800  
850  
900  
700  
750  
800  
850  
900  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 23. Integrated Tx LO Phase Noise vs. Frequency, 19.2 MHz REF_CLK  
Figure 26. Tx Second-Order Harmonic Distortion (HD2) vs. Frequency  
Rev. B | Page 18 of 32  
Data Sheet  
AD9364  
–20  
170  
165  
160  
155  
150  
145  
140  
ATT 0, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
ATT 25, –40°C  
ATT 50, –40°C  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–40°C  
+25°C  
+85°C  
700  
750  
800  
850  
900  
0
4
8
12  
16  
20  
FREQUENCY (MHz)  
ATTENUATION SETTING (dB)  
Figure 27. Tx Third-Order Harmonic Distortion (HD3) vs. Frequency  
Figure 30. Tx Signal-to-Noise Ratio (SNR) vs. Transmitter Attenuation Setting,  
GSM Signal of Interest with Noise Measured at 20 MHz Offset  
30  
–30  
–40°C  
+25°C  
+85°C  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
25  
20  
15  
10  
5
0
0
4
8
12  
16  
20  
700  
750  
800  
850  
900  
ATTENUATION SETTING (dB)  
FREQUENCY (MHz)  
Figure 28. Tx Third-Order Output Intercept Point (OIP3) vs.  
Attenuation Setting  
Figure 31. Tx Single Sideband (SSB) Rejection vs. Frequency,  
1.5375 MHz Offset  
170  
–40°C  
+25°C  
+85°C  
165  
160  
155  
150  
145  
140  
0
3
6
9
12  
15  
ATTENUATION SETTING (dB)  
Figure 29. Tx Signal-to-Noise Ratio (SNR) vs. Transmitter Attenuation Setting,  
LTE 10 MHz Signal of Interest with Noise Measured at 90 MHz Offset  
Rev. B | Page 19 of 32  
AD9364  
Data Sheet  
2.4 GHZ FREQUENCY BAND  
0
–5  
4.0  
–40°C  
+25°C  
+85°C  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
–10  
–15  
–20  
–25  
–30  
0.5  
0
–40°C  
+25°C  
+85°C  
–72 –68 –64 –60 –56 –52 –48 –44 –40 –36 –32 –28  
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700  
INTERFERER POWER LEVEL (dBm)  
FREQUENCY (MHz)  
Figure 32. Rx Noise Figure vs. Frequency  
Figure 35. Rx EVM vs. Interferer Power Level, LTE 20 MHz Signal of Interest  
with PIN = −75 dBm, LTE 20 MHz Blocker at 20 MHz Offset  
5
0
–40°C  
–40°C  
+25°C  
+85°C  
+25°C  
+85°C  
4
–5  
–10  
–15  
–20  
–25  
–30  
3
2
1
0
–1  
–2  
–3  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
–60  
–55  
–50  
–45  
–40  
–35  
–30  
–25  
–20  
INPUT POWER (dBm)  
INTERFERER POWER LEVEL (dBm)  
Figure 33. RSSI Error vs. Input Power, Referenced to −50 dBm Input Power  
at 2.4 GHz  
Figure 36. Rx EVM vs. Interferer Power Level, LTE 20 MHz Signal of Interest  
with PIN = −75 dBm, LTE 20 MHz Blocker at 40 MHz Offset  
0
80  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
78  
76  
74  
72  
70  
68  
66  
–75 –70 –65 –60 –55 –50 –45 –40 –35 –30 –25  
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700  
INPUT POWER (dBm)  
FREQUENCY (MHz)  
Figure 37. Rx Gain vs. Frequency, Gain Index = 76 (Maximum Setting)  
Figure 34. Rx EVM vs. Input Power, 64 QAM LTE 20 MHz Mode,  
40 MHz REF_CLK  
Rev. B | Page 20 of 32  
 
Data Sheet  
AD9364  
20  
0
–20  
–40°C  
+25°C  
+85°C  
15  
10  
5
–40  
0
–60  
–5  
–10  
–15  
–20  
–25  
–80  
–100  
–120  
0
2000  
4000  
6000  
8000  
10000  
12000  
20  
28  
36  
44  
52  
60  
68  
76  
Rx GAIN INDEX  
FREQUENCY (MHz)  
Figure 38. Third-Order Input Intercept Point (IIP3) vs. Rx Gain Index,  
f1 = 30 MHz, f2 = 61 MHz  
Figure 41. Rx Emission at LNA Input, DC to 12 GHz, fLO_RX = 2.4 GHz,  
LTE 20 MHz, fLO_TX = 2.46 GHz  
80  
10.0  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
70  
60  
50  
40  
30  
20  
20  
28  
36  
44  
52  
60  
68  
76  
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700  
Rx GAIN INDEX  
FREQUENCY (MHz)  
Figure 39. Second-Order Input Intercept Point (IIP2) vs. Rx Gain Index,  
f1 = 60 MHz, f2 = 61 MHz  
Figure 42. Tx Output Power vs. Frequency, Attenuation Setting = 0 dB,  
Single Tone Output  
–100  
0.5  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
0.4  
+85°C  
–105  
–110  
–115  
–120  
–125  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–130  
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
ATTENUATION SETTING (dB)  
Figure 43. Tx Power Control Linearity Error vs. Attenuation Setting  
Figure 40. Rx Local Oscillator (LO) Leakage vs. Frequency  
Rev. B | Page 21 of 32  
AD9364  
Data Sheet  
0
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
ATT 0dB  
ATT 3dB  
ATT 6dB  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
–20  
–40  
–60  
–80  
–100  
–120  
–25 –20 –15 –10  
–5  
0
5
10  
15  
20  
25  
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700  
FREQUENCY OFFSET (MHz)  
FREQUENCY (MHz)  
Figure 44. Tx Spectrum vs. Frequency Offset from Carrier Frequency, fLO_TX  
2.3 GHz, LTE 20 MHz Downlink (Digital Attenuation Variations Shown)  
=
Figure 47. Tx Carrier Rejection vs. Frequency  
–20  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–40°C  
+25°C  
+85°C  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
–25  
–30  
–35  
–40  
–45  
–50  
0
5
10  
15  
20  
25  
30  
35  
40  
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700  
ATTENUATION SETTING (dB)  
FREQUENCY (MHz)  
Figure 45. Tx EVM vs. Transmitter Attenuation Setting, 40 MHz REF_CLK,  
LTE 20 MHz, 64 QAM Modulation  
Figure 48. Tx Second-Order Harmonic Distortion (HD2) vs. Frequency  
0.5  
–20  
–40°C  
+25°C  
+85°C  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
0.4  
0.3  
0.2  
0.1  
0
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700  
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 46. Integrated Tx LO Phase Noise vs. Frequency, 40 MHz REF_CLK  
Figure 49. Tx Third-Order Harmonic Distortion (HD3) vs. Frequency  
Rev. B | Page 22 of 32  
Data Sheet  
AD9364  
30  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–40°C  
+25°C  
+85°C  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
25  
20  
15  
10  
5
0
0
4
8
12  
16  
20  
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700  
FREQUENCY (MHz)  
ATTENUATION SETTING (dB)  
Figure 50. Tx Third-Order Output Intercept Point (OIP3) vs.  
Attenuation Setting  
Figure 52. Tx Single Sideband (SSB) Rejection vs. Frequency,  
3.075 MHz Offset  
160  
–40°C  
+25°C  
+85°C  
158  
156  
154  
152  
150  
148  
146  
144  
142  
140  
0
3
6
9
12  
15  
ATTENUATION SETTING (dB)  
Figure 51. Tx Signal-to-Noise Ratio (SNR) vs. Transmitter Attenuation Setting,  
LTE 20 MHz Signal of Interest with Noise Measured at 90 MHz Offset  
Rev. B | Page 23 of 32  
AD9364  
Data Sheet  
5.5 GHZ FREQUENCY BAND  
6
5
0
5
4
–5  
3
–10  
–15  
–20  
–25  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
2
1
0
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
–72  
–67  
–62  
–57  
–52  
–47  
–42  
–37  
–32  
FREQUENCY (GHz)  
INTERFERER POWER LEVEL (dBm)  
Figure 53. Rx Noise Figure vs. Frequency  
Figure 56. Rx EVM vs. Interferer Power Level, WiMAX 40 MHz Signal of Interest  
with PIN = −74 dBm, WiMAX 40 MHz Blocker at 40 MHz Offset  
5
5
4
3
0
–40°C  
+25°C  
+85°C  
–5  
2
–40°C  
+25°C  
+85°C  
–10  
–15  
–20  
–25  
1
0
–1  
–2  
–3  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
–60  
–55  
–50  
–45  
–40  
–35  
–30  
–25  
INTERFERER POWER LEVEL (dBm)  
INPUT POWER (dBm)  
Figure 54. RSSI Error vs. Input Power, Referenced to −50 dBm Input Power  
at 5.8 GHz  
Figure 57. Rx EVM vs. Interferer Power Level, WiMAX 40 MHz Signal of Interest  
with PIN = −74 dBm, WiMAX 40 MHz Blocker at 80 MHz Offset  
0
70  
68  
66  
–5  
–40°C  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
+25°C  
+85°C  
64  
–40°C  
+25°C  
+85°C  
62  
60  
–74  
–68  
–62  
–56  
–50  
–44  
–38  
–32  
–26  
–20  
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
INPUT POWER (dBm)  
FREQUENCY (GHz)  
Figure 58. Rx Gain vs. Frequency, Gain Index = 76 (Maximum Setting)  
Figure 55. Rx EVM vs. Input Power, 64 QAM WiMAX 40 MHz Mode,  
40 MHz REF_CLK (Doubled Internally for RF Synthesizer)  
Rev. B | Page 24 of 32  
 
Data Sheet  
AD9364  
20  
15  
10  
5
0
–20  
–40  
–40°C  
+25°C  
+85°C  
0
–5  
–60  
–80  
–10  
–15  
–20  
–100  
–120  
6
16  
26  
36  
46  
56  
66  
76  
0
5
10  
15  
20  
25  
30  
Rx GAIN INDEX  
FREQUENCY (GHz)  
Figure 59. Third-Order Input Intercept Point (IIP3) vs. Rx Gain Index,  
f1 = 50 MHz, f2 = 101 MHz  
Figure 62. Rx Emission at LNA Input, DC to 26 GHz, fLO_RX = 5.8 GHz,  
WiMAX 40 MHz  
80  
70  
60  
10  
–40°C  
+25°C  
+85°C  
9
8
7
6
5
4
–40°C  
+25°C  
50  
40  
30  
20  
+85°C  
20  
28  
36  
44  
52  
60  
68  
76  
5.0  
5.1  
5.2  
5.3  
5.4 5.5. 5.6  
5.7  
5.8  
5.9  
6.0  
Rx GAIN INDEX  
FREQUENCY (GHz)  
Figure 60. Second-Order Input Intercept Point (IIP2) vs. Rx Gain Index,  
f1 = 70 MHz, f2 = 71 MHz  
Figure 63. Tx Output Power vs. Frequency, Attenuation Setting = 0 dB,  
Single Tone  
–90  
–92  
–94  
–96  
0.5  
0.4  
0.3  
0.2  
–98  
0.1  
–40°C  
–100  
–102  
–104  
–106  
–108  
–110  
+25°C  
+85°C  
0.0  
–0.1  
–0.2  
–40°C  
+25°C  
+85°C  
–0.3  
–0.4  
–0.5  
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
FREQUENCY (GHz)  
ATTENUATION SETTING (dB)  
Figure 61. Rx Local Oscillator (LO) Leakage vs. Frequency  
Figure 64. Tx Power Control Linearity Error vs. Attenuation Setting  
Rev. B | Page 25 of 32  
AD9364  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
ATT 0dB  
ATT 3dB  
ATT 6dB  
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
FREQUENCY OFFSET (MHz)  
FREQUENCY (GHz)  
Figure 65. Tx Spectrum vs. Frequency Offset from Carrier Frequency, fLO_TX  
=
Figure 68. Tx Carrier Rejection vs. Frequency  
5.8 GHz, WiMAX 40 MHz Downlink (Digital Attenuation Variations Shown)  
–30  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
–32  
–34  
–36  
–40°C  
+25°C  
+85°C  
–38  
–40  
0
2
4
6
8
10  
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
ATTENUATION SETTING (dB)  
FREQUENCY (GHz)  
Figure 66. Tx EVM vs. Transmitter Attenuation Setting,  
Figure 69. Tx Second-Order Harmonic Distortion (HD2) vs. Frequency  
WiMAX 40 MHz, 64 QAM Modulation, fLO_TX = 5.495 GHz, 40 MHz REF_CLK  
(Doubled Internally for RF Synthesizer)  
0.8  
0.7  
0.6  
0.5  
–10  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
0.4  
–40°C  
+25°C  
+85°C  
0.3  
0.2  
0.1  
0
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 67. Integrated Tx LO Phase Noise vs. Frequency, 40 MHz REF_CLK  
(Doubled Internally for RF Synthesizer)  
Figure 70. Tx Third-Order Harmonic Distortion (HD3) vs. Frequency  
Rev. B | Page 26 of 32  
Data Sheet  
AD9364  
20  
16  
12  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
ATT 0, –40°C  
ATT 25, –40°C  
ATT 50, –40°C  
ATT 0, +25°C  
ATT 25, +25°C  
ATT 50, +25°C  
ATT 0, +85°C  
ATT 25, +85°C  
ATT 50, +85°C  
–40°C  
+25°C  
+85°C  
8
4
0
–4  
0
4
8
12  
16  
20  
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
ATTENUATION SETTING (dB)  
FREQUENCY (GHz)  
Figure 71. Tx Third-Order Output Intercept Point (OIP3) vs.  
Attenuation Setting, fLO_TX = 5.8 GHz  
Figure 73. Tx Single Sideband (SSB) Rejection vs. Frequency, 7 MHz Offset  
150  
149  
148  
147  
146  
145  
144  
143  
142  
–40°C  
+25°C  
+85°C  
0
3
6
9
12  
15  
ATTENUATION SETTING (dB)  
Figure 72. Tx Signal-to-Noise Ratio (SNR) vs. Transmitter Attenuation Setting,  
WiMAX 40 MHz Signal of Interest with Noise Measured at 90 MHz Offset,  
fLO_TX = 5.745 GHz  
Rev. B | Page 27 of 32  
AD9364  
Data Sheet  
THEORY OF OPERATION  
GENERAL  
TRANSMITTER  
The transmitter section consists of two differential output stages  
that can be multiplexed to the transmit channel. The transmit  
channel provides all digital processing, mixed signal, and RF  
blocks necessary to implement a direct conversion system. The  
digital data received from the BBP passes through a fully  
programmable 128-tap FIR filter with interpolation options. The  
FIR output is sent to a series of interpolation filters that provide  
additional filtering and data rate interpolation prior to reaching the  
DAC. Each 12-bit DAC has an adjustable sampling rate. Both  
the I and Q channels are fed to the RF block for upconversion.  
The AD9364 is a highly integrated radio frequency (RF)  
transceiver capable of being configured for a wide range of  
applications. The device integrates all RF, mixed signal, and  
digital blocks necessary to provide all transceiver functions in a  
single device. Programmability allows this broadband transceiver  
to be adapted for use with multiple communication standards,  
including frequency division duplex (FDD) and time division  
duplex (TDD) systems. This programmability also allows the  
device to be interfaced to various baseband processors (BBPs) using  
a single 12-bit parallel data port, dual 12-bit parallel data ports,  
or a 12-bit low voltage differential signaling (LVDS) interface.  
When converted to baseband analog signals, the I and Q signals  
are filtered to remove sampling artifacts and fed to the upcon-  
version mixers. At this point, the I and Q signals are recombined  
and modulated on the carrier frequency for transmission to the  
output stage. The combined signal also passes through analog  
filters that provide additional band shaping, and then the signal  
is transmitted to the output amplifier. The transmit channel  
provides a wide attenuation adjustment range with fine granularity  
to help designers optimize signal-to-noise ratio (SNR).  
The AD9364 also provides self calibration and automatic gain  
control (AGC) systems to maintain a high performance level  
under varying temperatures and input signal conditions. In addi-  
tion, the device includes several test modes that allow system  
designers to insert test tones and create internal loopback modes  
that can be used by designers to debug their designs during  
prototyping and optimize their radio configuration for a  
specific application.  
Self calibration circuitry is built into each transmit channel to  
provide automatic real-time adjustment. The transmitter block  
also provides a Tx monitor block. This block monitors the  
transmitter output and routes it back through the receiver  
channel to the BBP for signal monitoring. The Tx monitor  
block is available only in TDD mode operation while the  
receiver is idle.  
RECEIVER  
The receiver section contains all blocks necessary to receive RF  
signals and convert them to digital data that is usable by a BBP.  
It has three inputs that can be multiplexed to the signal chain,  
making the AD9364 suitable for use in multiband systems with  
multiple antenna inputs. The receiver is a direct conversion  
system that contains a low noise amplifier (LNA), followed by  
matched in-phase (I) and quadrature (Q) amplifiers, mixers,  
and band shaping filters that downconvert received signals to  
baseband for digitization. External LNAs can also be interfaced  
to the device, allowing designers the flexibility to customize the  
receiver front end for their specific application.  
CLOCK INPUT OPTIONS  
The AD9364 operates using a reference clock that can be provided  
by two different sources. The first option is to use a dedicated  
crystal with a frequency between 19 MHz and 50 MHz connected  
between the XTALP and XTALN pins. The second option is to  
connect an external oscillator or clock distribution device (such as  
the AD9548) to the XTALN pin (with the XTALP pin remaining  
unconnected). If an external oscillator is used, the frequency  
can vary between 10 MHz and 80 MHz. This reference clock is  
used to supply the synthesizer blocks that generate all data  
clocks, sample clocks, and local oscillators inside the device.  
Gain control is achieved by following a preprogrammed gain  
index map that distributes gain among the blocks for optimal  
performance at each level. This can be achieved by enabling the  
internal AGC in either fast or slow mode or by using manual  
gain control, allowing the BBP to make the gain adjustments as  
needed. Additionally, each channel contains independent RSSI  
measurement capability, dc offset tracking, and all circuitry  
necessary for self calibration.  
Errors in the crystal frequency can be removed by using the  
digitally programmable digitally controlled crystal oscillator  
(DCXO) function to adjust an on-chip variable capacitor. This  
capacitor can tune the crystal frequency variance out of the  
system, resulting in a more accurate reference clock from which  
all other frequency signals are generated. This function can also  
be used with on-chip temperature sensing to provide oscillator  
frequency temperature compensation during normal operation.  
The receiver includes 12-bit, Σ-Δ ADCs and adjustable sample  
rates that produce data streams from the received signals. The  
digitized signals can be conditioned further by a series of  
decimation filters and a fully programmable 128-tap FIR filter  
with additional decimation settings. The sample rate of each  
digital filter block is adjustable by changing decimation factors  
to produce the desired output data rate.  
Rev. B | Page 28 of 32  
 
 
 
 
 
Data Sheet  
AD9364  
RX_FRAME Signal  
SYNTHESIZERS  
The device generates an RX_FRAME output signal whenever the  
receiver outputs valid data. This signal has two modes: level  
mode (RX_FRAME stays high as long as the data is valid) and  
pulse mode (RX_FRAME pulses with a 50% duty cycle). Similarly,  
the BBP must provide a TX_FRAME signal that indicates the  
beginning of a valid data transmission with a rising edge. Similar  
to the RX_FRAME signal, the TX_FRAME signal can remain  
high throughout the burst or it can be pulsed with a 50% duty  
cycle.  
RF PLLs  
The AD9364 contains two identical synthesizers to generate the  
required LO signals for the RF signal paths—one for the receiver  
and one for the transmitter. Phase-locked loop (PLL) synthesizers  
are fractional-N designs incorporating completely integrated  
voltage controlled oscillators (VCOs) and loop filters. In TDD  
mode, the synthesizers turn on and off as appropriate for the Rx  
and Tx frames. In FDD mode, the Tx PLL and the Rx PLL can  
be activated at the same time. These PLLs require no external  
components.  
ENABLE STATE MACHINE  
BB PLL  
The AD9364 transceiver includes an enable state machine (ENSM)  
that allows real-time control over the current state of the device.  
The device can be placed in several different states during normal  
operation, including  
The AD9364 also contains a baseband PLL (BB PLL)  
synthesizer that is used to generate all baseband related clock  
signals. These include the ADC and DAC sampling clocks, the  
DATA_CLK signal (see the Digital Data Interface section), and  
all data framing signals. This PLL is programmed from 700 MHz  
to 1400 MHz based on the data rate and sample rate requirements  
of the system.  
Wait—power save, synthesizers disabled  
Sleep—wait with all clocks/BB PLL disabled  
Tx—Tx signal chain enabled  
Rx—Rx signal chain enabled  
DIGITAL DATA INTERFACE  
FDD—Tx and Rx signal chains enabled  
Alert—synthesizers enabled  
The AD9364 data interface uses parallel data ports (P0 and P1)  
to transfer data between the device and the BBP. The data ports can  
be configured in either single-ended CMOS format or differential  
LVDS format. Both formats can be configured in multiple arrange-  
ments to match system requirements for data ordering and data  
port connections. These arrangements include single port data  
bus, dual port data bus, single data rate, and double data rate.  
The ENSM has two possible control methods: SPI control and  
pin control.  
SPI Control Mode  
In SPI control mode, the ENSM is controlled asynchronously by  
writing SPI registers to advance the current state to the next  
state. SPI control is considered asynchronous to the DATA_CLK  
because the SPI_CLK can be derived from a different clock  
reference and can still function properly. The SPI control ENSM  
method is recommended when real-time control of the  
synthesizers is not necessary. SPI control can be used for real-  
time control as long as the BBP has the ability to perform timed  
SPI writes accurately.  
Bus transfers are controlled using simple hardware handshake  
signaling. The two ports can be operated in either bidirectional  
(half-duplex) mode or in full duplex mode where half the bits  
are used for transmitting data and half are used for receiving data.  
The interface can also be configured to use only one of the data  
ports for applications that do not require high data rates and  
prefer to use fewer interface pins.  
Pin Control Mode  
DATA_CLK Signal  
In pin control mode, the enable function of the ENABLE pin and  
the TXNRX pin allow real-time control of the current state. The  
ENSM allows TDD or FDD operation depending on the  
configuration of the corresponding SPI register. The ENABLE  
and TXNRX pin control method is recommended if the BBP  
has extra control outputs that can be controlled in real time,  
allowing a simple 2-wire interface to control the state of the  
device. To advance the current state of the ENSM to the next  
state, the enable function of the ENABLE pin can be driven by  
either a pulse (edge detected internally) or a level.  
The AD9364 supplies the DATA_CLK signal that the BBP uses  
when receiving the data. The DATA_CLK signal can be set to a  
rate that provides single data rate (SDR) timing where data is  
sampled on each rising clock edge, or it can be set to provide  
double data rate (DDR) timing where data is captured on both  
rising and falling edges. SDR or DDR timing applies to  
operation using either a single port or both ports.  
FB_CLK Signal  
For transmit data, the interface uses the FB_CLK signal as the  
timing reference. FB_CLK allows source synchronous timing  
with rising edge capture for burst control signals and either  
rising edge (SDR mode) or both edge capture (DDR mode) for  
transmit signal bursts. The FB_CLK signal must have the same  
frequency and duty cycle as DATA_CLK.  
When a pulse is used, it must have a minimum pulse width of  
one FB_CLK cycle. In level mode, the ENABLE and TXNRX  
pins are also edge detected by the AD9364 and must meet the  
same minimum pulse width requirement of one FB_CLK cycle.  
In FDD mode, the ENABLE and TXNRX pins can be remapped to  
serve as real-time Rx and Tx data transfer control signals. In this  
mode, the enable function of the ENABLE pin assumes the RXON  
Rev. B | Page 29 of 32  
 
 
 
AD9364  
Data Sheet  
function (controlling when the Rx path is enabled and disabled),  
and the TXNRX pin assumes the TXON function (controlling  
when the Tx path is enabled and disabled). In this mode, the  
ENSM is removed from the system for control of all data flow  
by these pins.  
Control Inputs (CTRL_IN3 to CTRL_IN0)  
The AD9364 provides four edge detected control input pins. In  
manual gain mode, the BBP can use these pins to change the gain  
table index in real time. In transmit mode, the BBP can use two  
of the pins to change the transmit gain in real time.  
SPI INTERFACE  
GPO PINS (GPO_3 TO GPO_0)  
The AD9364 uses a serial peripheral interface (SPI) to communi-  
cate with the BBP. The SPI can be configured as a 4-wire  
interface with dedicated receive and transmit ports, or it can  
be configured as a 3-wire interface with a bidirectional data  
communication port. This bus allows the BBP to set all device  
control parameters using a simple address data serial bus  
protocol.  
The AD9364 provides four, 3.3 V capable general-purpose logic  
output pins: GPO_3, GPO_2, GPO_1, and GPO_0. These pins  
can be used to control other peripheral devices such as regulators  
and switches via the AD9364 SPI bus, or they can function as  
slaves for the internal AD9364 state machine.  
AUXILIARY CONVERTERS  
AUXADC  
Write commands follow a 24-bit format. The first six bits are  
used to set the bus direction and number of bytes to transfer.  
The next 10 bits set the address where data is to be written.  
The final eight bits are the data to be transferred to the specified  
register address (MSB to LSB). The AD9364 also supports an  
LSB-first format that allows the commands to be written in LSB  
to MSB format. In this mode, the register addresses are incre-  
mented for multibyte writes.  
The AD9364 contains an auxiliary ADC that can be used to mon-  
itor system functions such as temperature or power output. The  
converter is 12 bits wide and has an input range of 0.05 V to  
VDDA1P3_BB − 0.05 V. When enabled, the ADC is free running.  
SPI reads provide the last value latched at the ADC output. A  
multiplexer in front of the ADC allows the user to select between  
the AUXADC input pin and a built-in temperature sensor.  
AUXDAC1 and AUXDAC2  
Read commands follow a similar format with the exception that  
the first 16 bits are transferred on the SPI_DI pin and the final  
eight bits are read from the AD9364, either on the SPI_DO pin  
in 4-wire mode or on the SPI_DI pin in 3-wire mode.  
The AD9364 contains two identical auxiliary DACs that can  
provide power amplifier (PA) bias or other system functionality.  
The auxiliary DACs are 10 bits wide, have an output voltage range  
of 0.5 V to VDD_GPO − 0.3 V, a current drive of 10 mA, and  
can be directly controlled by the internal enable state machine.  
CONTROL PINS  
Control Outputs (CTRL_OUT7 to CTRL_OUT0)  
The AD9364 provides eight simultaneous real-time output signals  
for use as interrupts to the BBP. These outputs can be configured to  
output a number of internal settings and measurements that the  
BBP can use when monitoring transceiver performance in different  
situations. The control output pointer register selects what  
information is output to these pins, and the control output enable  
register determines which signals are activated for monitoring by  
the BBP. Signals used for manual gain mode, calibration flags,  
state machine states, and the ADC output are among the outputs  
that can be monitored on these pins.  
Rev. B | Page 30 of 32  
 
 
 
 
Data Sheet  
AD9364  
PACKAGING AND ORDERING INFORMATION  
OUTLINE DIMENSIONS  
10.10  
A1 BALL  
CORNER  
10.00 SQ  
9.90  
A1 BALL  
CORNER  
12 11 10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
8.80 SQ  
G
H
J
0.80  
K
L
M
0.60  
REF  
TOP VIEW  
DETAIL A  
BOTTOM VIEW  
1.70 MAX  
1.00 MIN  
DETAIL A  
0.32 MIN  
0.50  
0.45  
0.40  
COPLANARITY  
0.12  
SEATING  
PLANE  
BALL DIAMETER  
COMPLIANT TO JEDEC STANDARDS MO-275-EEAB-1.  
Figure 74. 144-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-144-7)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
144-Ball CSP_BGA  
144-Ball CSP_BGA  
Package Option  
BC-144-7  
BC-144-7  
AD9364BBCZ  
AD9364BBCZREEL  
−40°C to +85°C  
−40°C to +85°C  
1 Z = RoHS Compliant Part.  
Rev. B | Page 31 of 32  
 
 
 
 
AD9364  
NOTES  
Data Sheet  
©2013–2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11846-0-2/14(B)  
Rev. B | Page 32 of 32  

相关型号:

AD9364BBCZREEL

Point to point communication systems
ADI

AD9371

Dual differential transmitters
ADI

AD9371BBCZ

Dual differential transmitters
ADI

AD9371BBCZ-REEL

Dual differential transmitters
ADI

AD9375

Integrated, Dual RF Transceiver with Observation Path
ADI

AD9375BBCZ

Integrated, Dual RF Transceiver with Observation Path
ADI

AD9375BBCZ-REEL

Integrated, Dual RF Transceiver with Observation Path
ADI

AD9380

Analog/HDMI Dual-Display Interface
ADI

AD9380/PCB

Analog/HDMI Dual-Display Interface
ADI

AD9380KSTZ-100

Analog/HDMI Dual-Display Interface
ADI

AD9380KSTZ-150

Analog/HDMI Dual-Display Interface
ADI

AD9381

HDMI Display Interface
ADI