AD9375BBCZ-REEL [ADI]

Integrated, Dual RF Transceiver with Observation Path;
AD9375BBCZ-REEL
型号: AD9375BBCZ-REEL
厂家: ADI    ADI
描述:

Integrated, Dual RF Transceiver with Observation Path

文件: 总61页 (文件大小:852K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Integrated, Dual RF Transceiver  
with Observation Path  
AD9375  
Data Sheet  
The transceiver consists of wideband direct conversion signal  
paths with state-of-the-art noise figure and linearity. Each complete  
Rx and Tx subsystem includes dc offset correction, quadrature error  
correction (QEC), and programmable digital filters, eliminating  
the need for these functions in the digital baseband. Several  
auxiliary functions such as an auxiliary analog-to-digital converter  
(ADC), auxiliary digital-to-analog converters (DACs), and general-  
purpose input/outputs (GPIOs) are integrated to provide additional  
monitoring and control capability.  
FEATURES  
Dual differential Tx  
Dual differential Rx  
Observation receiver with 2 inputs  
Fully integrated, ultralow power DPD actuator and adaptation  
engine for PA linearization  
Sniffer receiver with 3 inputs  
Tunable range: 300 MHz to 6000 MHz  
Linearization signal BW to 40 MHz  
Tx synthesis BW to 250 MHz  
An ORx channel with two inputs is included to monitor each Tx  
output and implement calibration applications. This channel also  
connects to three sniffer receiver (SnRx) inputs that can monitor  
radio activity in different bands.  
Rx BW: 8 MHz to 100 MHz  
Supports FDD and TDD operation  
Fully integrated independent fractional-N RF synthesizers for  
Tx, Rx, ORx, and clock generation  
JESD204B digital interface  
The high speed JESD204B interface supports lane rates up to  
6144 Mbps. Four lanes are dedicated to the transmitters and four  
lanes are dedicated to the receiver and observation receiver channels.  
APPLICATIONS  
3G/4G small cell base transceiver station (BTS)  
3G/4G massive MIMO/active antenna systems  
The fully integrated phase-locked loops (PLLs) provide high  
performance, low power, fractional-N frequency synthesis for  
the Tx, the Rx, the ORx, and the clock sections. Careful design  
and layout techniques provide the isolation demanded in high  
performance base station applications. All voltage controlled  
oscillator (VCO) and loop filter components are integrated to  
minimize the external component count.  
GENERAL DESCRIPTION  
The AD9375 is a highly integrated, wideband radio frequency (RF)  
transceiver offering dual-channel transmitters (Tx) and receivers  
(Rx), integrated synthesizers, a fully integrated digital predistortion  
(DPD) actuator and adaptation engine, and digital signal processing  
functions. The IC delivers a versatile combination of high  
performance and low power consumption required by 3G/4G  
small cell and massive multiple input, multiple output (MIMO)  
equipment in both frequency division duplex (FDD) and time  
division duplex (TDD) applications. The AD9375 operates from  
300 MHz to 6000 MHz, covering most of the licensed and unlicensed  
cellular bands. The DPD algorithm supports linearization on  
signal bandwidths up to 40 MHz depending on the power amplifier  
(PA) characteristics (for example, two adjacent 20 MHz carriers).  
The IC supports Rx bandwidths up to 100 MHz. It also supports  
observation receiver (ORx) and Tx synthesis bandwidths up to  
250 MHz to accommodate digital correction algorithms.  
The device contains a fully integrated, low power DPD actuator  
and adaptation engine for use in PA linearization. The DPD feature  
enables use of high efficiency PAs, significantly reducing the power  
consumption of small cell base station radios while also reducing  
the number of JESD204B lanes necessary to interface with baseband  
processors.  
A 1.3 V supply is required to power the AD9375 core, and a  
standard 4-wire serial port controls it. Other voltage supplies  
provide proper digital interface levels and optimize transmitter  
and auxiliary converter performance. The  
AD9375 is packaged in a  
12 mm × 12 mm, 196-ball chip scale ball grid array (CSP_BGA).  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2017 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
AD9375  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 56  
Transmitter (Tx)......................................................................... 56  
Receiver (Rx)............................................................................... 56  
Observation Receiver (ORx)..................................................... 56  
Sniffer Receiver (SnRx) ............................................................. 56  
Clock Input.................................................................................. 56  
Synthesizers................................................................................. 57  
Serial Peripheral Interface (SPI)............................................... 57  
GPIO_x AND GPIO_3P3_x Pins ............................................ 57  
Auxiliary Converters.................................................................. 57  
JESD204B Data Interface .......................................................... 58  
Power Supply Sequence ............................................................. 58  
Digital Predistortion (DPD) ..................................................... 59  
JTAG Boundary Scan................................................................. 60  
Outline Dimensions ....................................................................... 61  
Ordering Guide .......................................................................... 61  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
Current and Power Consumption Specifications................... 10  
Timing Specifications ................................................................ 12  
Absolute Maximum Ratings.......................................................... 14  
Reflow Profile.............................................................................. 14  
Thermal Resistance .................................................................... 14  
ESD Caution................................................................................ 14  
Pin Configuration and Function Descriptions........................... 15  
Typical Performance Characteristics ........................................... 18  
700 MHz Band............................................................................ 18  
2.6 GHz Band.............................................................................. 28  
3.5 GHz Band.............................................................................. 38  
5.5 GHz Band.............................................................................. 48  
REVISION HISTORY  
3/2017—Revision 0: Initial Version  
Rev. 0 | Page 2 of 61  
 
Data Sheet  
AD9375  
FUNCTIONAL BLOCK DIAGRAM  
AD9375  
RX1+  
Rx1  
DECIMATION,  
pFIR, AGC,  
DC OFFSET  
QEC,  
RX1–  
RX2+  
LPF  
LPF  
Rx2  
ADC  
ADC  
JESD204B  
TUNING,  
RX2–  
RSSI,  
OVERLOAD  
MICRO-  
CONTROLLER  
RX_EXTLO+  
RX_EXTLO–  
LO  
GENERATOR  
RF  
SYNTHESIZER  
CONTROL  
INTERFACE  
EXTERNAL  
OPTION  
CTRL INT  
SPI  
TX1+  
TX1–  
TX2+  
Tx1  
Tx2  
SPI  
PORT  
LPF  
DAC  
DAC  
pFIR,  
DC OFFSET,  
QEC, TUNNING,  
INTER-  
TX2–  
LPF  
JESD204B  
POLATION  
TX_EXTLO+  
TX_EXTLO–  
LO  
GENERATOR  
RF  
GPIO  
AUXADC  
AUXDAC  
SYNTHESIZER  
EXTERNAL  
OPTION  
LO  
GENERATOR  
RF  
SYNTHESIZER  
CLOCK  
GENERATOR  
DEV_CLK_IN+,  
DEV_CLK_IN–  
OBSERVATION  
Rx  
ORX1+  
ORX1–  
ORX2+  
ORX2–  
SNIFFER  
Rx  
SNRXA+  
SNRXA–  
SNRXB+  
SNRXB–  
SNRXC+  
SNRXC–  
DECIMATION,  
pFIR,  
LPF  
LPF  
ADC  
ADC  
AGC,  
DC OFFSET,  
QEC,  
JESD204B  
TUNING,  
RSSI,  
OVERLOAD  
Figure 1.  
Rev. 0 | Page 3 of 61  
 
AD9375  
Data Sheet  
SPECIFICATIONS  
Electrical characteristics at ambient temperature range, VDDA_SER = 1.3 V, V DDA _DES = 1.3 V, JESD_VTT_DES = 1.3 V, VDDA_1P31 =  
1.3 V, VDIG = 1.3 V, VDDA_1P8 = 1.8 V, VDD_IF = 2.5 V, and VDDA_3P3 = 3.3 V; all RF specifications based on measurements that  
include printed circuit board (PCB) and matching circuit losses, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
TRANSMITTERS (Tx)  
Center Frequency  
Tx Large Signal Bandwidth (BW)  
Normal Operation  
DPD Activated  
300  
6000  
MHz  
100  
40  
250  
MHz  
MHz  
MHz  
Tx Synthesis BW2  
Wider bandwidth for use in  
digital processing algorithms  
BW Flatness  
0.5  
dB  
dB  
250 MHz BW, compensated  
by programmable finite  
impulse response (pFIR) filter  
0.15  
Any 20 MHz BW span,  
compensated by pFIR filter  
Deviation from Linear Phase  
Power Control Range  
10  
Degrees  
dB  
250 MHz BW  
0
42  
Increased calibration time,  
reduced QEC3, LOL4  
performance beyond 20 dB  
Power Control Resolution  
0.05  
dB  
ACLR5 (Four Universal Mobile  
Telecommunications System  
(UMTS) Carriers)  
−11.2 dBFS rms,  
0 dB RF attenuation  
700 MHz Local Oscillator (LO)  
2600 MHz LO  
3500 MHz LO  
5500 MHz LO  
In Band Noise  
−64  
−64  
−63  
−61  
−155  
dB  
dB  
dB  
dB  
dBFS6/Hz  
Tx to Tx Isolation  
700 MHz LO  
2600 MHz LO  
3500 MHz LO  
5500 MHz LO  
70  
65  
65  
50  
dB  
dB  
dB  
dB  
Image Rejection  
Up to 20 dB RF attenuation,  
within large signal BW,  
QEC3 active  
700 MHz LO  
2600 MHz LO  
3500 MHz LO  
65  
65  
65  
50  
dB  
dB  
dB  
dB  
5500 MHz LO  
Maximum Output Power  
0 dBFS, 1 MHz signal input,  
50 Ω load, 0 dB RF attenuation  
700 MHz LO  
2600 MHz LO  
3500 MHz LO  
5500 MHz LO  
7
7
6
4
dBm  
dBm  
dBm  
dBm  
Output Third-Order Intercept Point OIP3  
−5 dBFS rms,  
0 dB RF attenuation  
700 MHz LO  
2600 MHz LO  
3500 MHz LO  
5500 MHz LO  
27  
27  
25  
25  
dBm  
dBm  
dBm  
dBm  
Rev. 0 | Page 4 of 61  
 
 
Data Sheet  
AD9375  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Carrier Leakage  
After calibration,  
LOL correction active,  
CW7 input signal, 3 dB RF  
and 3 dB digital attenuation,  
40 kHz measurement BW  
700 MHz LO  
2600 MHz LO  
3500 MHz LO  
5500 MHz LO  
−81  
−81  
−81  
−75  
dBFS6  
dBFS6  
dBFS6  
dBFS6  
Error Vector Magnitude (3GPP  
Test Signals)  
EVM  
Long-term evolution (LTE)  
20 MHz downlink,  
5 dB RF attenuation  
700 MHz LO  
2600 MHz LO  
3500 MHz LO  
−45  
−39  
−38.5  
−37.5  
50  
dB  
dB  
dB  
dB  
Ω
5500 MHz LO  
Output Impedance  
RECEIVERS (Rx)  
Center Frequency  
Gain Range  
Differential  
300  
0
6000  
30  
MHz  
dB  
Analog Gain Step  
BW Ripple  
0.5  
0.5  
dB  
dB  
100 MHz BW, compensated  
by programmable FIR filter  
0.2  
dB  
Any 20 MHz span,  
compensated by  
programmable FIR filter  
Rx Bandwidth  
8
100  
MHz  
Analog low-pass filter (LPF)  
BW is 20 MHz minimum,  
programmable FIR BW  
configurable over the entire  
range  
Rx Alias Band Rejection  
Maximum Recommended Input  
Power8  
75  
dB  
dBm  
Due to digital filters  
−14  
Input is a CW7 signal at a 0 dB  
attenuation setting; this level  
increases decibel for decibel  
with attenuation  
Noise Figure  
NF  
Maximum Rx gain, at Rx port,  
matching losses de-embedded  
700 MHz LO  
2600 MHz LO  
3500 MHz LO  
5500 MHz LO  
12  
13.5  
14  
dB  
dB  
dB  
dB  
18  
Input Third-Order Intercept Point IIP3  
Maximum Rx gain, third-  
order intermodulation (IM3)  
1 MHz offset from LO  
700 MHz LO  
2600 MHz LO  
3500 MHz LO  
5500 MHz LO  
22  
22  
20  
20  
dBm  
dBm  
dBm  
dBm  
Input Second-Order Intercept  
Point  
IIP2  
Maximum Rx gain, second-  
order intermodulation (IM2)  
1 MHz offset from LO  
700 MHz LO  
2600 MHz LO  
3500 MHz LO  
5500 MHz LO  
65  
65  
65  
57  
dBm  
dBm  
dBm  
dBm  
Rev. 0 | Page 5 of 61  
AD9375  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Image Rejection  
700 MHz LO  
2600 MHz LO  
3500 MHz LO  
5500 MHz LO  
Input Impedance  
QEC3 active, within Rx BW  
75  
75  
75  
75  
200  
dB  
dB  
dB  
dB  
Ω
Differential  
Tx1 to Rx1 Signal Isolation and  
Tx2 to Rx2 Signal Isolation  
700 MHz LO  
2600 MHz LO  
3500 MHz LO  
5500 MHz LO  
68  
68  
62  
60  
dB  
dB  
dB  
dB  
Tx1 to Rx2 Signal Isolation and  
Tx2 to Rx1 Signal Isolation  
700 MHz LO  
2600 MHz LO  
3500 MHz LO  
70  
70  
62  
60  
dB  
dB  
dB  
dB  
5500 MHz LO  
Rx1 to Rx2 Signal Isolation  
700 MHz LO  
60  
dB  
2600 MHz LO  
60  
dB  
3500 MHz LO  
60  
dB  
5500 MHz LO  
60  
dB  
Rx Band Spurs Referenced to  
RF Input at Maximum Gain  
−95  
dBm  
No more than one spur at  
this level per 10 MHz of Rx  
BW; excludes harmonics of  
the reference clock  
Rx LO Leakage at Rx Input at  
Maximum Gain  
Leakage decreases decibel  
for decibel with attenuation  
for first 12 dB  
700 MHz LO  
2600 MHz LO  
3500 MHz LO  
−65  
−65  
−62  
−62  
dBm  
dBm  
dBm  
dBm  
5500 MHz LO  
OBSERVATION RECEIVER (ORx)  
Center Frequency  
Gain Range  
300  
0
6000  
18  
MHz  
dB  
Analog Gain Step  
BW Ripple  
1
dB  
dB  
0.5  
250 MHz RF BW, compensated  
by programmable FIR filter  
Deviation from Linear Phase  
ORx Bandwidth  
10  
Degrees  
MHz  
250 MHz RF BW  
250  
ORx Alias Band Rejection  
Maximum Recommended Input  
Power8  
60  
dB  
dBm  
Due to digital filters  
−13  
Input is a CW7 signal at 0 dB  
attenuation setting; this level  
increases decibel for decibel  
with attenuation  
Signal-to-Noise Ratio9  
700 MHz LO  
2600 MHz LO  
3500 MHz LO  
SNR  
Maximum gain at ORx port  
60  
60  
60  
59  
dB  
dB  
dB  
dB  
5500 MHz LO  
200 MHz BW, 245.76 MSPS  
Rev. 0 | Page 6 of 61  
Data Sheet  
AD9375  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Input Third-Order Intercept Point IIP3  
Maximum ORx gain,  
IM3 1 MHz offset from LO  
700 MHz LO  
2600 MHz LO  
3500 MHz LO  
5500 MHz LO  
22  
22  
18  
18  
dBm  
dBm  
dBm  
dBm  
Input Second-Order Intercept  
Point  
IIP2  
Maximum ORx gain,  
IM2 1 MHz offset from LO  
700 MHz LO  
2600 MHz LO  
3500 MHz LO  
5500 MHz LO  
Image Rejection  
700 MHz LO  
2600 MHz LO  
3500 MHz LO  
5500 MHz LO  
Input Impedance  
65  
65  
65  
60  
dBm  
dBm  
dBm  
dBm  
After online tone calibration  
65  
65  
65  
65  
200  
dB  
dB  
dB  
dB  
Ω
Differential  
Tx1 to ORx1 Signal and Tx2 to  
ORx2 Signal Isolation  
700 MHz LO  
2600 MHz LO  
3500 MHz LO  
5500 MHz LO  
70  
70  
70  
70  
dB  
dB  
dB  
dB  
Tx1 to ORx2 Signal and Tx2 to  
ORx1 Signal Isolation  
700 MHz LO  
2600 MHz LO  
3500 MHz LO  
70  
70  
70  
70  
dB  
dB  
dB  
dB  
5500 MHz LO  
SNIFFER RECEIVER (SnRx)  
Center Frequency  
Gain Range  
300  
0
6000  
52  
MHz  
dB  
Analog Gain Step  
BW Ripple  
1
dB  
dB  
0.5  
20 MHz RF BW, compensated  
by programmable FIR filter  
Rx Bandwidth  
Rx Alias Band Rejection  
20  
MHz  
dB  
60  
Due to digital filters  
Maximum Recommended Input  
Power8  
−26  
dBm  
Input is a CW7 signal at 0 dB  
attenuation setting  
Noise Figure  
NF  
Maximum gain at SnRx port,  
matching losses de-embedded  
700 MHz LO  
2600 MHz LO  
3500 MHz LO  
5
5
7
dB  
dB  
dB  
Input Third-Order Intercept Point IIP3  
Maximum gain, IM3 1 MHz  
offset from LO, gain control  
limited to the first 20 steps  
700 MHz LO  
2600 MHz LO  
3500 MHz LO  
1
1
1
dBm  
dBm  
dBm  
Rev. 0 | Page 7 of 61  
AD9375  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Input Second-Order Intercept  
Point  
IIP2  
Maximum gain, IM2 1 MHz  
offset from LO, gain control  
limited to the first 20 steps  
700 MHz LO  
2600 MHz LO  
3500 MHz LO  
Image Rejection  
700 MHz LO  
2600 MHz LO  
3500 MHz LO  
Input Impedance  
45  
45  
45  
dBm  
dBm  
dBm  
After online tone calibration  
75  
75  
75  
400  
dB  
dB  
dB  
Ω
Differential  
Tx1 to SnRx Signal and Tx2 to  
SnRx Signal Isolation  
Applies to each SnRx input  
700 MHz LO  
2600 MHz LO  
3500 MHz LO  
60  
60  
60  
dB  
dB  
dB  
LO SYNTHESIZER  
LO Frequency Step  
2.3  
Hz  
1.5 GHz to 3 GHz, 76.8 MHz  
phase frequency detector  
(PFD) frequency  
LO Spur  
−80  
dBc  
Excludes integer boundary  
spurs 1 kHz to 100 MHz  
Spot Phase Noise  
700 MHz LO  
10 kHz  
−104  
−107  
−133  
dBc  
dBc  
dBc  
100 kHz  
1 MHz  
2600 MHz LO  
10 kHz  
100 kHz  
−93  
−97  
−123  
dBc  
dBc  
dBc  
1 MHz  
3500 MHz LO  
10 kHz  
100 kHz  
−91  
−97  
−123  
dBc  
dBc  
dBc  
1 MHz  
5500 MHz LO  
10 kHz  
100 kHz  
−98  
−100  
−110  
dBc  
dBc  
dBc  
1 MHz  
Integrated Phase Noise  
Integrated from 1 kHz to  
100 MHz  
700 MHz LO  
2600 MHz LO  
3500 MHz LO  
0.20  
0.49  
0.55  
0.75  
°rms  
°rms  
°rms  
°rms  
5500 MHz LO  
EXTERNAL LO INPUT  
Input Frequency  
fEXTLO  
600  
0
8000  
6
MHz  
dBm  
Input frequency must be 2×  
the desired LO frequency  
50 Ω matching at the source  
Input Signal Power  
3
Rev. 0 | Page 8 of 61  
Data Sheet  
AD9375  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
REFERENCE CLOCK (DEV_CLK_IN  
SIGNAL)  
Frequency Range  
Signal Level  
10  
0.3  
320  
2.0  
MHz  
V p-p  
AC-coupled, common-mode  
voltage (VCM) = 618 mV; for  
best spurious performance,  
use a <1 V p-p input clock  
AUXILIARY CONVERTERS  
ADC  
ADC Resolution  
Input Voltage  
Minimum  
12  
Bits  
0.25  
3.05  
V
V
Maximum  
DAC  
DAC Resolution  
Output Voltage  
Minimum  
Maximum  
Drive Capability  
10  
Bits  
Includes four offset levels  
0.5  
3.0  
10  
V
V
mA  
Reference voltage (VREF) = 1 V  
VREF = 2.5 V  
DIGITAL SPECIFICATIONS (CMOS),  
GPIO_x, RX1_ENABLE,  
RX2_ENABLE, TX1_ENABLE,  
TX2 ENABLE, SYNCINBx+,  
SYNCOUTB0+, GP_INTERRUPT,  
SDIO, SDO, SCLK, CSB, RESET  
Logic Inputs  
Input Voltage  
High Level  
VDD_IF ×  
0.8  
0
VDD_IF  
V
V
Low Level  
VDD_IF ×  
0.2  
Input Current  
High Level  
Low Level  
−10  
−10  
+10  
+10  
µA  
µA  
Logic Outputs  
Output Voltage  
High Level  
VDD_IF ×  
0.8  
V
Low Level  
VDD_IF ×  
0.2  
V
Drive Capability  
3
mA  
DIGITAL SPECIFICATIONS (LVDS),  
SYSREF_INx , SYNCOUTB0 ,  
SYNCINBx PAIRS  
Logic Inputs  
Input Voltage Range  
Input Differential Voltage  
Threshold  
Receiver Differential Input  
Impedance  
825  
−100  
1675  
+100  
mV  
mV  
Each differential input in the pair  
Internal termination enabled  
100  
Ω
Logic Outputs  
Output Voltage  
High  
1375  
mV  
mV  
mV  
mV  
Low  
Differential  
Offset  
1025  
225  
1200  
Rev. 0 | Page 9 of 61  
AD9375  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DIGITAL SPECIFICATIONS (CMOS),  
GPIO_3P3_x SIGNALS  
Logic Inputs  
Input Voltage  
High Level  
VDDA_  
3P3 × 0.8  
0
VDDA_3P3  
V
V
Low Level  
VDDA_  
3P3 × 0.2  
Input Current  
High Level  
Low Level  
−10  
−10  
+10  
+10  
µA  
µA  
Logic Outputs  
Output Voltage  
High Level  
VDDA_  
V
3P3 × 0.8  
Low Level  
VDDA_  
V
3P3 × 0.2  
Drive Capability  
4
mA  
1 VDDA_1P3 refers to all analog 1.3 V supplies including the following: VDDA_BB, VDDA_CLKSYNTH, VDDA_TXLO, VDDA_RXRF, VDDA_RXSYNTH, VDDA_RXVCO,  
VDDA_RXTX, VDDA_TXSYNTH, VDDA_TXVCO, VDDA_CALPLL, VDDA_SNRXSYNTH, VDDA_SNRXVCO, VDDA_CLK, and VDDA_RXLO.  
2 Synthesis BW) is the extended bandwidth used by digital correction algorithms to measure conditions and generate compensation.  
3 Quadrature error correction (QEC) is the system for minimizing quadrature images of a desired signal.  
4 Local oscillator leakage (LOL) is a measure of the amount of the LO signal that is passed from a mixer with the desired signal.  
5 Adjacent channel level reduction (ACLR) is a measure of the amount of power from the desired signal leaking into an adjacent channel.  
6 dBFS represents the ratio of the actual output signal to the maximum possible output level for a continuous wave output signal at the given RF attenuation setting.  
7 Continuous wave (CW) is a single frequency signal.  
8 Note that the input signal power limit does not correspond to 0 dBFS at the digital output because of the nature of the continuous time Σ-Δ ADCs. Unlike the hard  
clipping characteristic of pipeline ADCs, these converters exhibit a soft overload behavior when the input approaches the maximum level.  
9 Signal-to-noise ratio is limited by the baseband quantization noise.  
CURRENT AND POWER CONSUMPTION SPECIFICATIONS  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit Test Conditions / Comments  
SUPPLY CHARACTERISTICS  
VDDA_1P3 Analog Supplies1  
VDIG Supply  
VDDA_1P8 Supply  
VDD_IF Supply  
VDDA_3P3 Supply  
VDDA_SER, VDDA_DES,  
JESD_VTT_DES Supplies  
1.267 1.3  
1.267 1.3  
1.33  
1.33  
1.89  
2.625  
3.465  
1.365  
V
V
V
V
V
V
1.71  
1.71  
1.8  
1.8  
CMOS and LVDS supply, 1.8 V to 2.5 V nominal range  
3.135 3.3  
1.14  
1.3  
POSITIVE SUPPLY CURRENT (Rx MODE)  
Two Rx channels enabled, Tx upconverter disabled, 100 MHz  
Rx BW, 122.88 MSPS data rate  
VDDA_1P3 Analog Supplies1  
VDIG Supply  
VDD_IF Supply (CMOS and LVDS)  
VDDA_3P3 Supply  
1055  
625  
8
mA  
mA  
mA  
mA  
Rx QEC2 enabled, QEC2 engine active  
1
No auxiliary DACs or auxiliary ADCs enabled; if enabled, the  
auxiliary ADC adds 2.7 mA, and each auxiliary ADC adds 1.5 mA  
VDDA_SER, VDDA_DES,  
JESD_VTT_DES Supplies  
Total Power Dissipation  
375  
mA  
W
2.70  
Rev. 0 | Page 10 of 61  
 
 
 
 
 
Data Sheet  
AD9375  
Parameter  
Min  
Typ  
Max  
Unit Test Conditions / Comments  
POSITIVE SUPPLY CURRENT (Tx MODE)  
Two Tx channels enabled, Rx downconverter disabled, 200 MHz  
Tx BW, 245.76 MSPS data rate (ORx disabled)  
VDDA_1P3 Analog Supplies1  
VDIG Supply  
1000  
410  
mA  
mA  
Tx QEC2 active  
Full-scale CW3  
VDDA_1P8 Supply  
405  
80  
8
mA  
mA  
mA  
mA  
Tx RF attenuation = 0 dB,  
Tx RF attenuation = 15 dB  
VDD_IF Supply  
VDDA_3P3 Supply  
1
No auxiliary DACs or auxiliary ADCs enabled; if enabled, the  
auxiliary ADC adds 2.7 mA, and each auxiliary ADC adds 1.5 mA  
VDDA_SER, VDDA_DES,  
JESD_VTT_DES Supplies  
Total Power Dissipation  
375  
mA  
Typical supply voltages, Tx QEC2 active  
Tx RF attenuation = 0 dB  
3.70  
3.11  
W
W
Tx RF attenuation = 15 dB  
POSITIVE SUPPLY CURRENT (FDD  
MODE), 2× Rx, 2× Tx, ORx ACTIVE  
100 MHz Rx BW, 122.88 MSPS data rate; 200 MHz Tx BW,  
245.76 MSPS data rate; 200 MHz ORx BW, 245.76 MSPS data rate  
VDDA_1P3 Analog Supplies1  
VDIG Supply  
1700  
1080  
mA  
mA  
Tx QEC2 active  
Full scale CW3  
VDDA_1P8 Supply  
405  
80  
8
mA  
mA  
mA  
mA  
Tx RF attenuation = 0 dB  
Tx RF attenuation = 15 dB  
VDD_IF Supply  
VDDA_3P3 Supply  
2
No auxiliary DACs or auxiliary ADCs enabled; if enabled, the  
auxiliary ADC adds 2.7 mA, and each auxiliary ADC adds 1.5 mA  
VDDA_SER, VDDA_DES,  
JESD_VTT_DES Supplies  
Total Power Dissipation  
375  
mA  
Typical supply voltages, Tx QEC2 active  
Tx RF attenuation = 0 dB  
4.86  
4.27  
W
W
°C  
Tx RF attenuation = 15 dB  
MAXIMUM OPERATING JUNCTION  
TEMPERATURE  
110  
Device designed for 10-year lifetime when operating at  
maximum junction temperature  
1 VDDA_1P3 refers to all analog 1.3 V supplies including the following: VDDA_BB, VDDA_CLKSYNTH, VDDA_TXLO, VDDA_RXRF, VDDA_RXSYNTH, VDDA_RXVCO,  
VDDA_RXTX, VDDA_TXSYNTH, VDDA_TXVCO, VDDA_CALPLL, VDDA_SNRXSYNTH, VDDA_SNRXVCO, VDDA_CLK, and VDDA_RXLO.  
2 QEC is the system for minimizing quadrature images of a desired signal.  
3 CW is a single frequency signal.  
Rev. 0 | Page 11 of 61  
 
AD9375  
Data Sheet  
TIMING SPECIFICATIONS  
Table 3.  
Parameter  
Symbol Min  
Typ Max  
Unit  
Test Conditions/Comments  
SERIAL PERIPHERAL INTERFACE (SPI) TIMING  
SCLK Period  
SCLK Pulse Width  
CSB Setup to First SCLK Rising Edge  
Last SCLK Falling Edge to CSB Hold  
SDIO Data Input Setup to SCLK  
SDIO Data Input Hold to SCLK  
SCLK Falling Edge to Output Data Delay (3- or 4-Wire Mode)  
tCP  
tMP  
tSC  
tHC  
tS  
tH  
tCO  
tHZM  
20  
10  
3
0
2
0
3
tH  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
8
tCO  
Bus Turnaround Time After Baseband Processor (BBP) Drives  
Last Address Bit  
Bus Turnaround Time After AD9375 Drives Last Address Bit  
DIGITAL TIMING  
tHZS  
0
tCO  
ns  
TXx_ENABLE Pulse Width  
RXx_ENABLE Pulse Width  
JESD204B DATA OUTPUT TIMING  
Unit Interval  
Data Rate per Channel (Nonreturn to Zero (NRZ))  
Rise Time  
10  
10  
µs  
µs  
UI  
162.76  
614.4  
24  
1627.6 ps  
6144  
Mbps  
ps  
ps  
tR  
tF  
35  
35  
20% to 80% in 100 Ω load  
20% to 80% in 100 Ω load  
AC-coupled  
Fall Time  
24  
Output Common-Mode Voltage  
Termination Voltage (VTT) = 1.2 V  
Differential Output Voltage  
Short-Circuit Current  
Differential Termination Impedance  
Total Jitter  
Uncorrelated Bounded High Probability Jitter  
Duty Cycle Distortion  
SYSREF_IN Signal Setup Time to DEV_CLK_IN Signal  
SYSREF_IN Signal Hold Time to DEV_CLK_IN Signal  
JESD204B DATA INPUT TIMING  
Unit Interval  
Data Rate per Channel (NRZ)  
Input Common-Mode Voltage  
VTT = 1.2 V  
Differential Input Voltage  
VTT Source Impedance  
VCM  
0
1.8  
1135  
466 770  
+100  
100 120  
V
735  
360  
−100  
80  
mV  
mV  
mA  
Ω
ps  
ps  
ps  
ns  
ns  
DC-coupled  
VDIFF  
IDSHORT  
ZRDIFF  
17  
1.2  
3
48.8  
24.4  
8.1  
Bit error rate (BER) = 10−15  
UBHPJ  
DCD  
tS  
2.5  
−1.5  
See Figure 2 and Figure 3  
See Figure 2 and Figure 3  
tH  
UI  
162.76  
614.4  
0.05  
720  
125  
1627.6 ps  
6144  
1.85  
1200  
750  
30  
Mbps  
V
mV  
mV  
Ω
VCM  
AC-coupled  
DC-coupled  
VDIFF  
ZTT  
1.2  
Differential Termination Impedance  
VTT  
ZRDIFF  
80  
106 120  
Ω
AC-Coupled  
DC-Coupled  
1.27  
1.14  
1.33  
1.26  
V
V
Rev. 0 | Page 12 of 61  
 
Data Sheet  
AD9375  
Timing Diagrams  
DEV_CLK_IN DELAY  
IN REFERENCE TO SYSREF  
AT DEVICE PINS  
tS  
AT DIGITAL CORE  
t'H  
tS  
t'H  
t'S  
tH  
tH  
DEV_CLK_IN  
tH = –1.5ns  
tS = +2.5ns  
t'H = +0.5ns  
t'S = +0.5ns  
CLK DELAY = 2ns  
Figure 2. SYSREF_IN Signal Setup and Hold Timing  
tS  
tS  
tS  
tS  
tH  
tH  
tH  
tH  
DEV_CLK_IN  
SYSREF_IN  
tH = –1.5ns  
tS = +2.5ns  
VALID SYSREF_IN  
INVALID SYSREF_IN  
Figure 3. SYSREF_IN Signal Setup and Hold Timing Examples Relative to DEV_CLK_IN Signal  
Rev. 0 | Page 13 of 61  
 
 
AD9375  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
REFLOW PROFILE  
The AD9375 reflow profile is in accordance with the JEDEC  
JESD20 criteria for Pb-free devices. The maximum reflow  
temperature is 260°C.  
Parameter  
Rating  
VDDA_1P31 to VSSA  
−0.3 V to +1.4 V  
−0.3 V to +1.4 V  
VDDA_SER, VDDA_DES, and  
JESD_VTT_DES to VSSA  
VDIG to VSSD  
VDDA_1P8 to VSSA  
VDD_IF to VSSA  
THERMAL RESISTANCE  
−0.3 V to +1.4 V  
−0.3 V to +2.0 V  
−0.3 V to +3.0 V  
−0.3 V to +3.9 V  
−0.3 V to VDD_IF + 0.3 V  
−0.3 V to VDDA_SER  
−0.3 V to VDDA_DES  
10 mA  
Thermal performance is directly linked to PCB design and  
operating environment. Careful attention to PCB thermal  
design is required.  
VDDA_3P3 to VSSA  
θJA is the natural convection junction-to-ambient thermal resistance  
measured in a one cubic foot sealed enclosure. θJC is the junction-  
to-case thermal resistance.  
Logic Inputs and Outputs to VSSD  
JESD204B Logic Outputs to VSSA  
JESD204B Logic Inputs to VSSA  
Input Current to Any Pin Except  
Supplies  
Maximum Input Power into RF Ports  
(Excluding Sniffer Receiver Inputs)  
Maximum Input Power into SNRXA ,  
SNRXB , and SNRXC  
Table 5. Thermal Resistance  
Airflow  
23 dBm (peak)  
2 dBm (peak)  
Package  
BC-196-12  
JEDEC5  
Velocity1 (m/sec) θJA2, 3 (°C/W) θJC2, 4 (°C/W)  
0.0  
1.0  
2.5  
20.5  
18.5  
17.2  
14.1  
12.4  
11.6  
0.05  
N/A6  
N/A6  
0.05  
N/A6  
N/A6  
Maximum Junction Temperature (TJ MAX  
Operating Temperature Range  
Storage Temperature Range  
)
110°C  
−40°C to +85°C  
−65°C to +150°C  
10-Layer PCB 0.0  
1.0  
2.5  
1 VDDA_1P3 refers to all analog 1.3 V supplies: VDDA_BB, VDDA_CLKSYNTH,  
VDDA_TXLO, VDDA_RXSYNTH, VDDA_RXVCO, VDDA_RXTX, VDDA_RXRF,  
VDDA_TXSYNTH, VDDA_TXVCO, VDDA_CALPLL, VDDA_SNRXSYNTH,  
VDDA_SNRXVCO, VDDA_CLK, and VDDA_RXLO.  
1 Power dissipation is 3.0 W for all test cases.  
2 Per JEDEC JESD51-7 for JEDEC JESD51-5 2S2P test board.  
3 Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).  
4 Per MIL-STD 883, Method 1012.1.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
5 JEDEC entries refer to the JEDEC JESD51-9 (high-K thermal test board).  
6 N/A means not applicable.  
ESD CAUTION  
Rev. 0 | Page 14 of 61  
 
 
 
 
Data Sheet  
AD9375  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AD9375  
TOP VIEW  
(Not to Scale)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
VSSA  
ORX2+  
ORX2–  
VSSA  
RX2+  
RX2–  
VSSA  
VSSA  
RX1+  
RX1–  
VSSA  
ORX1+  
ORX1–  
VSSA  
A
B
C
D
E
F
VDDA_RXRF  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VDDA_RXLO  
VSSA  
RX_EXTLO– RX_EXTLO+  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VDDA_3P3  
RBIAS  
VSNRX_  
VCO_LDO  
VDDA_  
SNRXVCO  
VDDA_  
RXVCO  
VRX_  
VCO_LDO  
GPIO_3P3_0 GPIO_3P3_1  
AUXADC_1  
AUXADC_3  
AUXADC_2  
GPIO_3P3_9  
GPIO_3P3_3  
GPIO_3P3_4  
SNRXC–  
SNRXC+  
SNRXB–  
SNRXB+  
VSSA  
SNRXA–  
SNRXA+  
VSSA  
GPIO_3P3_5  
VDDA_BB  
VSSA  
VSSA  
VSSA  
VDDA_1P8  
VSSA  
GPIO_3P3_7 GPIO_3P3_8 GPIO_3P3_10  
DEV_  
CLK_IN+  
DEV_  
CLK_IN–  
VSSA  
TX_EXTLO– TX_EXTLO+  
VDDA_  
AUXADC_0  
GPIO_3P3_6  
GPIO_3P3_11  
VSSA  
VTX_  
VCO_LDO  
GPIO_3P3_2 VDDA_RXTX  
VSSA  
VSSA  
VSSA  
VSSA  
VDDA_TXLO  
TXVCO  
VDDA_  
CALPLL  
VDDA_  
CLKSYNTH  
VDDA_  
SNRXSYNTH  
VDDA_  
TXSYNTH  
VDDA_  
RXSYNTH  
VSSA  
TX2–  
TX2+  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
GPIO_11  
GPIO_10  
GPIO_9  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
G
H
J
VSSA  
VSSA  
VSSA  
VSSA  
TEST  
VSSA  
GPIO_2  
GPIO_3  
VSSD  
VSSA  
GPIO_1  
GPIO_0  
VDIG  
VSSA  
SDIO  
VSSA  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
GPIO_16  
SERDIN2+  
SERDIN0–  
TX1+  
GP_  
INTERRUPT  
GPIO_18  
RESET  
SDO  
TX1–  
SYSREF_IN+ SYSREF_IN–  
GPIO_5  
GPIO_6  
GPIO_4  
GPIO_7  
SCLK  
CSB  
VSSA  
K
L
SYNCINB1–  
SYNCINB0–  
SYNCINB1+  
SYNCINB0+  
VDIG  
VSSD  
GPIO_8  
VSSA  
VCLK_  
VCO_LDO  
RX1_  
ENABLE  
TX1_  
ENABLE  
RX2_  
ENABLE  
TX2_  
ENABLE  
VSSA  
GPIO_17  
SERDIN2–  
VSSA  
VDD_IF  
SYNCOUTB0+ SYNCOUTB0–  
M
N
P
VDDA_CLK  
VSSA  
SERDOUT3– SERDOUT3+ SERDOUT2– SERDOUT2+  
VSSA  
VDDA_SER  
VDDA_SER  
VDDA_DES  
SERDIN3–  
SERDIN0+  
SERDIN3+  
SERDIN1–  
VSSA  
JESD_VTT_  
DES  
VSSA  
SERDOUT1– SERDOUT1+ SERDOUT0– SERDOUT0+  
SERDIN1+  
ANALOG  
INPUT/OUTPUT  
DIGITAL  
INPUT/OUTPUT  
DC POWER  
GROUND  
Figure 4. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Type1  
Mnemonic  
VSSA  
Description  
Analog ground.  
A1, A4, A7, A8, A11, A14, B2 to B6,  
B9 to B13, C5, C9, C10, D6 to D9,  
E6, E9, E10, F3 to F10, G1 to G3, G5,  
G10 to G14, H2 to H10, H13, J2, J13,  
K1, K2, K13, K14, L1, L2, L13, L14,  
I
M2, M9, N2, N7, N14, P1, P2, P3, P10  
A2, A3  
A5, A6  
A9, A10  
A12, A13  
B1  
I
I
I
I
I
ORX2+, ORX2−  
RX2+, RX2−  
Differential Input for Observation Receiver 2. Do not  
connect if these pins are unused.  
Differential Input for Receiver 2. Do not connect if these pins  
are unused.  
Differential Input for Receiver 1. Do not connect if these pins  
are unused.  
Differential Input for Observation Receiver 1. Do not  
connect if these pins are unused.  
RX1+, RX1−  
ORX1+, ORX1−  
VDDA_RXRF  
1.3 V Supply Input.  
Rev. 0 | Page 15 of 61  
 
 
AD9375  
Data Sheet  
Pin No.  
Type1  
Mnemonic  
Description  
B7, B8  
I/O  
RX_EXTLO−, RX_EXTLO+  
Differential Rx External LO Input/Output. If used for the  
external LO, the input frequency must be 2× the desired  
carrier frequency. Do not connect if these pins are unused.  
B14  
I
VDDA_3P3  
Supply Voltage for GPIO_3P3_x.  
C1, C2, C13, D1, D5, D12 to D14,  
E1, E14, F1, F14  
I/O  
GPIO_3P3_0 to GPIO_3P3_11 General-Purpose Inputs and Outputs Referenced to 3.3 V  
Supply. See Figure 4 to match the ball location to the  
GPIO_3P3_x signal name. Some GPIO_3P3_x pins can also  
function as auxiliary DAC outputs.  
C3  
C4  
C6  
O
I
VSNRX_VCO_LDO  
VDDA_SNRXVCO  
VDDA_RXLO  
Sniffer VCO LDO 1.1 V Output. Bypass this pin with a 1 µF  
capacitor.  
1.3 V Supply Input for Sniffer VCO Low Dropout (LDO)  
Regulator.  
1.3 V Supply for the Rx Synthesizer LO Generator. This pin  
is sensitive to aggressors.  
I
C7  
C8  
I
O
VDDA_RXVCO  
VRX_VCO_LDO  
1.3 V Supply Input for Receiver VCO LDO Regulator.  
Receiver VCO LDO 1.1 V Output. Bypass this pin with a 1 µF  
capacitor.  
C11  
C12  
C14  
I
I
AUXADC_1  
AUXADC_2  
RBIAS  
Auxiliary ADC 1 Input.  
Auxiliary ADC 2 Input.  
Bias Resistor Connection. This pin generates an internal  
current based on an external 1% resistor. Connect a  
14.3 kΩ resistor between this pin and ground (VSSA).  
N/A  
D2, E2  
D3, E3  
D4, E4  
I
I
I
SNRXC−, SNRXC+  
SNRXB−, SNRXB+  
SNRXA−, SNRXA+  
Differential Input for Sniffer Receiver Input C. If these pins are  
unused, connect to VSSA with a short or with a 1 kΩ resistor.  
Differential Input for Sniffer Receiver Input B. If these pins are  
unused, connect to VSSA with a short or with a 1 kΩ resistor.  
Differential Input for Sniffer Receiver Input A. If these pins are  
unused, connect to VSSA with a short or with a 1 kΩ resistor.  
D10  
D11  
E5  
I
I
I
VDDA_1P8  
AUXADC_3  
VDDA_BB  
1.8 V Tx Supply.  
Auxiliary ADC 3 Input.  
1.3 V Supply Input for ADCs, DACs, and Auxiliary ADCs.  
E7, E8  
E11, E12  
I
DEV_CLK_IN+, DEV_CLK_IN− Device Clock Differential Input.  
I/O  
TX_EXTLO−, TX_EXTLO+  
Differential Tx External LO Input/Output. If these pins are  
used for the external LO, the input frequency must be 2×  
the desired carrier frequency. Do not connect if these pins  
are unused.  
E13  
F2  
I
I
AUXADC_0  
VDDA_RXTX  
Auxiliary ADC 0 Input.  
1.3 V Supply Input for Tx/Rx Baseband Circuits,  
Transimpedance Amplifier (TIA), Tx Transconductance (Gm),  
Baseband Filters, and Auxiliary DACs.  
F11  
F12  
I
I
VDDA_TXVCO  
VDDA_TXLO  
1.3 V Supply Input for Transmitter VCO LDO Regulator.  
1.3 V Supply for the Tx Synthesizer LO Generator. This pin is  
sensitive to aggressors.  
F13  
G4  
O
I
VTX_VCO_LDO  
VDDA_CALPLL  
VDDA_CLKSYNTH  
VDDA_SNRXSYNTH  
VDDA_TXSYNTH  
VDDA_RXSYNTH  
TX2−, TX2+  
Transmitter VCO LDO 1.1 V Output. Bypass this pin with a  
1 µF capacitor.  
1.3 V Supply Input for Calibration PLL Circuits. Use a  
separate trace on the PCB back to a common supply point.  
1.3 V Clock Synthesizer Supply Input. This pin is sensitive  
to aggressors.  
1.3 V Sniffer Rx Synthesizer Supply Input. This pin is  
sensitive to aggressors.  
1.3 V Tx Synthesizer Supply Input. This pin is sensitive to  
aggressors.  
1.3 V Rx Synthesizer Supply Input. This pin is sensitive to  
aggressors.  
G6  
I
G7  
I
G8  
I
G9  
I
H1, J1  
O
Differential Output for Transmitter 2.  
Rev. 0 | Page 16 of 61  
Data Sheet  
AD9375  
Pin No.  
Type1  
Mnemonic  
Description  
H11, H12, J3, J7, J8, J11, J12, K5 to K8,  
K11, K12, L5, L6, L11, L12, M10, M11  
I/O  
GPIO_0 to GPIO_18  
General-Purpose Inputs and Outputs Referenced to  
VDD_IF. See Figure 4 to match the ball location to the  
GPIO_x signal name.  
H14, J14  
O
I
TX1+, TX1−  
RESET  
Differential Output for Transmitter 1.  
Active Low Chip Reset.  
J4  
J5  
J6  
O
I
GP_INTERRUPT  
TEST  
General-Purpose Interrupt Signal.  
Test Pin Used for JTAG Boundary Scan. Ground this pin if  
unused.  
J9  
I/O  
SDIO  
Serial Data Input in 4-Wire Mode or Input/Output in 3-Wire  
Mode.  
J10  
K3, K4  
O
I
SDO  
Serial Data Output.  
LVDS System Reference Clock Inputs for the JESD204B  
Interface.  
SYSREF_IN+, SYSREF_IN−  
K9  
K10  
L3, L4  
I
I
I
SCLK  
CSB  
Serial Data Bus Clock.  
Serial Data Bus Chip Select. Active low.  
LVDS Sync Signal Associated with ORx/Sniffer Channel  
Data on the JESD204B Interface. Alternatively, these pins  
can be set to a CMOS input using SYNCINB1+ as the input  
and connecting SYNCINB1− with a 1 kΩ resistor to GND.  
SYNCINB1−, SYNCINB1+  
L7, L10  
L8, L9  
I
I
VSSD  
VDIG  
Digital Ground.  
1.3 V Digital Core Supply. Use a separate trace on the PCB  
back to a common supply point.  
M1  
O
I
VCLK_VCO_LDO  
Clock VCO LDO 1.1 V Output. Bypass this pin with a 1 µF  
capacitor.  
LVDS Sync Signal Associated with Rx Channel Data on the  
JESD204B Interface. Alternatively, these pins can be set to  
a CMOS input using SYNCINB0+ as the input and  
M3, M4  
SYNCINB0−, SYNCINB0+  
connecting SYNCINB0− with a 1 kΩ resistor to GND.  
M5  
M6  
M7  
M8  
M12  
M13, M14  
I
I
I
I
I
O
RX1_ENABLE  
TX1_ENABLE  
RX2_ENABLE  
TX2_ENABLE  
VDD_IF  
SYNCOUTB0+, SYNCOUTB0−  
Enables Rx Channel 1 Signal Path.  
Enables Tx Channel 1 Signal Path.  
Enables Rx Channel 2 Signal Path.  
Enables Tx Channel 2 Signal Path.  
CMOS/LVDS Interface Supply.  
LVDS Sync Signal Associated with Transmitter Channel  
Data on the JESD204B Interface. Alternatively, these pins  
can be set to a CMOS output using SYNCOUTB0+ as the  
output while leaving SYNCOUTB0− floating.  
N1  
I
VDDA_CLK  
1.3 V Clock Supply Input.  
N3, N4  
O
SERDOUT3−, SERDOUT3+  
RF Current Mode Logic (CML) Differential Output 3. This  
JESD204B lane can be used by the receiver data or by the  
sniffer/observation receiver data.  
N5, N6  
O
SERDOUT2−, SERDOUT2+  
RF CML Differential Output 2. This lane can be used by the  
receiver data or by the sniffer/observation receiver data.  
N8, P8  
N9  
N10, N11  
N12, N13  
P4, P5  
I
I
I
I
VDDA_SER  
VDDA_DES  
SERDIN2−, SERDIN2+  
SERDIN3−, SERDIN3+  
SERDOUT1−, SERDOUT1+  
JESD204B 1.3 V Serializer Supply Input.  
JESD204B 1.3 V Deserializer Supply Input.  
RF CML Differential Input 2.  
RF CML Differential Input 3.  
RF CML Differential Output 1. This JESD204B lane can be used  
by receiver data or by sniffer/observation receiver data.  
O
P6, P7  
O
SERDOUT0−, SERDOUT0+  
RF CML Differential Output 0. This JESD204B lane can be used  
by receiver data or by sniffer/observation receiver data.  
P9  
P11, P12  
P13, P14  
I
I
I
JESD_VTT_DES  
SERDIN0−, SERDIN0+  
SERDIN1−, SERDIN1+  
JESD204B Deserializer Termination Supply Input.  
RF CML Differential Input 0.  
RF CML Differential Input 1.  
1 I is input, I/O is input/output, O is output, and N/A is not applicable.  
Rev. 0 | Page 17 of 61  
 
AD9375  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
Temperature settings refer to the die temperature. The die temperature is 40°C for single-trace plots.  
700 MHz BAND  
–30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–40  
+110°C  
+40°C  
–40°C  
–50  
–60  
–70  
–80  
–90  
+110°C  
+40°C  
–40°C  
–100  
–110  
300  
400  
500  
600  
700  
800  
900  
1000  
0
3
6
9
12  
15  
RECEIVER LO FREQUENCY (MHz)  
f1 OFFSET FREQUENCY (MHz)  
Figure 8. Receiver IIP2 vs. f1 Offset Frequency, 900 MHz LO, 0 dB Attenuation,  
20 MHz RF Bandwidth, f2 = f1 + 1 MHz, 30.72 MSPS Sample Rate  
Figure 5. Receiver Local Oscillator (LO) Leakage vs. Receiver LO Frequency,  
0 dB Receiver Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate  
100  
90  
80  
70  
60  
50  
45  
40  
+110°C  
+40°C  
–40°C  
35  
30  
25  
20  
15  
10  
5
f2  
f2  
f2  
f2  
f2  
f2  
+
+
+
f1, +110°C  
f1, +40°C  
f1, –40°C  
f1, +110°C  
f1, +40°C  
f1, –40°C  
40  
30  
20  
10  
0
0
4
6
8
10  
12  
0
3
6
9
12  
15  
INTERMODULATION FREQUENCY (MHz)  
RECEIVER ATTENUATION (dB)  
Figure 9. Receiver IIP2 vs. Intermodulation Frequency, 900 MHz LO,  
0 dB Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate  
Figure 6. Receiver Noise Figure vs. Receiver Attenuation, 700 MHz LO,  
20 MHz Bandwidth, 30.72 MSPS Sample Rate, 20 MHz Integration Bandwidth  
(Includes 1 dB Matching Circuit Loss)  
40  
35  
30  
25  
20  
30  
+110°C  
+40°C  
–40°C  
25  
20  
15  
10  
5
15  
+110°C  
+40°C  
–40°C  
10  
5
0
0
300  
0
3
6
9
12  
15  
400  
500  
600  
700  
800  
900  
1000  
RECEIVER LO FREQUENCY (MHz)  
f1 OFFSET FREQUENCY (MHz)  
Figure 7. Receiver Noise Figure vs. Receiver LO Frequency, 0 dB Receiver  
Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate, 20 MHz  
Integration Bandwidth (Includes 1 dB Matching Circuit Loss)  
Figure 10. Receiver IIP3 vs. f1 Offset Frequency, 900 MHz LO,  
0 dB Attenuation, 20 MHz RF Bandwidth, f2 = 2f1 + 1 MHz,  
30.72 MSPS Sample Rate  
Rev. 0 | Page 18 of 61  
 
 
Data Sheet  
AD9375  
40  
35  
30  
25  
20  
15  
10  
5
–40  
–50  
+110°C  
+40°C  
–40°C  
–60  
–70  
–80  
f2 – 2f1, +110°C  
f2 – 2f1, +40°C  
f2 – 2f1, –40°C  
f2 + 2f1, +110°C  
f2 + 2f1, +40°C  
f2 + 2f1, –40°C  
–90  
–100  
–110  
0
4
6
8
10  
12  
0
5
10  
15  
20  
25  
30  
INTERMODULATION FREQUENCY (MHz)  
RECEIVER ATTENUATION (dB)  
Figure 11. Receiver IIP3 vs. Intermodulation Frequency, 900 MHz LO,  
0 dB Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate  
Figure 14. Receiver DC Offset vs. Receiver Attenuation, 800 MHz LO,  
20 MHz RF Bandwidth, 30.72 MSPS Sample Rate  
0
–40  
–10  
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
–50  
–20  
–30  
–40  
–60  
–70  
–80  
–50  
–60  
–70  
–80  
–90  
–90  
–100  
–110  
–100  
–110  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
RECEIVER ATTENUATION (dB)  
RECEIVER ATTENUATION (dB)  
Figure 12. Receiver Image vs. Receiver Attenuation, 800 MHz LO, Continuous  
Wave (CW) Signal 3 MHz Offset, 20 MHz RF Bandwidth, Background  
Tracking Calibration (BTC) Active, 30.72 MSPS Sample Rate  
Figure 15. Receiver HD2 vs. Receiver Attenuation, 800 MHz LO, CW Signal  
3 MHz Offset, −20 dBm at 0 dB Attenuation, Input Power Increasing Decibel for  
Decibel with Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate  
25  
–40  
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
20  
15  
10  
5
–50  
–60  
–70  
–80  
0
–90  
–5  
–10  
–15  
–100  
–110  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
RECEIVER ATTENUATION (dB)  
RECEIVER ATTENUATION (dB)  
Figure 13. Receiver Gain vs. Receiver Attenuation, 800 MHz LO, CW Signal  
3 MHz Offset, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate  
Figure 16. Receiver HD3 vs. Receiver Attenuation, 800 MHz LO, CW Signal  
3 MHz Offset, −20 dBm at 0 dB Attenuation, Input Power Increasing Decibel for  
Decibel with Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate  
Rev. 0 | Page 19 of 61  
AD9375  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
30  
25  
20  
15  
10  
5
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
0
–35  
–60 –55 –50 –45 –40 –35 –30 –25 –20 –15 –10 –5  
0
–30  
–25  
–20  
–15  
–10  
–5  
0
5
10  
RECEIVER INPUT POWER (dBm)  
OUT-OF-BAND INTERFERER SIGNAL POWER (dBm)  
Figure 17. Receiver Error Vector Magnitude (EVM) vs. Receiver Input Power,  
900 MHz LO, 20 MHz RF Bandwidth, LTE 20 MHz Uplink Centered at DC,  
BTC Active, 30.72 MSPS Sample Rate  
Figure 20. Receiver Noise Figure vs. Out-of-Band Interferer Signal Power,  
703 MHz LO, 901 MHz CW Interferer, NF Integrated over 7 MHz to 10 MHz,  
20 MHz RF Bandwidth  
–20  
–30  
0
+110°C  
+40°C  
–40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
300  
400  
500  
600  
700  
800  
900  
1000  
0
5
10  
15  
30  
RECEIVER LO FREQUENCY (MHz)  
RF ATTENUATION (dB)  
Figure 18. Rx2 to Rx1 Crosstalk vs. Receiver LO Frequency,  
100 MHz RF Bandwidth, CW Tone 3 MHz Offset from LO  
Figure 21. Transmitter Image vs. RF Attenuation, 20 MHz RF Bandwidth,  
900 MHz LO, Transmitter Quadrature Error Correction (QEC) Tracking Run with  
Two 20 MHz LTE Downlink Carriers, Then Image Measured with CW 10 MHz  
Offset from LO, 3 dB Digital Backoff, 122.88 MSPS Sample Rate  
30  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
25  
20  
15  
10  
5
0
–50  
–45  
–40  
–35  
–30  
–25  
–20  
–10  
–5  
0
5
10  
CLOSE-IN INTERFERER SIGNAL POWER (dBm)  
DESIRED OFFSET FREQUENCY (MHz)  
Figure 19. Receiver Noise Figure vs. Close-In Interferer Signal Power,  
703 MHz LO, 709 MHz CW Interferer, NF Integrated over 7 MHz to 10 MHz,  
20 MHz RF Bandwidth  
Figure 22. Transmitter Image vs. Desired Offset Frequency,  
20 MHz RF Bandwidth, 900 MHz LO, 0 dB RF Attenuation, Transmitter  
QEC Tracking Run with Two 20 MHz LTE Downlink Carriers, Then Image  
Measured with CW Signal, 3 dB Digital Backoff, 122.88 MSPS Sample Rate  
Rev. 0 | Page 20 of 61  
Data Sheet  
AD9375  
10  
8
–20  
–30  
6
–40  
4
–50  
2
–60  
0
–70  
–2  
–4  
–6  
–8  
–10  
–80  
–90  
+110°C  
+40°C  
–40°C  
–100  
–110  
–120  
300  
400  
500  
600  
700  
800  
900  
1000  
300  
400  
500  
600  
700  
800  
900  
1000  
FREQUENCY (MHz)  
RECEIVER LO FREQUENCY (MHz)  
Figure 23. Tx Output Power, Transmitter QEC, and External LO Leakage  
Tracking Active, 10 MHz CW Offset Signal, 1 MHz Resolution Bandwidth,  
122.88 MSPS Sample Rate  
Figure 26. Tx1 to Rx1 Crosstalk vs. Receiver LO Frequency,  
20 MHz Receiver RF Bandwidth, 20 MHz Transmitter RF Bandwidth,  
CW Signal 3 MHz Offset from LO  
–60  
–20  
–30  
+110°C  
+40°C  
–40°C  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0
5
10  
15  
20  
300  
400  
500  
600  
700  
800  
900  
1000  
RF ATTENUATION (dB)  
RECEIVER LO FREQUENCY (MHz)  
Figure 27. Tx2 to Rx2 Crosstalk vs. Receiver LO Frequency, 20 MHz Receiver RF  
Bandwidth, 20 MHz Transmitter RF Bandwidth, CW Signal 3 MHz Offset from LO  
Figure 24. Transmitter LO Leakage vs. RF Attenuation, 900 MHz LO, Transmitter  
QEC and External LO Leakage Tracking Active, CW Signal 5 MHz Offset from LO,  
6 dB Digital Backoff, 1 MHz Measurement Bandwidth (If Input Power to ORx  
Channel Is Not Held Constant, Performance Degrades As Shown in This Plot)  
–20  
–30  
–60  
900MHz, +110°C  
900MHz, +40°C  
900MHz, –40°C  
–65  
–40  
600MHz, +110°C  
600MHz, +40°C  
600MHz, –40°C  
300MHz, +110°C  
300MHz, +40°C  
300MHz, –40°C  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
300  
400  
500  
600  
700  
800  
900  
1000  
–10  
–5  
0
5
10  
TRANSMITTER LO FREQUENCY (MHz)  
OFFSET FREQUENCY (MHz)  
Figure 28. Tx2 to Tx1 Crosstalk vs. Transmitter LO Frequency,  
20 MHz RF Bandwidth, CW Signal 3 MHz Offset from LO  
Figure 25. Transmitter LO Leakage vs. Offset Frequency,  
Transmitter QEC and External LO Leakage Tracking Active,  
5 dB Digital Backoff, 1 MHz Measurement Bandwidth  
Rev. 0 | Page 21 of 61  
AD9375  
Data Sheet  
–80  
–90  
–60  
–70  
+110°C  
+40°C  
–40°C  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–180  
0
5
10  
15  
20  
100  
1k  
10k  
100k  
1M  
10M  
RF ATTENUATION (dB)  
OFFSET FREQUENCY (Hz)  
Figure 29. Transmitter Noise vs. RF Attenuation, 800 MHz LO,  
20 MHz Offset Frequency  
Figure 32. LO Phase Noise vs. Offset Frequency, 3 dB Digital Backoff,  
710 MHz LO  
–40  
1.0  
+110°C LOWER  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
+110°C  
+40°C  
–40°C  
+40°C LOWER  
–40°C LOWER  
+110°C UPPER  
+40°C UPPER  
–40°C UPPER  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
0
4
8
12  
16  
20  
300  
400  
500  
600  
700  
800  
900  
1000  
RF ATTENUATION (dB)  
TRANSMITTER LO FREQUENCY (MHz)  
Figure 33. Tx Integrated Phase Noise vs. Transmitter LO Frequency,  
20 MHz RF Bandwidth, CW 20 MHz Offset from LO, 3 dB Digital Backoff  
Figure 30. Tx Adjacent Channel Leakage Ratio vs. RF Attenuation, 900 MHz LO,  
20 MHz RF Bandwidth, Four-Carrier W-CDMA Desired Signal, Transmitter  
QEC and LO Leakage Tracking Active  
35  
30  
25  
20  
–40  
+110°C LOWER  
+40°C LOWER  
–40°C LOWER  
+110°C UPPER  
+40°C UPPER  
–40°C UPPER  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
15  
+110°C  
+40°C  
–40°C  
10  
5
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
4
8
12  
16  
20  
RF ATTENUATION (dB)  
RF ATTENUATION (dB)  
Figure 34. Transmitter OIP3 vs. RF Attenuation, 800 MHz LO,  
20 MHz RF Bandwidth, f1 = 10 MHz, f2 = 11 MHz, 3 dB Digital Backoff,  
122.88 MSPS Sample Rate  
Figure 31. Tx Alternate Channel Leakage Ratio vs. RF Attenuation,  
900 MHz LO, 20 MHz RF Bandwidth, Four-Carrier W-CDMA Desired Signal,  
2 dB Digital Backoff, Transmitter QEC and LO Leakage Tracking Active  
Rev. 0 | Page 22 of 61  
Data Sheet  
AD9375  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+110°C  
+40°C  
–40°C  
700  
725  
750  
775  
800  
825  
850  
875  
900  
0
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
RF ATTENUATION (dB)  
Figure 35. Tx Output Power Spectrum, 2 dB Digital and 3 dB RF Backoff,  
20 MHz RF Bandwidth, Transmitter QEC, and Internal LO Leakage Active,  
LTE 10 MHz Signal, 800 MHz LO, 1 MHz Resolution Bandwidth,  
Figure 38. Transmitter HD2 vs. RF Attenuation, 800 MHz LO,  
810 MHz CW Desired Signal, 20 MHz RF Bandwidth,  
122.88 MSPS Sample Rate  
122.88 MSPS Sample Rate, Test Equipment Noise Floor De-Embedded  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
–10  
+110°C  
+40°C  
–40°C  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–100  
300 400 500 600 700 800 900 1000 1100 1200 1300  
0
5
10  
15  
20  
FREQUENCY (MHz)  
RF ATTENUATION (dB)  
Figure 36. Tx Output Power Spectrum, 2 dB Digital and 3 dB RF Backoff,  
20 MHz RF Bandwidth, Transmitter QEC, and Internal LO Leakage Active,  
LTE 10 MHz Signal, 800 MHz LO, 1 MHz Resolution Bandwidth,  
122.88 MSPS Sample Rate, Expanded Frequency View, Test Equipment Noise  
Floor De-Embedded  
Figure 39. Transmitter HD3 vs. RF Attenuation, 800 MHz LO,  
810 MHz CW Desired Signal, 20 MHz RF Bandwidth,  
122.88 MSPS Sample Rate  
–20  
10  
+110°C  
+40°C  
+110°C  
+40°C  
–25  
5
–40°C  
–40°C  
–30  
0
–35  
–40  
–45  
–50  
–5  
–10  
–15  
–20  
0
4
8
12  
16  
20  
0
5
10  
15  
20  
RF ATTENUATION (dB)  
RF ATTENUATION (dB)  
Figure 37. Transmitter EVM vs. RF Attenuation, 900 MHz LO,  
Transmitter LO Leakage and Transmitter QEC Tracking Active, 20 MHz RF  
Bandwidth, LTE 20 MHz Downlink Signal, 122.88 MSPS Sample Rate  
Figure 40. Transmitter Output Power vs. RF Attenuation, 800 MHz LO,  
810 MHz CW Desired Signal, 20 MHz RF Bandwidth,  
122.88 MSPS Sample Rate  
Rev. 0 | Page 23 of 61  
AD9375  
Data Sheet  
0.10  
0.08  
0.06  
0.04  
0.02  
0
30  
25  
20  
15  
10  
5
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
0
0
300  
5
10  
15  
20  
25  
30  
400  
500  
600  
700  
800  
900  
1000  
RF ATTENUATION (dB)  
OBSERVATION RECEIVER LO FREQUENCY (MHz)  
Figure 44. Observation Receiver Noise Figure vs. Observation Receiver LO  
Frequency, 0 dB Receiver Attenuation, 100 MHz RF Bandwidth,  
122.88 MSPS Sample Rate, 100 MHz Integration Bandwidth  
Figure 41. Tx Attenuation Step Error vs. RF Attenuation, 800 MHz LO,  
810 MHz CW Desired Signal, 20 MHz RF Bandwidth,  
122.88 MSPS Sample Rate  
80  
70  
60  
50  
40  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
30  
+110°C  
+40°C  
–40°C  
20  
10  
0
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110  
FREQUENCY OFFSET FROM LO (MHz)  
f1 OFFSET FREQUENCY (MHz)  
Figure 45. Observation Receiver IIP2 vs. f1 Offset Frequency, 900 MHz LO,  
0 dB Attenuation, 100 MHz RF Bandwidth, f2 = f1 + 1 MHz,  
122.88 MSPS Sample Rate  
Figure 42. Transmitter Frequency Response Deviation from Flatness vs.  
Frequency Offset from LO, 800 MHz LO, 20 MHz RF Bandwidth,  
6 dB Digital Backoff, 122.88 MSPS Sample Rate  
80  
70  
60  
50  
40  
–40  
+110°C  
+40°C  
–40°C  
–50  
–60  
–70  
–80  
30  
+110°C  
+40°C  
20  
–40°C  
–90  
10  
0
–100  
0
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
300  
400  
500  
600  
700  
800  
900  
1000  
INTERMODULATION FREQUENCY (MHz)  
OBSERVATION RECEIVER LO FREQUENCY (MHz)  
Figure 46. Observation Receiver IIP2 vs. Intermodulation Frequency (f2 − f1),  
900 MHz LO, 0 dB Attenuation, 100 MHz RF Bandwidth,  
122.88 MSPS Sample Rate  
Figure 43. Observation Receiver LO Leakage vs. Observation Receiver LO  
Frequency, 0 dB Receiver Attenuation, 100 MHz RF Bandwidth,  
122.88 MSPS Sample Rate  
Rev. 0 | Page 24 of 61  
Data Sheet  
AD9375  
40  
35  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
–5  
–10  
–15  
0
0
3
6
9
12  
15  
18  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110  
OBSERVATION RECEIVER ATTENUATION (dB)  
f1 OFFSET FREQUENCY (MHz)  
Figure 47. Observation Receiver IIP3 vs. f1 Offset Frequency, 900 MHz LO,  
0 dB Attenuation, 100 MHz RF Bandwidth, f2 = 2f1 + 1 MHz,  
122.88 MSPS Sample Rate  
Figure 50. Observation Receiver Gain vs. Observation Receiver Attenuation,  
800 MHz LO, CW Signal 16 MHz Offset, 100 MHz RF Bandwidth,  
122.88 MSPS Sample Rate  
40  
35  
30  
25  
20  
–40  
–50  
+110°C  
+40°C  
–40°C  
–60  
–70  
–80  
15  
–90  
+110°C  
+40°C  
–40°C  
10  
–100  
–110  
–120  
5
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
0
3
6
9
12  
15  
18  
INTERMODULATION FREQUENCY (MHz)  
OBSERVATION RECEIVER ATTENUATION (dB)  
Figure 48. Observation Receiver IIP3 vs. Intermodulation Frequency (2f2 − f1),  
900 MHz LO, 0 dB Attenuation, 100 MHz RF Bandwidth,  
122.88 MSPS Sample Rate  
Figure 51. Observation Receiver DC Offset vs. Observation Receiver  
Attenuation, 800 MHz LO, 100 MHz RF Bandwidth,  
122.88 MSPS Sample Rate  
0
0
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
–20  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
3
6
9
12  
15  
18  
0
3
6
9
12  
15  
18  
OBSERVATION RECEIVER ATTENUATION (dB)  
OBSERVATION RECEIVER ATTENUATION (dB)  
Figure 49. Observation Receiver Image vs. Observation Receiver Attenuation,  
800 MHz LO, CW Signal 16 MHz Offset, 100 MHz RF Bandwidth, BTC Active,  
122.88 MSPS Sample Rate  
Figure 52. Observation Receiver HD2 vs. Observation Receiver Attenuation,  
800 MHz LO, CW Signal 16 MHz Offset, −20 dBm at 0 dB Attenuation,  
Input Power Increasing Decibel for Decibel with Attenuation,  
100 MHz RF Bandwidth, 122.88 MSPS Sample Rate  
Rev. 0 | Page 25 of 61  
AD9375  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
–100  
0
3
6
9
12  
15  
18  
3
6
9
12  
15  
OBSERVATION RECEIVER ATTENUATION (dB)  
INTERMODULATION FREQUENCY (MHz)  
Figure 53. Observation Receiver HD3 vs. Observation Receiver Attenuation,  
800 MHz LO, CW Signal 16 MHz Offset, −20 dBm at 0 dB Attenuation,  
Input Power Increasing Decibel for Decibel with Attenuation,  
100 MHz RF Bandwidth, 122.88 MSPS Sample Rate  
Figure 56. Sniffer Receiver IIP2 vs. Intermodulation Frequency (f2 − f1),  
600 MHz LO, 0 dB Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate  
–50  
20  
15  
10  
5
–60  
–70  
+110°C  
+40°C  
–40°C  
–80  
–90  
–100  
–110  
–120  
–130  
0
+110°C  
+40°C  
–40°C  
–5  
–10  
300  
400  
500  
600  
700  
3
6
9
12  
15  
SNIFFER RECEIVER LO FREQUENCY (MHz)  
INTERMODULATION FREQUENCY (MHz)  
Figure 54. Sniffer Receiver LO Leakage vs. Sniffer Receiver LO Frequency,  
0 dB Receiver Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate  
Figure 57. Sniffer Receiver IIP3 vs. Intermodulation Frequency (f2 − 2f1), 600 MHz  
LO, 0 dB Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate  
30  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
25  
20  
15  
10  
5
0
300  
400  
500  
600  
700  
0
5
10  
15  
20  
SNIFFER RECEIVER LO FREQUENCY (MHz)  
SNIFFER RECEIVER ATTENUATION (dB)  
Figure 55. Sniffer Receiver Noise Figure vs. Sniffer Receiver LO Frequency,  
0 dB Receiver Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate,  
20 MHz Integration Bandwidth  
Figure 58. Sniffer Receiver Image vs. Sniffer Receiver Attenuation,  
600 MHz LO, CW Signal 3 MHz Offset, 20 MHz RF Bandwidth,  
30.72 MSPS Sample Rate  
Rev. 0 | Page 26 of 61  
Data Sheet  
AD9375  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
–110  
0
5
10  
15  
20  
–70  
–65  
–60  
–55  
–50  
–45  
–40  
–35  
–30  
–25  
SNIFFER RECEIVER ATTENUATION (dB)  
SNIFFER RECEIVER INPUT POWER (dBm)  
Figure 59. Sniffer Receiver DC Offset vs. Sniffer Receiver Attenuation,  
600 MHz LO, CW Signal 3 MHz Offset, −35 dBm at 0 dB Attenuation,  
Input Power Increasing Decibel for Decibel with Attenuation,  
20 MHz RF Bandwidth, 30.72 MSPS Sample Rate  
Figure 62. Sniffer Receiver EVM vs. Sniffer Receiver Input Power, 600 MHz LO,  
20 MHz RF Bandwidth, LTE 20 MHz Uplink Centered at DC, BTC Active,  
30.72 MSPS Sample Rate  
0
40  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+110°C  
+40°C  
–40°C  
30  
+110°C  
+40°C  
–40°C  
20  
10  
0
–10  
–20  
–30  
–40  
0
5
10  
15  
20  
0
4
8
12 16 20 24 28 32 36 40 44 48 52  
SNIFFER RECEIVER ATTENUATION (dB)  
SNIFFER RECEIVER ATTENUATION (dB)  
Figure 60. Sniffer Receiver HD2 vs. Sniffer Receiver Attenuation, 600 MHz LO,  
CW Signal 3 MHz Offset, −35 dBm at 0 dB Attenuation, Input Power Increasing  
Decibel for Decibel with Attenuation, 20 MHz RF Bandwidth,  
30.72 MSPS Sample Rate  
Figure 63. Sniffer Receiver Gain vs. Sniffer Receiver Attenuation,  
600 MHz LO, CW Signal 3 MHz Offset, 20 MHz RF Bandwidth,  
30.72 MSPS Sample Rate  
0
–10  
+110°C  
+40°C  
–40°C  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
5
10  
15  
20  
SNIFFER RECEIVER ATTENUATION (dB)  
Figure 61. Sniffer Receiver HD3 vs. Sniffer Receiver Attenuation, 600 MHz LO,  
CW Signal 3 MHz Offset, −35 dBm at 0 dB Attenuation, Input Power  
Increasing Decibel for Decibel with Attenuation, 20 MHz RF Bandwidth,  
30.72 MSPS Sample Rate  
Rev. 0 | Page 27 of 61  
AD9375  
Data Sheet  
2.6 GHz BAND  
–30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–40  
–50  
–60  
–70  
–80  
+110°C  
+40°C  
–40°C  
–90  
–100  
–110  
+110°C  
+40°C  
–40°C  
0
5
10  
15  
20  
25  
30  
f1 OFFSET FREQUENCY (MHz)  
RECEIVER LO FREQUENCY (MHz)  
Figure 64. Receiver Local Oscillator (LO) Leakage vs. Receiver LO Frequency,  
0 dB Receiver Attenuation, 40 MHz RF Bandwidth,  
122.88 MSPS Sample Rate  
Figure 67. Receiver IIP2 vs. f1 Offset Frequency, 2600 MHz LO,  
0 dB Attenuation, 40 MHz RF Bandwidth, f2 = f1 + 1 MHz,  
122.88 MSPS Sample Rate  
45  
40  
35  
30  
25  
20  
15  
100  
90  
80  
70  
60  
50  
40  
30  
f2  
f2  
f2  
f2  
f2  
f2  
+
+
+
f1, +110°C  
f1, +40°C  
f1, –40°C  
f1, +110°C  
f1, +40°C  
f1, –40°C  
10  
20  
10  
0
+110°C  
+40°C  
–40°C  
5
0
0
3
6
9
12  
15  
5
10  
15  
20  
25  
30  
RECEIVER ATTENUATION (dB)  
INTERMODULATION FREQUENCY (MHz)  
Figure 65. Receiver Noise Figure vs. Receiver Attenuation, 2600 MHz LO,  
40 MHz Bandwidth, 122.88 MSPS Sample Rate, 20 MHz Integration  
Bandwidth (Includes 1.4 dB Matching Circuit Loss)  
Figure 68. Receiver IIP2 vs. Intermodulation Frequency, 2600 MHz LO,  
0 dB Attenuation, 40 MHz RF Bandwidth, 122.88 MSPS Sample Rate  
30  
25  
20  
40  
35  
30  
25  
20  
15  
10  
15  
+110°C  
+40°C  
–40°C  
10  
5
+110°C  
+40°C  
–40°C  
5
0
0
0
5
10  
15  
20  
25  
30  
f1 OFFSET FREQUENCY (MHz)  
RECEIVER LO FREQUENCY (MHz)  
Figure 69. Receiver IIP3 vs. f1 Offset Frequency, 2600 MHz LO,  
0 dB Attenuation, 40 MHz RF Bandwidth, f2 = 2 f1 + 2 MHz,  
122.88 MSPS Sample Rate  
Figure 66. Receiver Noise Figure vs. Receiver LO Frequency,  
0 dB Receiver Attenuation, 40 MHz RF Bandwidth, 122.88 MSPS Sample Rate,  
20 MHz Integration Bandwidth (Includes 1.4 dB Matching Circuit Loss)  
Rev. 0 | Page 28 of 61  
 
Data Sheet  
AD9375  
40  
35  
30  
25  
20  
15  
10  
5
–40  
–50  
+110°C  
+40°C  
–40°C  
–60  
–70  
–80  
–90  
f2 – 2f1, +110°C  
f2 – 2f1, +40°C  
f2 – 2f1, –40°C  
f2 + 2f1, +110°C  
f2 + 2f1, +40°C  
f2 + 2f1, –40°C  
–100  
–110  
–120  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
INTERMODULATION FREQUENCY (MHz)  
RECEIVER ATTENUATION (dB)  
Figure 70. Receiver IIP3 vs. Intermodulation Frequency, 2600 MHz LO,  
0 dB Attenuation, 40 MHz RF Bandwidth, 122.88 MSPS Sample Rate  
Figure 73. Receiver DC Offset vs. Receiver Attenuation, 2550 MHz LO,  
40 MHz RF Bandwidth, 122.88 MSPS Sample Rate  
–40  
–40  
+110°C  
+40°C  
–40°C  
–50  
+110°C  
+40°C  
–40°C  
–50  
–60  
–70  
–60  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–100  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
RECEIVER ATTENUATION (dB)  
RECEIVER ATTENUATION (dB)  
Figure 71. Receiver Image vs. Receiver Attenuation, 2600 MHz LO,  
Continuous Wave (CW) Signal 5 MHz Offset, 40 MHz RF Bandwidth,  
Background Tracking Calibration (BTC) Active, 122.88 MSPS Sample Rate  
Figure 74. Receiver HD2 vs. Receiver Attenuation, 2600 MHz LO, CW Signal  
5 MHz Offset, −20 dBm at 0 dB Attenuation, Input Power Increasing Decibel  
for Decibel with Attenuation, 40 MHz RF Bandwidth, 122.88 MSPS Sample Rate  
25  
–40  
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
20  
15  
10  
5
–50  
–60  
–70  
–80  
0
–90  
–5  
–10  
–15  
–100  
–110  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
RECEIVER ATTENUATION (dB)  
RECEIVER ATTENUATION (dB)  
Figure 72. Receiver Gain vs. Receiver Attenuation, 2600 MHz LO, CW Signal  
5 MHz Offset, 40 MHz RF Bandwidth, 122.88 MSPS Sample Rate  
Figure 75. Receiver HD3 vs. Receiver Attenuation, 2600 MHz LO, CW Signal  
5 MHz Offset, −20 dBm at 0 dB Attenuation, Input Power Increasing Decibel  
for Decibel with Attenuation, 40 MHz RF Bandwidth, 122.88 MSPS Sample Rate  
Rev. 0 | Page 29 of 61  
AD9375  
Data Sheet  
0
30  
25  
20  
15  
10  
5
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
0
–60 –55 –50 –45 –40 –35 –30 –25 –20 –15 –10 –5  
0
–40  
–35  
–30  
–25  
–20  
–15  
–10  
–5  
0
RECEIVER INPUT POWER (dBm)  
OUT-OF-BAND INTERFERER SIGNAL POWER (dBm)  
Figure 76. Receiver Error Vector Magnitude (EVM) vs. Receiver Input Power,  
2600 MHz LO, 40 MHz RF Bandwidth, LTE 20 MHz Uplink Centered at DC, BTC  
Active, 122.88 MSPS Sample Rate  
Figure 79. Receiver Noise Figure vs. Out-of-Band Interferer Signal Power,  
2614 MHz LO, 2435 MHz CW Interferer, Noise Figure Integrated over  
7 MHz to 10 MHz  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
+110°C  
+40°C  
–10  
–40°C  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
5
10  
15  
20  
RF ATTENUATION (dB)  
RECEIVER LO FREQUENCY (MHz)  
Figure 77. Rx2 to Rx1 Crosstalk vs. Receiver LO Frequency, 40 MHz  
RF Bandwidth, CW Tone 3 MHz Offset from LO  
Figure 80. Transmitter Image vs. RF Attenuation, 40 MHz RF Bandwidth,  
2600 MHz LO, Transmitter Quadrature Error Correction (QEC) Tracking Run  
with Two 20 MHz LTE Downlink Carriers, Then Image Measured with CW  
10 MHz Offset from LO, 3 dB Digital Backoff, 245.76 MSPS Sample Rate  
30  
25  
20  
15  
10  
0
+110°C  
+40°C  
–10  
–40°C  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
5
+110°C  
+40°C  
–40°C  
0
–50  
–45  
–40  
–35  
–30  
–25  
–20  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
CLOSE-IN INTERFERER SIGNAL POWER (dBm)  
DESIRED OFFSET FREQUENCY (MHz)  
Figure 81. Transmitter Image vs. Desired Offset Frequency, 40 MHz RF  
Bandwidth, 2300 MHz LO, 0 dB RF Attenuation, Transmitter QEC Tracking  
Run with Two 20 MHz LTE Downlink Carriers, Then Image Measured with  
CW Signal, 3 dB Digital Backoff, 245.76 MSPS Sample Rate  
Figure 78. Receiver Noise Figure vs. Close-In Interferer Signal Power,  
2614 MHz LO, 2625 MHz CW Interferer, Noise Figure Integrated over  
7 MHz to 10 MHz, 40 MHz RF Bandwidth  
Rev. 0 | Page 30 of 61  
Data Sheet  
AD9375  
10  
8
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
6
4
2
0
–2  
–4  
–6  
–8  
–10  
+110°C  
+40°C  
–40°C  
FREQUENCY (MHz)  
RECEIVER LO FREQUENCY (MHz)  
Figure 82. Tx Output Power, Transmitter QEC, and External LO Leakage  
Active, 5 MHz CW Offset Signal, 1 MHz Resolution Bandwidth,  
245.76 MSPS Sample Rate  
Figure 85. Tx1 to Rx1 Crosstalk vs. Receiver LO Frequency,  
40 MHz Receiver RF Bandwidth, 40 MHz Transmitter RF Bandwidth,  
CW Signal 3 MHz Offset from LO  
–60  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+110°C  
+40°C  
–40°C  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
0
5
10  
15  
20  
RF ATTENUATION (dB)  
RECEIVER LO FREQUENCY (MHz)  
Figure 83. Transmitter LO Leakage vs. RF Attenuation, 2300 MHz LO,  
External Transmitter QEC and LO Leakage Tracking Active, CW Signal 10 MHz  
Offset from LO, 6 dB Digital Backoff, 1 MHz Measurement Bandwidth (If Input  
Power to the ORx Channel Is Not Held Constant, Device Performance  
Degrades as Shown in This Figure)  
Figure 86. Tx2 to Rx2 Crosstalk vs. Receiver LO Frequency,  
40 MHz Receiver RF Bandwidth, 40 MHz Transmitter RF Bandwidth,  
CW Signal 3 MHz Offset from LO  
–60  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1.8GHz, +110°C  
1.8GHz, +40°C  
1.8GHz, –40°C  
2.3GHz, +110°C  
2.3GHz, +40°C  
2.3GHz, –40°C  
2.8GHz, +110°C  
2.8GHz, +40°C  
2.8GHz, –40°C  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–30  
–20  
–10  
0
10  
20  
30  
OFFSET FREQUENCY (MHz)  
TRANSMITTER LO FREQUENCY (MHz)  
Figure 84. Transmitter LO Leakage vs. Offset Frequency, External Transmitter  
QEC and LO Leakage Tracking Active, 6 dB Digital Backoff,  
1 MHz Measurement Bandwidth  
Figure 87. Tx2 to Tx1 Crosstalk vs. Transmitter LO Frequency,  
40 MHz RF Bandwidth, CW Signal 3 MHz Offset from LO  
Rev. 0 | Page 31 of 61  
AD9375  
Data Sheet  
–60  
–70  
–80  
–90  
+110°C  
+40°C  
–40°C  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–180  
0
5
10  
15  
20  
100  
1k  
10k  
100k  
1M  
10M  
RF ATTENUATION (dB)  
OFFSET FREQUENCY (Hz)  
Figure 88. Transmitter Noise vs. RF Attenuation, 2600 MHz LO,  
10 MHz Offset Frequency  
Figure 91. LO Phase Noise vs. Offset Frequency, 3 dB Digital Backoff,  
2600 MHz  
–40  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
+110°C UPPER  
+40°C UPPER  
–40°C UPPER  
+110°C LOWER  
+40°C LOWER  
–40°C LOWER  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
0.2  
+110°C  
+40°C  
–40°C  
0.1  
0
0
4
8
12  
16  
20  
RF ATTENUATION (dB)  
TRANSMITTER LO FREQUENCY (MHz)  
Figure 89. Tx Adjacent Channel Leakage Ratio vs. RF Attenuation,  
2600 MHz LO, 40 MHz RF Bandwidth, Four-Carrier W-CDMA Desired Signal,  
Transmitter QEC and LO Leakage Tracking Active  
Figure 92. Tx Integrated Phase Noise vs. Transmitter LO Frequency,  
40 MHz RF Bandwidth, Continuous Wave 20 MHz Offset from LO,  
3 dB Digital Backoff  
–40  
35  
+110°C  
+40°C  
–40°C  
+110°C UPPER  
+40°C UPPER  
–40°C UPPER  
+110°C LOWER  
+40°C LOWER  
–40°C LOWER  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
30  
25  
20  
15  
10  
5
0
0
4
8
12  
16  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
RF ATTENUATION (dB)  
RF ATTENUATION (dB)  
Figure 90. Tx Alternate Channel Leakage Ratio vs. RF Attenuation,  
2600 MHz LO, 40 MHz RF Bandwidth, Four-Carrier W-CDMA Desired Signal,  
2 dB Digital Backoff, Transmitter QEC and LO Leakage Tracking Active  
Figure 93. Transmitter OIP3 vs. RF Attenuation, 2600 MHz LO,  
40 MHz RF Bandwidth, f1 = 20 MHz, f2 = 21 MHz, 3 dB Digital Backoff,  
245.76 MSPS Sample Rate  
Rev. 0 | Page 32 of 61  
Data Sheet  
AD9375  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+110°C  
+40°C  
–40°C  
2500  
2525  
2550  
2575  
2600  
2625  
2650  
2675  
2700  
0
5
10  
15  
20  
FREQUENCY (MHz)  
RF ATTENUATION (dB)  
Figure 94. Tx Output Power Spectrum, 2 dB Digital and 3 dB RF Backoff,  
40 MHz RF Bandwidth, Transmitter QEC and Internal LO Leakage Active,  
LTE 10 MHz Signal, 2600 MHz LO, 1 MHz Resolution Bandwidth,  
245.76 MSPS Sample Rate, Test Equipment Noise Floor De-Embedded  
Figure 97. Transmitter HD2 vs. RF Attenuation, 2600 MHz LO,  
2605 MHz CW Desired Signal, 40 MHz RF Bandwidth,  
245.76 MSPS Sample Rate  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
+110°C  
+40°C  
–40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
5
10  
15  
20  
RF ATTENUATION (dB)  
FREQUENCY (MHz)  
Figure 95. Tx Output Power Spectrum, 2 dB Digital and 3 dB RF Backoff,  
40 MHz RF Bandwidth, Transmitter QEC and Internal LO Leakage Active,  
LTE 10 MHz Signal, 2600 MHz LO, 1 MHz Resolution Bandwidth,  
245.76 MSPS Sample Rate, Expanded Frequency View, Test Equipment Noise  
Floor De-Embedded  
Figure 98. Transmitter HD3 vs. RF Attenuation, 2600 MHz LO,  
2605 MHz CW Desired Signal, 40 MHz RF Bandwidth,  
245.76 MSPS Sample Rate  
–20  
10  
+110°C  
+40°C  
–40°C  
–25  
+110°C  
+40°C  
–40°C  
5
–30  
–35  
–40  
–45  
–50  
0
–5  
–10  
–15  
–20  
0
4
8
12  
16  
20  
0
5
10  
15  
20  
RF ATTENUATION (dB)  
RF ATTENUATION (dB)  
Figure 96. Transmitter EVM vs. RF Attenuation, 2550 MHz LO, Transmitter LO  
Leakage and Transmitter QEC Tracking Active, 200 MHz RF Bandwidth,  
LTE 20 MHz Downlink Signal, 245.76 MSPS Sample Rate  
Figure 99. Transmitter Output Power vs. RF Attenuation, 2600 MHz LO, 2605  
MHz CW Desired Signal, 40 MHz RF Bandwidth,  
245.76 MSPS Sample Rate  
Rev. 0 | Page 33 of 61  
AD9375  
Data Sheet  
0.10  
0.08  
0.06  
0.04  
0.02  
0
30  
25  
20  
15  
10  
5
+110°C  
+40°C  
–40°C  
–0.02  
–0.04  
–0.06  
–0.08  
+110°C  
+40°C  
–40°C  
–0.10  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
RF ATTENUATION (dB)  
OBSERVATION RECEIVER LO FREQUENCY (MHz)  
Figure 103. Observation Receiver Noise Figure vs. Observation Receiver  
LO Frequency, 0 dB Receiver Attenuation, 200 MHz RF Bandwidth,  
245.76 MSPS Sample Rate, 100 MHz Integration Bandwidth  
Figure 100. Tx Attenuation Step Error vs. RF Attenuation, 2600 MHz LO,  
2610 MHz CW Desired Signal, 40 MHz RF Bandwidth,  
245.76 MSPS Sample Rate  
80  
70  
60  
50  
40  
30  
20  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
+110°C  
+40°C  
–40°C  
10  
0
–100 –80 –60 –40 –20  
0
20  
40  
60  
80  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110  
FREQUENCY OFFSET FROM LO (MHz)  
f1 OFFSET FREQUENCY (MHz)  
Figure 101. Transmitter Frequency Response Deviation from Flatness vs.  
Frequency Offset from LO, 2600 MHz LO, 100 MHz RF Bandwidth,  
6 dB Digital Backoff, 245.76 MSPS Sample Rate  
Figure 104. Observation Receiver IIP2 vs. f1 Offset Frequency, 2600 MHz LO,  
0 dB Attenuation, 200 MHz RF Bandwidth, f2 = f1 + 1 MHz,  
245.76 MSPS Sample Rate  
–40  
80  
70  
60  
50  
40  
30  
20  
+110°C  
+40°C  
–40°C  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
+110°C  
+40°C  
–40°C  
10  
0
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105 115  
INTERMODULATION FREQUENCY (MHz)  
OBSERVATION RECEIVER LO FREQUENCY (MHz)  
Figure 102. Observation Receiver LO Leakage vs. Observation Receiver  
LO Frequency, 0 dB Receiver Attenuation, 200 MHz RF Bandwidth,  
245.76 MSPS Sample Rate  
Figure 105. Observation Receiver IIP2 vs. Intermodulation Frequency (f2 − f1),  
2600 MHz LO, 0 dB Attenuation, 200 MHz RF Bandwidth,  
245.76 MSPS Sample Rate  
Rev. 0 | Page 34 of 61  
Data Sheet  
AD9375  
40  
35  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
0
–5  
–10  
–15  
0
0
3
6
9
12  
15  
18  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110  
OBSERVATION RECEIVER ATTENUATION (dB)  
f1 OFFSET FREQUENCY (MHz)  
Figure 106. Observation Receiver IIP3 vs. f1 Offset Frequency,  
2600 MHz LO, 0 dB Attenuation, 200 MHz RF Bandwidth,  
f2 = 2f1 + 1 MHz, 245.76 MSPS Sample Rate  
Figure 109. Observation Receiver Gain vs. Observation Receiver Attenuation,  
2600 MHz LO, CW Signal 25 MHz Offset, 200 MHz RF Bandwidth,  
245.76 MSPS Sample Rate  
40  
–40  
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
–50  
35  
30  
25  
20  
15  
10  
5
–60  
–70  
–80  
–90  
0
–100  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105 115  
0
3
6
9
12  
15  
18  
INTERMODULATION FREQUENCY (MHz)  
OBSERVATION RECEIVER ATTENUATION (dB)  
Figure 107. Observation Receiver IIP3 vs. Intermodulation Frequency (f2 − 2f1),  
2600 MHz LO, 0 dB Attenuation, 200 MHz RF Bandwidth,  
245.76 MSPS Sample Rate  
Figure 110. Observation Receiver DC Offset vs. Observation Receiver  
Attenuation, 2600 MHz LO, 200 MHz RF Bandwidth, 245.76 MSPS Sample Rate  
0
0
+110°C  
+40°C  
–40°C  
–20  
+110°C  
+40°C  
–40°C  
–20  
–40  
–60  
–40  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
3
6
9
12  
15  
18  
0
3
6
9
12  
15  
18  
OBSERVATION RECEIVER ATTENUATION (dB)  
OBSERVATION RECEIVER ATTENUATION (dB)  
Figure 108. Observation Receiver Image vs. Observation Receiver  
Attenuation, 2600 MHz LO, CW Signal 25 MHz Offset, 200 MHz RF  
Bandwidth, BTC Active, 245.76 MSPS Sample Rate  
Figure 111. Observation Receiver HD2 vs. Observation Receiver Attenuation,  
2600 MHz LO, CW Signal 25 MHz Offset, −20 dBm at 0 dB Attenuation,  
Input Power Increasing Decibel for Decibel with Attenuation,  
200 MHz RF Bandwidth, 245.76 MSPS Sample Rate  
Rev. 0 | Page 35 of 61  
AD9375  
Data Sheet  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
–20  
–40  
–60  
–80  
–100  
–120  
0
3
6
9
12  
15  
18  
3
6
9
12  
OBSERVATION RECEIVER ATTENUATION (dB)  
INTERMODULATION FREQUENCY (MHz)  
Figure 112. Observation Receiver HD3 vs. Observation Receiver Attenuation,  
2600 MHz LO, CW Signal 25 MHz Offset, −20 dBm at 0 dB Attenuation,  
Input Power Increasing Decibel for Decibel with Attenuation,  
200 MHz RF Bandwidth, 245.76 MSPS Sample Rate  
Figure 115. Sniffer Receiver IIP2 vs. Intermodulation Frequency (f2 − f1),  
2600 MHz LO, 0 dB Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate  
–40  
20  
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
15  
–50  
–60  
10  
5
–70  
–80  
–90  
0
–100  
–110  
–120  
–5  
–10  
2300  
2400  
2500  
2600  
2700  
2800  
0
2
4
6
8
10  
12  
SNIFFER RECEIVER LO FREQUENCY (MHz)  
INTERMODULATION FREQUENCY (MHz)  
Figure 113. Sniffer Receiver LO Leakage vs. Sniffer Receiver LO Frequency,  
0 dB Receiver Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate  
Figure 116. Sniffer Receiver IIP3 vs. Intermodulation Frequency (f2 − 2f1), 2600 MHz  
LO, 0 dB Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate  
30  
0
+110°C  
+110°C  
+40°C  
+40°C  
–10  
–40°C  
–40°C  
25  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
20  
15  
10  
5
0
2300  
2400  
2500  
2600  
2700  
2800  
0
5
10  
15  
20  
SNIFFER RECEIVER LO FREQUENCY (MHz)  
SNIFFER RECEIVER ATTENUATION (dB)  
Figure 114. Sniffer Receiver Noise Figure vs. Sniffer Receiver LO Frequency,  
0 dB Receiver Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate,  
20 MHz Integration Bandwidth  
Figure 117. Sniffer Receiver Image vs. Sniffer Receiver Attenuation, 2600 MHz  
LO, CW Signal 1 MHz Offset, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate  
Rev. 0 | Page 36 of 61  
Data Sheet  
AD9375  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–5  
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–110  
0
5
10  
15  
20  
–70  
–65  
–60  
–55  
–50  
–45  
–40  
–35  
–30  
–25  
SNIFFER RECEIVER ATTENUATION (dB)  
SNIFFER RECEIVER INPUT POWER (dBm)  
Figure 118. Sniffer Receiver DC Offset vs. Sniffer Receiver Attenuation,  
2600 MHz LO, CW Signal 1 MHz Offset, −35 dBm at 0 dB Attenuation,  
Input Power Increasing Decibel for Decibel with Attenuation,  
20 MHz RF Bandwidth, 30.72 MSPS Sample Rate  
Figure 121. Sniffer Receiver EVM vs. Sniffer Receiver Input Power,  
2600 MHz LO, 20 MHz RF Bandwidth, LTE 20 MHz Uplink Centered at DC,  
BTC Active, 30.72 MSPS Sample Rate  
0
40  
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–10  
–40°C  
30  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
20  
10  
0
–10  
–20  
–30  
–40  
0
5
10  
15  
20  
0
4
8
12 16 20 24 28 32 36 40 44 48 52  
SNIFFER RECEIVER ATTENUATION (dB)  
SNIFFER RECEIVER ATTENUATION (dB)  
Figure 119. Sniffer Receiver HD2 vs. Sniffer Receiver Attenuation,  
2600 MHz LO, CW Signal 1 MHz Offset, −35 dBm at 0 dB Attenuation,  
Input Power Increasing Decibel for Decibel with Attenuation,  
20 MHz RF Bandwidth, 30.72 MSPS Sample Rate  
Figure 122. Sniffer Receiver Gain vs. Sniffer Receiver Attenuation,  
2600 MHz LO, CW Signal 1 MHz Offset, 20 MHz RF Bandwidth,  
30.72 MSPS Sample Rate  
0
+110°C  
+40°C  
–40°C  
–20  
–40  
–60  
–80  
–100  
–120  
0
5
10  
15  
20  
SNIFFER RECEIVER ATTENUATION (dB)  
Figure 120. Sniffer Receiver HD3 vs. Sniffer Receiver Attenuation, 2600 MHz  
LO, CW Signal 1 MHz Offset, −35 dBm at 0 dB Attenuation, Input Power  
Increasing Decibel for Decibel with Attenuation, 20 MHz RF Bandwidth,  
30.72 MSPS Sample Rate  
Rev. 0 | Page 37 of 61  
AD9375  
Data Sheet  
3.5 GHz BAND  
–30  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
+110°C  
+40°C  
–40°C  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
+110°C  
+40°C  
–40°C  
3300  
3400  
3500  
3600  
3700  
3800  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
RECEIVER LO FREQUENCY (MHz)  
f1 OFFSET FREQUENCY (MHz)  
Figure 123. Receiver Local Oscillator (LO) Leakage vs. Receiver LO Frequency,  
0 dB Receiver Attenuation, 100 MHz RF Bandwidth, 153.6 MSPS Sample Rate  
Figure 126. Receiver IIP2 vs. f1 Offset Frequency, 3500 MHz LO,  
0 dB Attenuation, 100 MHz RF Bandwidth, f2 = f1 + 1 MHz,  
153.6 MSPS Sample Rate  
45  
100  
f2  
f2  
f2  
f2  
f2  
f2  
+
+
+
f1, +110°C  
f1, +40°C  
f1, –40°C  
f1, +110°C  
f1, +40°C  
f1, –40°C  
+110°C  
+40°C  
–40°C  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
40  
35  
30  
25  
20  
15  
10  
5
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
0
5
10  
15  
20  
25  
30  
RECEIVER ATTENUATION (dB)  
INTERMODULATION FREQUENCY (MHz)  
Figure 127. Receiver IIP2 vs. Intermodulation Frequency, 3500 MHz LO,  
0 dB Attenuation, 100 MHz RF Bandwidth, 153.6 MSPS Sample Rate  
Figure 124. Receiver Noise Figure vs. Receiver Attenuation, 3500 MHz LO,  
100 MHz Bandwidth, 153.6 MSPS Sample Rate, 50 MHz Integration Bandwidth  
(Includes 1 dB Matching Circuit Loss)  
40  
30  
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
35  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
3300  
0
3400  
3500  
3600  
3700  
3800  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
RECEIVER LO FREQUENCY (MHz)  
f1 OFFSET FREQUENCY (MHz)  
Figure 128. Receiver IIP3 vs. f1 Offset Frequency, 3500 MHz LO,  
0 dB Attenuation, 100 MHz RF Bandwidth, f2 = 2 f1 + 1 MHz,  
153.6 MSPS Sample Rate  
Figure 125. Receiver Noise Figure vs. Receiver LO Frequency,  
0 dB Receiver Attenuation, 100 MHz RF Bandwidth, 153.6 MSPS Sample Rate,  
50 MHz Integration Bandwidth (Includes 1 dB Matching Circuit Loss)  
Rev. 0 | Page 38 of 61  
 
Data Sheet  
AD9375  
40  
35  
30  
25  
20  
15  
10  
5
–40  
–50  
f2  
f2  
f2  
f2  
f2  
f2  
+
+
+
f1, +110°C  
f1, +40°C  
f1, –40°C  
f1, +110°C  
f1, +40°C  
f1, –40°C  
+110°C  
+40°C  
–40°C  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
0
5
10  
15  
20  
25  
30  
INTERMODULATION FREQUENCY (MHz)  
RECEIVER ATTENUATION (dB)  
Figure 132. Receiver DC Offset vs. Receiver Attenuation, 3500 MHz LO,  
100 MHz RF Bandwidth, 153.6 MSPS Sample Rate  
Figure 129. Receiver IIP3 vs. Intermodulation Frequency, 3500 MHz LO,  
0 dB Attenuation, 100 MHz RF Bandwidth, 153.6 MSPS Sample Rate  
–40  
–40  
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
–50  
–50  
–60  
–70  
–60  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–100  
–110  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
RECEIVER ATTENUATION (dB)  
RECEIVER ATTENUATION (dB)  
Figure 133. Receiver HD2 vs. Receiver Attenuation, 3500 MHz LO, CW Signal  
17 MHz Offset, −14 dBm at 0 dB Attenuation, Input Power Increasing Decibel for  
Decibel with Attenuation, 100 MHz RF Bandwidth, 153.6 MSPS Sample Rate  
Figure 130. Receiver Image vs. Receiver Attenuation, 3500 MHz LO,  
Continuous Wave (CW) Signal 17 MHz Offset, 100 MHz RF Bandwidth,  
Background Tracking Calibration (BTC) Active, 153.6 MSPS Sample Rate  
–40  
25  
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
20  
–50  
15  
10  
5
–60  
–70  
–80  
0
–90  
–5  
–10  
–15  
–100  
–110  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
RECEIVER ATTENUATION (dB)  
RECEIVER ATTENUATION (dB)  
Figure 131. Receiver Gain vs. Receiver Attenuation, 3500 MHz LO, CW Signal  
17 MHz Offset, 100 MHz RF Bandwidth, De-Embedded to Receiver Port,  
153.6 MSPS Sample Rate  
Figure 134. Receiver HD3 vs. Receiver Attenuation, 3500 MHz LO, CW Signal  
17 MHz Offset, −14 dBm at 0 dB Attenuation, Input Power Increasing Decibel  
for Decibel with Attenuation, 100 MHz RF Bandwidth, 153.6 MSPS Sample Rate  
Rev. 0 | Page 39 of 61  
AD9375  
Data Sheet  
0
30  
25  
20  
15  
10  
5
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
0
–60 –55 –50 –45 –40 –35 –30 –25 –20 –15 –10 –5  
0
–30  
–25  
–20  
–15  
–10  
–5  
0
RECEIVER INPUT POWER (dBm)  
OUT-OF-BAND INTERFERER SIGNAL POWER (dBm)  
Figure 135. Receiver Error Vector Magnitude (EVM) vs. Receiver Input Power,  
3600 MHz LO, 100 MHz RF Bandwidth, LTE 20 MHz Uplink Centered at DC,  
BTC Active, 153.6 MSPS Sample Rate  
Figure 138. Receiver Noise Figure vs. Out of Band Interferer Signal Power,  
3614 MHz LO, 3665 MHz CW Interferer, Noise Figure Integrated over  
7 MHz to 10 MHz  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
+110°C  
+40°C  
–40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
3300  
3400  
3500  
3600  
3700  
3800  
0
5
10  
15  
20  
RECEIVER LO FREQUENCY (MHz)  
RF ATTENUATION (dB)  
Figure 136. Rx2 to Rx1 Crosstalk vs. Receiver LO Frequency,  
100 MHz RF Bandwidth, CW Tone 3 MHz Offset from LO  
Figure 139. Transmitter Image vs. RF Attenuation, 100 MHz RF Bandwidth,  
3550 MHz LO, Transmitter Quadrature Error Correction (QEC) Tracking Run  
with Two 20 MHz, LTE Downlink Carriers, Then Image Measured with CW  
10 MHz Offset from LO, 6 dB Digital Backoff, 307.2 MSPS Sample Rate  
30  
0
+110°C  
+110°C  
+40°C  
–40°C  
+40°C  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
–10  
–20  
–40°C  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–50  
–45  
–40  
–35  
–30  
–25  
–20  
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
CLOSE-IN INTERFERER SIGNAL POWER (dBm)  
DESIRED OFFSET FREQUENCY (MHz)  
Figure 137. Receiver Noise Figure vs. Close-In Interferer Signal Power,  
3614 MHz LO, 3625 MHz CW Interferer, Noise Figure Integrated over  
7 MHz to 10 MHz, 100 MHz RF Bandwidth  
Figure 140. Transmitter Image vs. Desired Offset Frequency, 100 MHz RF  
Bandwidth, 3550 MHz LO, 0 dB RF Attenuation, Transmitter QEC Tracking  
Run with Two 20 MHz LTE Downlink Carriers, Then Image Measured with  
CW Signal, 6 dB Digital Backoff, 307.2 MSPS Sample Rate  
Rev. 0 | Page 40 of 61  
Data Sheet  
AD9375  
10  
8
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
6
4
2
0
–2  
–4  
–6  
–8  
–10  
+110°C  
+40°C  
–40°C  
3300  
3400  
3500  
3600  
3700  
3800  
3300  
3400  
3500  
3600  
3700  
3800  
FREQUENCY (MHz)  
RECEIVER LO FREQUENCY (MHz)  
Figure 141. Tx Output Power, Transmitter QEC and  
External LO Leakage Active, 5 MHz CW Offset Signal,  
1 MHz Resolution Bandwidth, 307.2 MSPS Sample Rate  
Figure 144. Tx1 to Rx1 Crosstalk vs. Receiver LO Frequency,  
100 MHz Receiver RF Bandwidth, 100 MHz Transmitter RF Bandwidth,  
CW Signal 3 MHz Offset from LO  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+110°C  
+40°C  
–40°C  
0
5
10  
15  
20  
3300  
3400  
3500  
3600  
3700  
3800  
RF ATTENUATION (dB)  
RECEIVER LO FREQUENCY (MHz)  
Figure 142. Transmitter LO Leakage vs. RF Attenuation, 3550 MHz LO,  
Transmitter QEC and External LO Leakage Tracking Active, CW Signal 10 MHz  
Offset from LO, 6 dB Digital Backoff, 1 MHz Measurement Bandwidth  
(If Input Power to ORx Channel Is Not Held Constant, Performance Degrades  
as Shown in This Plot)  
Figure 145. Tx2 to Rx2 Crosstalk vs. Receiver LO Frequency,  
100 MHz Receiver RF Bandwidth, 100 MHz Transmitter RF Bandwidth,  
CW Signal 3 MHz Offset from LO  
–60  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
3.3GHz, +110°C  
3.3GHz, +40°C  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
3.3GHz, –40°C  
3.55GHz, +110°C  
3.55GHz, +40°C  
3.55GHz, –40°C  
3.8GHz, +110°C  
3.8GHz, +40°C  
3.8GHz, –40°C  
–30  
–20  
–10  
0
10  
20  
30  
3300  
3800  
3400  
3500  
3600  
3700  
OFFSET FREQUENCY (MHz)  
TRANSMITTER LO FREQUENCY (MHz)  
Figure 143. Transmitter LO Leakage vs. Offset Frequency,  
Transmitter QEC and External LO Leakage Tracking Active,  
6 dB Digital Backoff, 1 MHz Measurement Bandwidth  
Figure 146. Tx2 to Tx1 Crosstalk vs. Transmitter LO Frequency,  
100 MHz RF Bandwidth, CW Signal 3 MHz Offset from LO  
Rev. 0 | Page 41 of 61  
AD9375  
Data Sheet  
–80  
–90  
–60  
–70  
+110°C  
+40°C  
–40°C  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–180  
0
5
10  
15  
20  
100  
10M  
1k  
10k  
100k  
1M  
RF ATTENUATION (dB)  
OFFSET FREQUENCY (Hz)  
Figure 147. Transmitter Noise vs. RF Attenuation, 3500 MHz LO,  
100 MHz Offset Frequency, Zeros Input Data  
Figure 150. LO Phase Noise vs. Offset Frequency, 3 dB Digital Backoff,  
3500 MHz LO  
–40  
1.0  
+110°C  
+110°C UPPER  
+40°C UPPER  
–40°C UPPER  
+110°C LOWER  
+40°C LOWER  
–40°C LOWER  
+40°C  
0.9  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–40°C  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
5
10  
15  
20  
3300  
3400  
3500  
3600  
3700  
3800  
RF ATTENUATION (dB)  
TRANSMITTER LO FREQUENCY (MHz)  
Figure 148. Tx Adjacent Channel Leakage Ratio vs. RF Attenuation,  
3500 MHz LO, 100 MHz RF Bandwidth, Four-Carrier W-CDMA Desired Signal,  
2 dB Digital Backoff, Transmitter QEC and LO Leakage Tracking Active  
Figure 151. Tx Integrated Phase Noise vs. Transmitter LO Frequency,  
100 MHz RF Bandwidth, CW 20 MHz Offset from LO, 3 dB Digital Backoff  
–40  
35  
+110°C UPPER  
+40°C UPPER  
–40°C UPPER  
+110°C LOWER  
+40°C LOWER  
–40°C LOWER  
+110°C  
+40°C  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–40°C  
30  
25  
20  
15  
10  
5
0
2
4
6
8
10  
12  
14  
16  
18  
0
5
10  
15  
20  
0
20  
RF ATTENUATION (dB)  
RF ATTENUATION (dB)  
Figure 149. Tx Alternate Channel Leakage Ratio vs. RF Attenuation,  
3500 MHz LO, 100 MHz RF Bandwidth, Four-Carrier W-CDMA Desired Signal,  
2 dB Digital Backoff, Transmitter QEC and LO Leakage Tracking Active  
Figure 152. Transmitter OIP3 vs. RF Attenuation, 3500 MHz LO,  
100 MHz RF Bandwidth, f1 = 20 MHz, f2 = 21 MHz, 3 dB Digital Backoff,  
307.2 MSPS Sample Rate  
Rev. 0 | Page 42 of 61  
Data Sheet  
AD9375  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+110°C  
+40°C  
–40°C  
0
20  
5
10  
15  
3400  
3425  
3450  
3475  
3500  
3525  
3550  
3575  
3600  
RF ATTENUATION (dB)  
FREQUENCY (MHz)  
Figure 153. Tx Output Power Spectrum, 2 dB Digital and 3 dB RF Backoff,  
100 MHz RF Bandwidth, Transmitter QEC and Internal LO Leakage Active,  
LTE 10 MHz Signal, 3500 MHz LO, 1 MHz Resolution Bandwidth,  
Figure 156. Transmitter HD2 vs. RF Attenuation, 3500 MHz LO,  
3505 MHz CW Desired Signal, 100 MHz RF Bandwidth,  
307.2 MSPS Sample Rate  
307.2 MSPS Sample Rate, Test Equipment Noise Floor De-Embedded  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
+110°C  
+40°C  
–40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–100  
0
5
10  
15  
20  
3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000  
RF ATTENUATION (dB)  
FREQUENCY (MHz)  
Figure 157. Transmitter HD3 vs. RF Attenuation, 3500 MHz LO,  
3505 MHz CW Desired Signal, 100 MHz RF Bandwidth,  
307.2 MSPS Sample Rate  
Figure 154. Tx Output Power Spectrum, 2 dB Digital and 3 dB RF Backoff,  
100 MHz RF Bandwidth, Transmitter QEC and Internal LO Leakage Active,  
LTE 10 MHz Signal, 3500 MHz LO, 1 MHz Resolution Bandwidth,  
307.2 MSPS Sample Rate, Expanded Frequency View, Test Equipment Noise  
Floor De-Embedded  
–20  
10  
+110°C  
+40°C  
–40°C  
–25  
+110°C  
+40°C  
–40°C  
5
0
–5  
–30  
–35  
–40  
–45  
–50  
–10  
–15  
–20  
–25  
0
5
10  
15  
20  
0
5
10  
15  
20  
RF ATTENUATION (dB)  
RF ATTENUATION (dB)  
Figure 155. Transmitter EVM vs. RF Attenuation, 3500 MHz LO,  
Transmitter LO Leakage, and Transmitter QEC Tracking Active,  
100 MHz RF Bandwidth, LTE 20 MHz Downlink Signal, 307.2 MSPS Sample Rate  
Figure 158. Transmitter Output Power vs. RF Attenuation, 3500 MHz LO,  
3505 MHz CW Desired Signal, 100 MHz RF Bandwidth,  
2 dB Digital Backoff, 307.2 MSPS Sample Rate  
Rev. 0 | Page 43 of 61  
AD9375  
Data Sheet  
0.10  
0.08  
0.06  
0.04  
0.02  
0
+110°C  
+40°C  
–40°C  
30  
25  
20  
15  
10  
5
–0.02  
–0.04  
–0.06  
–0.08  
+110°C  
+40°C  
–40°C  
–0.10  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
3300  
RF ATTENUATION (dB)  
3400  
3500  
3600  
3700  
3800  
OBSERVATION RECEIVER LO FREQUENCY (MHz)  
Figure 159. Tx Attenuation Step Error vs. RF Attenuation, 3500 MHz LO,  
3510 MHz CW Desired Signal, 100 MHz RF Bandwidth,  
Figure 162. Observation Receiver Noise Figure vs. Observation Receiver LO  
Frequency, 0 dB Receiver Attenuation, 240 MHz RF Bandwidth,  
307.2 MSPS Sample Rate, 120 MHz Integration Bandwidth  
De-Embedded to Transmitter Port, 307.2 MSPS Sample Rate  
80  
70  
60  
50  
40  
30  
20  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
+110°C  
+40°C  
–40°C  
10  
0
–100 –80 –60 –40 –20  
0
20  
40  
60  
80  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110  
FREQUENCY OFFSET FROM LO (MHz)  
f1 OFFSET FREQUENCY (MHz)  
Figure 163. Observation Receiver IIP2 vs. f1 Offset Frequency, 3600 MHz LO,  
0 dB Attenuation, 240 MHz RF Bandwidth, f2 = f1 + 1 MHz,  
307.2 MSPS Sample Rate  
Figure 160. Transmitter Frequency Response Deviation from Flatness vs.  
Frequency Offset from LO, 3500 MHz LO, 100 MHz RF Bandwidth,  
6 dB Digital Backoff, 307.2 MSPS Sample Rate  
80  
–40  
+110°C  
+40°C  
+110°C  
+40°C  
–40°C  
70  
60  
50  
40  
30  
20  
10  
0
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–40°C  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105 115  
3300  
3400  
3500  
3600  
3700  
3800  
INTERMODULATION FREQUENCY (MHz)  
OBSERVATION RECEIVER LO FREQUENCY (MHz)  
Figure 164. Observation Receiver IIP2 vs. Intermodulation Frequency (f2 − f1),  
3500 MHz LO, 0 dB Attenuation, 240 MHz RF Bandwidth,  
307.2 MSPS Sample Rate  
Figure 161. Observation Receiver LO Leakage vs. Observation Receiver  
LO Frequency, 0 dB Receiver Attenuation, 240 MHz RF Bandwidth,  
307.2 MSPS Sample Rate  
Rev. 0 | Page 44 of 61  
Data Sheet  
AD9375  
40  
35  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
0
–5  
–10  
–15  
0
0
3
6
9
12  
15  
18  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110  
OBSERVATION RECEIVER ATTENUATION (dB)  
f1 OFFSET FREQUENCY (MHz)  
Figure 165. Observation Receiver IIP3 vs. f1 Offset Frequency, 3600 MHz LO,  
0 dB Attenuation, 240 MHz RF Bandwidth, f2 = 2f1 + 1 MHz,  
307.2 MSPS Sample Rate  
Figure 168. Observation Receiver Gain vs. Observation Receiver Attenuation,  
3500 MHz LO, CW Signal 25 MHz Offset, 240 MHz RF Bandwidth,  
De-Embedded to Receiver Port, 307.2 MSPS Sample Rate  
40  
–40  
+110°C  
+40°C  
+110°C  
+40°C  
–40°C  
35  
30  
25  
20  
15  
10  
5
–40°C  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
0
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105 115  
0
3
6
9
12  
15  
18  
INTERMODULATION FREQUENCY (MHz)  
OBSERVATION RECEIVER ATTENUATION (dB)  
Figure 166. Observation Receiver IIP3 vs. Intermodulation Frequency (f2 − 2f1),  
3500 MHz LO, 0 dB Attenuation, 240 MHz RF Bandwidth,  
307.2 MSPS Sample Rate  
Figure 169. Observation Receiver DC Offset vs. Observation Receiver  
Attenuation, 3500 MHz LO, 240 MHz RF Bandwidth, 307.2 MSPS Sample Rate  
0
0
+110°C  
+110°C  
+40°C  
–40°C  
–20  
+40°C  
–10  
–20  
–40°C  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40  
–60  
–80  
–100  
–120  
0
3
6
9
12  
15  
18  
0
18  
3
6
9
12  
15  
OBSERVATION RECEIVER ATTENUATION (dB)  
OBSERVATION RECEIVER ATTENUATION (dB)  
Figure 167. Observation Receiver Image vs. Observation Receiver  
Attenuation, 3500 MHz LO, CW Signal 25 MHz Offset,  
240 MHz RF Bandwidth, BTC Active, 307.2 MSPS Sample Rate  
Figure 170. Observation Receiver HD2 vs. Observation Receiver Attenuation,  
3500 MHz LO, CW Signal 25 MHz Offset, −20 dBm at 0 dB Attenuation,  
Input Power Increasing Decibel for Decibel with Attenuation,  
240 MHz RF Bandwidth, 307.2 MSPS Sample Rate  
Rev. 0 | Page 45 of 61  
AD9375  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
–100  
0
3
6
9
12  
15  
18  
2
6
10  
14  
18  
OBSERVATION RECEIVER ATTENUATION (dB)  
INTERMODULATION FREQUENCY (MHz)  
Figure 171. Observation Receiver HD3 vs. Observation Receiver Attenuation,  
3500 MHz LO, CW Signal 25 MHz Offset, −20 dBm at 0 dB Attenuation,  
Input Power Increasing Decibel for Decibel with Attenuation,  
240 MHz RF Bandwidth, 307.2 MSPS Sample Rate  
Figure 174. Sniffer Receiver IIP2 vs. Intermodulation Frequency (f2 − f1),  
3500 MHz LO, 0 dB Attenuation, 20 MHz RF Bandwidth, 38.4 MSPS Sample Rate  
–40  
20  
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
15  
–50  
–60  
10  
5
–70  
–80  
–90  
0
–100  
–110  
–120  
–5  
–10  
3300  
3400  
3500  
3600  
3700  
3800  
0
2
4
6
8
10  
12  
SNIFFER RECEIVER LO FREQUENCY (MHz)  
INTERMODULATION FREQUENCY (MHz)  
Figure 172. Sniffer Receiver LO Leakage vs. Sniffer Receiver LO Frequency,  
0 dB Receiver Attenuation, 20 MHz RF Bandwidth, 38.4 MSPS Sample Rate  
Figure 175. Sniffer Receiver IIP3 vs. Intermodulation Frequency (f2 − 2f1),  
3500 MHz LO, 0 dB Attenuation, 20 MHz RF Bandwidth, 38.4 MSPS Sample Rate  
20  
0
+110°C  
+110°C  
+40°C  
+40°C  
18  
–10  
–40°C  
–40°C  
16  
14  
12  
10  
8
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
6
4
2
0
3300  
3400  
3500  
3600  
3700  
3800  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
SNIFFER RECEIVER LO FREQUENCY (MHz)  
SNIFFER RECEIVER ATTENUATION (dB)  
Figure 173. Sniffer Receiver Noise Figure vs. Sniffer Receiver LO Frequency,  
0 dB Receiver Attenuation, 20 MHz RF Bandwidth, 38.4 MSPS Sample Rate,  
10 MHz Integration Bandwidth  
Figure 176. Sniffer Receiver Image vs. Sniffer Receiver Attenuation,  
3500 MHz LO, CW Signal 5 MHz Offset, 20 MHz RF Bandwidth,  
38.4 MSPS Sample Rate  
Rev. 0 | Page 46 of 61  
Data Sheet  
AD9375  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–5  
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–110  
0
5
10  
15  
20  
–70  
–65  
–60  
–55  
–50  
–45  
–40  
–35  
–30  
SNIFFER RECEIVER ATTENUATION (dB)  
SNIFFER RECEIVER INPUT POWER (dBm)  
Figure 177. Sniffer Receiver DC Offset vs. Sniffer Receiver Attenuation,  
3500 MHz LO, CW Signal 5 MHz Offset, −35 dBm at 0 dB Attenuation,  
Input Power Increasing Decibel for Decibel with Attenuation,  
20 MHz RF Bandwidth, 38.4 MSPS Sample Rate  
Figure 180. Sniffer Receiver EVM vs. Sniffer Receiver Input Power,  
3600 MHz LO, 20 MHz RF Bandwidth, LTE 20 MHz Uplink Centered at DC,  
BTC Active, 38.4 MSPS Sample Rate  
0
35  
+110°C  
+110°C  
+40°C  
–40°C  
+40°C  
–10  
–40°C  
25  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
15  
5
–5  
–15  
–25  
–35  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
0
5
10  
15  
20  
SNIFFER RECEIVER ATTENUATION (dB)  
SNIFFER RECEIVER ATTENUATION (dB)  
Figure 178. Sniffer Receiver HD2 vs. Sniffer Receiver Attenuation,  
3500 MHz LO, CW Signal 5 MHz Offset, −35 dBm at 0 dB Attenuation,  
Input Power Increasing Decibel for Decibel with Attenuation,  
20 MHz RF Bandwidth, 38.4 MSPS Sample Rate  
Figure 181. Sniffer Receiver Gain vs. Sniffer Receiver Attenuation,  
3600 MHz LO, CW Signal 5 MHz Offset, 20 MHz RF Bandwidth,  
De-Embedded to Receiver Port, 38.4 MSPS Sample Rate  
0
+110°C  
+40°C  
–10  
–40°C  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
5
10  
15  
20  
SNIFFER RECEIVER ATTENUATION (dB)  
Figure 179. Sniffer Receiver HD3 vs. Sniffer Receiver Attenuation,  
3500 MHz LO, CW Signal 5 MHz Offset, −35 dBm at 0 dB Attenuation,  
Input Power Increasing Decibel for Decibel with Attenuation,  
20 MHz RF Bandwidth, 38.4 MSPS Sample Rate  
Rev. 0 | Page 47 of 61  
AD9375  
Data Sheet  
5.5 GHz BAND  
–30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
5300  
5400  
5500  
5600  
5700  
5800  
5900  
0
10  
20  
30  
40  
50  
60  
RECEIVER LO FREQUENCY (MHz)  
f1 OFFSET FREQUENCY (MHz)  
Figure 182. Receiver Local Oscillator (LO) Leakage vs. Receiver LO Frequency,  
0 dB Receiver Attenuation, 100 MHz RF Bandwidth, 122.88 MSPS Sample Rate  
Figure 185. Receiver IIP2 vs. f1 Offset Frequency, 5600 MHz LO,  
0 dB Attenuation, 100 MHz RF Bandwidth, f2 = f1 + 1 MHz,  
122.88 MSPS Sample Rate  
45  
100  
90  
80  
70  
60  
50  
40  
+110°C  
+40°C  
–40°C  
35  
30  
25  
20  
15  
10  
5
40  
30  
20  
10  
0
f2  
f2  
f2  
f2  
f2  
f2  
+
+
+
f1, +110°C  
f1, +40°C  
f1, –40°C  
f1, +110°C  
f1, +40°C  
f1, –40°C  
0
0
3
6
9
12  
15  
15  
20  
25  
30  
35  
40  
45  
RECEIVER ATTENUATION (dB)  
INTERMODULATION FREQUENCY (MHz)  
Figure 183. Receiver Noise Figure vs. Receiver Attenuation, 5600 MHz LO,  
100 MHz Bandwidth, 122.88 MSPS Sample Rate, 50 MHz Integration  
Bandwidth (Includes 1.2 dB Matching Circuit Loss)  
Figure 186. Receiver IIP2 vs. Intermodulation Frequency, 5600 MHz LO,  
0 dB Attenuation, 100 MHz RF Bandwidth, 122.88 MSPS Sample Rate  
30  
25  
20  
15  
40  
+110°C  
+40°C  
–40°C  
35  
30  
25  
20  
15  
10  
5
10  
5
+110°C  
+40°C  
–40°C  
0
5300  
5400  
5500  
5600  
5700  
5800  
5900  
0
0
10  
20  
30  
40  
50  
60  
RECEIVER LO FREQUENCY (MHz)  
f1 OFFSET FREQUENCY (MHz)  
Figure 184. Receiver Noise Figure vs. Receiver LO Frequency, 0 dB Receiver  
Attenuation, 100 MHz RF Bandwidth, 122.88 MSPS Sample Rate, 50 MHz  
Integration Bandwidth (Includes 1.2 dB Matching Circuit Loss)  
Figure 187. Receiver IIP3 vs. f1 Offset Frequency, 5600 MHz LO, 0 dB Attenuation,  
100 MHz RF Bandwidth, f2 = 2 f1 + 2 MHz, 122.88 MSPS Sample Rate  
Rev. 0 | Page 48 of 61  
 
Data Sheet  
AD9375  
40  
35  
30  
25  
20  
15  
10  
5
–40  
–50  
+110°C  
+40°C  
–40°C  
–60  
–70  
–80  
+110°C  
+40°C  
–40°C  
–90  
–100  
–110  
0
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
INTERMODULATION FREQUENCY (MHz)  
RECEIVER ATTENUATION (dB)  
Figure 188. Receiver IIP3 vs. Intermodulation Frequency, 5600 MHz LO,  
0 dB Attenuation, 100 MHz RF Bandwidth, 122.88 MSPS Sample Rate  
Figure 191. Receiver DC Offset vs. Receiver Attenuation, 5850 MHz LO,  
100 MHz RF Bandwidth, 122.88 MSPS Sample Rate  
–40  
–40  
–50  
+110°C  
+40°C  
–40°C  
–50  
–60  
+110°C  
+40°C  
–40°C  
–60  
–70  
–80  
–70  
–80  
–90  
–90  
–100  
–110  
–100  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
RECEIVER ATTENUATION (dB)  
RECEIVER ATTENUATION (dB)  
Figure 189. Receiver Image vs. Receiver Attenuation, 5600 MHz LO,  
Continuous Wave (CW) Signal 10 MHz Offset, 100 MHz RF Bandwidth,  
Background Tracking Calibration (BTC) Active, 122.88 MSPS Sample Rate  
Figure 192. Receiver HD2 vs. Receiver Attenuation, 5600 MHz LO,  
CW Signal 10 MHz Offset, −20 dBm at 0 dB Attenuation,  
Input Power Increasing Decibel for Decibel with Attenuation,  
100 MHz RF Bandwidth, 122.88 MSPS Sample Rate  
20  
15  
10  
5
–40  
–50  
–60  
–70  
0
–80  
–5  
+110°C  
+40°C  
–90  
+110°C  
–10  
–40°C  
+40°C  
–40°C  
–100  
–15  
–20  
–110  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
RECEIVER ATTENUATION (dB)  
RECEIVER ATTENUATION (dB)  
Figure 193. Receiver HD3 vs. Receiver Attenuation, 5600 MHz LO,  
CW Signal 10 MHz Offset, −20 dBm at 0 dB Attenuation, Input Power  
Increasing Decibel for Decibel with Attenuation,100 MHz RF Bandwidth,  
122.88 MSPS Sample Rate  
Figure 190. Receiver Gain vs. Receiver Attenuation, 5600 MHz LO,  
CW Signal 10 MHz Offset, 100 MHz RF Bandwidth, 122.88 MSPS Sample Rate  
Rev. 0 | Page 49 of 61  
AD9375  
Data Sheet  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+110°C  
+40°C  
–40°C  
–5  
+110°C  
+40°C  
–40°C  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–55 –50 –45 –40 –35 –30 –25 –20 –15 –10 –5  
0
0
5
10  
15  
20  
RECEIVER INPUT POWER (dBm)  
RF ATTENUATION (dB)  
Figure 194. Receiver Error Vector Magnitude (EVM) vs. Receiver Input Power,  
5600 MHz LO, 100 MHz RF Bandwidth LTE, 20 MHz Uplink Centered at DC,  
BTC Active, 122.88 MSPS Sample Rate  
Figure 197. Transmitter Image vs. RF Attenuation, 75 MHz RF Bandwidth,  
5600 MHz LO, 0 dB RF Attenuation, Transmitter Quadrature Error Correction  
(QEC) Tracking Run with Two 20 MHz LTE Downlink Carriers, Then Image  
Measured with CW 10 MHz Offset from LO, 3 dB Digital Backoff,  
245.76 MSPS Sample Rate  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+110°C  
+40°C  
–40°C  
5300  
5400  
5500  
5600  
5700  
5800  
5900  
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
RECEIVER LO FREQUENCY (MHz)  
DESIRED OFFSET FREQUENCY (MHz)  
Figure 195. Rx2 to Rx1 Crosstalk vs. Receiver LO Frequency,  
100 MHz RF Bandwidth, CW Tone 3 MHz Offset from LO  
Figure 198. Transmitter Image vs. Desired Offset Frequency, 75 MHz RF  
Bandwidth, 5600 MHz LO, 0 dB RF Attenuation, Transmitter QEC Tracking  
Run with Two 20 MHz LTE Downlink Carriers, Then Image Measured with  
CW Signal, 3 dB Digital Backoff, 245.76 MSPS Sample Rate  
30  
10  
8
25  
20  
15  
10  
5
6
4
2
0
–2  
+110°C  
+40°C  
–40°C  
+110°C  
–4  
–6  
+40°C  
–40°C  
–8  
0
–40  
–10  
5300  
–35  
–30  
–25  
–20  
–15  
–10  
–5  
0
5400  
5500  
5600  
5700  
5800  
5900  
OUT-OF-BAND INTERFERER SIGNAL POWER (dBm)  
RECEIVER LO FREQUENCY (MHz)  
Figure 196. Receiver Noise Figure vs. Out-of-Band Interferer Signal Power,  
5400 MHz LO, 5600 MHz CW Interferer, NF Integrated over 7 MHz to 10 MHz  
Figure 199. Tx Output Power, Transmitter QEC, and External LO Leakage  
Active, 5 MHz CW Offset Signal, 1 MHz Resolution Bandwidth,  
245.76 MSPS Sample Rate  
Rev. 0 | Page 50 of 61  
Data Sheet  
AD9375  
–40  
–50  
–60  
–70  
–80  
–90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+110°C  
+40°C  
–40°C  
–100  
0
5
10  
15  
20  
5300  
5400  
5500  
5600  
5700  
5800  
5900  
RF ATTENUATION (dB)  
RECEIVER LO FREQUENCY (MHz)  
Figure 200. Transmitter LO Leakage vs. RF Attenuation, 5600 MHz LO,  
External Transmitter QEC, and LO Leakage Tracking Active, CW Signal  
10 MHz Offset from LO, 6 dB Digital Backoff, 1 MHz Measurement Bandwidth  
Figure 203. Tx2 to Rx2 Crosstalk vs. Receiver LO Frequency,  
100 MHz Receiver RF Bandwidth, 75 MHz Transmitter RF Bandwidth,  
CW Signal 3 MHz Offset from LO  
–60  
–65  
–70  
–75  
–80  
–85  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
5.9GHz, +110°C  
5.9GHz, +40°C  
5.9GHz, –40°C  
5.6GHz, +110°C  
5.6GHz, +40°C  
5.6GHz, –40°C  
5.3GHz, +110°C  
5.3GHz, +40°C  
5.3GHz, –40°C  
–90  
–95  
–100  
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
5300  
5400  
5500  
5600  
5700  
5800  
5900  
OFFSET FREQUENCY (MHz)  
TRANSMITTER LO FREQUENCY (MHz)  
Figure 201. Transmitter LO Leakage vs. Offset Frequency,  
External Transmitter QEC and LO Leakage Tracking Active,  
6 dB Digital Backoff, 1 MHz Measurement Bandwidth  
Figure 204. Tx2 to Tx1 Crosstalk vs. Transmitter LO Frequency,  
75 MHz RF Bandwidth, CW Signal 3 MHz Offset from LO  
0
–80  
–10  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
+110°C  
+40°C  
–40°C  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
5300  
5400  
5500  
5600  
5700  
5800  
5900  
0
5
10  
15  
20  
RECEIVER LO FREQUENCY (MHz)  
RF ATTENUATION (dB)  
Figure 202. Tx1 to Rx1 Crosstalk vs. Receiver LO Frequency, 100 MHz Receiver RF  
Bandwidth, 75 MHz Transmitter RF Bandwidth, CW Signal 3 MHz Offset from LO  
Figure 205. Transmitter Noise vs. RF Attenuation, 5600 MHz LO,  
1 MHz Offset Frequency  
Rev. 0 | Page 51 of 61  
AD9375  
Data Sheet  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
+110°C LOWER  
+40°C LOWER  
–40°C LOWER  
+110°C UPPER  
+40°C UPPER  
–40°C UPPER  
+110°C  
+40°C  
–40°C  
–80  
0
5
10  
15  
20  
5300  
5400  
5500  
5600  
5700  
5800  
5900  
RF ATTENUATION (dB)  
TRANSMITTER LO FREQUENCY (MHz)  
Figure 206. Tx Adjacent Channel Leakage Ratio vs. RF Attenuation,  
5600 MHz LO, 75 MHz RF Bandwidth, Four-Carrier W-CDMA Desired Signal,  
Transmitter QEC and LO Leakage Tracking Active  
Figure 209. Tx Integrated Phase Noise vs. Transmitter LO Frequency,  
75 MHz RF Bandwidth, CW 10 MHz Offset from LO, 3 dB Digital Backoff  
–40  
–45  
–50  
–55  
–60  
30  
+110°C  
+40°C  
–40°C  
25  
20  
15  
10  
5
–65  
–70  
–75  
–80  
+110°C LOWER  
+40°C LOWER  
–40°C LOWER  
+110°C UPPER  
+40°C UPPER  
–40°C UPPER  
0
0
5
10  
15  
20  
0
5
10  
15  
20  
RF ATTENUATION (dB)  
RF ATTENUATION (dB)  
Figure 207. Tx Alternate Channel Leakage Ratio vs. RF Attenuation,  
5600 MHz LO, 75 MHz RF Bandwidth, Four-Carrier W-CDMA Desired Signal,  
2 dB Digital Backoff, Transmitter QEC and LO Leakage Tracking Active  
Figure 210. Transmitter OIP3 vs. RF Attenuation, 5600 MHz LO,  
75 MHz RF Bandwidth, f1 = 20 MHz, f2 = 21 MHz, 3 dB Digital Backoff,  
245.76 MSPS Sample Rate  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
100  
1k  
10k  
100k  
1M  
10M  
5750  
5775  
5800  
5825  
5850  
5875  
5900  
5925  
5950  
OFFSET FREQUENCY (Hz)  
FREQUENCY (MHz)  
Figure 208. LO Phase Noise vs. Offset Frequency, 3 dB Digital Backoff,  
5850 MHz LO  
Figure 211. Tx Output Power Spectrum, 3 dB Digital and 1 dB RF Backoff,  
40 MHz RF Bandwidth, Transmitter QEC, and Internal LO Leakage Active,  
LTE 10 MHz Signal, 5850 MHz LO, 1 MHz Resolution Bandwidth,  
122.88 MSPS Sample Rate, Test Equipment Noise Floor De-Embedded  
Rev. 0 | Page 52 of 61  
Data Sheet  
AD9375  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
+110°C  
+40°C  
–40°C  
5350 5450 5550 5650 5750 5850 5950 6050 6150 6250 6350  
0
5
10  
15  
20  
FREQUENCY (MHz)  
RF ATTENUATION (dB)  
Figure 212. Tx Output Power Spectrum, 3 dB Digital and 1 dB RF Backoff,  
40 MHz RF Bandwidth, Transmitter QEC, and Internal LO Leakage Active,  
LTE 10 MHz Signal, 5850 MHz LO, 1 MHz Resolution Bandwidth,  
122.88 MSPS Sample Rate, Expanded Frequency View, Test Equipment Noise  
Floor De-Embedded  
Figure 215. Transmitter HD3 vs. RF Attenuation, 5850 MHz LO,  
5855 MHz CW Desired Signal, 75 MHz RF Bandwidth,  
245.76 MSPS Sample Rate  
–20  
10  
+110°C  
+40°C  
–40°C  
–25  
5
0
+110°C  
+40°C  
–40°C  
–30  
–35  
–40  
–45  
–50  
–5  
–10  
–15  
–20  
0
5
10  
15  
20  
0
5
10  
15  
20  
25  
RF ATTENUATION (dB)  
RF ATTENUATION (dB)  
Figure 213. Transmitter EVM vs. RF Attenuation, 5600 MHz LO, Transmitter  
LO Leakage, and Transmitter QEC Tracking Active, 75 MHz RF Bandwidth,  
LTE 20 MHz Downlink Signal, 245.76 MSPS Sample Rate  
Figure 216. Transmitter Output Power vs. RF Attenuation, 5850 MHz LO,  
5855 MHz CW Desired Signal, 75 MHz RF Bandwidth,  
245.76 MSPS Sample Rate  
0
0.10  
–10  
0.08  
0.06  
0.04  
0.02  
0
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
0
5
10  
15  
20  
0
5
10  
15  
20  
RF ATTENUATION (dB)  
RF ATTENUATION (dB)  
Figure 214. Transmitter HD2 vs. RF Attenuation, 5850 MHz LO, 5855 MHz  
CW Desired Signal, 75 MHz RF Bandwidth, 245.76 MSPS Sample Rate  
Figure 217. Tx Attenuation Step Error vs. RF Attenuation, 5850 MHz LO,  
5855 MHz CW Desired Signal, 75 MHz RF Bandwidth, 245.76 MSPS Sample Rate  
Rev. 0 | Page 53 of 61  
AD9375  
Data Sheet  
0.5  
0.4  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
+110°C  
+40°C  
–40°C  
–100 –80 –60 –40 –20  
0
20  
40  
60  
80  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110  
FREQUENCY OFFSET FROM LO (MHz)  
f1 OFFSET FREQUENCY (MHz)  
Figure 218. Transmitter Frequency Response Deviation from Flatness vs.  
Frequency Offset from LO, 5850 MHz LO, 200 MHz Synthesis Bandwidth,  
6 dB Digital Backoff, 245.76 MSPS Sample Rate  
Figure 221. Observation Receiver IIP2 vs. f1 Offset Frequency, 5600 MHz LO,  
0 dB Attenuation, 200 MHz RF Bandwidth, f2 = f1 + 1 MHz,  
245.76 MSPS Sample Rate  
80  
70  
60  
50  
40  
–40  
–45  
+110°C  
+40°C  
–50  
–40°C  
–55  
–60  
–65  
–70  
–75  
–80  
30  
+110°C  
20  
+40°C  
–40°C  
10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100 110  
5300  
5400  
5500  
5600  
5700  
5800  
5900  
INTERMODULATION FREQUENCY (MHz)  
OBSERVATION RECEIVER LO FREQUENCY (MHz)  
Figure 219. Observation Receiver LO Leakage vs. Observation Receiver  
LO Frequency, 0 dB Receiver Attenuation, 200 MHz RF Bandwidth,  
245.76 MSPS Sample Rate  
Figure 222. Observation Receiver IIP2 vs. Intermodulation Frequency (f2 − f1),  
5600 MHz LO, 0 dB Attenuation, 200 MHz RF Bandwidth,  
245.76 MSPS Sample Rate  
40  
35  
30  
25  
20  
30  
25  
20  
15  
+110°C  
+40°C  
–40°C  
15  
10  
5
+110°C  
+40°C  
–40°C  
10  
5
0
5300  
0
5400  
5500  
5600  
5700  
5800  
5900  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110  
OBSERVATION RECEIVER LO FREQUENCY (MHz)  
f1 OFFSET FREQUENCY (MHz)  
Figure 223. Observation Receiver IIP3 vs. f1 Offset Frequency, 5600 MHz LO,  
0 dB Attenuation, 200 MHz RF Bandwidth, f2 = 2 f1 + 1 MHz,  
245.76 MSPS Sample Rate  
Figure 220. Observation Receiver Noise Figure vs. Observation Receiver  
LO Frequency, 0 dB Receiver Attenuation, 200 MHz RF Bandwidth,  
245.76 MSPS Sample Rate, 100 MHz Integration Bandwidth  
Rev. 0 | Page 54 of 61  
Data Sheet  
AD9375  
40  
35  
30  
25  
20  
15  
10  
5
–40  
–50  
–60  
–70  
–80  
–90  
–10  
–110  
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
0
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105 115  
0
3
6
9
12  
15  
18  
INTERMODULATION FREQUENCY (MHz)  
OBSERVATION RECEIVER ATTENUATION (dB)  
Figure 224. Observation Receiver IIP3 vs. Intermodulation Frequency (f2 − 2f1),  
5600 MHz LO, 0 dB Attenuation, 200 MHz RF Bandwidth,  
245.76 MSPS Sample Rate  
Figure 227. Observation Receiver DC Offset vs. Observation Receiver  
Attenuation, 5850 MHz LO, CW Signal 30 MHz Offset, −15 dBm Input,  
200 MHz RF Bandwidth, 245.76 MSPS Sample Rate  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–10  
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
3
6
9
12  
15  
18  
0
3
6
9
12  
15  
18  
OBSERVATION RECEIVER ATTENUATION (dB)  
OBSERVATION RECEIVER ATTENUATION (dB)  
Figure 225. Observation Receiver Image vs. Observation Receiver  
Attenuation, 5600 MHz LO, CW Signal 30 MHz Offset,  
200 MHz RF Bandwidth, BTC Active, 245.76 MSPS Sample Rate  
Figure 228. Observation Receiver HD2 vs. Observation Receiver Attenuation,  
5600 MHz LO, CW Signal 30 MHz Offset, −15 dBm Input, Input Power  
Increasing Decibel for Decibel with Attenuation, 200 MHz RF Bandwidth,  
245.76 MSPS Sample Rate  
25  
0
20  
15  
10  
5
+110°C  
+40°C  
–40°C  
+110°C  
+40°C  
–40°C  
–20  
–40  
–60  
0
–80  
–5  
–10  
–15  
–100  
–120  
0
3
6
9
12  
15  
18  
0
3
6
9
12  
15  
18  
OBSERVATION RECEIVER ATTENUATION (dB)  
OBSERVATION RECEIVER ATTENUATION (dB)  
Figure 226. Observation Receiver Gain vs. Observation Receiver Attenuation,  
5600 MHz LO, CW Signal 30 MHz Offset,  
Figure 229. Observation Receiver HD3 vs. Observation Receiver Attenuation,  
5600 MHz LO, CW Signal 30 MHz Offset, −15 dBm Input, Input Power  
Increasing Decibel for Decibel with Attenuation, 200 MHz RF Bandwidth,  
245.76 MSPS Sample Rate  
200 MHz RF Bandwidth, 245.76 MSPS Sample Rate  
Rev. 0 | Page 55 of 61  
AD9375  
Data Sheet  
THEORY OF OPERATION  
The AD9375 is a highly integrated RF transceiver that can be  
configured for a wide range of applications. The device integrates  
all the RF, mixed-signal, and digital blocks necessary to provide  
transmit and receive functions in a single device. Programmability  
allows the two receiver channels and two transmitter channels  
to be used in TDD and FDD systems for 3G and 4G cellular  
standards.  
RECEIVER (Rx)  
The AD9375 contains dual receiver channels. Each Rx channel  
is a direct conversion system that contains a programmable  
attenuator stage, followed by matched I and Q mixers that  
downconvert received signals to baseband for digitization.  
To achieve gain control, a programmed gain index map is  
implemented. This gain map distributes attenuation among the  
various Rx blocks for optimal performance at each power level.  
In addition, support is available for both automatic and manual  
gain control modes.  
The observation receiver channel has two inputs for use in  
monitoring the transmitter outputs. This channel has a wide  
channel bandwidth that receives the entire transmit band and  
feeds it back to the digital section for error correction purposes.  
In addition, three sniffer receiver inputs can monitor different  
radio frequency bands (one at a time). These channels share the  
baseband ADC and digital processing with the two ORx inputs.  
The receiver includes Σ-Δ ADCs and adjustable sample rates  
that produce data streams from the received signals. The signals  
can be conditioned further by a series of decimation filters and  
a fully programmable 72-tap FIR filter with additional decimation  
settings. The sample rate of each digital filter block is adjustable  
by changing the decimation factors to produce the desired  
output data rate.  
The AD9375 contains four high speed serial interface links for  
the transmit chain and four high speed serial interface links  
shared by the Rx, ORx, and SnRx channels (JESD204B,  
Subclass 1 compliant), providing a low pin count and reliable  
data interface to a field-programmable gate array (FPGA) or  
other custom integrated baseband solutions.  
OBSERVATION RECEIVER (ORx)  
The ORx operates in a similar manner to the main receivers.  
Each input is differential and uses a dedicated mixer. The ORx  
inputs share a baseband ADC and baseband section; therefore,  
only one can be active at any time. The mixed signal and digital  
section is identical in design and operation to the main receiver  
channels. This channel can monitor the Tx channels and  
implement error correction functions. It can also be used as a  
general-purpose receiver.  
The AD9375 also provides self calibration for dc offset and  
quadrature error correction to maintain a high performance  
level under varying temperatures and input signal conditions.  
The device includes test modes that allow system designers to  
debug designs during prototyping and optimize radio  
configurations.  
TRANSMITTER (Tx)  
SNIFFER RECEIVER (SnRx)  
The AD9375 employs a direct conversion transmitter  
architecture consisting of two identical and independently  
controlled channels that provide all the digital processing,  
mixed-signal, and RF blocks necessary to implement a direct  
conversion system. Both channels share a common frequency  
synthesizer.  
The sniffer receiver provides three differential inputs that can  
monitor different frequency bands. Each input has a low noise  
amplifier (LNA) that is multiplexed to feed a single mixer. The  
output of this mixer stage is multiplexed with the ORx receiver  
mixers to feed the same baseband section. The SnRx bandwidth  
is limited to 20 MHz. This receiver can also be used as a general-  
purpose receiver if the bandwidth and RF performance are  
acceptable for a given application. The sniffer channel is also  
limited to operation from 300 MHz to 4000 MHz. Performance  
cannot be guaranteed for LO settings above 4000 MHz.  
The digital data from the JESD204B lanes pass through a fully  
programmable 96-tap FIR filter with optional interpolation.  
The FIR output is sent to a series of conversion filters that  
provide additional filtering and data rate interpolation prior to  
reaching the DAC. Each DAC has an adjustable sample rate and  
is linear up to full scale.  
These receiver inputs also provide an LNA bypass mode that  
removes the gain of the LNA when large signals are present.  
Note that no requirements for the LNA bypass mode are included  
in Table 1; performance specifications are only relative to the  
scenario in which the LNA is enabled.  
Once converted to baseband analog signals, the in-phase (I) and  
quadrature (Q) signals are filtered to remove sampling artifacts,  
and then the signals are fed to the upconversion mixers. At the  
mixer stage, the I and Q signals are recombined and modulated  
onto the carrier frequency for transmission to the output stage.  
Each transmit chain provides a wide attenuation adjustment  
range with fine granularity to help designers optimize SNR.  
CLOCK INPUT  
The AD9375 requires a differential clock connected to the  
DEV_CLK_IN+/DEV_CLK_IN− pins. The frequency of the  
clock input must be between 10 MHz and 320 MHz, and it must  
have very low phase noise because this signal generates the RF  
local oscillator and internal sampling clocks.  
Rev. 0 | Page 56 of 61  
 
 
 
 
 
 
Data Sheet  
AD9375  
SYNTHESIZERS  
AUXILIARY CONVERTERS  
RF PLL  
Auxiliary ADC Inputs (AUXADC_x)  
The AD9375 contains three fractional-N PLLs to generate the  
RF LOs used by the transmitter, receiver, and observation  
receiver. The PLL incorporates an internal VCO and loop filter  
that require no external components. The internal VCO LDO  
regulators eliminate the need for additional external power  
supplies for the PLLs. These regulators only require an external  
bypass capacitor for each supply.  
The AD9375 contains an auxiliary ADC that is multiplexed to four  
input pins (AUXADC_0 through AUXADC_3). This block can  
monitor system voltages without adding additional components.  
The auxiliary ADC is 12 bits with an input voltage range of 0.05 V  
to VDDA_3P3 − 0.05 V. When enabled, the auxiliary ADC is  
free running. Software reads of the output value provide the last  
value latched at the ADC output.  
Clock PLL  
Auxiliary DACs (AUXDAC_x)  
The AD9375 contains a PLL synthesizer that generates all of the  
baseband related clock signals and SERDES clocks. This PLL is  
programmed based on the data rate and sample rate requirements  
of the system.  
The AD9375 contains 10 identical auxiliary DACs (AUXDAC_0 to  
AUXDAC_9) that can supply bias voltages, analog control voltages,  
or other system functionality. The inputs of these auxiliary DACs  
(AUXDAC_0 to AUXDAC_9) are multiplexed with the GPIO_  
3P3_x pins according to Table 7. The auxiliary DACs are 10 bits,  
have an output voltage range of approximately 0.5 V to 3.0 V,  
and have a current drive of 10 mA.  
SERIAL PERIPHERAL INTERFACE (SPI)  
The AD9375 uses a SPI to communicate with the baseband  
processor (BBP). This interface can be configured as a 4-wire  
interface with dedicated receive and transmit ports, or it can be  
configured as a 3-wire interface with a bidirectional data  
communications port. This bus allows the BBP to set all device  
control parameters using a simple address data serial bus protocol.  
Table 7. AUXDAC Input Pin Assignments  
AUXDAC_x Output  
AUXDAC_0  
AUXDAC_1  
AUXDAC_2  
AUXDAC_3  
AUXDAC_4  
AUXDAC_5  
AUXDAC_6  
AUXDAC_7  
AUXDAC_8  
AUXDAC_9  
GPIO_3P3_x Pin  
GPIO_3P3_9  
GPIO_3P3_7  
GPIO_3P3_6  
GPIO_3P3_10  
GPIO_3P3_0  
GPIO_3P3_1  
GPIO_3P3_3  
GPIO_3P3_4  
GPIO_3P3_5  
GPIO_3P3_8  
Write commands follow a 24-bit format. The first bit sets the  
bus direction of the bus transfer. The next 15 bits set the address  
where data is written. The final eight bits are the data being  
transferred to the specific register address.  
Read commands follow a similar format with the exception that  
the first 16 bits are transferred on the SDIO pin, and the final  
eight bits are read from the AD9375, either on the SDO pin in  
4-wire mode or on the SDIO pin in 3-wire mode.  
GPIO_x AND GPIO_3P3_x PINS  
The AD9375 general-purpose input/output signals referenced  
to the VDD_IF supply can be configured for numerous functions.  
Some of these pins, when configured as outputs, are used by the  
BBP as real-time signals to provide a number of internal settings  
and measurements. This configuration allows the BBP to monitor  
receiver performance in different situations. A pointer register  
selects the information that is output to these pins. Signals used  
for manual gain mode, calibration flags, state machine states,  
and various receiver parameters are among the outputs that  
can be monitored on these pins. In addition, certain pins can  
be configured as inputs and used in various functions such as  
setting the receiver gain in real time.  
The GPIO_3P3_x pins are referenced to the VDDA_3P3 supply.  
These pins can provide control signals to other components  
such as voltage gain amplifiers (VGAs) or attenuators in the RF  
section that typically use a higher reference voltage.  
Rev. 0 | Page 57 of 61  
 
 
 
 
 
AD9375  
Data Sheet  
JESD204B DATA INTERFACE  
POWER SUPPLY SEQUENCE  
The digital data interface for the AD9375 uses JEDEC Standard  
JESD204B Subclass 1. The serial interface operates at speeds of  
up to 6144 Mbps. The benefits of the JESD204B interface  
include a reduction in required board area for data interface  
routing and smaller package options due to the need for fewer  
pins. Digital filtering is included in all receiver and transmitter  
paths to provide proper signal conditioning and sampling rates  
to meet the JESD204B data requirements. Examples of the  
digital filtering configurations for the Tx and Rx paths are  
shown in Figure 230 and Figure 231, respectively.  
The AD9375 requires a specific power-up sequence to avoid  
undesired power-up currents. The optimal power-on sequence  
starts the process by powering up the VDIG and the VDDA_1P3  
(analog) supplies simultaneously. If they cannot power up  
simultaneously, the VDIG supply must power up first. The  
VDDA_3P3, VDDA_1P8, and JESD_VTT_DES supplies must  
then power up after the VDIG and VDDA_1P3 supplies. Note  
that the VDD_IF supply can power up at any time. It is also  
RESET  
recommended to toggle the  
signal after power has  
stabilized prior to configuration. Follow the reverse order of  
the power-up sequence to power down.  
Table 8. Example Rx/Tx Interface Rates (Two Rx/Two Tx Channels, Maximum JESD204B Lane Rates)  
Tx/Tx Synthesis/  
Rx Bandwidth (MHz)  
Tx Input  
Rate (MSPS) Rate (MSPS) (Mbps), Two Tx/Two Rx  
Rx Output  
JESD204B Lane Rate  
JESD204B (No.  
of Lanes) Tx/Rx Reference Clock Options (MHz)  
100/250/100  
75/200/100  
20/100/40  
20/100/20  
307.2  
153.6  
122.88  
61.44  
30.72  
6144  
4/2  
4/2  
4/2  
4/1  
122.88, 153.6, 245.76, 307.2  
122.88, 245.76  
122.88, 245.76  
245.76  
122.88  
122.88  
4915.2  
2457.6  
2457.6  
122.88, 245.76  
TRANSMITTER  
HALF-BAND  
FILTER 0  
(DPD)  
HB  
TRANSMITTER  
HALF-BAND  
FILTER 2  
TRANSMITTER  
HALF-BAND  
FILTER 1  
QUADRATURE  
ERROR  
CORRECTION  
DPD  
ACTUATOR  
DIGITAL  
GAIN  
TRANSMITTER FIR  
(INTERPOLATION  
1, 2, 4)  
I/Q DAC  
JESD204B  
Figure 230. Example Tx Data Path Filter Implementation  
DEC5  
RECEIVER  
HALF-BAND  
FILTER 3  
RECEIVER  
HALF-BAND  
FILTER 2  
RECEIVER  
HALF-BAND  
FILTER 1  
RECEIVER FIR  
(DECIMATION  
1, 2, 4)  
QEC  
FILTER  
DIGITAL  
GAIN  
DC  
CORRECTION  
JESD204B  
ADC  
Figure 231. Data Rx Data Path Filter Implementation  
Rev. 0 | Page 58 of 61  
 
 
 
 
Data Sheet  
AD9375  
20  
10  
DIGITAL PREDISTORTION (DPD)  
DPD  
NO DPD  
This device provides a fully integrated DPD function that  
linearizes the output of the power amplifier (PA) of the transmit  
system by altering the digital waveform to compensate for  
nonlinearities in the PA response. Both the DPD actuator and  
coefficient calculation engine are integrated. This functionality  
uses the ORx channel to monitor the output of the PA and  
calculates the appropriate predistortion to linearize the output.  
The integrated DPD capability allows the system to drive the PA  
closer to saturation, enabling a higher efficiency PA while  
maintaining linearity. The DPD is optimized for small cell PAs  
with rms output powers in the 250 mW to 10 W range and for a  
maximum occupied signal bandwidth of 40 MHz. The  
additional power consumed by the DPD block when enabled is  
less than 100 mW.  
0
–10  
–20  
–30  
–40  
–50  
–60  
2540  
2560  
2580  
2600  
2620  
2640  
2660  
FREQUENCY (MHz)  
Figure 232. Output Spectrum for Normal Operation (Red) and with DPD  
Activated (Blue) for a 20 MHz LTE Signal  
20  
Performance enhancement is shown in Figure 232 for a 20 MHz  
LTE signal and in Figure 233 for a 40 MHz LTE output. In both  
cases, a Band 7 Skyworks SKY66297 high efficiency PA is used  
to demonstrate the adjacent channel level reduction (ACLR)  
improvement for a particular device. Table 9 and Table 10 show  
the details of ACLR improvement that are achieved for these two  
scenarios when DPD is activated. Note that the magnitude of  
improvement in ACLR is heavily PA dependent and generally  
degrades as signal bandwidth increases.  
DPD  
NO DPD  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
2500  
2525  
2550  
2575  
2600  
2625  
2650  
2675  
2700  
FREQUENCY (MHz)  
Figure 233. Output Spectrum for Normal Operation (Red) and with DPD  
Activated (Blue) for a 40 MHz LTE Output  
Table 9. ACLR Comparison With and Without DPD for a 20 MHz LTE Waveform  
20 MHz Offset (dBc)  
40 MHz Offset (dBc)  
60 MHz Offset (dBc)  
Lower Upper  
Mode1  
Lower  
Upper  
Lower  
−51.71  
−52.63  
Upper  
−51.16  
−56.57  
Normal Operation  
DPD Activated  
−32.15  
−50.89  
−34.18  
−51.90  
−59.29  
−57.23  
−58.99  
−59.49  
1 Waveform is 10 ms (full-frame) LTE evolved universal terrestrial radio access (E-UTRA) Test Model 1.1 (E-TM 1.1) at 7.5 dB peak to average ratio (PAR), with crest factor  
reduction (CFR), 28 dBm output, and 18.02 MHz occupied bandwidth.  
Table 10. ACLR Comparison With and Without DPD for a 40 MHz LTE Waveform  
20 MHz Offset (dBc)  
40 MHz Offset (dBc)  
60 MHz Offset (dBc)  
Lower Upper  
Mode1  
Lower  
Upper  
Lower  
Upper  
Normal Operation  
DPD Activated  
−29.74  
−47.42  
−33.69  
−48.22  
−37.45  
−49.84  
−41.65  
−49.62  
−48.31  
−52.06  
−47.95  
−54.38  
1 Waveform is 10 ms (full frame) LTE E-UTRA Test Model 1.1 (E-TM 1.1) at 7.5 dB PAR (with CFR), 27 dBm output, and 36.04 MHz occupied bandwidth.  
Rev. 0 | Page 59 of 61  
 
 
 
 
 
AD9375  
Data Sheet  
Table 12. JTAG Modes  
JTAG BOUNDARY SCAN  
Test Pin Level  
GPIO_0 to GPIO_3 Description  
The AD9375 provides support for a JTAG boundary scan. Five  
dual-function pins are associated with the JTAG interface.  
These pins, listed in Table 11, are used to access the on-chip test  
access port. To enable the JTAG functionality, set the GPIO_0  
through GPIO_3 pins according to Table 12 depending on how the  
desired JESD204B sync pin (that is, SYNCINB0+, SYNCINB0−,  
SYNCINB1+, SYNCINB1−, SYNCOUTB0+, or SYNCOUTB0−)  
is configured in the software (LVDS or CMOS mode). Pull the  
TEST pin high to enable the JTAG mode.  
0
1
XXXX1  
1001  
Normal operation  
JTAG mode with LVDS  
JESD204B sync signals  
JTAG mode with CMOS  
JESD204B sync signals  
1
1011  
1 X means don’t care.  
Table 11. Dual-Function Boundary Scan Test Pins  
Mnemonic JTAG Mnemonic Description  
GPIO_4  
GPIO_5  
GPIO_6  
GPIO_7  
GPIO_18  
TRST  
TDO  
TDI  
TMS  
TCK  
Test access port reset  
Test data output  
Test data input  
Test access port mode select  
Test clock  
Rev. 0 | Page 60 of 61  
 
 
 
Data Sheet  
AD9375  
OUTLINE DIMENSIONS  
12.10  
12.00 SQ  
11.90  
A1 BALL  
PAD CORNER  
A1 BALL  
CORNER  
14 13 12 11 10 9  
8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
PIN A1  
INDICATOR  
10.40 SQ  
7.755 REF  
K
L
0.80  
M
N
P
TOP VIEW  
BOTTOM VIEW  
0.80 REF  
8.165 REF  
DETAIL A  
1.27  
1.18  
1.09  
0.91  
0.84  
0.77  
DETAIL A  
0.39  
0.34  
0.29  
0.44 REF  
0.50  
0.45  
0.40  
SEATING  
PLANE  
COPLANARITY  
0.12  
BALL DIAMETER  
COMPLIANT TO JEDEC STANDARDS MO-275-GGAB-1.  
Figure 234. 196-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-196-12)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range2  
Package Description  
Package Option  
AD9375BBCZ  
AD9375BBCZ-REEL  
ADRV9375-N/PCBZ  
−40°C to +85°C  
−40°C to +85°C  
196-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
196-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
Evaluation Board, 2600 MHz Matching Circuits  
BC-196-12  
BC-196-12  
1 Z = RoHS-Compliant Part.  
2 See the Thermal Resistance section.  
©2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D15657-0-3/17(0)  
Rev. 0 | Page 61 of 61  
 
 

相关型号:

AD9380

Analog/HDMI Dual-Display Interface
ADI

AD9380/PCB

Analog/HDMI Dual-Display Interface
ADI

AD9380KSTZ-100

Analog/HDMI Dual-Display Interface
ADI

AD9380KSTZ-150

Analog/HDMI Dual-Display Interface
ADI

AD9381

HDMI Display Interface
ADI

AD9381/PCB

HDMI Display Interface
ADI

AD9381KSTZ-100

HDMI Display Interface
ADI

AD9381KSTZ-150

HDMI Display Interface
ADI

AD9387NK

High Performance, Low Power HDMI⑩/DVI Transmitter
ADI

AD9387NK/PCB

High Performance, Low Power HDMI⑩/DVI Transmitter
ADI

AD9387NKBBCZ-80

High Performance, Low Power HDMI⑩/DVI Transmitter
ADI

AD9387NKBBCZRL-80

High Performance, Low Power HDMI⑩/DVI Transmitter
ADI