AD9432BSQ-105 [ADI]

12-Bit, 80 MSPS/105 MSPS A/D Converter; 12位, 80 MSPS / 105 MSPS A / D转换器
AD9432BSQ-105
型号: AD9432BSQ-105
厂家: ADI    ADI
描述:

12-Bit, 80 MSPS/105 MSPS A/D Converter
12位, 80 MSPS / 105 MSPS A / D转换器

转换器
文件: 总20页 (文件大小:493K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-Bit, 80 MSPS/105 MSPS  
A/D Converter  
a
AD9432  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
On-Chip Reference and Track/Hold  
On-Chip Input Buffer  
V
V
DD  
CC  
850 mW Typical Power Dissipation at 105 MSPS  
500 MHz Analog Bandwidth  
12  
12  
AIN  
PIPELINE  
ADC  
BUF  
T/H  
D11–D0  
OR  
OUTPUT  
AIN  
SNR = 67 dB @ 49 MHz AIN at 105 MSPS  
SFDR = 80 dB @ 49 MHz AIN at 105 MSPS  
2.0 V p-p Differential Analog Input Range  
Single 5.0 V Supply Operation  
3.3 V CMOS/TTL Outputs  
STAGING  
ENCODE  
REF  
TIMING  
ENCODE  
AD9432  
VREFIN  
GND VREFOUT  
Twos Complement Output Format  
APPLICATIONS  
Communications  
Basestations and Zero-IFSubsystems  
Wireless Local Loop (WLL)  
Local Multipoint Distribution Service (LMDS)  
HDTV Broadcast Cameras and Film Scanners  
GENERAL INTRODUCTION  
external reference or driver components are required for many  
applications. The digital outputs are TTL/CMOS compatible  
and a separate output power supply pin supports interfacing  
with 3.3 V logic. The encode input supports either differential  
or single-ended and is TTL/CMOS-compatible.  
The AD9432 is a 12-bit monolithic sampling analog-to-digital  
converter with an on-chip track-and-hold circuit and is optimized  
for high-speed conversion and ease of use. The product operates  
at a 105 MSPS conversion rate with outstanding dynamic per-  
formance over its full operating range.  
Fabricated on an advanced BiCMOS process, the AD9432 is  
available in a 52-lead plastic quad flatpack package (LQFP)  
specified over the industrial temperature range (–40°C to +85°C).  
The ADC requires only a single 5.0 V power supply and a  
105 MHz encode clock for full-performance operation. No  
REV. E  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
(VDD = 3.3 V, VCC = 5.0 V; external reference; differential encode input, unless  
AD9432–SPECIFICATIONS otherwise noted.)  
Test  
Level  
AD9432BST/BSQ-80  
AD9432BST/BSQ-105  
Parameter  
Temp  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
RESOLUTION  
12  
12  
Bits  
DC ACCURACY  
Differential Nonlinearity  
25°C  
Full  
25°C  
Full  
Full  
25°C  
Full  
I
VI  
I
VI  
VI  
I
–0.75  
–1.0  
–1.0  
–1.5  
0.25 +0.75  
–0.75  
–1.0  
–1.0  
–1.5  
0.25 +0.75  
LSB  
LSB  
LSB  
LSB  
0.5  
0.5  
1.0  
+1.0  
+1.0  
+1.5  
0.5  
0.5  
1.0  
+1.0  
+1.0  
+1.5  
Integral Nonlinearity  
No Missing Codes  
Gain Error1  
Guaranteed  
+2  
Guaranteed  
+2  
–5  
+7  
–5  
+7  
% FS  
ppm/°C  
Gain Tempco1  
V
150  
150  
ANALOG INPUT  
Input Voltage Range (AIN–AIN)  
Common-Mode Voltage  
Input Offset Voltage  
Input Resistance  
Input Capacitance  
Full  
Full  
Full  
Full  
25°C  
25°C  
V
V
VI  
VI  
V
1.0  
3.0  
0
3
4
1.0  
3.0  
0
3
4
V
V
mV  
kΩ  
pF  
MHz  
–5  
2
+5  
4
–5  
2
+5  
4
Analog Bandwidth, Full Power  
V
500  
500  
ANALOG REFERENCE  
Output Voltage  
Tempco  
Full  
Full  
Full  
VI  
V
VI  
2.4  
80  
2.5  
50  
15  
2.6  
50  
2.4  
2.5  
50  
15  
2.6  
50  
V
ppm/°C  
µΑ  
Input Bias Current  
SWITCHING PERFORMANCE  
Maximum Conversion Rate  
Minimum Conversion Rate  
Encode Pulsewidth High (tEH  
Encode Pulsewidth Low (tEL  
Aperture Delay (tA)  
Full  
Full  
25°C  
25°C  
25°C  
25°C  
Full  
Full  
Full  
Full  
VI  
IV  
IV  
IV  
V
105  
MSPS  
MSPS  
ns  
ns  
ns  
ps rms  
ns  
ns  
ns  
ns  
1
1
)
)
4.0  
4.0  
6.2  
6.2  
2.0  
0.25  
5.3  
5.5  
2.1  
1.9  
2
4.0  
4.0  
4.8  
4.8  
2.0  
0.25  
5.3  
5.5  
2.1  
1.9  
2
Aperture Uncertainty (Jitter)  
V
Output Valid Time (tV)2  
VI  
VI  
V
V
V
V
IV  
3.0  
3.0  
2
Output Propagation Delay (tPD  
Output Rise Time (tR)2  
Output Fall Time (tF)  
Out-of-Range Recovery Time  
Transient Response Time  
Latency  
)
8.0  
8.0  
25°C  
25°C  
Full  
ns  
ns  
Cycles  
2
10  
2
10  
DIGITAL INPUTS  
Encode Input Common Mode  
Differential Input (ENC–ENC)  
Single-Ended  
Full  
Full  
V
V
1.6  
750  
1.6  
750  
V
mV  
Logic “1” Voltage  
Logic “0” Voltage  
Input Resistance  
Full  
Full  
Full  
25°C  
IV  
IV  
VI  
V
2.0  
3
2.0  
3
V
V
kΩ  
pF  
0.8  
8
0.8  
8
5
4.5  
5
4.5  
Input Capacitance  
DIGITAL OUTPUTS  
Logic “1” Voltage (VDD = 3.3 V)  
Logic “0” Voltage (VDD = 3.3 V)  
Output Coding  
Full  
Full  
VI  
VI  
VDD – 0.05  
VDD – 0.05  
V
V
0.05  
0.05  
Two’s Complement  
Two’s Complement  
POWER SUPPLY  
Power Dissipation3  
Power Supply Rejection Ratio (PSRR) 25°C  
IVCC  
IVDD  
Full  
VI  
I
VI  
VI  
790  
+0.5  
158  
9.5  
1000  
+5  
200  
12.2  
850  
+0.5  
170  
12.5  
1100  
mW  
mV/V  
mA  
–5  
–5  
+5  
220  
16  
Full  
Full  
mA  
–2–  
REV. E  
AD9432  
Test  
Level  
AD9432BST/BSQ-80  
AD9432BST/BSQ-105  
Parameter  
Temp  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE4  
Signal-to-Noise Ratio (SNR)  
(Without Harmonics)  
f
IN = 10.3 MHz  
25°C  
25°C  
25°C  
25°C  
I
I
I
V
65.5  
65  
67.5  
67.2  
67.0  
66.1  
65.5  
64  
67.5  
67.2  
67.0  
66.1  
dB  
dB  
dB  
dB  
fIN = 40 MHz  
f
f
IN = 49 MHz  
IN = 70 MHz  
Signal-to-Noise Ratio (SINAD)  
(With Harmonics)  
fIN = 10.3 MHz  
25°C  
25°C  
25°C  
25°C  
I
I
I
V
65  
64.5  
67.2  
66.9  
66.7  
65.8  
65  
63  
67.2  
66.9  
66.7  
65.8  
dB  
dB  
dB  
dB  
fIN = 40 MHz  
f
f
IN = 49 MHz  
IN = 70 MHz  
Effective Number of Bits  
fIN = 10 MHz  
25°C  
25°C  
25°C  
25°C  
V
V
V
V
11.0  
10.9  
10.9  
10.7  
11.0  
10.9  
10.9  
10.7  
Bits  
Bits  
Bits  
Bits  
f
IN = 40 MHz  
fIN = 49 MHz  
IN = 70 MHz  
f
Second and Third Harmonic Distortion  
fIN = 10 MHz  
25°C  
25°C  
25°C  
25°C  
I
I
I
V
–75  
–73  
–85  
–85  
–83  
–80  
–75  
–72  
–85  
–83  
–80  
–78  
dBc  
dBc  
dBc  
dBc  
f
f
IN = 40 MHz  
IN = 49 MHz  
fIN = 70 MHz  
Worst Harmonic or Spur  
(Excluding Second and Third)  
fIN = 10 MHz  
25°C  
25°C  
25°C  
25°C  
I
I
I
V
–80  
–80  
–90  
–90  
–90  
–90  
–80  
–80  
–90  
–90  
–90  
–90  
dBc  
dBc  
dBc  
dBc  
f
f
IN = 40 MHz  
IN = 49 MHz  
fIN = 70 MHz  
Two-Tone Intermod Distortion (IMD)  
f
IN1 = 29.3 MHz; fIN2 = 30.3 MHz  
25°C  
25°C  
V
V
–75  
–66  
–75  
–66  
dBc  
dBc  
fIN1 = 70.3 MHz; fIN2 = 71.3 MHz  
NOTES  
1Gain error and gain temperature coefficients are based on the ADC only (with a fixed 2.5 V external reference and a 2 V p-p differential analog input).  
2tV and tPD are measured from the transition points of the ENCODE input to the 50%/50% levels of the digital outputs swing. The digital output load during test is  
not to exceed an ac load of 10 pF or a dc current of 40 µA. Rise and fall times measured from 10% to 90%.  
3Power dissipation measured with encode at rated speed and a dc analog input. (Outputs Static, IVDD = 0.)  
4SNR/harmonics based on an analog input voltage of –0.5 dBFS referenced to a 2 V full-scale input range.  
Specifications subject to change without notice.  
REV. E  
–3–  
AD9432  
ABSOLUTE MAXIMUM RATINGS*  
THERMAL CHARACTERISTICS  
VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
Analog Inputs . . . . . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V  
Digital Inputs . . . . . . . . . . . . . . . . . . . –0.5 V to VDD + 0.5 V  
VREFIN . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Operating Temperature . . . . . . . . . . . . . . . . –55°C to +125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Maximum Junction Temperature . . . . . . . . . . . . . . . . 150°C  
Maximum Case Temperature . . . . . . . . . . . . . . . . . . . 150°C  
52-Lead Plastic LQFP (ST-52)  
JA = 50°C/W, No Airflow  
52-lead PowerQuad® 4 LQFP (SQ-52)  
JA = 25°C/W, Soldered Exposed Heat Sink, No Airflow  
JA = 33°C/W, Unsoldered Exposed Heat Sink, No Airflow  
JC = 2°C/W, Bottom of package (Exposed Heat Sink)  
Simulated Typical performance for 4-layer JEDEC board,  
horizontal orientation.  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions outside of those indicated in the operation  
sections of this specification is not implied. Exposure to absolute maximum  
ratings for extended periods may affect device reliability.  
ORDERING GUIDE  
Temperature  
Ranges  
Package  
Descriptions  
Package  
Option  
Model  
AD9432BSQ –40°C to +85°C 52-Lead Thermally  
SQ-52  
-80, -105  
Enhanced Plastic  
Quad Flatpack  
EXPLANATION OF TEST LEVELS  
Test Level  
AD9432BST –40°C to +85°C 52-Lead Plastic Quad ST-52  
-80, -105  
AD9432/PCB 25°C  
Flatpack (LQFP)  
Evaluation Board  
I
100% production tested.  
II 100% production tested at 25°C and sample tested at  
specified temperatures.  
III Sample tested only.  
IV Parameter is guaranteed by design and characterization  
testing.  
V
Parameter is a typical value only.  
VI 100% production tested at 25°C; guaranteed by design and  
characterization testing for industrial temperature range.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD9432 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
PowerQuad is a registered trademark of AMkor Technology, Inc.  
REV. E  
–4–  
AD9432  
PIN CONFIGURATION  
52 51 50 49 48 47 46 45 44 43 42 41 40  
1
2
GND  
39 GND  
38 GND  
PIN 1  
IDENTIFIER  
V
CC  
3
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
V
V
GND  
GND  
CC  
CC  
4
5
V
GND  
GND  
GND  
CC  
6
V
CC  
AD9432  
TOP VIEW  
(Not to Scale)  
7
ENCODE  
ENCODE  
GND  
V
8
DD  
9
DGND  
D0 (LSB)  
D1  
10  
11  
12  
13  
V
CC  
GND  
D2  
DGND  
V
D3  
DD  
14 15 16 17 18 19 20 21 22 23 24 25 26  
PIN FUNCTION DESCRIPTIONS  
Pin Number (AD9432BST)  
Mnemonic  
Function  
1, 3, 4, 9, 11, 33, 34, 35, 38, 39, 40, 43, 48, 51 GND  
Analog Ground  
2, 5, 6, 10, 36, 37, 42, 44, 47, 52  
VCC  
Analog Supply (5 V)  
7
8
14  
ENCODE  
ENCODE  
OR  
Encode Clock for ADC–Complementary  
Encode Clock for ADC–True (ADC samples on rising edge of ENCODE)  
Out of Range Output  
15–20, 25–30  
D11–D6, D5–D0 Digital Output  
12, 21, 24, 31  
13, 22, 23, 32  
DGND  
VDD  
DNC  
Digital Output Ground  
Digital Output Power Supply (2.7 V to 3.6 V)  
Do Not Connect  
41  
45  
46  
49  
50  
VREFIN  
VREFOUT  
AIN  
Reference Input for ADC (2.5 V Typical); Bypass with 0.1 µF to Ground.  
Internal Reference Output (2.5 V Typical)  
Analog Input–True  
AIN  
Analog Input–Complementary  
DEFINITION OF SPECIFICATIONS  
Analog Bandwidth (Small Signal)  
The analog input frequency at which the spectral power of the  
fundamental frequency (as determined by the FFT analysis) is  
reduced by 3 dB.  
Minimum Conversion Rate  
The encode rate at which the SNR of the lowest analog signal  
frequency drops by no more than 3 dB below the guaranteed limit.  
Maximum Conversion Rate  
The encode rate at which parametric testing is performed.  
Aperture Delay  
The delay between a differential crossing of ENCODE and  
ENCODE and the instant at which the analog input is sampled.  
Output Propagation Delay  
The delay between a differential crossing of ENCODE and  
ENCODE and the time when all output data bits are within  
valid logic levels.  
Aperture Uncertainty (Jitter)  
The sample-to-sample variation in aperture delay.  
Power Supply Rejection Ratio  
Differential Nonlinearity  
The deviation of any code from an ideal 1 LSB step.  
The ratio of a change in input offset voltage to a change in  
power supply voltage.  
Encode Pulsewidth/Duty Cycle  
Signal-to-Noise Plus Distortion (SINAD)  
Pulsewidth high is the minimum amount of time that the ENCODE  
pulse should be left in Logic “1” state to achieve rated performance;  
pulsewidth low is the minimum time ENCODE pulse should be left  
in low state. At a given clock rate, these specs define an acceptable  
Encode duty cycle.  
The ratio of the rms signal amplitude (set at 1 dB below full  
scale) to the rms value of the sum of all other spectral compo-  
nents, including harmonics but excluding dc.  
Signal-to-Noise Ratio (SNR)  
The ratio of the rms signal amplitude (set at 1 dB below full  
scale) to the rms value of the sum of all other spectral compo-  
nents, excluding the first five harmonics and dc.  
Integral Nonlinearity  
The deviation of the transfer function from a reference line  
measured in fractions of 1 LSB using a “best straight line”  
determined by a least square curve fit.  
REV. E  
–5–  
AD9432  
Spurious-Free Dynamic Range (SFDR)  
Two-Tone SFDR  
The ratio of the rms signal amplitude to the rms value of the  
peak spurious spectral component. The peak spurious compo-  
nent may or may not be a harmonic. May be reported in dBc  
(i.e., degrades as signal level is lowered), or in dBFS (always  
related back to converter full scale).  
The ratio of the rms value of either input tone to the rms value  
of the peak spurious component. The peak spurious component  
may or may not be an IMD product. May be reported in dBc  
(i.e., degrades as signal level is lowered), or in dBFS (always  
related back to converter full scale).  
Two-Tone Intermodulation Distortion Rejection  
Worst Harmonic  
The ratio of the rms value of either input tone to the rms value  
of the worst third order intermodulation product; reported in dBc.  
The ratio of the rms signal amplitude to the rms value of the  
worst harmonic component, reported in dBc.  
SAMPLE N  
SAMPLE N+10  
SAMPLE N+11  
SAMPLE N1  
AIN  
SAMPLE N+1  
tA  
SAMPLE N+9  
tEH  
tEL  
1/fS  
ENCODE  
ENCODE  
tPD  
tV  
DATA N11  
DATA N10  
N9  
N2  
DATA N1  
DATA N  
DATA N+1  
D11D0  
Figure 1. Timing Diagram  
V
CC  
V
CC  
17k  
8k⍀  
17k⍀  
8k⍀  
ENCODE  
ENCODE  
VREFIN  
100⍀  
100⍀  
Figure 2. Equivalent Voltage Reference Input Circuit  
Figure 4. Equivalent Encode Input Circuit  
V
CC  
V
DD  
Q1  
NPN  
DIGITAL  
OUTPUT  
VREFOUT  
V
OUTPUT  
REF  
DIGITAL OUTPUT  
Figure 3. Equivalent Voltage Reference Output Circuit  
Figure 5. Equivalent Digital Output Circuit  
V
CC  
5k  
7k⍀  
5k⍀  
AIN  
AIN  
7k⍀  
ANALOG INPUT  
Figure 6. Equivalent Analog Input Circuit  
REV. E  
–6–  
Typical Performance CharacteristicsAD9432  
90  
85  
70  
AIN = 10.3MHz  
SFDR  
65  
80  
75  
70  
65  
60  
60  
55  
50  
SNR  
SINAD  
250  
0
20  
40  
60  
80  
100  
120  
140  
160  
0
50  
100  
150  
200  
AIN INPUT FREQUENCY MHz (0.5dBFS)  
ENCODE MSPS  
TPC 1. SNR/SINAD/SFDR vs. fS: fIN = 10.3 MHz  
TPC 4. SNR vs. AIN Input Frequency,  
Encode = 105 MSPS  
100  
90  
50  
AIN = 10.3MHz  
ENCODE = 105MSPS  
55  
60  
65  
70  
75  
80  
80  
2nd or 3rd (6.0dBFS)  
70  
60  
50  
85  
3rd  
90  
2nd or 3rd (0.5dBFS)  
2nd or 3rd (3.0dBFS)  
2nd  
95  
40  
100  
0
20  
40  
60  
80  
100 120 140 160 180 200  
0
20  
40  
60  
80  
100  
120  
140  
160  
ANALOG INPUT FREQUENCY MHz  
ENCODE MSPS  
TPC 2. Harmonics vs. fS: fIN = 10.3 MHz  
TPC 5. Harmonics vs. fIN: fS = 105 MSPS  
100  
90  
70  
65  
60  
55  
50  
ENCODE = 105MSPS  
ENCODE = 105MSPS  
WORST OTHER (0.5dBFS)  
80  
WORST OTHER (6.0dBFS)  
WORST OTHER (3.0dBFS)  
SINAD (3.0dBFS)  
SINAD (6.0dBFS)  
70  
SINAD (0.5dBFS)  
60  
50  
40  
45  
40  
200  
0
20  
40  
60  
80  
100 120 140 160 180  
0
20  
40  
60  
80  
100 120 140 160 180 200  
ANALOG INPUT FREQUENCY MHz  
ANALOG INPUT FREQUENCY MHz  
TPC 3. SINAD vs. fIN: fS = 105 MSPS  
TPC 6. Worst-Case Spur (Other than Second and  
Third) vs. fIN: fS = 105 MSPS  
REV. E  
–7–  
AD9432  
0
10  
20  
30  
40  
50  
60  
70  
0
ENCODE = 105MSPS  
AIN = 50.3MHz (0.46dBFS)  
SNR = 67.0dB  
SINAD = 66.7dB  
SFDR = 80dBc  
ENCODE = 105MSPS  
AIN = 10.3MHz (0.53dBFS)  
SNR = 67.32dB  
10  
20  
30  
SINAD = 67.07dB  
SFDR = 85dBc  
40  
50  
60  
70  
80  
90  
80  
90  
100  
100  
110  
120  
110  
120  
SAMPLES  
SAMPLES  
TPC 10. Spectrum: fS = 105 MSPS, fIN = 50.3 MHz  
TPC 7. Spectrum: fS = 105 MSPS, fIN = 10.3 MHz  
0
0
ENCODE = 105MSPS  
AIN1 = 29.3MHz (7dBFS)  
10  
10  
AIN = 27.0MHz (0.52dBFS)  
AIN2 = 30.3MHz (7dBFS)  
SNR = 67.3dB  
ENCODE = 105MSPS  
20  
30  
40  
50  
60  
70  
20  
SINAD = 67.0dB  
SFDR = 83.1dBc  
30  
40  
50  
60  
70  
80  
90  
80  
90  
100  
100  
110  
120  
110  
120  
SAMPLES  
SAMPLES  
TPC 11. Two-Tone Spectrum, Wideband: fS =  
105 MSPS, AIN1 = 29.3 MHz, AIN2 = 30.3 MHz  
TPC 8. Spectrum: fS = 105 MSPS, fIN = 27 MHz  
0
0
ENCODE = 105MSPS  
AIN1 = 70.3MHz (7dBFS)  
10  
10  
AIN = 40.9MHz (0.56dBFS)  
AIN2 = 71.3MHz (7dBFS)  
SNR = 67.2dB  
ENCODE = 105MSPS  
20  
30  
40  
50  
60  
70  
20  
SINAD = 66.9dB  
30  
40  
50  
60  
70  
SFDR = 80dBc  
80  
90  
80  
90  
100  
100  
110  
120  
110  
120  
SAMPLES  
SAMPLES  
TPC 12. Two-Tone Spectrum, Wideband: fS =  
105 MSPS, AIN1 = 70.3 MHz, AIN2 = 71.3 MHz  
TPC 9. Spectrum: fS = 105 MSPS, fIN = 40.9 MHz  
REV. E  
–8–  
AD9432  
110  
100  
1.00  
0.75  
dBFS  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.50  
ENCODE = 105MSPS  
AIN = 50.3MHz  
0.25  
0.00  
dBc  
0.25  
0.50  
0.75  
1.00  
80  
70  
60  
50  
40  
30  
20  
10  
0
INL  
ANALOG INPUT POWER LEVEL dBFS  
TPC 13. Single Tone SFDR  
TPC 15. Integral Nonlinearity: fS = 105 MSPS  
1.00  
0.75  
3.0  
0.50  
2.5  
2.0  
1.5  
0.25  
0.00  
0.25  
0.50  
0.75  
1.00  
0
2
4
6
8
10  
DNL  
CURRENT mA  
TPC 14. Differential Nonlinearity: fS = 105 MSPS  
TPC 16. Voltage Reference Output vs. Current Load  
REV. E  
–9–  
AD9432  
APPLICATION NOTES  
Theory of Operation  
AD9432  
0.1F  
0.1F  
ENCODE  
PECL  
GATE  
The AD9432 is a multibit pipeline converter that uses a switched  
capacitor architecture. Optimized for high speed, this converter  
provides flat dynamic performance up to frequencies near Nyquist.  
DNL transitional errors are calibrated at final test to a typical  
accuracy of 0.25 LSB or less.  
ENCODE  
510⍀  
510⍀  
GND  
Figure 8. AC Coupling to ENCODE Inputs  
ENCODE Voltage Level Definition  
The voltage level definitions for driving ENCODE and ENCODE  
USING THE AD9432  
Analog Input  
The analog input to the AD9432 is a differential buffer. The input  
buffer is self-biased by an on-chip resistor divider that sets the  
dc common-mode voltage to a nominal 3 V (see Equivalent  
Circuits section). Rated performance is achieved by driving the  
input differentially. Minimum input offset voltage is obtained when  
driving from a source with a low differential source impedance  
such as a transformer in ac applications. Capacitive coupling at the  
inputs will increase the input offset voltage by as much as 25 mV.  
Driving the ADC single-endedly will degrade performance.  
For best dynamic performance, impedances at AIN and AIN  
should match.  
in single-ended and differential mode are shown in Figure 9.  
ENCODE Inputs  
Differential Signal Amplitude (VID) . . . . . . . . . . . 500 mV min  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 750 mV nom  
High Differential Input Voltage (VIHD) . . . . . . . . . . 3.5 V max  
Low Differential Input Voltage (VILD) . . . . . . . . . . . . . 0 V min  
Common-Mode Input (VICM) . . . . . . . 1.25 V min, 1.6 V nom  
High Single-Ended Voltage (VIHS) . . . . . 2 V min to 3.5 V max  
Low Single-Ended Voltage (VILS  
)
. . . . . 0 V min to 0.8 V max  
Special care was taken in the design of the analog input section  
of the AD9432 to prevent damage and corruption of data when  
the input is overdriven. The nominal input range is 2 V p-p.  
Each analog input will be 1 V p-p when driven differentially.  
ENCODE  
V
V
IHD  
V
ID  
ICM  
ENCODE  
V
ILD  
4.0  
V
IHS  
ENCODE  
AIN  
3.5  
0.1F  
V
ILS  
Figure 9. Differential and Single-Ended Input Levels  
3.0  
Often, the cleanest clock source is a crystal oscillator producing  
a pure sine wave. In this configuration, or with any roughly  
symmetrical clock input, the input can be ac-coupled and biased  
to a reference voltage that also provides the ENCODE. This  
ensures that the reference voltage is centered on the encode signal.  
AIN  
2.5  
2.0  
Digital Outputs  
The digital outputs are 3.3 V (2.7 V to 3.6 V) TTL/CMOS-  
compatible for lower power consumption. The output data  
format is Two’s Complement, illustrated in Table I. The out of  
range (OR) output (logic LOW for normal operation) will be  
HIGH during any clock cycle when the ADC output data (Dx)  
reach positive or negative full scale (–2048 or +2047). The OR  
is internally generated each clock cycle, has the same pipe-  
line latency and propagation delay as the ADC output data, and  
will remain HIGH until the output data reflect an in-range  
condition. The ADC output bits (Dx) will not roll over, and  
will therefore remain at positive or negative full scale (+2048 or  
–2047) while the OR output is HIGH.  
Figure 7. Full-Scale Analog Input Range  
ENCODE Input  
Any high speed A/D converter is extremely sensitive to the qual-  
ity of the sampling clock provided by the user. A track/hold  
circuit is essentially a mixer, and any noise, distortion, or timing  
jitter on the clock will be combined with the desired signal at the  
A/D output. For that reason, considerable care has been taken  
in the design of the ENCODE input of the AD9432, and the  
user is advised to give commensurate thought to the clock source.  
The ENCODE input supports either differential or single-ended  
and is fully TTL/CMOS compatible.  
Note that the ENCODE inputs cannot be driven directly from  
PECL level signals (VIHD is 3.5 V max). PECL level signals can  
easily be accommodated by ac coupling as shown in Figure 8.  
Good performance is obtained using an MC10EL16 in the  
circuit to drive the encode inputs.  
REV. E  
–10–  
AD9432  
Table I. Output Coding (VREF = 2.5 V) (Two’s Complement)  
The dc common-mode voltage for the AD8138 outputs can be  
adjusted via input VOCM to provide the 3 V common-mode voltage  
the AD9432 inputs require.  
Code  
AIN–AIN (V)  
Digital Output  
+2047  
1.000  
0111 1111 1111  
500  
AD9432  
10pF  
0
0
0000 0000 0000  
50⍀  
VIN  
–1  
–0.00049  
1111 1111 1111  
AIN  
500⍀  
22pF  
AD8138  
50⍀  
50⍀  
AIN  
–2048  
–1.000  
1000 0000 0000  
V
OCM  
5V  
Voltage Reference  
500⍀  
2k⍀  
A stable and accurate 2.5 V voltage reference is built into the  
AD9432 (VREFOUT). In normal operation the internal refer-  
ence is used by strapping Pin 45 to Pin 46 and placing a 0.1 µF  
decoupling capacitor at VREFIN.  
3k⍀  
0.1F  
10pF  
25⍀  
500⍀  
The input range can be adjusted by varying the reference voltage  
applied to the AD9432. No appreciable degradation in perfor-  
mance occurs when the reference is adjusted 5%. The full-scale  
range of the ADC tracks reference voltage changes linearly.  
Figure 10. AD8138/AD9432 Schematic  
66  
65  
Timing  
The AD9432 provides latched data outputs, with 10 pipeline  
delays. Data outputs are included or available one propagation  
delay (tPD) after the rising edge of the encode command  
(see Figure 1). The length of the output data lines and loads  
placed on them should be minimized to reduce transients within  
the AD9432; these transients can detract from the converter’s  
dynamic performance.  
SNR  
64  
63  
SINAD  
62  
61  
60  
The minimum guaranteed conversion rate of the AD9432 is  
1 MSPS. At internal clock rates below 1 MSPS, dynamic  
performance may degrade. Therefore, input clock rates below  
1 MHz should be avoided.  
During initial power-up, or whenever the clock to the AD9432  
is interrupted, the output data will not be accurate data for 200 ns  
or 10 clock cycles, whichever is longer.  
0
20  
40  
60  
AIN MHz  
Figure 11. Measured SNR and SINAD (Encode = 105 MSPS)  
Using the AD8138 to Drive the AD9432  
70  
A new differential output op amp from Analog Devices, Inc.,  
the AD8138, can be used to drive the AD9432 in dc-coupled  
applications. The AD8138 was specifically designed for ADC  
driver applications. Superior SNR performance is maintained up  
to analog frequencies of 30 MHz. The AD8138 op amp provides  
single-ended-to-differential conversion, providing for a low-cost  
option to transformer coupling for ac applications as well.  
H2  
80  
H3  
The circuit in Figure 10 was breadboarded and the measured  
performance is shown in Figures 11 and 12. The figures shown  
are for 5 V supplies at the AD8138—performance dropped by  
about 1 dB–2 dB with a single 5 V supply at the AD8138.  
90  
Figure 11 shows SNR and SINAD for a –1 dBFS analog input  
frequency varied from 2 MHz to 40 MHz with an encode rate of  
105 MSPS. The measurements are for nominal conditions at  
room temperature. Figure 12 shows the second and third har-  
monic distortion performance under the same conditions.  
100  
0
20  
40  
60  
AIN MHz  
Figure 12. Measured Second and Third Order Harmonic  
Distortion (Encode = 105 MSPS)  
REV. E  
–11–  
AD9432  
EVALUATION BOARD  
14 ACQS  
[T]  
TEK STOP: 5.00GS/s  
The AD9432 evaluation board offers an easy way to test the  
AD9432. It requires an analog signal, encode clock, and power  
supplies as inputs. The clock is buffered on the board to provide  
the clocks for an on-board DAC and latches. The digital outputs  
and output clock are available at a standard 37-pin connector P7.  
C1 MAX  
3.4V  
T
C1 MIN  
2.5mV  
Power Connector  
Power is supplied to the board via two detachable 4-pin power  
strips P30, P40.  
C1 FREQ  
49.995MHz  
LOW SIGNAL  
AMPLITUDE  
P40  
P1 VCC2 5 V/165 mA  
P2 GND  
DAC Supply  
2
P3 VCC 5 V/200 mA  
P4 GND  
ADC Analog Supply  
CH1 500mV  
CH3 2.00V  
500mV  
M 5.00ns CH1  
3.00V  
CH2  
P30  
Figure 14. Analog Input Levels  
The full-scale analog inputs to the ADC should be two 1 V p-p  
signals 180 degrees out of phase with each other, as shown in  
Figure 14. The analog inputs are dc biased by two on-chip  
resistor dividers that set the common-mode voltage to approxi-  
mately 0.6 × VCC (0.6 × 5 = 3 V). AIN+ and AIN– each vary  
between 2.5 V and 3.5 V as shown in the two upper traces in Fig-  
ure 14. The lower trace is the input at SMB P2 (on a 2 V/div scale).  
P5  
P6  
P7 VD  
No Connect  
No Connect  
3.3 V /105 mA Latch, ADC Digital Output Supply  
P8 GND  
Analog Inputs  
The evaluation board accepts a 2 V p-p analog input signal at  
SMB connector P2. This single-ended signal is ac-coupled by  
capacitor C11 and drives a wideband RF transformer T1 (Mini-  
Circuits ADT1-1WT) that converts the single-ended signal to a  
differential signal. (The AD9432 should be driven differentially to  
provide optimum performance.) The evaluation board is shipped  
with termination resistors R4, R5, which provide the effective  
50 termination impedance; input termination resistor R10 is  
optional. Note: The second harmonic distortion that some RF  
transformers tend to introduce at high frequencies can be reduced  
by coupling two transformers in series as shown in Figure 13.  
(Improvements on the order of 3 dB–4 dB can be realized.)  
Encode  
The encode input to the board is at SMB connector P3. The  
(>1 V p-p) input is ac-coupled and drives two high-speed differ-  
ential line receivers (MC10EL16). These receivers provide  
subnanosecond rise times at their outputs—a requirement for  
the ADC clock inputs for optimum performance. The EL16  
outputs are PECL levels and must be ac-coupled to meet the  
common-mode dc levels required at the AD9432 encode inputs.  
A PECL/TTL translator (MC100ELT23), provides the clocks  
required at the output latches, DAC, and 37-pin connector.  
Note: Jitter performance on the clock source is critical at this  
performance level; a stable, crystal-controlled signal generator is  
used to generate all of the ADC performance plots. Figure 15  
shows the Encode+ clock at the ADC. The 3 V latch clock  
generated on the card is also shown in the plot.  
TO AIN+  
C2  
0.1F  
R1  
T1  
T2  
25⍀  
IN  
C1  
0.1F  
R2  
25⍀  
TEK  
STOP:  
5.00GS/s  
86 ACQS  
[T]  
TO AIN–  
Figure 13. Improving Second Harmonic Distortion  
Performance  
C1 MAX  
2.33V  
C1 MIN  
810mV  
T
C1 FREQ  
106.3167MHz  
LOW  
SIGNAL  
AMPLITUDE  
2
CH1  
1.00V  
CH2  
1.00V  
M 5.00ns CH1  
1.20V  
Figure 15. Encode+ Clock and Latch Clock  
REV. E  
–12–  
AD9432  
DATA OUTPUTS  
DAC  
The ADC digital outputs are latched on the board by two 574s;  
the latch outputs are available at the 37-pin connector at Pins  
25–36. A latch output clock (data ready) is available at Pin 21,  
with the complement at Pin 2. There are series termination  
resistors on the data and clock outputs. These can be changed if  
required to accommodate different loading situations. Figure  
16 shows a data bit switching and output clock (DR) at the  
connector.  
The evaluation board has an on-board reconstruction DAC  
(AD9752). This is placed only to facilitate testing and debug of  
the board. It should not be used to measure the performance of  
the ADC, as it will not accurately indicate the ADC performance.  
The DAC output is available at SMB P1. It will drive a 50 Ω  
load. Provision to power down the DAC is at Pin 15 at the DAC.  
PCB LAYOUT  
The PCB is designed on a four-layer (1 oz. Cu) board. Compo-  
nents and routing are on the top layer with a ground flood for  
additional isolation. Test and ground points were judiciously  
placed to facilitate high-speed probing. A common ground plane  
exists on the second layer. The third layer has three split power  
planes, two for the ADC and one for support logic. The DAC,  
components, and routing are located on the bottom layer.  
TEK  
STOP:  
5.00GS/s  
265 ACQS  
[T]  
C1 MAX  
3.06V  
C1 MIN  
390mV  
T
TROUBLESHOOTING  
If the board does not seem to be working correctly, try the  
following:  
C1 FREQ  
105.4562MHz  
Verify power at IC pins.  
Check that all jumpers are in the correct position for the  
desired mode of operation.  
2
Verify VREF is at 2.5 V.  
CH1  
1.00V  
CH2  
1.00V  
M 5.00ns CH1  
1.20V  
Try running encode clock and analog inputs at low speeds  
(10 MSPS/1 MHz) and monitor 574 outputs, DAC output,  
and ADC outputs for toggling.  
Figure 16. Data Bit and Clock at 37-Pin Connector  
REFERENCE  
The AD9432 has an on-chip reference of 2.5 V available at  
VREFOUT (Pin 46). Most applications will simply tie this  
output to the VREFIN input (Pin 45). This is accomplished  
jumping E4 to E6 on the board. An external voltage reference  
can drive the VREFIN pin if desired by strapping E4 to E3 and  
placing an AD780 voltage reference on the board (not supplied).  
The AD9432 Evaluation Board is provided as a design example  
for customers of Analog Devices, Inc. ADI makes no warranties,  
express, statutory, or implied, regarding merchantability or fitness  
for a particular purpose.  
REV. E  
–13–  
AD9432  
PCB Bill of Materials  
Device  
#
Quantity  
REFDES  
Package  
Value  
1
30  
C1–C8, C10–C13, C17, C19–C22,  
C27–C29, C41, C42, C47, C48,  
C53, C56, C58, C60, C61, C70  
Capacitor  
603  
0.1 µF  
2
3
4
5
6
7
8
9
1
4
1
18  
3
1
2
6
C9  
Capacitor  
Capacitor  
Capacitor  
E-HOLE  
Connector  
37-Pin Connector  
Power Connector  
Resistor  
603  
0.01 µF  
10 µF  
1 µF  
C14, C18, C31, C34  
C15  
E1–E13, E30, E32, E40, E42, E43  
P1, P2, P3  
P7  
P30, P40  
R1, R2, R7, R8, R10, R18  
(R1, R2, R10 Optional)  
CAPTAJD  
CAPTAJD  
Test Point  
SMB  
Female  
AMP 747462-2  
1206  
50 Ω  
10  
11  
12  
13  
14  
2
4
2
4
1
R3, R35  
R25, R26, R31, R32  
R6, R24  
RP1–RP4  
T1  
Resistor  
Resistor  
Resistor  
RES PAK  
Transformer  
1206  
1206  
1206  
100 Ω  
500 Ω  
2 kΩ  
100 Ω  
Mini-Circuits  
ADT1-1WT  
15  
16  
17  
18  
19  
20  
21  
22  
1
1
2
1
2
1
2
3
U1  
U2  
U3, U4  
U9  
U12–U13  
Z1  
DAC  
SOIC  
SOIC  
SC70  
52QFP  
SOIC  
SOIC  
SOIC  
1206  
AD9752  
AD780N  
Reference (Not Supplied)  
Inverter (U4 Not Supplied)  
ADC  
NC7SZ04P5  
AD9432  
74AC574M  
MC100ELT23  
MC10EL16  
24.9 Ω  
Latch  
PECL/TTL Translator  
Differential Receiver  
Resistor  
Z2, Z3  
R4, R5, R15  
REV. E  
–14–  
AD9432  
2
5
1
3
4
6
3 7  
4 4  
4 7  
5 2  
3 8  
4 3  
4 8  
5 1  
1 3  
3 6  
1 2  
3 5  
2 2  
2 3  
3 2  
1 1  
3 3  
1 0  
2 1  
2 4  
3 1  
9
3 4  
Figure 17a. PCB Schematic  
–15–  
REV. E  
AD9432  
Figure 17b. PCB Schematic (Continued)  
REV. E  
–16–  
AD9432  
Figure 18. Top Silkscreen  
Figure 19. Top Level Routing  
Figure 20. Ground Plane  
Figure 21. Split Power Plane  
Figure 22. Bottom Layer Route  
Figure 23. Bottom Silkscreen  
REV. E  
–17–  
AD9432  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
52-Lead Plastic Quad Flatpack (LQFP)  
(ST-52)  
0.063 (1.60)  
MAX  
0.472 (12.00) SQ  
0.030 (0.75)  
0.018 (0.45)  
39  
27  
40  
26  
SEATING  
PLANE  
0.394  
(10.0)  
SQ  
TOP VIEW  
(PINS DOWN)  
14  
52  
1
13  
0.006 (0.15)  
0.002 (0.05)  
0.026 (0.65)  
BSC  
0.015 (0.38)  
0.009 (0.22)  
0.057 (1.45)  
0.053 (1.35)  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE  
ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
THERMALLY ENHANCED  
52-Lead Power Thin Plastic Quad Flatpack (LQFP_ED)  
(SQ-52)  
0.093 (2.35)  
0.087 (2.20) (4 PLCS)  
0.104 (2.65)  
0.081 (2.05)  
0.472 (12.00) SQ  
0.307 (7.80)  
0.098 (2.50)  
0.093 (2.35)  
(4 PLCS)  
52  
40  
40  
39  
52  
1
39  
1
0.402 (10.20)  
0.394 (10.00) SQ  
0.386 (9.80)  
0.236 (6.00)  
0.232 (5.90)  
0.228 (5.80)  
EXPOSED  
HEATSINK  
(CENTERED)  
TOPVIEW  
(PINS DOWN)  
13  
27  
27  
26  
13  
14  
26  
14  
0.236 (6.00)  
0.232 (5.90)  
0.228 (5.80)  
0.026 (0.65) 0.015 (0.38)  
0.013 (0.32)  
0.009 (0.22)  
BOTTOMVIEW  
(PINS UP)  
0.063  
(1.60)  
MAX  
0.057 (1.45)  
0.055 (1.40)  
0.053 (1.35)  
0.006 (0.15)  
0.002 (0.05)  
0.030 (0.75)  
0.024 (0.60)  
0.018 (0.45)  
SEATING  
PLANE  
VIEW A  
0.004 (0.10)  
COPLANARITY  
VIEW A  
NOTES  
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS ARE ROUNDED-OFF MILLIMETER  
EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
2. ALTHOUGH NOT REQUIRED IN ALL APPLICATIONS,THE AD9432 HAS AN EXPOSED METALLIC PAD ONTHE  
PACKAGE BOTTOMWHICH IS INTENDEDTO ENHANCETHE HEAT REMOVAL PATH. TO MAXIMIZETHE REMOVAL  
OF HEAT, A LAND PATTERNWITH CLOSELY SPACEDTHERMAL VIASTOTHE GROUND PLANE(S) SHOULD  
BE INCORPORATED ONTHE PCBWITHINTHE FOOTPRINT OFTHE PACKAGE CORRESPONDINGTOTHE  
EXPOSED METAL PAD DIMENSIONS OFTHE PACKAGE. THE SOLDERABLE LAND AREA SHOULD BE SOLDER  
MASK DEFINED AND BE AT LEASTTHE SAME SIZE AND SHAPE ASTHE EXPOSED PAD AREA ONTHE  
PACKAGE. AT LEAST 0.25 MM CLEARANCE BETWEENTHE OUTER EDGES OFTHE LAND PATTERN ANDTHE  
INNER EDGES OFTHE PAD PATTERN SHOULD BE MAINTAINEDTO AVOID ANY SHORTS.  
REV. E  
–18–  
AD9432  
Revision History  
Location  
Page  
Data Sheet changed from REV. D to REV. E.  
Edits to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Addition of text to USING THE AD9432 section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Edits to Figure 17a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Edits to Figure 17b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Addition of SQ-52 Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
REV. E  
–19–  
–20–  

相关型号:

AD9432BSQ-80

12-Bit, 80 MSPS/105 MSPS A/D Converter
ADI

AD9432BSQZ-80

12-Bit, 80 MSPS/105 MSPS ADC
ADI

AD9432BST-100

IC 1-CH 12-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP52, PLASTIC, LQFP-52, Analog to Digital Converter
ADI

AD9432BST-105

12-Bit, 80 MSPS/105 MSPS A/D Converter
ADI

AD9432BST-80

12-Bit, 80 MSPS/105 MSPS A/D Converter
ADI

AD9432BSTZ-105

1-CH 12-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP52, ROHS COMPLIANT, MS-026BCC, LQFP-52
ROCHESTER

AD9432BSTZ-105

12-Bit, 80 MSPS/105 MSPS ADC
ADI

AD9432BSTZ-1051

12-Bit, 80 MSPS/105 MSPS ADC
ADI

AD9432BSTZ-80

1-CH 12-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP52, ROHS COMPLIANT, MS-026BCC, LQFP-52
ROCHESTER

AD9432BSTZ-80

12-Bit, 80 MSPS/105 MSPS ADC
ADI

AD9432BSTZ-801

12-Bit, 80 MSPS/105 MSPS ADC
ADI

AD9432BSVZ-105

12-Bit, 80 MSPS/105 MSPS ADC
ADI