AD9434BCPZRL7-370 [ADI]

12-Bit, 370 MSPS/500 MSPS, 1.8 V Analog-to-Digital Converter; 12位, 370 MSPS / 500 MSPS , 1.8 V模拟数字转换器
AD9434BCPZRL7-370
型号: AD9434BCPZRL7-370
厂家: ADI    ADI
描述:

12-Bit, 370 MSPS/500 MSPS, 1.8 V Analog-to-Digital Converter
12位, 370 MSPS / 500 MSPS , 1.8 V模拟数字转换器

转换器 模数转换器 信息通信管理
文件: 总28页 (文件大小:1012K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-Bit, 370 MSPS/500 MSPS,  
1.8 V Analog-to-Digital Converter  
AD9434  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
VREF  
PWDN  
AGND  
AVDD  
SNR = 65 dBFS at fIN up to 250 MHz at 500 MSPS  
ENOB of 10.5 bits at fIN up to 250 MHz at 500 MSPS (−1.0 dBFS)  
SFDR = 78 dBc at fIN up to 250 MHz at 500 MSPS (−1.0 dBFS)  
Integrated input buffer  
Excellent linearity  
DNL = 0.5 LSB typical  
REFERENCE  
AD9434  
CML  
DRVDD  
DRGND  
VIN+  
VIN–  
TRACK-AND-HOLD  
12  
12  
ADC  
CORE  
OUTPUT  
STAGING  
LVDS  
D11± TO D0±  
INL = 0.6 LSB typical  
LVDS at 500 MSPS (ANSI-644 levels)  
1 GHz full power analog bandwidth  
On-chip reference, no external decoupling required  
Low power dissipation  
CLK+  
CLK–  
CLOCK  
MANAGEMENT  
OR+  
OR–  
SERIAL PORT  
DCO+  
DCO–  
690 mW at 500 MSPS—LVDS SDR mode  
660 mW at 500 MSPS—LVDS DDR mode  
Programmable (nominal) input voltage range  
1.18 V p-p to 1.6 V p-p, 1.5 V p-p nominal  
1.8 V analog and digital supply operation  
Selectable output data format (offset binary, twos  
complement, Gray code)  
SCLK/DFS  
SDIO  
CSB  
Figure 1.  
Clock duty cycle stabilizer  
Integrated data clock output with programmable clock and  
data alignment  
APPLICATIONS  
Fabricated on an advanced BiCMOS process, the AD9434 is  
available in a 56-lead LFCSP, specified over the industrial  
temperature range (−40°C to +85°C). This part is protected  
under a U.S. patent.  
Wireless and wired broadband communications  
Cable reverse path  
Communications test equipment  
Radar and satellite subsystems  
Power amplifier linearization  
PRODUCT HIGHLIGHTS  
1. High Performance.  
GENERAL DESCRIPTION  
Maintains 65 dBFS SNR at 500 MSPS with a 250 MHz input.  
2. Low Power.  
Consumes only 660 mW at 500 MSPS.  
3. Ease of Use.  
The AD9434 is a 12-bit monolithic sampling analog-to-digital  
converter (ADC) optimized for high performance, low power,  
and ease of use. The part operates at up to a 500 MSPS  
conversion rate and is optimized for outstanding dynamic  
performance in wideband carrier and broadband systems. All  
necessary functions, including a sample-and-hold and voltage  
reference, are included on the chip to provide a complete signal  
conversion solution. The VREF pin can be used to monitor the  
internal reference or provide an external voltage reference  
(external reference mode must be enabled through the SPI  
port).  
LVDS output data and output clock signal allow interface  
to FPGA technology. The on-chip reference and sample-  
and-hold provide flexibility in system design. Use of a  
single 1.8 V supply simplifies system power supply design.  
4. Serial Port Control.  
Standard serial port interface supports various product  
functions, such as data formatting, power-down, gain  
adjust, and output test pattern generation.  
5. The AD9434 is pin compatible with the AD9230, and can  
be substituted in many applications with minimal design  
changes.  
The ADC requires a 1.8 V analog voltage supply and a differen-  
tial clock for full performance operation. The digital outputs are  
LVDS (ANSI-644) compatible and support twos complement,  
offset binary format, or Gray code. A data clock output is  
available for proper output data timing.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
AD9434  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 19  
Analog Input and Voltage Reference ....................................... 19  
Clock Input Considerations...................................................... 20  
Power Dissipation and Power-Down Mode ........................... 21  
Digital Outputs ........................................................................... 21  
Timing ......................................................................................... 22  
VREF............................................................................................ 22  
AD9434 Configuration Using the SPI..................................... 22  
Using the AD9434 to Replace the AD9230............................. 23  
Hardware Interface..................................................................... 23  
Configuration Without the SPI ................................................ 23  
Memory Map .................................................................................. 25  
Reading the Memory Map Table.............................................. 25  
Reserved Locations .................................................................... 25  
Default Values............................................................................. 25  
Logic Levels................................................................................. 25  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 28  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
DC Specifications ......................................................................... 3  
AC Specifications.......................................................................... 4  
Digital Specifications ................................................................... 5  
Switching Specifications .............................................................. 6  
Timing Diagrams.......................................................................... 7  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configurations and Function Descriptions ........................... 9  
Typical Performance Characteristics ........................................... 13  
Equivalent Circuits......................................................................... 18  
REVISION HISTORY  
5/11—Rev. 0 to Rev. A  
Changes to General Description .................................................... 1  
Changes to Table 4, Aperture Time Values ................................... 6  
Changes to Figure 32...................................................................... 17  
Changes to Figure 42...................................................................... 19  
Changes to Table 13, Register 10, Bits[7:0] Value, Register 14  
Default Value, Register 15 Default Value, Register 17, Bit 7 Value  
and Register 18, Bit[4:0] Values.................................................... 26  
3/11—Revision 0: Initial Version  
Rev. A | Page 2 of 28  
 
AD9434  
SPECIFICATIONS  
DC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, TMIN = −40°C, TMAX = +85°C, fIN = −1.0 dBFS, full scale = 1.5 V, unless otherwise noted.  
Table 1.  
AD9434-370  
Typ  
AD9434-500  
Typ  
Parameter1  
RESOLUTION  
ACCURACY  
Temp  
Min  
Max  
Min  
Max  
Unit  
12  
12  
Bits  
No Missing Codes  
Offset Error  
Full  
25°C  
Full  
25°C  
Full  
25°C  
Full  
Guaranteed  
±±.25  
Guaranteed  
±±.25  
mV  
mV  
−3.±  
−5.±  
−±.9  
−±.92  
±.71  
+1.±  
+7.±  
+±.9  
+±.92  
±.78  
−3.±  
−5.±  
−±.95  
−1.3  
±.71  
+1.±  
+7.±  
+1.±  
+1.3  
±.78  
Gain Error  
1.±  
1.±  
% FS  
% FS  
LSB  
LSB  
LSB  
LSB  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
±±.ꢀ  
±±.ꢀ  
±±.5  
±±.ꢁ  
25°C  
Full  
INTERNAL REFERENCE  
VREF  
Full  
±.75  
±.75  
V
TEMPERATURE DRIFT  
Offset Error  
Gain Error  
Full  
Full  
18  
±.±7  
18  
±.±7  
μV/°C  
%/°C  
ANALOG INPUTS (VIN+, VIN−)  
Differential Input Voltage Range2  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance (Differential)  
POWER SUPPLY  
Full  
Full  
Full  
25°C  
1.18  
1.5  
1.7  
1
1.ꢁ  
1.18  
1.5  
1.7  
1
1.ꢁ  
V p-p  
V
kΩ  
pF  
1.3  
1.3  
AVDD  
DRVDD  
Full  
Full  
1.75  
1.75  
1.8  
1.8  
1.9  
1.9  
1.75  
1.75  
1.8  
1.8  
1.9  
1.9  
V
V
Supply Currents  
3
IAVDD  
Full  
Full  
Full  
2ꢁ±  
88  
7±  
28±  
1±±  
8±  
283  
1±±  
82  
3±1  
11ꢀ  
9ꢁ  
mA  
mA  
mA  
IDRVDD3/SDR Modeꢀ  
IDRVDD3/DDR Mode5  
Power Dissipation  
SDR Modeꢀ  
DDR Mode5  
Standby Mode  
Full  
Full  
Full  
Full  
ꢁ25  
595  
ꢀ±  
ꢁ85  
ꢁꢀ8  
5±  
ꢁ9±  
ꢁ57  
ꢀ±  
7ꢀ7  
715  
5±  
mW  
mW  
mW  
mW  
Power-Down Mode  
2.5  
7
2.5  
7
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.  
2 The input range is programmable through the SPI, and the range specified reflects the nominal values of each setting. See the Memory Map section.  
3 IAVDD and IDRVDD are measured with a −1 dBFS, 3±.3 MHz sine input at rated sample rate.  
Single data rate mode; this is the default mode of the AD9ꢀ3ꢀ.  
5 Double data rate mode; user-programmable feature. See the Memory Map section.  
Rev. A | Page 3 of 28  
 
 
 
 
 
AD9434  
AC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, TMIN = −40°C, TMAX = +85°C, fIN = −1.0 dBFS, full scale = 1.5 V, unless otherwise noted.  
Table 2.  
AD9434-370  
AD9434-500  
Typ  
Parameter1, 2  
SNR  
Temp  
Min  
Typ  
Max  
Min  
Max  
Unit  
fIN = 3±.3 MHz  
fIN = 7±.3 MHz  
fIN = 1±±.3 MHz  
25°C  
25°C  
25°C  
Full  
ꢁꢁ.3  
ꢁꢁ.2  
ꢁꢁ.1  
ꢁ5.9  
ꢁ5.9  
ꢁ5.8  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
ꢁ5.3  
ꢁꢀ.5  
fIN = 25±.3 MHz  
fIN = ꢀ5±.3 MHz  
SINAD  
25°C  
25°C  
ꢁ5.5  
ꢁꢀ.±  
ꢁ5.2  
ꢁ3.5  
fIN = 3±.3 MHz  
fIN = 7±.3 MHz  
fIN = 1±±.3 MHz  
25°C  
25°C  
25°C  
Full  
ꢁꢁ.1  
ꢁꢁ.1  
ꢁꢁ.±  
ꢁ5.9  
ꢁ5.8  
ꢁ5.8  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
ꢁ5.2  
ꢁꢀ.ꢀ  
fIN = 25±.3 MHz  
fIN = ꢀ5±.3 MHz  
25°C  
25°C  
ꢁ5.3  
ꢁ3.7  
ꢁꢀ.8  
ꢁ2.9  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 3±.3 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
1±.7  
1±.7  
1±.7  
1±.ꢁ  
1±.3  
1±.7  
1±.ꢁ  
1±.ꢁ  
1±.5  
1±.2  
Bits  
Bits  
Bits  
Bits  
Bits  
fIN = 7±.3 MHz  
fIN = 1±±.3 MHz  
fIN = 25±.3 MHz  
fIN = ꢀ5±.3 MHz  
WORST HARMONIC (SECOND or THIRD)  
fIN = 3±.3 MHz  
25°C  
25°C  
25°C  
Full  
−93  
−89  
−83  
−93  
−91  
−87  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 7±.3 MHz  
fIN = 1±±.3 MHz  
−75  
−7ꢀ  
fIN = 25±.3 MHz  
fIN = ꢀ5±.3 MHz  
SFDR  
25°C  
25°C  
−8±  
−78  
−78  
−ꢁ9  
fIN = 3±.3 MHz  
fIN = 7±.3 MHz  
fIN = 1±±.3 MHz  
25°C  
25°C  
25°C  
Full  
89  
88  
83  
8ꢀ  
82  
83  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
75  
7ꢀ  
fIN = 25±.3 MHz  
25°C  
25°C  
79  
78  
78  
ꢁ8  
fIN = ꢀ5±.3 MHz  
WORST OTHER HARMONIC (SFDR EXCLUDING SECOND and THIRD)  
fIN = 3±.3 MHz  
fIN = 7±.3 MHz  
fIN = 1±±.3 MHz  
25°C  
25°C  
25°C  
Full  
−9±  
−9±  
−91  
−85  
−82  
−8ꢀ  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
−75  
−7ꢀ  
fIN = 25±.3 MHz  
25°C  
25°C  
−83  
−82  
−85  
−78  
fIN = ꢀ5±.3 MHz  
TWO-TONE IMD  
fIN1 = 119.5 MHz, fIN2 = 122.5 MHz  
ANALOG INPUT BANDWIDTH  
Full Power  
25°C  
25°C  
−85  
1
−85  
1
dBc  
GHz  
1 All ac specifications tested by driving CLK+ and CLK− differentially.  
2 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.  
Rev. A | Page ꢀ of 28  
 
 
AD9434  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, TMIN = −40°C, TMAX = +85°C, fIN = −1.0 dBFS, full scale = 1.5 V, unless otherwise noted.  
Table 3.  
AD9434-370  
Typ Max  
AD9434-500  
Typ Max  
Parameter1  
Temp  
Min  
Min  
Unit  
CLOCK INPUTS  
Logic Compliance  
Full  
Full  
CMOS/LVDS/LVPECL  
±.9  
CMOS/LVDS/LVPECL  
±.9  
Internal Common-Mode Bias  
Differential Input Voltage  
High Level Input (VIH)  
Low Level Input (VIL)  
High Level Input Current (IIH)  
Low Level Input Current (IIL)  
Input Resistance (Differential)  
Input Capacitance  
V
Full  
Full  
Full  
Full  
Full  
Full  
±.2  
1.8  
±.2  
1.8  
V p-p  
V p-p  
μA  
μA  
kΩ  
−1.8  
−1±  
−1±  
8
−±.2  
+1±  
+1±  
−1.8  
−1±  
−1±  
8
−±.2  
+1±  
+1±  
1±  
12  
1±  
12  
pF  
LOGIC INPUTS  
Logic 1 Voltage  
Logic ± Voltage  
Logic 1 Input Current (SDIO, CSB)  
Logic ± Input Current (SDIO, CSB)  
Logic 1 Input Current (SCLK, PDWN) Full  
Logic ± Input Current (SCLK, PDWN) Full  
Full  
Full  
Full  
Full  
±.8 × DRVDD  
±.8 × DRVDD  
V
V
±.2 × DRVDD  
±.2 × DRVDD  
±
±
μA  
μA  
μA  
μA  
pF  
−ꢁ±  
5±  
±
−ꢁ±  
5±  
±
Input Capacitance  
LOGIC OUTPUTS2  
25°C  
VOD Differential Output Voltage  
VOS Output Offset Voltage  
Output Coding  
Full  
Full  
2ꢀ7  
1.125  
ꢀ5ꢀ  
1.375  
2ꢀ7  
1.125  
ꢀ5ꢀ  
1.375  
mV  
V
Twos complement, Gray code, or offset binary (default)  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.  
2 LVDS RTERMINATION = 1±± Ω.  
Rev. A | Page 5 of 28  
 
 
AD9434  
SWITCHING SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, TMIN = −40°C, TMAX = +85°C, fIN = −1.0 dBFS, full scale = 1.5 V, unless otherwise noted.  
Table 4.  
AD9434-370  
Typ  
AD9434-500  
Typ  
Parameter  
Temp  
Full  
Min  
Max  
Min  
Max  
Unit  
MSPS  
MSPS  
ns  
Maximum Conversion Rate  
Minimum Conversion Rate  
CLK+ Pulse Width High (tCH)1, 2  
CLK+ Pulse Width Low (tCL)  
Output (LVDS—SDR Mode)1  
Data Propagation Delay (tPD)  
Rise Time (tR) (20% to 80%)  
Fall Time (tF) (20% to 80%)  
DCO Propagation Delay (tCPD  
370  
500  
Full  
50  
11  
11  
50  
11  
11  
Full  
Full  
1.1  
1.1  
0.9  
0.9  
ns  
Full  
0.85  
0.15  
0.15  
0.6  
0.85  
0.15  
0.15  
0.6  
ns  
ns  
ns  
ns  
25°C  
25°C  
Full  
)
Data to DCO Skew (tSKEW  
)
Full  
0.15  
0.38  
0.15  
0.38  
ns  
Latency  
Full  
15  
15  
Cycles  
Output (LVDS—DDR Mode)2  
Data Propagation Delay (tPD)  
Rise Time (tR) (20% to 80%)  
Fall Time (tF) (20% to 80%)  
DCO Propagation Delay (tCPD  
Full  
0.6  
0.6  
ns  
ns  
ns  
ns  
25°C  
25°C  
Full  
0.15  
0.15  
0.6  
0.15  
0.15  
0.6  
)
Data to DCO Skew (tSKEW  
Latency  
Aperture Time (tA)  
)
Full  
Full  
25°C  
25°C  
−0.07  
+0.07  
−0.07  
+0.07  
ns  
Cycles  
ns  
15  
0.85  
80  
15  
0.85  
80  
Aperture Uncertainty (Jitter, tJ)  
fs rms  
1 See Figure 2.  
2 See Figure 3.  
Rev. A | Page 6 of 28  
 
 
 
AD9434  
Timing Diagrams  
N – 1  
tA  
N + 4  
N + 5  
N
N + 3  
VIN+, VIN–  
N + 1  
N + 2  
tCH  
tCL  
1/fS  
CLK+  
CLK–  
tCPD  
DCO+  
DCO–  
tSKEW  
tPD  
Dx+  
Dx–  
N – 15  
N – 14  
N – 13  
N – 12  
N – 11  
Figure 2. Single Data Rate Mode  
N – 1  
tA  
N + 4  
N + 5  
N
N + 3  
VIN+, VIN–  
N + 1  
N + 2  
tCH  
tCL  
1/fS  
CLK+  
CLK–  
tCPD  
DCO+  
DCO–  
tSKEW  
tPD  
D0/D6+  
D0/D6–  
D6  
N – 15  
D0  
N – 14  
D6  
N – 14  
D0  
N – 13  
D6  
N – 13  
D0  
N – 12  
D6  
N – 12  
D0  
N – 11  
D6  
N – 11  
D0  
N – 10  
D5/D11+  
D5/D11–  
D11  
N – 15  
D5  
N – 14  
D11  
D5  
N – 13  
D11  
N – 13  
D5  
N – 12  
D11  
N – 12  
D5  
N – 11  
D11  
N – 11  
D5  
N – 10  
N – 14  
6 MSBs  
6 LSBs  
Figure 3. Double Data Rate Mode  
Rev. A | Page 7 of 28  
 
 
 
AD9434  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Electrical  
AVDD to AGND  
DRVDD to DRGND  
AGND to DRGND  
AVDD to DRVDD  
D±+/D±− Through D11+/D11−  
to DRGND  
−±.3 V to +2.± V  
−±.3 V to +2.± V  
−±.3 V to +±.3 V  
−2.± V to +2.± V  
−±.3 V to DRVDD + ±.2 V  
THERMAL RESISTANCE  
The exposed paddle must be soldered to the ground plane for  
the LFCSP package. Soldering the exposed paddle to the PCB  
increases the reliability of the solder joints, maximizing the  
thermal capability of the package.  
DCO+, DCO− to DRGND  
OR+, OR− to DRGND  
CLK+ to AGND  
CLK− to AGND  
VIN+ to AGND  
VIN− to AGND  
CML to AGND  
VREF to AGND  
SDIO to DRGND  
PDWN to AGND  
CSB to AGND  
SCLK/DFS to AGND  
Environmental  
−±.3 V to DRVDD + ±.2 V  
−±.3 V to DRVDD + ±.2 V  
−±.3 V to AVDD + ±.2 V  
−±.3 V to AVDD + ±.2 V  
−±.3 V to AVDD + ±.2 V  
−±.3 V to AVDD + ±.2 V  
−±.3 V to AVDD + ±.2 V  
−±.3 V to AVDD + ±.2 V  
−±.3 V to DRVDD + ±.2 V  
−±.3 V to DRVDD + ±.2 V  
−±.3 V to DRVDD + ±.2 V  
−±.3 V to DRVDD + ±.2 V  
Table 6.  
Package Type  
θJA  
θJC  
Unit  
5ꢁ-Lead LFCSP_VQ (CP-5ꢁ-5) 23.7  
1.7  
°C/W  
Typical θJA and θJC are specified for a 4-layer board in still air.  
Airflow increases heat dissipation, effectively reducing θJA. In  
addition, metal in direct contact with the package leads from  
metal traces, through holes, ground, and power planes reduces  
the θJA.  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature  
(Soldering, 1± sec)  
−ꢁ5°C to +125°C  
−ꢀ±°C to +85°C  
3±±°C  
ESD CAUTION  
Junction Temperature  
15±°C  
Rev. A | Page 8 of 28  
 
AD9434  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
D3–  
D3+  
D4–  
D4+  
D5–  
1
2
3
4
5
6
7
8
9
PIN 1  
42 AVDD  
41 AVDD  
40 CML  
39 AVDD  
38 AVDD  
37 AVDD  
36 VIN–  
INDICATOR  
D5+  
AD9434  
TOP VIEW  
(Not to Scale)  
DRVDD  
DRGND  
D6–  
35 VIN+  
34 AVDD  
33 AVDD  
32 AVDD  
31 VREF  
30 AVDD  
29 PWDN  
D6+ 10  
D7– 11  
D7+ 12  
D8– 13  
D8+ 14  
PIN 0 (EXPOSED PADDLE) = AGND  
NOTES  
1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN.  
2. AGND AND DRGND SHOULD BE TIED TO A COMMON  
QUIET GROUND PLANE.  
3. THE EXPOSED PADDLE MUST BE SOLDERED TO  
A GROUND PLANE.  
Figure 4. Pin Configuration—Single Data Rate Mode  
Table 7. Pin Function Descriptions—Single Data Rate Mode  
Pin No.  
Mnemonic  
Description  
±
AGND1  
Analog Ground. The exposed paddle must be soldered to a ground plane.  
1.8 V Analog Supply.  
3±, 32 to 3ꢀ, 37 to 39, AVDD  
ꢀ1 to ꢀ3, ꢀꢁ  
7, 2ꢀ, ꢀ7  
8, 23, ꢀ8  
35  
DRVDD  
DRGND1  
VIN+  
1.8 V Digital Output Supply.  
Digital Output Ground.  
Analog Input—True.  
3ꢁ  
VIN−  
Analog Input—Complement.  
ꢀ±  
CML  
Common-Mode Output. Enabled through the SPI, this pin provides a reference for the  
optimized internal bias voltage for VIN+/VIN−.  
ꢀꢀ  
ꢀ5  
31  
28  
25  
2ꢁ  
27  
29  
ꢀ9  
5±  
51  
52  
53  
5ꢀ  
55  
5ꢁ  
1
CLK+  
CLK−  
VREF  
DNC  
SDIO  
SCLK/DFS  
CSB  
PWDN  
DCO−  
DCO+  
D±−  
D±+  
D1−  
D1+  
D2−  
D2+  
D3−  
Clock Input—True.  
Clock Input—Complement.  
Voltage Reference Internal/Input/Output. Nominally ±.75 V.  
Do Not Connect. Do not connect to this pin. This pin should be left floating.  
Serial Port Interface (SPI) Data Input/Output (Serial Port Mode).  
Serial Port Interface Clock (Serial Port Mode)/Data Format Select (External Pin Mode).  
Serial Port Chip Select (Active Low).  
Chip Power-Down.  
Data Clock Output—Complement.  
Data Clock Output—True.  
D± Complement Output (LSB).  
D± True Output (LSB).  
D1 Complement Output.  
D1 True Output.  
D2 Complement Output.  
D2 True Output.  
D3 Complement Output.  
2
D3+  
D3 True Output.  
3
Dꢀ−  
Dꢀ Complement Output.  
Rev. A | Page 9 of 28  
 
 
AD9434  
Pin No.  
Mnemonic  
Dꢀ+  
Description  
Dꢀ True Output.  
5
D5−  
D5+  
D5 Complement Output.  
D5 True Output.  
9
Dꢁ−  
Dꢁ+  
D7−  
D7+  
D8−  
D8+  
D9−  
D9+  
D1±−  
D1±+  
D11−  
D11+  
OR−  
Dꢁ Complement Output.  
Dꢁ True Output.  
D7 Complement Output.  
D7 True Output.  
D8 Complement Output.  
D8 True Output.  
D9 Complement Output.  
D9 True Output.  
D1± Complement Output.  
D1± True Output.  
D11 Complement Output (MSB).  
D11 True Output (MSB).  
Overrange Complement Output.  
Overrange True Output.  
1±  
11  
12  
13  
1ꢀ  
15  
1ꢁ  
17  
18  
19  
2±  
21  
22  
OR+  
1 AGND and DRGND should be tied to a common quiet ground plane.  
Rev. A | Page 1± of 28  
 
AD9434  
D3/D9–  
D3/D9+  
D4/D10–  
D4/D10+  
D5/D11–  
D5/D11+  
DRVDD  
DRGND  
OR–  
1
2
3
4
5
6
7
8
9
PIN 1  
42 AVDD  
41 AVDD  
40 CML  
39 AVDD  
38 AVDD  
37 AVDD  
36 VIN–  
INDICATOR  
AD9434  
TOP VIEW  
(Not to Scale)  
35 VIN+  
34 AVDD  
33 AVDD  
32 AVDD  
31 VREF  
30 AVDD  
29 PWDN  
OR+ 10  
DNC 11  
DNC 12  
DNC 13  
DNC 14  
PIN 0 (EXPOSED PADDLE) = AGND  
NOTES  
1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN.  
2. AGND AND DRGND SHOULD BE TIED TO A COMMON  
QUIET GROUND PLANE.  
3. THE EXPOSED PADDLE MUST BE SOLDERED TO  
A GROUND PLANE.  
Figure 5. Pin Configuration—Double Data Rate Mode  
Table 8. Pin Function Descriptions—Double Data Rate Mode  
Pin No.  
Mnemonic Description  
±
AGND1  
Analog Ground. The exposed paddle must be soldered to a ground plane.  
1.8 V Analog Supply.  
3±, 32 to 3ꢀ, 37 to 39, ꢀ1 AVDD  
to ꢀ3, ꢀꢁ  
7, 2ꢀ, ꢀ7  
8, 23, ꢀ8  
35  
DRVDD  
DRGND1  
VIN+  
1.8 V Digital Output Supply.  
Digital Output Ground.  
Analog Input—True.  
3ꢁ  
VIN−  
Analog Input—Complement.  
ꢀ±  
CML  
Common-Mode Output. Enabled through the SPI, this pin provides a reference for the optimized  
internal bias voltage for VIN+/VIN−.  
ꢀꢀ  
ꢀ5  
31  
25  
2ꢁ  
27  
29  
ꢀ9  
5±  
51  
52  
53  
5ꢀ  
55  
5ꢁ  
1
CLK+  
CLK−  
VREF  
SDIO  
SCLK/DFS  
CSB  
PWDN  
DCO−  
DCO+  
D±/Dꢁ−  
D±/Dꢁ+  
D1/D7−  
D1/D7+  
D2/D8−  
D2/D8+  
D3/D9−  
D3/D9+  
Dꢀ/D1±−  
Dꢀ/D1±+  
D5/D11−  
Clock Input—True.  
Clock Input—Complement.  
Voltage Reference Internal/Input/Output. Nominally ±.75 V.  
Serial Port Interface (SPI) Data Input/Output (Serial Port Mode).  
Serial Port Interface Clock (Serial Port Mode)/Data Format Select (External Pin Mode).  
Serial Port Chip Select (Active Low).  
Chip Power-Down.  
Data Clock Output—Complement.  
Data Clock Output—True.  
D±/Dꢁ Complement Output (LSB).  
D±/Dꢁ True Output (LSB).  
D1/D7 Complement Output.  
D1/D7 True Output.  
D2/D8 Complement Output.  
D2/D8 True Output.  
D3/D9 Complement Output.  
D3/D9 True Output.  
Dꢀ/D1± Complement Output.  
Dꢀ/D1± True Output.  
2
3
5
D5/D11 Complement Output (MSB).  
Rev. A | Page 11 of 28  
 
AD9434  
Pin No.  
Mnemonic Description  
9
D5/D11+  
OR−  
D5/D11 True Output (MSB).  
Overrange Complement Output. (This pin is disabled if Pin 21 is reconfigured through the SPI to  
be OR−.)  
1±  
OR+  
DNC  
Overrange True Output. (This pin is disabled if Pin 22 is reconfigured through the SPI to be OR+.)  
Do Not Connect. Do not connect to these pins. These pins should be left floating.  
11 to 2±, 28  
21  
DNC/(OR−) Do Not Connect. Do not connect to this pin. (This pin can be reconfigured as the overrange  
complement output through the serial port register.)  
22  
DNC/(OR+) Do Not Connect. Do not connect to this pin. (This pin can be reconfigured as the overrange true  
output through the serial port register.)  
1 Tie AGND and DRGND to a common quiet ground plane.  
Rev. A | Page 12 of 28  
 
 
AD9434  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD = 1.8 V, DRVDD = 1.8 V, rated sample rate, TA = 25°C, 1.5 V p-p differential input, AIN = −1 dBFS, unless otherwise noted.  
0
0
370MSPS  
30.3MHz AT –1.0dBFS  
SNR: 65.4dB  
ENOB: 10.7 BITS  
SFDR: 90dBc  
500MSPS  
30.3MHz AT –1.0dBFS  
SNR: 65.0dB  
ENOB: 10.7 BITS  
SFDR: 85dBc  
–20  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
0
20 40 60 80 100 120 140 160 180 200 220 240  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 6. AD9434-370 64k Point Single-Tone FFT; 370 MSPS, 30.3 MHz  
Figure 9. AD9434-500 64k Point Single-Tone FFT; 500 MSPS, 30.3 MHz  
0
0
370MSPS  
500MSPS  
100.3MHz AT –1.0dBFS  
100.3MHz AT –1.0dBFS  
–20  
–20  
SNR: 65.3dB  
SNR: 64.9dB  
ENOB: 10.7 BITS  
ENOB: 10.6 BITS  
SFDR: 83dBc  
SFDR: 84dBc  
–40  
–60  
–40  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
0
20 40 60 80 100 120 140 160 180 200 220 240  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 7. AD9434-370 64k Point Single-Tone FFT; 370 MSPS, 100.3 MHz  
Figure 10. AD9434-500 64k Point Single-Tone FFT; 500 MSPS, 100.3 MHz  
0
0
370MSPS  
500MSPS  
140.3MHz AT –1.0dBFS  
140.3MHz AT –1.0dBFS  
–20  
–20  
SNR: 65.2dB  
SNR: 64.8dB  
ENOB: 10.6 BITS  
SFDR: 79dBc  
ENOB: 10.7 BITS  
SFDR: 85dBc  
–40  
–60  
–40  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
0
20 40 60 80 100 120 140 160 180 200 220 240  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 8. AD9434-370 64k Point Single-Tone FFT; 370 MSPS, 140.3 MHz  
Figure 11. AD9434-500 64k Point Single-Tone FFT; 500 MSPS, 140.3 MHz  
Rev. A | Page 13 of 28  
 
AD9434  
0
90  
85  
80  
75  
70  
65  
60  
55  
50  
SFDR (dBc), T = –40°C  
A
491.52MSPS  
368.3MHz AT –1.0dBFS  
SNR: 64.0dB  
ENOB: 10.5 BITS  
SFDR: 79dBc  
SFDR (dBc), T = +25°C  
A
–20  
–40  
SFDR (dBc), T = +85°C  
A
–60  
SNR (dBFS), T = –40°C  
A
–80  
SNR (dBFS), T = +25°C  
A
SNR (dBFS), T = +85°C  
A
–100  
–120  
0
20 40 60 80 100 120 140 160 180 200 220  
FREQUENCY (MHz)  
240  
0
50  
100 150 200 250 300 350 400 450 500  
ANALOG INPUT FREQUECY (MHz)  
Figure 12. AD9434-500 64k Point Single-Tone; 491.52 MSPS, 368.3 MHz  
Figure 15. AD9434-500 Single-Tone SNR/SFDR vs. Input Frequency (fIN) and  
Temperature; 500 MSPS  
0
100  
SFDR (dBc), 30.3MHz  
491.52MSPS  
450.3MHz AT –1.0dBFS  
–20  
90  
SNR: 63.5dB  
ENOB: 10.3 BITS  
SFDR: 72dBc  
–40  
–60  
80  
SFDR (dBc), 100.3MHz  
SNR (dBFS), 30.3MHz  
70  
–80  
60  
SNR (dBFS), 100.3MHz  
–100  
–120  
50  
40  
0
20 40 60 80 100 120 140 160 180 200 220 240  
FREQUENCY (MHz)  
50  
100 150 200 250 300 350 400 450 500 550  
SAMPLE RATE (MSPS)  
Figure 13. AD9434-500 64k Point Single-Tone; 491.52 MSPS, 450.3 MHz  
Figure 16. AD9434-370 SNR/SFDR vs. Sample Rate; 30.3 MHz, 100.3 MHz  
100  
95  
100  
SFDR (dBc), 30.3MHz  
SFDR (dBc), T = –40°C  
A
90  
90  
85  
80  
75  
70  
65  
60  
55  
50  
SFDR (dBc), T = +25°C  
A
80  
SFDR (dBc), 100.3MHz  
SNR (dBFS), 30.3MHz  
70  
SFDR (dBc), T = +85°C  
A
SNR (dBFS), T = –40°C  
A
60  
SNR (dBFS), 100.3MHz  
SNR (dBFS), T = +25°C  
A
SNR (dBFS), T = +85°C  
A
50  
40  
0
50  
100 150 200 250 300 350 400 450 500  
ANALOG INPUT FREQUECY (MHz)  
50  
100 150 200 250 300 350 400 450 500 550  
SAMPLE RATE (MSPS)  
Figure 14. AD9434-370 Single-Tone SNR/SFDR vs. Input Frequency (fIN) and  
Temperature; 370 MSPS  
Figure 17. AD9434-500 SNR/SFDR vs. Sample Rate; 30.3 MHz, 100.3 MHz  
Rev. A | Page 1ꢀ of 28  
AD9434  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.8  
0.6  
SFDR (dBFS)  
SNR (dBFS)  
0.4  
0.2  
0
SFDR (dBc)  
–0.2  
–0.4  
–0.6  
–0.8  
SNR (dB)  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
–1  
1023  
2047  
3071  
4095  
AMPLITUDE (dB)  
OUTPUT CODE  
Figure 18. AD9434-370 SNR/SFDR vs. Input Amplitude; 500 MSPS, 140.3 MHz  
Figure 21. AD9434-500 INL; 500 MSPS  
100  
0.4  
0.3  
90  
SFDR (dBFS)  
80  
0.2  
70  
60  
50  
40  
30  
20  
10  
0
SNR (dBFS)  
0.1  
0
SFDR (dBc)  
–0.1  
–0.2  
–0.3  
–0.4  
SNR (dB)  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
–1  
1023  
2047  
3071  
4095  
AMPLITUDE (dB)  
OUTPUT CODE  
Figure 19. AD9434-500 SNR/SFDR vs. Input Amplitude; 500 MSPS, 140.3 MHz  
Figure 22. AD9434-370 DNL; 370 MSPS  
0.5  
0.4  
0.6  
0.5  
0.3  
0.4  
0.2  
0.3  
0.1  
0.2  
0
0.1  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
–0.1  
–0.2  
–0.3  
–0.4  
–1  
1023  
2047  
3071  
4095  
–1  
1023  
2047  
3071  
4095  
OUTPUT CODE  
OUTPUT CODE  
Figure 20. AD9434-370 INL; 370 MSPS  
Figure 23. AD9434-500 DNL, 500 MSPS  
Rev. A | Page 15 of 28  
AD9434  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
–20  
1.17LSB rms  
500MSPS  
fIN1 = 119.5MHz AT –7.0dBFS  
fIN2 = 122.5MHz AT –7.0dBFS  
SFDR: 86dBc  
–40  
–60  
–80  
–100  
–120  
N – 3  
N – 2 N – 1  
N
N + 1 N + 2 N + 3 MORE  
0
50  
100  
150  
200  
250  
BINS  
FREQUENCY (MHz)  
Figure 24. AD9434-370 Grounded Input Histogram; 370 MSPS  
Figure 27. AD9434-500 64k Point, Two-Tone FFT; 500 MSPS, 119.2 MHz,  
122.5 MHz  
2.5  
120  
1.24LSB rms  
IMD3 (dBFS)  
100  
2.0  
1.5  
1.0  
0.5  
0
SFDR (dBFS)  
80  
60  
SFDR (dBc)  
40  
20  
0
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
N – 3  
N – 2 N – 1  
N
N + 1 N + 2 N + 3 MORE  
BINS  
AMPLITUDE (dBFS)  
Figure 25. AD9434-500 Grounded Input Histogram; 500 MSPS  
Figure 28. AD9434-370 Two-Tone SFDR vs. Input Amplitude; 370 MSPS,  
119.5 MHz, 122.5 MHz  
120  
0
IMD3 (dBFS)  
370MSPS  
fIN1 = 119.5MHz AT –7.0dBFS  
fIN2 = 122.5MHz AT –7.0dBFS  
SFDR: 82dBc  
100  
–20  
SFDR (dBFS)  
80  
–40  
–60  
60  
SFDR (dBc)  
40  
–80  
20  
0
–100  
–120  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
0
50  
100  
150  
AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 29. AD9434-500 Two-Tone SFDR vs. Input Amplitude; 500 MSPS,  
119.5 MHz, 122.5 MHz  
Figure 26. AD9434-370 64k Point, Two-Tone FFT; 370 MSPS,  
119.5 MHz, 122.5 MHZ  
Rev. A | Page 1ꢁ of 28  
AD9434  
90  
85  
80  
75  
70  
65  
60  
55  
50  
80  
75  
70  
65  
60  
55  
50  
SFDR (dBc)  
SFDR (dBc)  
AD9434, 370MSPS  
SNR (dBFS)  
AD9434, 370MSPS  
SNR (dBFS)  
AD9434, 500MSPS  
AD9434, 500MSPS  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
500  
600  
700  
800  
900  
1000  
V
(V)  
ANALOG INPUT FREQUENCY (MHz)  
CM  
Figure 30. SNR/SFDR vs. Common-Mode Voltage; 370 MSPS, 500 MSPS,  
fIN = 140.3 MHz  
Figure 32. SNR/SFDR for AD9434-370 and AD9434-500 at 370 MSPS and  
500 MSPS; AIN Sweep at −1.0 dBFS  
350  
300  
250  
200  
150  
100  
50  
800  
700  
600  
500  
400  
300  
200  
100  
0
TOTAL POWER  
I
AVDD  
I
DRVDD  
SAMPLE RATE (MSPS)  
Figure 31. Current and Power vs. Sample Rate, fIN = 30.3 MHz  
Rev. A | Page 17 of 28  
 
AD9434  
EQUIVALENT CIRCUITS  
AVDD  
DRVDD  
AVDD  
AVDD  
0.9V  
DRVDD  
30k  
15k  
15kΩ  
CLK+  
CLK–  
DRVDD  
350Ω  
CSB  
Figure 33. Clock Inputs  
Figure 37. Equivalent CSB Input Circuit  
V
BOOST  
AVDD  
DRVDD  
CML  
V+  
V–  
D11– TO D0–  
V–  
D11+ TO D0+  
V+  
AVDD  
VIN+  
A
+
IN  
500  
500Ω  
DC  
Figure 38. LVDS Outputs (Dx+, Dx−, OR+, OR−, DCO+, DCO−)  
AVDD  
SPI  
CONTROLLED  
AVDD  
VIN+  
20k  
A
(00)  
IN  
(01)  
VREF  
(10)  
Figure 34. Analog Input DC Equivalent Circuit (VCML = ~1.7 V)  
NOT USED  
(11)  
DRVDD  
SPI CTRL V  
SELECT  
REF  
00 = INTERNAL V  
REF  
REF  
01 = IMPORT V  
10 = EXPORT V  
11 = NOT USED  
REF  
DRVDD  
350  
Figure 39. Equivalent VREF Input/Output Circuit  
SCLK/DFS  
30kΩ  
DRVDD  
DRVDD  
30k  
Figure 35. Equivalent SCLK/DFS, PDWN Input Circuit  
350Ω  
VIN+  
SDIO  
1.3pF  
1000  
CTRL  
VIN–  
Figure 36. Analog Input AC Equivalent Circuit  
Figure 40. Equivalent SDIO Input Circuit  
Rev. A | Page 18 of 28  
 
AD9434  
THEORY OF OPERATION  
The AD9434 architecture consists of a front-end sample-and-  
hold amplifier (SHA) followed by a pipelined switched capacitor  
ADC. The quantized outputs from each stage are combined into  
a final 12-bit result in the digital correction logic. The pipelined  
architecture permits the first stage to operate on a new input  
sample, whereas the remaining stages operate on preceding  
samples. Sampling occurs on the rising edge of the clock.  
Differential Input Configurations  
Optimum performance is achieved while driving the AD9434  
in a differential input configuration. For baseband applications,  
the AD8138 differential driver provides excellent performance  
and a flexible interface to the ADC. The output common-mode  
voltage of the AD8138 is easily set to AVDD/2 + 0.5 V, and the  
driver can be configured in a Sallen-Key filter topology to pro-  
vide band limiting of the input signal.  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched capacitor DAC  
and interstage residue amplifier (MDAC). The residue amplifier  
magnifies the difference between the reconstructed DAC output  
and the flash input for the next stage in the pipeline. One bit of  
redundancy is used in each stage to facilitate digital correction  
of flash errors. The last stage simply consists of a flash ADC.  
1V p-p  
49.9  
499Ω  
AVDD  
VIN+  
33Ω  
499Ω  
523Ω  
20pF  
AD8138  
AD9434  
0.1µF  
VIN–  
CML  
33Ω  
The input stage contains a differential SHA that can be ac- or  
dc-coupled in differential or single-ended mode. The output  
staging block aligns the data, carries out the error correction,  
and passes the data to the output buffers. The output buffers  
are powered from a separate supply, allowing adjustment of the  
output voltage swing. During power-down, the output buffers  
enter a high impedance state.  
499Ω  
Figure 41. Differential Input Configuration Using the AD8138  
At input frequencies in the second Nyquist zone and above, the  
performance of most amplifiers may not be adequate to achieve  
the true performance of the AD9434. This is especially true in  
IF undersampling applications where frequencies in the 70 MHz  
to 100 MHz range are being sampled. For these applications,  
differential transformer coupling is the recommended input  
configuration. The signal characteristics must be considered  
when selecting a transformer. Most RF transformers saturate at  
frequencies below a few megahertz (MHz), and excessive signal  
power can cause core saturation, which leads to distortion.  
ANALOG INPUT AND VOLTAGE REFERENCE  
The analog input to the AD9434 is a differential buffer. For best  
dynamic performance, match the source impedances driving  
VIN+ and VIN− such that common-mode settling errors are  
symmetrical. The analog input is optimized to provide superior  
wideband performance and requires that the analog inputs be  
driven differentially. SNR and SINAD performance degrades  
significantly if the analog input is driven with a single-ended  
signal.  
In any configuration, the value of the shunt capacitor, C (see  
Figure 43), is dependent on the input frequency and may need  
to be reduced or removed.  
A wideband transformer, such as Mini-Circuits® ADT1-1WT,  
can provide the differential analog inputs for applications that  
require a single-ended-to-differential conversion. Both analog  
inputs are self-biased by an on-chip reference to a nominal 1.7 V.  
15  
VIN+  
1.5V p-p  
50Ω  
2pF  
AD9434  
VIN–  
15Ω  
An internal differential voltage reference creates positive and  
negative reference voltages that define the 1.5 V p-p fixed span  
of the ADC core. This internal voltage reference can be adjusted  
by means of an SPI control. See the AD9434 Configuration  
Using the SPI section for more details.  
0.1µF  
Figure 42. Differential Transformer—Coupled Configuration  
As an alternative to using a transformer-coupled input at frequen-  
cies in the second Nyquist zone, the AD8352 differential driver  
can be used (see Figure 43).  
Rev. A | Page 19 of 28  
 
AD9434  
V
CC  
0.1µF  
11  
0.1µF  
0  
16  
1
8, 13  
0.1µF  
0.1µF  
ANALOG INPUT  
R
R
2
VIN+  
200Ω  
200Ω  
C
D
R
D
R
AD8352  
C
AD9434  
G
3
4
5
CML  
VIN–  
ANALOG INPUT  
10  
0.1µF  
14  
0Ω  
0.1µF  
0.1µF  
Figure 43. Differential Input Configuration Using the AD8352  
AD9510/AD9511/  
AD9512/AD9513/  
AD9514/AD9515  
CLOCK INPUT CONSIDERATIONS  
For optimum performance, drive the AD9434 sample clock  
inputs (CLK+ and CLK−) with a differential signal. This signal  
is typically ac-coupled into the CLK+ and CLK− pins via a  
transformer or capacitors. These pins are biased at ~0.9 V  
internally and require no additional bias. If the clock signal is  
dc-coupled, then the common-mode voltage should remain  
within a range of 0.9 V.  
0.1µF  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK  
PECL DRIVER  
CLK  
CLK+  
ADC  
100Ω  
AD9434  
0.1µF  
CLOCK  
INPUT  
CLK–  
1
1
240Ω  
240Ω  
50Ω  
50Ω  
1
50RESISTORS ARE OPTIONAL.  
Figure 45. Differential PECL Sample Clock  
Figure 44 shows one preferred method for clocking the AD9434.  
The low jitter clock source is converted from single-ended to  
differential using an RF transformer. The back-to-back Schottky  
diodes across the secondary transformer limit clock excursions  
into the AD9434 to approximately 0.8 V p-p differential. This  
helps prevent the large voltage swings of the clock from feeding  
through to other portions of the AD9434 and preserves the fast  
rise and fall times of the signal, which are critical to low jitter  
performance.  
AD9510/AD9511/  
AD9512/AD9513/  
AD9514/AD9515  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK  
LVDS DRIVER  
CLK  
CLK+  
ADC  
100Ω  
AD9434  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
1
1
50Ω  
50Ω  
1
50RESISTORS ARE OPTIONAL.  
Figure 46. Differential LVDS Sample Clock  
MINI-CIRCUITS  
ADT1–1WT, 1:1Z  
In some applications, it may be acceptable to drive the sample  
clock inputs with a single-ended 1.8 V CMOS signal. In such  
applications, drive the CLK+ pin directly from a CMOS gate,  
and bypass the CLK− pin to ground with a 0.1 μF capacitor in  
parallel with a 39 kΩ resistor (see Figure 47).  
0.1µF  
0.1µF  
XFMR  
CLOCK  
INPUT  
CLK+  
ADC  
AD9434  
100  
50Ω  
0.1µF  
CLK–  
0.1µF  
SCHOTTKY  
DIODES:  
HSM2812  
V
CC  
OPTIONAL  
0.1µF  
1
Figure 44. Transformer-Coupled Differential Clock  
0.1µF  
1kΩ  
1kΩ  
AD951x  
CMOS DRIVER  
100Ω  
CLOCK  
INPUT  
CLK+  
If a low jitter clock is available, another option is to ac couple a  
differential PECL signal to the sample clock input pins, as  
shown in Figure 45. The AD9510/AD9511/AD9512/AD9513/  
AD9514/AD9515 family of clock drivers offers excellent jitter  
performance.  
50Ω  
ADC  
AD9434  
CLK–  
0.1µF  
39kΩ  
1
50RESISTOR IS OPTIONAL.  
Figure 47. Single-Ended 1.8 V CMOS Input Clock (Up to 200 MHz)  
Rev. A | Page 2± of 28  
 
 
 
 
 
AD9434  
Clock Duty Cycle Considerations  
POWER DISSIPATION AND POWER-DOWN MODE  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals. As a result, these ADCs may  
be sensitive to clock duty cycle. A 5% tolerance is commonly  
required on the clock duty cycle to maintain dynamic performance  
characteristics. The AD9434 contains a duty cycle stabilizer (DCS)  
that retimes the nonsampling edge, providing an internal clock  
signal with a nominal 50% duty cycle. This allows a wide range  
of clock input duty cycles without affecting the performance of  
the AD9434.  
As shown in Figure 31, the power dissipated by the AD9434 is  
proportional to its sample rate. The digital power dissipation  
does not vary much because it is determined primarily by the  
DRVDD supply and bias current of the LVDS output drivers.  
By asserting PDWN (Pin 29) high, the AD9434 is placed in  
standby mode or full power-down mode, as determined by the  
contents of Serial Port Register 08. Reasserting the PDWN pin  
low returns the AD9434 to its normal operational mode.  
An additional standby mode is supported by means of varying  
the clock input. When the clock rate falls below 50 MHz, the  
AD9434 assumes a standby state. In this case, the biasing network  
and internal reference remain on, but digital circuitry is powered  
down. Upon reactivating the clock, the AD9434 resumes normal  
operation after allowing for the pipeline latency.  
The duty cycle stabilizer uses a delay-locked loop (DLL) to  
create the nonsampling edge. As a result, any changes to the  
sampling frequency require approximately 5 ꢀs to allow the  
DLL to acquire and lock to the new rate.  
Clock Jitter Considerations  
High speed, high resolution ADCs are sensitive to the quality of the  
clock input. The degradation in SNR at a given input frequency  
(fA) due only to aperture jitter (tJ) can be calculated by  
DIGITAL OUTPUTS  
Digital Outputs and Timing  
The AD9434 differential outputs conform to the ANSI-644  
LVDS standard on default power-up. This can be changed to a  
low power, reduced signal option similar to the IEEE 1596.3  
standard using the SPI. This LVDS standard can further reduce  
the overall power dissipation of the device, which reduces the  
power by ~39 mW. See the Memory Map section for more infor-  
mation. The LVDS driver current is derived on chip and sets  
the output current at each output equal to a nominal 3.5 mA.  
A 100 ꢁ differential termination resistor placed at the LVDS  
receiver inputs results in a nominal 350 mV swing at the receiver.  
SNR Degradation = 20 × log10(1/2 × π × fA × tJ)  
In this equation, the rms aperture jitter represents the root mean  
square of all jitter sources, including the clock input, analog input  
signal, and ADC aperture jitter specifications. IF undersampling  
applications are particularly sensitive to jitter (see Figure 48).  
Treat the clock input as an analog signal in cases where aperture  
jitter may affect the dynamic range of the AD9434. Separate power  
supplies for clock drivers from the ADC output driver supplies  
to avoid modulating the clock signal with digital noise. Low  
jitter, crystal-controlled oscillators make the best clock sources.  
If the clock is generated from another type of source (by gating,  
dividing, or other methods), it should be retimed by the  
original clock at the last step.  
The AD9434 LVDS outputs facilitate interfacing with LVDS  
receivers in custom ASICs and FPGAs that have LVDS capability  
for superior switching performance in noisy environments.  
Single point-to-point net topologies are recommended with a  
100 ꢁ termination resistor placed as close to the receiver as  
possible. No far end receiver termination or poor differential  
trace routing may result in timing errors. It is recommended  
that the trace length be no longer than 24 inches and that the  
differential output traces be kept close together and at equal  
lengths.  
Refer to the AN-501 Application Note and the AN-756  
Application Note for more in-depth information about jitter  
performance as it relates to ADCs (visit www.analog.com).  
130  
RMS CLOCK JITTER REQUIREMENT  
120  
110  
An example of the LVDS output using the ANSI standard (default)  
data eye and a time interval error (TIE) jitter histogram with  
trace lengths less than 24 inches on regular FR-4 material is  
shown in Figure 49. Figure 50 shows an example of when the  
trace lengths exceed 24 inches on regular FR-4 material. Notice  
that the TIE jitter histogram reflects the decrease of the data eye  
opening as the edge deviates from the ideal position. It is up to  
the user to determine if the waveforms meet the timing budget  
of the design when the trace lengths exceed 24 inches.  
16 BITS  
14 BITS  
12 BITS  
100  
90  
80  
70  
60  
50  
40  
30  
10 BITS  
8 BITS  
0.125ps  
0.25ps  
0.5ps  
1.0ps  
2.0ps  
1
10  
100  
1000  
ANALOG INPUT FREQUENCY (MHz)  
Figure 48. Ideal SNR vs. Input Frequency and Jitter  
Rev. A | Page 21 of 28  
 
 
AD9434  
14  
12  
10  
8
Out-of-Range (OR)  
500  
400  
An out-of-range condition exists when the analog input voltage  
is beyond the input range of the ADC. OR+ and OR− (OR )  
are digital outputs that are updated along with the data output  
corresponding to the particular sampled input voltage. Thus,  
OR has the same pipeline latency as the digital data. OR is  
low when the analog input voltage is within the analog input  
range and high when the analog input voltage exceeds the input  
range, as shown in Figure 51. OR remains high until the analog  
input returns to within the input range and another conversion  
is completed. By logically AND’ing OR with the MSB and its  
complement, overrange high or underrange low conditions can  
be detected.  
300  
200  
100  
0
6
–100  
–200  
–300  
–400  
–500  
4
2
0
–40  
–3 –2 –1  
0
1
2
3
–20  
0
20  
40  
TIME (ns)  
TIME (ps)  
+FS – 1 LSB  
OR± DATA OUTPUTS  
Figure 49. Data Eye for LVDS Outputs in ANSI Mode with Trace Lengths Less  
than 24 Inches on Standard FR-4, AD9434-500  
1
0
0
1111 1111 1111  
1111 1111 1111  
1111 1111 1110  
OR±  
600  
400  
200  
0
12  
10  
8
–FS + 1/2 LSB  
0
0
1
0000 0000 0001  
0000 0000 0000  
0000 0000 0000  
–FS  
–FS – 1/2 LSB  
+FS  
+FS – 1/2 LSB  
6
Figure 51. OR Relation to Input Voltage and Output Data  
TIMING  
–200  
–400  
–600  
4
The AD9434 provides latched data outputs with a pipeline delay  
of seven clock cycles. Data outputs are available one propaga-  
tion delay (tPD) after the rising edge of the clock signal.  
2
0
–100  
Minimize the length of the output data lines and loads placed  
on them to reduce transients within the AD9434. These transi-  
ents can degrade the dynamic performance of the converter.  
The AD9434 also provides a data clock output (DCO) intended  
for capturing the data in an external register. The data outputs are  
valid on the rising edge of DCO.  
–3 –2 –1  
0
1
2
3
0
100  
TIME (ns)  
TIME (ps)  
Figure 50. Data Eye for LVDS Outputs in ANSI Mode with Trace Lengths  
Greater than 24 Inches on Standard FR-4, AD9434-500  
The format of the output data is offset binary by default. An  
example of the output coding format can be found in Table 12.  
If it is desired to change the output data format to twos comple-  
ment, see the AD9434 Configuration Using the SPI section.  
The lowest conversion rate of the AD9434 is 50 MSPS. At clock  
rates below 1 MSPS, the AD9434 assumes the standby mode.  
An output clock signal is provided to assist in capturing data  
from the AD9434. The DCO is used to clock the output data  
and is equal to the sampling clock (CLK) rate. In single data  
rate mode (SDR), data is clocked out of the AD9434 and must  
be captured on the rising edge of the DCO. In double data rate  
mode (DDR), data is clocked out of the AD9434 and must be  
captured on the rising and falling edges of the DCO. See the  
timing diagrams shown in Figure 2 and Figure 3 for more  
information.  
VREF  
The AD9434 VREF pin (Pin 31) allows the user to monitor the  
on-board voltage reference, or provide an external reference  
(requires configuration through the SPI). The three optional  
settings are internal VREF (pin is connected to 20 kꢁ to ground),  
export VREF, and import VREF. Do not attach a bypass capacitor  
to this pin. VREF is internally compensated and additional  
loading may impact performance.  
AD9434 CONFIGURATION USING THE SPI  
Output Data Rate and Pinout Configuration  
The AD9434 SPI allows the user to configure the converter for  
specific functions or operations through a structured register  
space inside the ADC. This gives the user added flexibility to  
customize device operation depending on the application.  
Addresses are accessed (programmed or readback) serially in  
1-byte words. Each byte can be further divided into fields,  
which are documented in the Memory Map section.  
The output data of the AD9434 can be configured to drive 12  
pairs of LVDS outputs at the same rate as the input clock signal  
(SDR mode), or six pairs of LVDS outputs at 2× the rate of the  
input clock signal (DDR mode). SDR is the default mode; the  
device can be reconfigured for DDR by setting Bit 3 in Register 14  
(see Table 13).  
Rev. A | Page 22 of 28  
 
 
 
 
 
AD9434  
There are three pins that define the serial port interface (SPI) to  
this particular ADC. They are the SCLK/DFS, SDIO, and CSB  
pins. The SCLK/DFS (serial clock) is used to synchronize the  
read and write data presented to the ADC. The SDIO (serial  
data input/output) is a dual-purpose pin that allows data to be  
sent to and read from the internal ADC memory map registers.  
The CSB is an active low control that enables or disables the  
read and write cycles (see Table 9).  
the W0 and W1 bits, which is one or more bytes of data. All  
data is composed of 8-bit words. The first bit of each individual  
byte of serial data indicates whether this is a read or write com-  
mand. This allows the serial data input/output (SDIO) pin to  
change direction from an input to an output.  
Data can be sent in MSB or in LSB first mode. MSB first is  
default on power-up and can be changed by changing the  
configuration register. For more information about this feature  
and others, see the AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI at www.analog.com.  
USING THE AD9434 TO REPLACE THE AD9230  
The AD9434 can be used to replace the AD9230 in many  
applications. In these designs, the user should consider these  
important differences:  
HARDWARE INTERFACE  
The pins described in Table 9 comprise the physical interface  
between the programming device of the user and the serial port  
of the AD9434. The SCLK pin and the CSB pin function as  
inputs when using the SPI interface. The SDIO pin is bidirec-  
tional, functioning as an input during the write phase and as an  
output during readback.  
Pin 28 is a DNC (do not connect) on the AD9434, and  
should be left floating. The reset functionality of the  
AD9230 is not available through an external pin, but is  
available through the SPI interface.  
Pin 31 is the interface to the AD9434 reference circuit. It  
can be used to monitor the internal reference or provide an  
external reference voltage (nominally 0.5 V). If the internal  
reference is used, then this pin can float. The RBIAS func-  
tion of the AD9230 is not necessary with the AD9434.  
The input voltage range of the AD9434 is nominally  
1.5 V p-p, whereas the AD9230 input range is 1.25 V p-p.  
This interface is flexible enough to be controlled by either  
PROMs or PIC® mirocontrollers as well. This provides the user  
with an alternate method to program the ADC other than a SPI  
controller.  
If the user chooses not to use the SPI interface, some pins serve  
a dual function and are associated with a specific function when  
strapped externally to AVDD or ground during device power-  
on. The Configuration Without the SPI section describes the  
strappable functions supported on the AD9434.  
Table 9. Serial Port Pins  
Mnemonic  
Function  
SCLK  
SCLK (serial clock) is the serial shift clock in.  
SCLK is used to synchronize serial interface  
reads and writes.  
CONFIGURATION WITHOUT THE SPI  
In applications that do not interface to the SPI control registers,  
the SCLK/DFS pin can alternately serve as a standalone CMOS-  
compatible control pin. In this mode, connect the CSB pin to  
AVDD, which disables the serial port interface.  
SDIO  
SDIO (serial data input/output) is a dual-purpose  
pin. The typical role for this pin is an input and  
output depending on the instruction being sent  
and the relative position in the timing frame.  
CSB (chip select) is an active low control that  
gates the read and write cycles.  
CSB  
Table 10. Mode Selection  
External  
Voltage  
The falling edge of the CSB, in conjunction with the rising edge  
of the SCLK, determines the start of the framing. An example of  
the serial timing and its definitions can be found in Figure 52  
and Table 11.  
Mnemonic  
Configuration  
SCLK/DFS  
AVDD  
AGND  
Twos complement enabled  
Offset binary enabled  
During an instruction phase, a 16-bit instruction is transmitted.  
Data then follows the instruction phase and is determined by  
Rev. A | Page 23 of 28  
 
 
 
AD9434  
tDS  
tHIGH  
tCLK  
tH  
tS  
tDH  
tLOW  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
R/W  
DON’T CARE  
Figure 52. Serial Port Interface Timing Diagram  
Table 11. Serial Timing Definitions  
Parameter  
Min (ns)  
Description  
tDS  
tDH  
tCLK  
tS  
5
2
ꢀ±  
5
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the clock  
Setup time between CSB and SCLK  
tH  
2
Hold time between CSB and SCLK  
tHIGH  
tLOW  
tEN_SDIO  
1ꢁ  
1ꢁ  
1
Minimum period that SCLK should be in a logic high state  
Minimum period that SCLK should be in a logic low state  
Minimum time for the SDIO pin to switch from an input to an output relative to the SCLK  
falling edge (not shown in Figure 52)  
tDIS_SDIO  
5
Minimum time for the SDIO pin to switch from an output to an input relative to the SCLK rising  
edge (not shown in Figure 52)  
Table 12. Output Data Format  
Input (V)  
Condition (V)  
< −±.75 − ±.5 LSB  
= −±.75  
= ±  
= ±.75  
Offset Binary Output Mode, D11 to D0 Twos Complement Mode, D11 to D0  
OR  
1
±
±
±
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
±±±± ±±±± ±±±±  
±±±± ±±±± ±±±±  
1±±± ±±±± ±±±±  
1111 1111 1111  
1111 1111 1111  
1±±± ±±±± ±±±±  
1±±± ±±±± ±±±±  
±±±± ±±±± ±±±±  
±111 1111 1111  
±111 1111 1111  
> ±.75 + ±.5 LSB  
1
Rev. A | Page 2ꢀ of 28  
 
 
 
AD9434  
MEMORY MAP  
READING THE MEMORY MAP TABLE  
RESERVED LOCATIONS  
Each row in the memory map table (see Table 13) has eight  
address locations. The memory map is roughly divided into  
three sections: chip configuration register map (Address 0x00 to  
Address 0x02), transfer register map (Address 0xFF), and ADC  
functions register map (Address 0x08 to Address 0x2A).  
Undefined memory locations should not be written to other  
than with the default values suggested in this data sheet. Addresses  
that have values marked as 0 should be considered reserved and  
have a 0 written into their registers during power-up.  
DEFAULT VALUES  
The Addr. (Hex) column of the memory map indicates the  
register address in hexadecimal, and the Default Value (Hex)  
column shows the default hexadecimal value that is already  
written into the register. The Bit 7 (MSB) column is the start of  
the default hexadecimal value given. For example, Hexadecimal  
Address 0x2A, OVR_CONFIG, has a hexadecimal default value  
of 0x01. This means that Bit 7 = 0, Bit 6 = 0, Bit 5 = 0, Bit 4 = 0,  
Bit 3 = 0, Bit 2 = 0, Bit 1 = 0, and Bit 0 = 1, or 0000 0001 in  
binary. The default value enables the OR output. Overwriting  
this default so that Bit 0 = 0 disables the OR output. For more  
information on this and other functions, consult the AN-877  
Application Note, Interfacing to High-Speed ADCs via SPI® at  
www.analog.com.  
Exiting out of reset, critical registers are preloaded with default  
values. These values are indicated in Table 13. Other registers  
do not have default values and retain the previous value when  
exiting reset.  
LOGIC LEVELS  
An explanation of various registers follows: “Bit is set” is  
synonymous with “bit is set to Logic 1” or “writing Logic 1 for  
the bit.” Similarly, “clear a bit” is synonymous with “bit is set to  
Logic 0” or “writing Logic 0 for the bit.”  
Table 13. Memory Map Register  
Default  
Addr.  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Default Notes/  
Comments  
(Hex) Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Chip Configuration Registers  
±±  
CHIP_PORT_CONFIG  
±
LSB  
first  
Soft  
reset  
1
1
Soft  
reset  
LSB  
first  
±
±x18  
The nibbles  
should be  
mirrored by the  
user so that LSB  
or MSB first  
mode registers  
correctly,  
regardless of  
shift mode.  
±1  
±2  
CHIP_ID  
8-bit chip ID, Bits[7:±] = ±xꢁA  
Read  
only  
Default is a  
unique chip ID,  
different for  
each device.  
This is a read-  
only register.  
CHIP_GRADE  
±
±
±
±
±
±
Speed grade:  
±± = 5±± MSPS  
±1 = 37± MSPS  
X1  
X1  
±
X1  
Read  
only  
Child ID used to  
differentiate  
graded devices.  
Transfer Register  
FF  
DEVICE_UPDATE  
±
±
±
±
SW  
transfer  
±x±±  
Synchronously  
transfers data  
from the master  
shift register to  
the slave.  
ADC Functions Registers  
±8  
Modes  
±
±
PDWN:  
± = full  
(default)  
1 =  
±
Internal power-down mode:  
±±± = normal (power-up,  
default)  
±±1 = full power-down  
±1± = standby  
±x±±  
Determines  
various generic  
modes of chip  
operation.  
standby  
±11 = normal (power-up)  
Note that external PDWN pin  
overrides this setting  
Rev. A | Page 25 of 28  
 
 
 
 
AD9434  
Default  
Value  
(Hex)  
Addr.  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Default Notes/  
Comments  
(Hex) Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
10  
Offset  
8-bit device offset adjustment [7:0]  
0111 1111 = +127 codes  
0000 0000 = 0 codes  
0x00  
Device offset  
trim: codes are  
relative to the  
output  
1000 0000 = −128 codes  
resolution.  
0D  
TEST_IO  
(For user-defined  
mode only, set  
Bits[3:0] = 1000)  
Reset  
PN23  
gen:  
Reset  
PN9  
gen:  
1 = on  
0 = off  
Output test mode:  
0000 = off (default)  
0001 = midscale short  
0010 = +FS short  
0x00  
When set, the  
test data is  
placed on the  
output pins in  
place of normal  
data.  
Set pattern  
values:  
P1 = Reg 0x19,  
Reg 0x1A  
00 = Pattern 1 only 1 = on  
01 = toggle P1/P2  
10 = toggle  
P1/0000  
11 = toggle P1/P2/  
0000  
0 = off  
(default) (default)  
0011 = −FS short  
0100 = checkerboard output  
0101 = PN23 sequence  
0110 = PN9  
0111 = one/zero word toggle  
1000 = user defined  
1001 = unused  
P2 = Reg 0x1B,  
Reg 0x1C.  
1010 = unused  
1011 = unused  
1100 = unused  
(Format determined by OUTPUT_MODE)  
0F  
14  
AIN_CONFIG  
0
0
0
0
0
0
0
Analog  
input  
disable:  
1 = on  
0 = off  
(default)  
0
0
0x00  
0x00  
OUTPUT_MODE  
0
0
Output  
enable:  
0 =  
enable  
(default)  
1 =  
DDR:  
1 =  
enabled  
0 =  
disabled (default)  
(default)  
Output  
invert:  
1 = on  
0 = off  
Data format select:  
00 = offset binary  
(default)  
01 = twos  
complement  
10 = Gray code  
disable  
15  
16  
17  
OUTPUT_ADJUST  
OUTPUT_PHASE  
0
0
0
0
0
0
0
0
0
LVDS  
LVDS fine adjust:  
001 = 3.50 mA  
0x00  
0x00  
0x00  
course  
adjust:  
0 =  
3.5 mA  
(default)  
1 =  
010 = 3.25 mA  
011 = 3.00 mA  
100 = 2.75 mA  
101 = 2.50 mA  
110 = 2.25 mA  
111 = 2.00 mA  
2.0 mA  
Output  
clock  
polarity  
1 =  
inverted  
0 =  
normal  
(default)  
0
0
0
0
FLEX_OUTPUT_DELAY  
0
Output clock delay:  
0000 = 0  
Shown as  
fractional value  
of sampling  
clock period  
that is  
subtracted or  
added to initial  
0001 = −1/10  
0010 = −2/10  
0011 = −3/10  
0100 = reserved  
0101 = +5/10  
0110 = +4/10  
0111 = +3/10  
1000 = +2/10  
1001 = +1/10  
tSKEW, see  
Figure 2  
Rev. A | Page 26 of 28  
AD9434  
Default  
Value  
(Hex)  
Addr.  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Default Notes/  
Comments  
(Hex) Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
18  
FLEX_VREF  
VREF select  
±
Input voltage range setting:  
±x±±  
±± = internal VREF  
(2± kΩ pull-down)  
±1 = import VREF  
(±.59 V to ±.8 V on  
VREF pin)  
1± = export VREF  
(from internal  
reference)  
111±± = 1.ꢁ±  
±±1±1 = 1.3ꢁ  
±±11± = 1.3ꢀ  
±±111 = 1.31  
±1±±± = 1.28  
±1±±1 = 1.2ꢁ  
±1±1± = 1.23  
±1±11 = 1.2±  
±11±± = 1.18  
111±1 = 1.58  
1111± = 1.55  
11111 = 1.52  
±±±±± = 1.5±  
±±±±1 = 1.ꢀ7  
±±±1± = 1.ꢀꢀ  
±±±11 = 1.ꢀ2  
±±1±± = 1.39  
B3  
11 = not used  
19  
1A  
1B  
1C  
2A  
USER_PATT1_LSB  
USER_PATT1_MSB  
USER_PATT2_LSB  
USER_PATT2_MSB  
OVR_CONFIG  
B7  
Bꢁ  
Bꢁ  
Bꢁ  
Bꢁ  
±
B5  
B5  
B5  
B5  
±
Bꢀ  
Bꢀ  
Bꢀ  
Bꢀ  
±
B2  
B2  
B2  
B2  
±
B1  
B±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±1  
User-defined  
pattern, 1 LSB.  
B7  
B7  
B7  
±
B3  
B3  
B3  
±
B1  
B±  
User-defined  
pattern, 1 MSB.  
B1  
B±  
User-defined  
pattern, 2 LSBs.  
B1  
B±  
User-defined  
pattern, 2 MSBs.  
OR±  
OR±  
position enable:  
(DDR  
mode  
only):  
± =  
1 = on  
(default)  
± = off  
Pin 9,  
Pin 1±  
1 =  
Pin 21,  
Pin 22  
2C  
Input coupling  
±
±
±
±
±
DC  
coupling  
enable  
±
±
±x±±  
Default is  
ac coupling.  
1 X = don’t care.  
Rev. A | Page 27 of 28  
 
AD9434  
OUTLINE DIMENSIONS  
0.30  
0.23  
0.18  
8.10  
0.60 MAX  
8.00 SQ  
7.90  
0.60  
MAX  
PIN 1  
INDICATOR  
43  
42  
56  
1
0.50  
BSC  
PIN 1  
INDICATOR  
7.85  
EXPOSED  
PAD  
7.75 SQ  
7.65  
5.25  
5.10 SQ  
4.95  
14  
29  
28  
15  
0.50  
0.40  
0.30  
0.25 MIN  
BOTTOM VIEW  
6.50 REF  
TOP VIEW  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
12° MAX  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.20 REF  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VLLD-2  
Figure 53. 56-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
8 mm × 8 mm Body, Very Thin Quad  
(CP-56-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
AD9434BCPZ-370  
AD9434BCPZRL7-370  
AD9434BCPZ-500  
AD9434BCPZRL7-500  
AD9434-370EBZ  
AD9434-500EBZ  
56-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
56-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
56-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
56-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
LVDS Evaluation Board with AD9434BCPZ-370  
LVDS Evaluation Board with AD9434BCPZ-500  
CP-56-5  
CP-56-5  
CP-56-5  
CP-56-5  
1 Z = RoHS Compliant Part.  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09383-0-5/11(A)  
Rev. A | Page 28 of 28  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

相关型号:

AD9434BCPZRL7-500

12-Bit, 370 MSPS/500 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9444

14-Bit, 80 MSPS, A/D Converter
ADI

AD9444-CMOS/PCB

14-Bit, 80 MSPS, A/D Converter
ADI

AD9444-CMOSPCB

High Speed ADC USB FIFO Evaluation Kit
ADI

AD9444-LVDS/PCB

14-Bit, 80 MSPS, A/D Converter
ADI

AD9444-LVDSPCB

High Speed ADC USB FIFO Evaluation Kit
ADI

AD9444BSVZ-80

14-Bit, 80 MSPS, A/D Converter
ADI

AD9445

14-Bit, 105/125 MSPS, IF Sampling ADC
ADI

AD9445-BB-LVDS

14-Bit, 105/125 MSPS, IF Sampling ADC
ADI

AD9445-BB-LVDS/PCB

14-Bit, 105/125 MSPS, IF Sampling ADC
ADI

AD9445-BB-LVDSPCB

High Speed ADC USB FIFO Evaluation Kit
ADI

AD9445-BB-PCB

14-Bit, 105/125 MSPS, IF Sampling ADC
ADI