AD9572ACPZLVD-RL [ADI]

Fiber Channel/Ethernet Clock Generator IC, PLL Core, Dividers, 7 Clock Outputs; 光纤通道/以太网时钟发生器IC , PLL内核,分频器, 7时钟输出
AD9572ACPZLVD-RL
型号: AD9572ACPZLVD-RL
厂家: ADI    ADI
描述:

Fiber Channel/Ethernet Clock Generator IC, PLL Core, Dividers, 7 Clock Outputs
光纤通道/以太网时钟发生器IC , PLL内核,分频器, 7时钟输出

时钟发生器 光纤 以太网
文件: 总20页 (文件大小:410K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Fiber Channel/Ethernet Clock Generator IC,  
PLL Core, Dividers, 7 Clock Outputs  
AD9572  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
REFSEL  
Fully integrated dual VCO/PLL cores  
167 fs rms jitter from 0.637 MHz to 10 MHz at 106.25 MHz  
178 fs rms jitter from 1.875 MHz to 20 MHz at 156.25 MHz  
418 fs rms jitter from 12 kHz to 20 MHz at 125 MHz  
Input crystal or clock frequency of 25 MHz  
Preset divide ratios for 106.25 MHz, 156.25 MHz, 33.33 MHz,  
100 MHz, 125 MHz  
Choice of LVPECL or LVDS output format  
Integrated loop filters  
Copy of reference clock output  
XTAL  
OSC  
CMOS  
1 × 25MHz  
REFCLK  
LDO  
VCO  
LVPECL  
OR LVDS  
2 × 106.25MHz  
1 × 156.25MHz  
LVPECL  
OR LVDS  
Rates configured via strapping pins  
LDO  
VCO  
LVPECL  
OR LVDS  
Space saving, 6 mm × 6 mm, 40-lead LFCSP  
0.71 W power dissipation (LVDS operation)  
1.07 W power dissipation (LVPECL operation)  
3.3 V operation  
2 × 100MHz  
OR 125MHz  
CMOS  
1 × 33.33MHz  
FORCE_LOW  
APPLICATIONS  
Fiber channel line cards, switches, and routers  
Gigabit Ethernet/PCIe support included  
Low jitter, low phase noise clock generation  
AD9572  
FREQSEL  
Figure 1.  
feedback divider and output divider. By connecting an external  
crystal or reference clock to the REFCLK pin, frequencies up to  
156.25 MHz can be locked to the input reference. Each output  
divider and feedback divider ratio is preprogrammed for the  
required output rates.  
GENERAL DESCRIPTION  
The AD9572 provides a multioutput clock generator function  
along with two on-chip PLL cores, optimized for fiber channel  
line card applications that include an Ethernet interface. The  
integer-N PLL design is based on the Analog Devices, Inc.,  
proven portfolio of high performance, low jitter frequency  
synthesizers to maximize network performance. Other applica-  
tions with demanding phase noise and jitter requirements also  
benefit from this part.  
A second PLL also operates as an integer-N synthesizer and  
drives two LVPECL or LVDS output buffers for 106.25 MHz  
operation. No external loop filter components are required, thus  
conserving valuable design time and board space.  
The AD9572 is available in a 40-lead, 6 mm × 6 mm lead frame  
chip scale package (LFCSP) and can be operated from a single  
3.3 V supply. The temperature range is −40°C to +85°C.  
The PLL section consists of a low noise phase frequency  
detector (PFD), a precision charge pump (CP), a low phase  
noise voltage controlled oscillator (VCO), and a preprogrammed  
CPU  
ISLAND  
10G SFP+  
1 × 156.25MHz  
2 × 106.25MHz  
16-PORT FIBRE CHANNEL ASIC  
1 × 100MHz/125MHz  
AD9572  
1 × 25MHz  
1 × 33.33MHz  
QUAD SFP QUAD SFP QUAD SFP QUAD SFP  
PHY  
PHY  
PHY  
PHY  
Figure 2. Typical Application  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
AD9572  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 12  
Terminology.................................................................................... 13  
Theory of Operation ...................................................................... 14  
Outputs ........................................................................................ 14  
Phase Frequency Detector (PFD) and Charge Pump............ 15  
Power Supply............................................................................... 15  
CMOS Clock Distribution ........................................................ 15  
LVPECL Clock Distribution..................................................... 16  
LVDS Clock Distribution.......................................................... 16  
Reference Input........................................................................... 16  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
PLL Characteristics ...................................................................... 3  
LVDS Clock Output Jitter............................................................ 4  
LVPECL Clock Output Jitter....................................................... 5  
CMOS Clock Output Jitter.......................................................... 5  
Reference Input............................................................................. 5  
Clock Outputs............................................................................... 6  
Timing Characteristics ................................................................ 6  
Control Pins .................................................................................. 7  
Power.............................................................................................. 7  
Crystal Oscillator.......................................................................... 7  
Timing Diagrams.............................................................................. 8  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
Power and Grounding Considerations and Power Supply  
Rejection...................................................................................... 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 17  
REVISION HISTORY  
7/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
AD9572  
SPECIFICATIONS  
PLL CHARACTERISTICS  
Typical (typ) is given for VS = 3.3 V, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
PHASE NOISE CHARACTERISTICS  
PLL Noise (106.25 MHz LVDS Output)  
@ 1 kHz  
@ 10 kHz  
@ 100 kHz  
@ 1 MHz  
@ 10 MHz  
@ 30 MHz  
−123  
−127  
−129  
−150  
−152  
−153  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
PLL Noise (156.25 MHz LVDS Output)  
@ 1 kHz  
@ 10 kHz  
@ 100 kHz  
@ 1 MHz  
@ 10 MHz  
@ 30 MHz  
−118  
−125  
−126  
−145  
−151  
−151  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
PLL Noise (125 MHz LVDS Output)  
@ 1 kHz  
@ 10 kHz  
@ 100 kHz  
@ 1 MHz  
@ 10 MHz  
@ 30 MHz  
−119  
−127  
−128  
−147  
−151  
−152  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
PLL Noise (100 MHz LVDS Output)  
@ 1 kHz  
@ 10 kHz  
@ 100 kHz  
@ 1 MHz  
@ 10 MHz  
@ 30 MHz  
−121  
−128  
−130  
−147  
−150  
−150  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
PLL Noise (106.25 MHz LVPECL Output)  
@ 1 kHz  
@ 10 kHz  
@ 100 kHz  
@ 1 MHz  
@ 10 MHz  
@ 30 MHz  
−121  
−128  
−129  
−151  
−154  
−155  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
PLL Noise (156.25 MHz LVPECL Output)  
@ 1 kHz  
@ 10 kHz  
@ 100 kHz  
@ 1 MHz  
−119  
−125  
−126  
−147  
−152  
−153  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
@ 10 MHz  
@ 30 MHz  
Rev. 0 | Page 3 of 20  
 
 
AD9572  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
PLL Noise (125 MHz LVPECL Output)  
@ 1 kHz  
@ 10 kHz  
@ 100 kHz  
@ 1 MHz  
@ 10 MHz  
@ 30 MHz  
−122  
−127  
−128  
−148  
−152  
−153  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
PLL Noise (100 MHz LVPECL Output)  
@ 1 kHz  
@ 10 kHz  
@ 100 kHz  
@ 1 MHz  
@ 10 MHz  
@ 30 MHz  
−122  
−128  
−130  
−148  
−150  
−151  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
Phase Noise (33.33 MHz CMOS Output)  
@ 1 kHz  
@ 10 kHz  
@ 100 kHz  
@ 1 MHz  
−130  
−138  
−139  
−152  
−152  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
@ 5 MHz  
Phase Noise (25 MHz CMOS Output)  
@ 1 kHz  
@ 10 kHz  
@ 100 kHz  
@ 1 MHz  
−133  
−142  
−148  
−148  
−148  
−70  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc  
@ 5 MHz  
Spurious Content1  
Dominant amplitude with all outputs active  
PLL Figures of Merit  
−217.5  
dBc/Hz  
1 When the 33.33 MHz, 100 MHz, and 125 MHz clocks are enabled simultaneously, a worst-case −50 dBc spurious content might be presented on Pin 21 and Pin 22 only.  
LVDS CLOCK OUTPUT JITTER  
Typical (typ) is given for VS = 3.3 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Jitter Integration  
Bandwidth (Typ)  
100 MHz  
106.25 MHz  
125 MHz  
156.25 MHz  
33M = Off/On 33M = Off/On 33M = Off/On 33M = Off/On Unit  
Test Conditions/Comments  
12 kHz to 20 MHz  
508/490  
402/440  
167/217  
418/883  
417/423  
178/185  
fS rms LVDS output frequency combinations  
are 1 × 156.25 MHz, 1 × 100 MHz, 1 ×  
125 MHz, 2 × 106.25 MHz  
fS rms LVDS output frequency combinations  
are 1 × 156.25 MHz, 1 × 100 MHz, 1 ×  
125 MHz, 2 × 106.25 MHz  
fS rms LVDS output frequency combinations  
are 1 × 156.25 MHz, 1 × 100 MHz, 1 ×  
125 MHz, 2 × 106.25 MHz  
1.875 MHz to  
20 MHz  
637 kHz to 10 MHz  
200 kHz to 10 MHz 316/308  
12 kHz to 35 MHz  
253/776  
fS rms LVDS output frequency combinations  
are 1 × 156.25 MHz, 1 × 100 MHz, 1 ×  
125 MHz, 2 × 106.25 MHz  
fS rms LVDS output frequency combinations  
are 1 × 156.25 MHz, 2 × 125 MHz, 2 ×  
106.25 MHz  
500 (off only)  
Rev. 0 | Page 4 of 20  
 
AD9572  
LVPECL CLOCK OUTPUT JITTER  
Typical (typ) is given for VS = 3.3 V, TA = 25°C, unless otherwise noted.  
Table 3.  
Jitter Integration  
Bandwidth (Typ)  
100 MHz  
33M = Off/On 33M = Off/On 33M = Off/On 33M = Off/On Unit  
106.25 MHz  
125 MHz  
156.25 MHz  
Test Conditions/Comments  
12 kHz to 20 MHz  
608/564  
418/451  
227/232  
444/2200  
420/461  
fS rms LVPECL output frequency combinations  
are 1 × 156.25 MHz, 1 × 100 MHz, 1 ×  
125 MHz, 2 × 106.25 MHz  
fS rms LVPECL output frequency combinations  
are 1 × 156.25 MHz, 1 × 100 MHz, 1 ×  
125 MHz, 2 × 106.25 MHz  
fS rms LVPECL output frequency combinations  
are 1 × 156.25 MHz, 1 × 100 MHz, 1 ×  
125 MHz, 2 × 106.25 MHz  
1.875 MHz to  
20 MHz  
200/277  
637 kHz to 10 MHz  
200 kHz to 10 MHz 337/378  
12 kHz to 35 MHz  
242/2200  
fS rms LVPECL output frequency combinations  
are 1 × 156.25 MHz, 1 × 100 MHz, 1 ×  
125 MHz, 2 × 106.25 MHz  
fS rms LVPECL output frequency combinations  
are 1 × 156.25 MHz, 2 × 125 MHz, 2 ×  
106.25 MHz  
523 (off only)  
CMOS CLOCK OUTPUT JITTER  
Typical (typ) is given for VS = 3.3 V, TA = 25°C, unless otherwise noted.  
Table 4.  
Jitter Integration Bandwidth  
25 MHz  
781  
764  
33.3 MHz  
417  
524  
Unit  
Test Conditions/Comments  
12 kHz to 5 MHz  
200 kHz to 5 MHz  
fS rms  
fS rms  
REFERENCE INPUT  
Typical (typ) is given for VS = 3.3 V 10ꢀ, TA = 25°C, unless otherwise noted. Minimum (min) and maximum (max) values are given  
over full VS and TA (−40°C to +85°C) variation.  
Table 5.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
CLOCK INPUT (REFCLK)  
Input Frequency  
Input High Voltage  
Input Low Voltage  
Input Current  
25  
MHz  
V
V
μA  
pF  
2.0  
0.8  
+1.0  
−1.0  
Input Capacitance  
2
Rev. 0 | Page 5 of 20  
 
AD9572  
CLOCK OUTPUTS  
Typical (typ) is given for VS = 3.3 V 10ꢀ, TA = 25°C, unless otherwise noted. Minimum (min) and maximum (max) values are given  
over full VS and TA (−40°C to +85°C) variation.  
Table 6.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
LVPECL CLOCK OUTPUTS  
Output Frequency  
Output High Voltage (VOH  
156.25  
VS − 0.83  
VS − 1.62  
950  
MHz  
V
V
mV  
%
)
VS − 1.24  
VS − 2.07  
700  
VS − 1.05  
VS − 1.87  
825  
Output Low Voltage (VOL  
)
Output Differential Voltage (VOD  
Duty Cycle  
)
)
45  
55  
LVDS CLOCK OUTPUTS  
Output Frequency  
Differential Output Voltage (VOD  
Delta VOD  
Output Offset Voltage (VOS  
Delta VOS  
156.25  
475  
25  
1.375  
25  
MHz  
mV  
mV  
V
mV  
mA  
%
250  
350  
1.25  
14  
)
1.125  
Short-Circuit Current (ISA, ISB)  
Duty Cycle  
24  
55  
Output shorted to GND  
45  
CMOS CLOCK OUTPUTS  
Output Frequency  
Output High Voltage (VOH  
Output Low Voltage (VOL  
Duty Cycle  
33.33  
MHz  
V
V
)
VS − 0.1  
42  
Sourcing 1.0 mA current  
Sinking 1.0 mA current  
)
0.1  
58  
%
TIMING CHARACTERISTICS  
Typical (typ) is given for VS = 3.3 V 10ꢀ, TA = 25°C, unless otherwise noted. Minimum (min) and maximum (max) values are given  
over full VS and TA (−40°C to +85°C) variation.  
Table 7.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
LVPECL  
Termination = 200 Ω to 0 V; CLOAD = 0 pF  
20% to 80%, measured differentially  
80% to 20%, measured differentially  
Termination = 100 Ω differential; CLOAD = 0 pF  
20% to 80%, measured differentially  
80% to 20%, measured differentially  
Termination = 50 Ω to 0 V; CLOAD = 5 pF  
20% to 80%  
Output Rise Time, tRP  
Output Fall Time, tFP  
LVDS  
Output Rise Time, tRL  
Output Fall Time, tFL  
CMOS  
480  
480  
625  
625  
810  
810  
ps  
ps  
160  
160  
350  
350  
540  
540  
ps  
ps  
Output Rise Time, tRC  
Output Fall Time, tFC  
0.25  
0.25  
0.50  
0.70  
2.5  
2.5  
ns  
ns  
80% to 20%  
Rev. 0 | Page 6 of 20  
 
AD9572  
CONTROL PINS  
Typical (typ) is given for VS = 3.3 V 10ꢀ, TA = 25°C, unless otherwise noted. Minimum (min) and maximum (max) values are given  
over full VS and TA (−40°C to +85°C) variation.  
Table 8.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
INPUT CHARACTERISTICS  
REFSEL Pin  
REFSEL has a 30 kΩ pull-up resistor.  
Logic 1 Voltage  
Logic 0 Voltage  
Logic 1 Current  
Logic 0 Current  
FREQSEL Pin  
2.0  
V
V
μA  
μA  
0.8  
1.0  
155  
FREQSEL has a 150 kΩ pull-up resistor and a  
100 kΩ pull-down resistor.  
Logic 1 Voltage  
Logic 0 Voltage  
Logic 1 Current  
Logic 0 Current  
FORCE_LOW Pin  
Logic 1 Voltage  
Logic 0 Voltage  
Logic 1 Current  
Logic 0 Current  
2/3(VS) + 0.2  
V
V
μA  
μA  
1/3(VS) − 0.2  
45  
30  
FORCE_LOW has a 16 kΩ pull-down resistor.  
2.0  
V
V
μA  
μA  
0.8  
240  
2.0  
POWER  
Typical (typ) is given for VS = 3.3 V 10ꢀ, TA = 25°C, unless otherwise noted. Minimum (min) and maximum (max) values are given  
over full VS and TA (−40°C to +85°C) variation.  
Table 9.  
Parameter  
Min  
Typ  
3.3  
Max  
3.6  
Unit  
V
Test Conditions/Comments  
Power Supply  
3.0  
LVDS Power Dissipation  
LVPECL Power Dissipation  
715  
1075  
870  
1305  
mW  
mW  
CRYSTAL OSCILLATOR  
Typical (typ) is given for VS = 3.3 V 10ꢀ, TA = 25°C, unless otherwise noted. Minimum (min) and maximum (max) values are given  
over full VS and TA (−40°C to +85°C) variation.  
Table 10.  
Parameter  
Min  
Typ  
Max  
50  
Unit  
Test Conditions/Comments  
CRYSTAL SPECIFICATION  
Frequency  
ESR  
Fundamental mode  
25  
MHz  
Ω
Load Capacitance  
Phase Noise  
Stability  
14  
−135  
pF  
dBc/Hz  
ppm  
@ 1 kHz offset  
−30  
+30  
Rev. 0 | Page 7 of 20  
 
AD9572  
TIMING DIAGRAMS  
SINGLE-ENDED  
80%  
DIFFERENTIAL  
80%  
CMOS  
5pF LOAD  
LVPECL  
20%  
20%  
tRC  
tFC  
tRP  
tFP  
Figure 5. CMOS Timing, Single-Ended, 5 pF Load  
Figure 3. LVPECL Timing, Differential  
DIFFERENTIAL  
80%  
LVDS  
20%  
tRL  
tFL  
Figure 4. LVDS Timing, Differential  
Rev. 0 | Page 8 of 20  
 
AD9572  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 11.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Thermal impedance measurements were taken on a 4-layer  
board in still air in accordance with EIA/JESD51-7.  
Parameter  
Rating  
VS to GND  
−0.3 V to +3.6 V  
−0.3 V to VS + 0.3 V  
−0.3 V to VS + 0.3 V  
−0.3 V to VS + 0.3 V  
−0.3 V to VS + 0.3 V  
REFCLK to GND  
BYPASSx to GND  
XO to GND  
FREQSEL, FORCE_LOW, and  
REFSEL to GND  
Table 12. Thermal Resistance  
Package Type  
θJA  
Unit  
40-Lead LFCSP  
27.5  
°C/W  
25M, 33M, 100M/125M, 106M, and −0.3 V to VS + 0.3 V  
156M to GND  
Junction Temperature1  
Storage Temperature Range  
1 See Table 12 for θJA.  
150°C  
−65°C to +150°C  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 9 of 20  
 
 
 
AD9572  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
GND  
VS  
NC  
25M  
VS  
1
2
3
4
5
6
7
8
9
30 106M  
29 106M  
28 VS  
27 FREQSEL  
26 VS  
25 VS  
24 VS  
23 33M  
22 100M/125M  
21 100M/125M  
INDICATOR  
AD9572  
TOP VIEW  
XO  
XO  
REFCLK  
REFSEL  
(Not to Scale)  
GND 10  
NOTES  
1. * = SHORT TO PIN 36.  
2. ** = SHORT TO PIN 14.  
3. NC = NO CONNECT.  
4. NOTE THAT THE EXPOSED PADDLE ON THIS PACKAGE IS AN ELECTRICAL  
CONNECTION AS WELL AS A THERMAL ENHANCEMENT. FOR THE DEVICE TO  
FUNCTION PROPERLY, THE PADDLE MUST BE ATTACHED TO GROUND (GND).  
Figure 6. Pin Configuration  
Table 13. Pin Function Descriptions1  
Pin No.  
Mnemonic  
Description  
3
NC  
No Connect. This pin should be left floating.  
2
4
VS  
25M  
Power Supply Connection for the 25M CMOS Buffer.  
CMOS 25 MHz Output.  
5
6, 7  
8
9
11  
VS  
XO  
REFCLK  
REFSEL  
Power Supply Connection for the Crystal Oscillator.  
External 25 MHz Crystal.  
25 MHz Reference Clock Input. Tie low when not in use.  
Logic Input. Used to select the reference source.  
Power Supply Connection for the GbE PLL.  
VS  
1, 10, 34  
14, 36  
15  
GND  
BYPASS2, BYPASS1  
VS  
Ground. Includes external paddle (EPAD).  
These pins are for bypassing each LDO to ground with a 220 nF capacitor.  
Power Supply Connection for the GbE VCO.  
16  
17  
18  
VS  
Power Supply Connection for the 156M LVDS Output Buffer and Output Dividers.  
LVPECL/LVDS Output at 156.25 MHz.  
Complementary LVPECL/LVDS Output at 156.25 MHz.  
LVPECL/LVDS Output at 100 MHz or 125 MHz. Selected by FREQSEL pin strapping.  
Complementary LVPECL/LVDS Output at 100 MHz or 125 MHz.  
CMOS 33.33 MHz Output.  
156M  
156M  
100M/125M  
100M/125M  
33M  
19, 21  
20, 22  
23  
24  
25  
26  
27  
28  
29, 31  
30, 32  
VS  
VS  
VS  
FREQSEL  
VS  
Power Supply Connection for the 33M CMOS Output Buffer and Output Dividers.  
Power Supply Connection for the 100M/125M LVDS Output Buffer and Output Dividers.  
Power Supply Connection for the GbE PLL Feedback Divider.  
Logic Input. Used to configure output drivers.  
Power Supply Connection for the FC PLL Feedback Divider.  
LVPECL/LVDS Output at 106.25 MHz.  
106M  
106M  
Complementary LVPECL/LVDS Output at 106.25 MHz.  
Rev. 0 | Page 10 of 20  
 
AD9572  
Pin No.  
33  
35  
Mnemonic  
Description  
VS  
VS  
Power Supply Connection for the 106.25 MHz LVDS Output Buffer and Output Dividers.  
Power Supply Connection for the FC VCO.  
37  
FORCE_LOW  
Forces the 33.33 MHz output into a low state.  
39  
40  
VS  
VS  
Power Supply Connection for the FC PLL.  
Power Supply Connection for Miscellaneous Logic.  
1 The exposed paddle on this package is an electrical connection as well as a thermal enhancement. For the device to function properly, the paddle must be attached to  
ground (GND).  
Rev. 0 | Page 11 of 20  
 
AD9572  
TYPICAL PERFORMANCE CHARACTERISTICS  
Both 100 MHz and 125 MHz outputs enabled; 33.3 MHz output disabled.  
–100  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–110  
–120  
–130  
–140  
–150  
–160  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 7. 106.25 MHz Phase Noise  
Figure 10. 156.25 MHz Phase Noise  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 8. 125 MHz Phase Noise  
Figure 11. 100 MHz Phase Noise  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 9. 25 MHz Phase Noise  
Rev. 0 | Page 12 of 20  
 
AD9572  
TERMINOLOGY  
Phase Jitter  
Time Jitter  
An ideal sine wave can be thought of as having a continuous  
and even progression of phase with time from 0° to 360° for  
each cycle. Actual signals, however, display a certain amount of  
variation from the ideal phase progression over time. This  
phenomenon is called phase jitter. Although many causes can  
contribute to phase jitter, one major cause is random noise,  
which is characterized statistically as gaussian (normal) in  
distribution.  
Phase noise is a frequency domain phenomenon. In the time  
domain, the same effect is exhibited as time jitter. When  
observing a sine wave, the time of successive zero crossings is  
seen to vary. In a square wave, the time jitter is seen as a  
displacement of the edges from their ideal (regular) times of  
occurrence. In both cases, the variations in timing from the  
ideal are the time jitter. Because these variations are random in  
nature, the time jitter is specified in units of seconds root mean  
square (rms) or 1 sigma of the gaussian distribution.  
This phase jitter leads to a spreading out of the energy of the  
sine wave in the frequency domain, producing a continuous  
power spectrum. This power spectrum is usually reported as a  
series of values whose units are dBc/Hz at a given offset in  
frequency from the sine wave (carrier). The value is a ratio  
(expressed in dB) of the power contained within a 1 Hz  
bandwidth with respect to the power at the carrier frequency.  
For each measurement, the offset from the carrier frequency is  
also given.  
Additive Phase Noise  
Additive phase noise is the amount of phase noise that is  
attributable to the device or subsystem being measured. The  
phase noise of any external oscillators or clock sources has been  
subtracted. This makes it possible to predict the degree to which  
the device impacts the total system phase noise when used in  
conjunction with the various oscillators and clock sources, each  
of which contributes its own phase noise to the total. In many  
cases, the phase noise of one element dominates the system  
phase noise.  
Phase Noise  
When the total power contained within some interval of offset  
frequencies (for example, 12 kHz to 20 MHz) is integrated, it is  
called the integrated phase noise over that frequency offset  
interval, and it can be readily related to the time jitter due to the  
phase noise within that offset frequency interval.  
Additive Time Jitter  
Additive time jitter is the amount of time jitter that is attributable  
to the device or subsystem being measured. The time jitter of  
any external oscillator or clock source has been subtracted. This  
makes it possible to predict the degree to which the device will  
impact the total system time jitter when used in conjunction with  
the various oscillators and clock sources, each of which  
contributes its own time jitter to the total. In many cases, the  
time jitter of the external oscillators and clock sources  
dominates the system time jitter.  
Phase noise has a detrimental effect on error rate performance  
by increasing eye closure at the transmitter output and reducing  
the jitter tolerance/sensitivity of the receiver.  
Rev. 0 | Page 13 of 20  
 
AD9572  
THEORY OF OPERATION  
REFSEL  
BYPASS1  
VS  
GND  
VS  
XTAL  
OSC  
CMOS  
1
0
25M  
REFCLK  
LDO  
PHASE  
DIVIDE  
BY 17  
FREQUENCY  
DETECTOR  
106.25MHz  
106M  
106M  
CHARGE  
PUMP  
DIVIDE  
BY 5  
DIVIDE  
BY 4  
LVPECL/  
LVDS  
106M  
106M  
VCO  
LDO  
V
LDO  
BYPASS2  
PHASE  
FREQUENCY  
DETECTOR  
DIVIDE  
BY 25  
156.25MHz  
156M  
156M  
CHARGE  
PUMP  
DIVIDE  
BY 4  
DIVIDE  
BY 4  
LVPECL/  
LVDS  
VCO  
125MHz/100MHz  
V
LDO  
0
1
DIVIDE  
BY 5  
DIVIDE  
BY 4  
100M/125M  
100M/125M  
LVPECL/  
LVDS  
LEVEL  
DECODE  
FREQSEL  
125MHz/100MHz  
0
1
100M/125M  
100M/125M  
DIVIDE  
BY 5  
LVPECL/  
LVDS  
33.33MHz  
CMOS  
DIVIDE  
BY 3  
AD9572  
33M  
FORCE_LOW  
Figure 12. Detailed Block Diagram  
Figure 12 shows a block diagram of the AD9572. The chip  
combines dual PLL cores, which are configured to generate the  
specific clock frequencies required for networking applications,  
without any user programming. This PLL is based on proven  
Analog Devices synthesizer technology, noted for its exceptional  
phase noise performance. The AD9572 is highly integrated and  
includes loop filters, regulators for supply noise immunity, all  
the necessary dividers with multiple output buffers in a choice  
of formats, and a crystal oscillator. A user need only supply a  
25 MHz reference clock or an external crystal to implement an  
entire line card clocking solution  
OUTPUTS  
Table 14 provides a summary of the outputs available.  
Table 14. Output Formats  
Frequency  
25 MHz  
106.25 MHz  
156.25 MHz  
100 MHz or 125 MHz  
33.33 MHz  
Format  
Copies  
CMOS  
1
2
1
2
1
LVPECL/LVDS  
LVPECL/LVDS  
LVPECL/LVDS  
CMOS  
Note that the pins labeled 100M/125M can provide 100 MHz or  
125 MHz by strapping the FREQSEL pin as shown in Table 15.  
that does not require any processor intervention. A copy of  
the 25 MHz reference source is also available.  
Rev. 0 | Page 14 of 20  
 
 
 
AD9572  
PHASE FREQUENCY DETECTOR (PFD) AND  
CHARGE PUMP  
Table 15. FREQSEL (Pin 27) Definition  
Frequency Available  
from Pin 19 and Pin 20  
FREQSEL (MHZ)  
Frequency Available  
from Pin 21 and Pin 22  
(MHZ)  
The PFD takes inputs from the reference clock and feedback  
divider to produce an output proportional to the phase and  
frequency difference between them. Figure 15 shows a  
simplified schematic.  
0
125  
100  
125  
125  
100  
100  
1
NC  
3.3V  
CHARGE  
PUMP  
UP  
3.5mA  
HIGH  
D1 Q1  
CLR1  
REFCLK  
OUT  
OUTB  
CP  
CLR2  
D2 Q2  
DOWN  
3.5mA  
HIGH  
FEEDBACK  
DIVIDER  
Figure 13. LVDS Output Simplified Equivalent Circuit  
The simplified equivalent circuits of the LVDS and LVPECL  
GND  
outputs are shown in Figure 13 and Figure 14.  
Figure 15. PFD Simplified Schematic  
3.3V  
POWER SUPPLY  
The AD9572 requires a 3.3 V 10ꢀ power supply for VS. The  
tables in the Specifications section give the performance expected  
from the AD9572 with the power supply voltage within this  
range. The absolute maximum range of −0.3 V to +3.6 V, with  
respect to GND, must never be exceeded on the VS pin.  
OUT  
OUTB  
Good engineering practice should be followed in the layout of  
power supply traces and the ground plane of the PCB. The  
power supply should be bypassed on the PCB with adequate  
capacitance (>10 μF). The AD9572 should be bypassed with  
adequate capacitors (0.1 μF) at all power pins as close as  
possible to the part. The layout of the AD9572 evaluation board  
is a good example.  
GND  
Figure 14. LVPECL Output Simplified Equivalent Circuit  
The differential outputs are factory programmed to either LVPECL  
or LVDS format, and either option can be sampled on request.  
The exposed metal paddle on the AD9572 package is an electrical  
connection, as well as a thermal enhancement. For the device to  
function properly, the paddle must be properly attached to ground  
(GND). The PCB acts as a heat sink for the AD9572; therefore,  
this GND connection should provide a good thermal path to a  
larger dissipation area, such as a ground plane on the PCB.  
CMOS drivers tend to generate more noise than differential  
outputs and, as a result, the proximity of the 33.33 MHz output  
to Pin 21 and Pin 22 does affect the jitter performance when  
FREQSEL = 0 (that is, when the differential output is generating  
125 MHz). For this reason, the 33 MHz pin can be forced to a  
low state by asserting the FORCE_LOW signal on Pin 37 (see  
Table 16). An internal pull-down enables the 33.33 MHz output  
if the pin is not connected.  
CMOS CLOCK DISTRIBUTION  
The AD9572 provides two CMOS clock outputs (one 25 MHz  
and one 33.33 MHz) that are dedicated CMOS levels. Whenever  
single-ended CMOS clocking is used, some of the following  
general guidelines should be followed.  
Table 16. FORCE_LOW (Pin 37) Definition  
FORCE_LOW  
33.33 MHz Output (Pin 23)  
0 or NC  
1
33.33 MHz  
0
Point-to-point nets should be designed such that a driver has  
one receiver only on the net, if possible. This allows for simple  
termination schemes and minimizes ringing due to possible  
mismatched impedances on the net. Series termination at the  
source is generally required to provide transmission line  
matching and/or to reduce current transients at the driver.  
Rev. 0 | Page 15 of 20  
 
 
 
 
 
 
AD9572  
3.3V  
3.3V  
The value of the resistor is dependent on the board design and  
timing requirements (typically 10 Ω to 100 Ω is used). CMOS  
outputs are limited in terms of the capacitive load or trace  
length that they can drive. Typically, trace lengths less than  
6 inches are recommended to preserve signal rise/fall times  
and signal integrity.  
0.1nF  
DIFFERENTIAL  
(COUPLED)  
100  
LVPECL  
LVPECL  
0.1nF  
200Ω  
200Ω  
60.4  
1.0 INCH  
Figure 19. LVPECL with Parallel Transmission Line  
10Ω  
CMOS  
LVDS CLOCK DISTRIBUTION  
MICROSTRIP  
5pF  
Low voltage differential signaling (LVDS) is a second  
GND  
differential output option for the AD9572. LVDS uses a current  
mode output stage with a factory programmed current level.  
The normal value (default) for this current is 3.5 mA, which  
yields a 350 mV output swing across a 100 Ω resistor. The LVDS  
outputs meet or exceed all ANSI/TIA/EIA-644 specifications.  
Figure 16. Series Termination of CMOS Output  
Termination at the far end of the PCB trace is a second option.  
The CMOS outputs of the AD9572 do not supply enough current  
to provide a full voltage swing with a low impedance resistive,  
far-end termination, as shown in Figure 17. The far-end  
termination network should match the PCB trace impedance  
and provide the desired switching point. The reduced signal  
swing may still meet receiver input requirements in some  
applications. This can be useful when driving long trace lengths  
on less critical nets.  
A recommended termination circuit for the LVDS outputs is  
shown in Figure 20.  
50  
100Ω  
LVDS  
LVDS  
50Ω  
Figure 20. LVDS Output Termination  
V
= 3.3V  
PULLUP  
See the AN-586 Application Note on the Analog Devices  
website at www.analog.com for more information about LVDS.  
100  
50Ω  
10Ω  
CMOS  
5pF  
100Ω  
REFERENCE INPUT  
By default, the crystal oscillator is enabled and used as the  
reference source, which requires the connection of an external  
25 MHz crystal. The REFSEL pin is pulled high internally by  
about 30 kꢁ to support default operation. When REFSEL is tied  
low, the crystal oscillator is powered down, and the REFCLK pin  
must provide a good quality 25 MHz reference clock instead.  
This single-ended input can be driven by either a dc-coupled  
LVCMOS level signal or an ac-coupled sine wave or square  
wave, provided that an external divider is used to bias the input  
at VS/2.  
Figure 17. CMOS Output with Far-End Termination  
LVPECL CLOCK DISTRIBUTION  
The low voltage, positive emitter-coupled logic (LVPECL)  
outputs of the AD9572 provide the lowest jitter clock signals  
available from the AD9572. The LVPECL outputs (because they  
are open emitter) require a dc termination to bias the output  
transistors. The simplified equivalent circuit in Figure 14 shows  
the LVPECL output stage.  
In most applications, a standard LVPECL far-end termination is  
recommended, as shown in Figure 18. The resistor network is  
designed to match the transmission line impedance (50 Ω) and  
the desired switching threshold (1.3 V).  
Table 17. REFSEL (Pin 9) Definition  
REFSEL  
Reference Source  
0
1
REFCLK input  
Internal crystal oscillator  
3.3V  
POWER AND GROUNDING CONSIDERATIONS AND  
POWER SUPPLY REJECTION  
3.3V  
3.3V  
127  
127Ω  
50Ω  
Many applications seek high speed and performance under less  
than ideal operating conditions. In these application circuits,  
the implementation and construction of the PCB is as important  
as the circuit design. Proper RF techniques must be used for  
device selection, placement, and routing, as well as for power  
supply bypassing and grounding to ensure optimum performance.  
SINGLE-ENDED  
(NOT COUPLED)  
LVPECL  
LVPECL  
50Ω  
83Ω  
83Ω  
V
= V – 1.3V  
CC  
T
Figure 18. LVPECL Far-End Termination  
Rev. 0 | Page 16 of 20  
 
 
 
 
AD9572  
OUTLINE DIMENSIONS  
6.10  
6.00 SQ  
5.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
31  
30  
40  
1
0.50  
BSC  
*
4.80  
EXPOSED  
PAD  
4.70 SQ  
4.50  
21  
20  
10  
11  
0.45  
0.40  
0.35  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WJJD-5  
WITH EXCEPTION TO EXPOSED PAD DIMENSION.  
Figure 21. 40-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
6 mm × 6 mm Body, Very Very Thin Quad  
(CP-40-7)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD9572ACPZLVD1, 2  
AD9572ACPZLVD-RL1, 2  
Temperature Range  
Package Description  
Package Option  
CP-40-7  
−40°C to +85°C  
−40°C to +85°C  
40-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
40-Lead Lead Frame Chip Scale Package [LFCSP_WQ], CP-40-7  
7”Tape Reel, 2,500 Pieces  
40-Lead Lead Frame Chip Scale Package [LFCSP_WQ], CP-40-7  
7”Tape Reel, 750 Pieces  
40-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
40-Lead Lead Frame Chip Scale Package [LFCSP_WQ], CP-40-7  
7”Tape Reel, 2,500 Pieces  
40-Lead Lead Frame Chip Scale Package [LFCSP_WQ], CP-40-7  
7”Tape Reel, 750 Pieces  
AD9572ACPZLVD-R71, 2  
−40°C to +85°C  
AD9572ACPZPEC1, 3  
AD9572ACPZPEC-RL1, 3  
−40°C to +85°C  
−40°C to +85°C  
CP-40-7  
AD9572ACPZPEC-R71, 3  
−40°C to +85°C  
AD9572-EVALZ-LVD1, 2  
AD9572-EVALZ-PEC1, 3  
Evaluation Board  
Evaluation Board  
1 Z = RoHS Compliant Part.  
2 LVD indicates LVDS compliant, differential clock outputs.  
3 PEC indicates LVPECL compliant, differential clock outputs.  
Rev. 0 | Page 17 of 20  
 
 
 
 
 
AD9572  
NOTES  
Rev. 0 | Page 18 of 20  
AD9572  
NOTES  
Rev. 0 | Page 19 of 20  
AD9572  
NOTES  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07498-0-7/09(0)  
Rev. 0 | Page 20 of 20  
 
 
 
 

相关型号:

AD9572ACPZLVD1

IC 156.25 MHz, OTHER CLOCK GENERATOR, QCC40, 6 X 6 MM, ROHS COMPLIANT, MO-220WJJD-5, LFCSP-40, Clock Generator
ADI

AD9572ACPZPEC

Fiber Channel/Ethernet Clock Generator IC, PLL Core, Dividers, 7 Clock Outputs
ADI

AD9572ACPZPEC-R7

Fiber Channel/Ethernet Clock Generator IC, PLL Core, Dividers, 7 Clock Outputs
ADI

AD9572ACPZPEC-RL

Fiber Channel/Ethernet Clock Generator IC, PLL Core, Dividers, 7 Clock Outputs
ADI

AD9573

PCI-Express Clock Generator IC, PLL Core, Dividers, Two Outputs
ADI

AD9573-EVALZ

PCI-Express Clock Generator IC, PLL Core, Dividers, Two Outputs
ADI

AD9573ARUZ

PCI-Express Clock Generator IC, PLL Core, Dividers, Two Outputs
ADI

AD9573ARUZ-RL7

PCI-Express Clock Generator IC, PLL Core, Dividers, Two Outputs
ADI

AD9574

Ethernet/Gigabit Ethernet Clock Generator
ADI

AD9574BCPZ

Ethernet/Gigabit Ethernet Clock Generator
ADI

AD9574BCPZ-REEL7

Ethernet/Gigabit Ethernet Clock Generator
ADI

AD9575

Network Clock Generator, Two Outputs
ADI