AD9574BCPZ [ADI]

Ethernet/Gigabit Ethernet Clock Generator;
AD9574BCPZ
型号: AD9574BCPZ
厂家: ADI    ADI
描述:

Ethernet/Gigabit Ethernet Clock Generator

文件: 总35页 (文件大小:873K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ethernet/Gigabit Ethernet Clock Generator  
Data Sheet  
AD9574  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Redundant input reference clock capability  
Reference monitoring function  
REF0_P  
REF0_N  
REF1_P  
REF1_N  
OUT0_P  
OUT0_N  
Rx  
Rx  
×1/×2  
AD9574  
Fully integrated VCO/PLL core  
OUT1_P  
OUT1_N  
Jitter (rms)  
0.234 ps rms jitter (10 kHz to 10 MHz) at 156.25 MHz  
0.243 ps rms jitter (12 kHz to 20 MHz) at 156.25 MHz  
Input frequency: 19.44 MHz or 25 MHz  
Preset frequency translations  
OUT2_P  
OUT2_N  
OUT3_P  
OUT3_N  
OUT4_P  
OUT4_N  
OUT5_P  
OUT5_N  
OUT6_P  
OUT6_N  
REF_SEL  
MCLK_x  
Using a 19.44 MHz input reference  
19.44 MHz, 38.88 MHz, 77.76 MHz, 155.52 MHz  
Using a 25 MHz input reference  
REF_ACT  
REF_SW  
REF_FLO  
REF_FHI  
REFMON  
PFD/  
CP  
LF VCO  
×1/×2  
25 MHz, 33.33 MHz, 50 MHz, 66.67 MHz, 80 MHz,  
100 MHz, 125 MHz, 133.3 MHz, 156.25 MHz, 160 MHz,  
312.5 MHz  
PPR  
CONTROL  
PPRx  
LD  
LF  
Output drive formats: HSTL, LVDS, HCSL, and 1.8 V and 3.3 V  
CMOS  
Figure 1.  
Integrated loop filter (requires a single external capacitor)  
2 copies of reference clock output  
Device configuration via strapping pins (PPRx)  
Space-saving 7 mm × 7 mm 48-lead LFCSP  
3.3 V operation  
APPLICATIONS  
Ethernet line cards, switches, and routers  
SATA and PCI express  
Low jitter, low phase noise clock generation  
GENERAL DESCRIPTION  
The AD9574 provides a multiple output clock generator function  
comprising a dedicated phase-locked loop (PLL) core optimized  
for Ethernet and gigabit Ethernet line card applications. The  
integer-N PLL design is based on the Analog Devices, Inc.,  
proven portfolio of high performance, low jitter frequency  
synthesizers to maximize network performance. The AD9574  
also benefits other applications requiring low phase noise and  
jitter performance.  
clock source (8 kHz/10 MHz/19.44 MHz/25 MHz/38.88 MHz) to  
the monitor clock input enables the optional monitor circuit  
providing quality of service (QoS) status for REF0 or REF1.  
The PLL section consists of a low noise phase frequency  
detector (PFD), a precision charge pump (CP), a partially  
integrated loop filter (LF), a low phase noise voltage controlled  
oscillator (VCO), and feedback and output dividers. The divider  
values depend on the PPRx pins. The integrated loop filter  
requires only a single external capacitor connected to the LF pin.  
Configuring the AD9574 for a particular application requires  
only the connection of external pull-up or pull-down resistors  
to the appropriate pin program reader pins (PPRx). These pins  
provide control of the internal dividers for establishing the  
desired frequency translations, clock output functionality, and  
input reference functionality. Connecting an external 19.44 MHz  
or 25 MHz oscillator to one or both of the REF0_P/REF0_N or  
REF1_P/REF1_N reference inputs results in a set of output  
frequencies prescribed by the PPRx pins. Connecting a stable  
The AD9574 is packaged in a 48-lead 7 mm × 7 mm LFCSP,  
requiring only a single 3.3 V supply. The operating temperature  
range is −40°C to +85°C.  
Note that throughout this data sheet, OUT0 to OUT6, REF0,  
and REF1 refer to the respective channels, which consist of the  
differential pins, OUT0_P/OUT0_N to OUT6_P/OUT6_N,  
REF0_P/REF0_N, and REF1_P/REF1_N, respectively.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD9574  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Overview ..................................................................................... 21  
PPRx Pins .................................................................................... 21  
PPR0—Reference Clock Input Configuration ................... 22  
PPR1—Frequency Translation Settings .............................. 22  
PPR2—OUT0 and OUT1 Configuration ........................... 23  
PPR3—OUT4 and OUT5 Configuration ........................... 23  
PPR4—OUT6 Configuration ............................................... 24  
PPR5—Reference Monitor Threshold................................. 24  
PPR6—Monitor Clock (MCLK_x) Input Configuration . 24  
Dependency of PPR3 and PPR4 on PPR1 .......................... 24  
Power-On Reset (POR) ............................................................. 25  
Reference Clock Inputs.............................................................. 27  
Monitor Clock Input.................................................................. 27  
Reference Switching................................................................... 27  
Reference Monitor...................................................................... 27  
PLL ............................................................................................... 28  
Output Drivers............................................................................ 29  
Output Clocks............................................................................. 29  
Applications Information .............................................................. 30  
Dual Oscillator Reference Input Application ......................... 30  
Simple, Single Oscillator Reference Input Application ......... 31  
Interfacing to CMOS Clock Outputs....................................... 31  
Interfacing to LVDS and HSTL Clock Outputs ..................... 32  
Interfacing to HCSL Clock Outputs ........................................ 32  
Power Supply............................................................................... 33  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
OUT0 Channel Absolute Clock Jitter........................................ 3  
OUT1 Channel Absolute Clock Jitter ........................................ 3  
OUT2 and OUT3 Channels Absolute Clock Jitter................... 3  
OUT4 and OUT5 Channels Absolute Clock Jitter................... 4  
OUT6 Channel Absolute Clock Jitter ........................................ 5  
Clock Outputs (OUT0_x to OUT6_x)—Static ........................ 6  
Clock Outputs (OUT0_x to OUT6_x)—Dynamic.................. 6  
Monitor Clock Inputs (MCLK_x)—Static ................................ 7  
Monitor Clock Inputs (MCLK_x)—Dynamic.......................... 8  
Reference Inputs (REF0_x and REF1_x)—Static..................... 8  
Reference Inputs (REF0_x and REF1_x)—Dynamic .............. 8  
Reference Switchover Output Disturbance............................... 9  
Control Pins .................................................................................. 9  
Status Pins.................................................................................... 10  
Power Supply and Dissipation .................................................. 10  
Timing Specifications ................................................................ 11  
Timing Diagrams........................................................................ 12  
Absolute Maximum Ratings.......................................................... 13  
ESD Caution................................................................................ 13  
Pin Configuration and Function Descriptions........................... 14  
Typical Performance Characteristics ........................................... 17  
Phase Noise and Voltage Waveforms....................................... 17  
Reference Switching Frequency and Phase Disturbance ...... 19  
Terminology .................................................................................... 20  
Theory of Operation ...................................................................... 21  
REVISION HISTORY  
Power and Grounding Considerations and Power Supply  
Rejection...................................................................................... 33  
Thermal Performance.................................................................... 34  
Outline Dimensions ....................................................................... 35  
Ordering Guide .......................................................................... 35  
4/2017—Rev. A to Rev. B  
Deleted Thermal Resistance Section and Table 18; Renumbered  
Sequentially ..................................................................................... 13  
Changes to Power-On Reset (POR) Section............................... 26  
Added Figure 22; Renumbered Sequentially .............................. 26  
Added Thermal Performance Section and Table 35.................. 34  
Change to Figure 20 ....................................................................... 21  
Updated Outline Dimensions....................................................... 35  
Changes to Ordering Guide .......................................................... 35  
1/2015—Rev. 0 to Rev. A  
Changes to Table 13.......................................................................... 9  
Changes to Note 1, Table 17.......................................................... 13  
9/2014—Revision 0: Initial Version  
Rev. B | Page 2 of 35  
 
Data Sheet  
AD9574  
SPECIFICATIONS  
OUT0 CHANNEL ABSOLUTE CLOCK JITTER  
Typical values applicable under the conditions of VS = 3.3 V, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
HIGH SPEED TRANSCEIVER LOGIC  
(HSTL) INTEGRATED JITTER  
Jitter integration bandwidth = 12 kHz to 5 MHz  
19.44 MHz Output  
25 MHz Output  
0.196  
0.179  
1.943  
1.523  
ps rms  
ps rms  
ps rms  
ps rms  
38.88 MHz Output  
50 MHz Output  
3.3 V CMOS INTEGRATED JITTER  
19.44 MHz Output  
25 MHz Output  
Jitter integration bandwidth = 12 kHz to 5 MHz  
0.204  
0.178  
1.969  
1.446  
ps rms  
ps rms  
ps rms  
ps rms  
38.88 MHz Output  
50 MHz Output  
OUT1 CHANNEL ABSOLUTE CLOCK JITTER  
Typical values applicable under the conditions of VS = 3.3 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
HSTL INTEGRATED JITTER  
19.44 MHz Output  
25 MHz Output  
Jitter integration bandwidth = 12 kHz to 5 MHz  
0.175  
0.153  
ps rms  
ps rms  
3.3 V CMOS INTEGRATED JITTER  
19.44 MHz Output  
25 MHz Output  
Jitter integration bandwidth = 12 kHz to 5 MHz  
0.184  
0.160  
ps rms  
ps rms  
OUT2 AND OUT3 CHANNELS ABSOLUTE CLOCK JITTER  
Typical values applicable under the conditions of VS = 3.3 V, TA = 25°C, unless otherwise noted. Frequency multiplier (×2) at PLL input  
enabled.  
Table 3.  
Parameter  
Min Typ  
Max Unit  
Test Conditions/Comments  
HSTL INTEGRATED JITTER  
Jitter Integration Bandwidth = 10 kHz to 10 MHz  
155.52 MHz Output  
0.244  
ps rms  
ps rms  
156.25 MHz Output  
0.234  
1.290  
160 MHz Output  
ps rms Frequency multiplier (×2) at PLL input bypassed  
Jitter Integration Bandwidth = 12 kHz to 20 MHz  
155.52 MHz Output  
0.470  
0.243  
1.329  
ps rms  
156.25 MHz Output  
ps rms  
160 MHz Output  
ps rms Frequency multiplier (×2) at PLL input bypassed  
Jitter Integration Bandwidth = 1.875 MHz to 20 MHz  
155.52 MHz Output  
0.409  
0.100  
1.257  
ps rms  
156.25 MHz Output  
ps rms  
160 MHz Output  
ps rms Frequency multiplier (×2) at PLL input bypassed  
Rev. B | Page 3 of 35  
 
AD9574  
Data Sheet  
OUT4 AND OUT5 CHANNELS ABSOLUTE CLOCK JITTER  
Typical values applicable under the conditions of VS = 3.3 V, TA = 25°C. Frequency multiplier (×2) at PLL input enabled unless otherwise  
indicated.  
Table 4.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
HSTL INTEGRATED JITTER  
Jitter Integration Bandwidth = 10 kHz to 10 MHz  
38.88 MHz Output  
Input = crystal oscillator  
0.251  
0.245  
1.267  
ps rms  
ps rms  
ps rms  
77.76 MHz Output  
80 MHz Output  
Frequency multiplier (×2) at PLL  
input bypassed  
100 MHz Output  
125 MHz Output  
160 MHz Output  
0.240  
0.228  
1.277  
ps rms  
ps rms  
ps rms  
Frequency multiplier (×2) at PLL  
input bypassed  
312.5 MHz Output  
0.234  
ps rms  
Jitter Integration Bandwidth = 12 kHz to 20 MHz  
77.76 MHz Output  
0.488  
1.314  
ps rms  
ps rms  
80 MHz Output  
Frequency multiplier (×2) at PLL  
input bypassed  
100 MHz Output  
125 MHz Output  
160 MHz Output  
0.252  
0.233  
1.321  
ps rms  
ps rms  
ps rms  
Frequency multiplier (×2) at PLL  
input bypassed  
312.5 MHz Output  
0.236  
0.389  
ps rms  
ps rms  
Jitter Integration Bandwidth = 50 kHz to 80 MHz  
312.5 MHz Output  
Jitter Integration Bandwidth = 1.875 MHz to 20 MHz  
77.76 MHz Output  
0.430  
1.242  
ps rms  
ps rms  
80 MHz Output  
Frequency multiplier (×2) at PLL  
input bypassed  
100 MHz Output  
125 MHz Output  
160 MHz Output  
0.115  
0.089  
1.248  
ps rms  
ps rms  
ps rms  
Frequency multiplier (×2) at PLL  
input bypassed  
312.5 MHz Output  
0.072  
ps rms  
HIGH SPEED CURRENT SINKING LOGIC (HCSL) INTEGRATED  
JITTER  
Input = crystal oscillator  
Jitter Integration Bandwidth = 10 kHz to 10 MHz  
100 MHz Output  
0.238  
0.226  
0.240  
ps rms  
ps rms  
ps rms  
125 MHz Output  
312.5 MHz Output  
Jitter Integration Bandwidth = 12 kHz to 20 MHz  
100 MHz Output  
0.255  
0.233  
0.243  
ps rms  
ps rms  
ps rms  
125 MHz Output  
312.5 MHz Output  
Jitter Integration Bandwidth = 50 kHz to 80 MHz  
312.5 MHz Output  
0.445  
ps rms  
Jitter Integration Bandwidth = 1.875 MHz to 20 MHz  
100 MHz Output  
0.131  
0.098  
0.082  
ps rms  
ps rms  
ps rms  
125 MHz Output  
312.5 MHz Output  
Rev. B | Page 4 of 35  
Data Sheet  
AD9574  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
LOW VOLTAGE DIFFERENTIAL SIGNALING (LVDS)  
INTEGRATED JITTER  
Input = crystal oscillator  
Jitter Integration Bandwidth = 10 kHz to 10 MHz  
38.88 MHz Output  
0.396  
0.270  
1.304  
ps rms  
ps rms  
ps rms  
77.76 MHz Output  
80 MHz Output  
Frequency multiplier (×2) at PLL  
input bypassed  
100 MHz Output  
125 MHz Output  
160 MHz Output  
0.247  
0.234  
1.314  
ps rms  
ps rms  
ps rms  
Frequency multiplier (×2) at PLL  
input bypassed  
312.5 MHz Output  
0.246  
ps rms  
Jitter Integration Bandwidth = 12 kHz to 20 MHz  
77.76 MHz Output  
0.529  
1.360  
ps rms  
ps rms  
80 MHz Output  
Frequency multiplier (×2) at PLL  
input bypassed  
100 MHz Output  
125 MHz Output  
160 MHz Output  
0.267  
0.243  
1.357  
ps rms  
ps rms  
ps rms  
Frequency multiplier (×2) at PLL  
input bypassed  
312.5 MHz Output  
0.249  
0.473  
ps rms  
ps rms  
Jitter Integration Bandwidth = 50 kHz to 80 MHz  
312.5 MHz Output  
Jitter Integration Bandwidth = 1.875 MHz to 20 MHz  
77.76 MHz Output  
0.474  
1.289  
ps rms  
ps rms  
80 MHz Output  
Frequency multiplier (×2) at PLL  
input bypassed  
100 MHz Output  
125 MHz Output  
160 MHz Output  
0.149  
0.109  
1.284  
ps rms  
ps rms  
ps rms  
Frequency multiplier (×2) at PLL  
input bypassed  
312.5 MHz Output  
0.082  
ps rms  
OUT6 CHANNEL ABSOLUTE CLOCK JITTER  
Typical values applicable under the conditions of VS = 3.3 V, TA = 25°C, unless otherwise noted. Frequency multiplier (×2) at PLL input  
enabled. Cycle to cycle jitter magnitude varies with respect to the clock edge (rising or falling). Table 5 entries indicate jitter for the worst  
edge (rising or falling). The better edge typically offers a factor of 2 improvement over the tabulated jitter.  
Table 5.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
LVDS CYCLE TO CYCLE JITTER  
66.6 MHz Output  
1000 cycles  
210  
353  
ps p-p  
ps p-p  
133.3 MHz Output  
1.8 V CMOS CYCLE TO CYCLE JITTER  
66.6 MHz Output  
1000 cycles  
1000 cycles  
234  
363  
ps p-p  
ps p-p  
133.3 MHz Output  
3.3 V CMOS CYCLE TO CYCLE JITTER  
33.3 MHz Output  
28  
ps p-p  
ps p-p  
ps p-p  
66.6 MHz Output  
207  
360  
133.3 MHz Output  
Rev. B | Page 5 of 35  
 
AD9574  
Data Sheet  
CLOCK OUTPUTS (OUT0_x TO OUT6_x)—STATIC  
Typical is given for VS = 3.3 V 10%, TA = 25°C, unless otherwise noted. Minimum and maximum values are given over full VS and TA  
(−40°C to +85°C) variation.  
Table 6.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
HSTL (OUT0_x TO OUT5_x ONLY )  
Differential Output Voltage Swing  
100 Ω termination (differential)  
745  
745  
955  
950  
1235  
1010  
mV  
mV  
Magnitude of voltage across pins;  
output driver static  
Common-Mode Output Voltage  
HCSL (OUT4_x AND OUT5_x ONLY )  
Differential Output Voltage Swing  
Output driver static  
50 Ω from each output pin to GND  
570  
295  
700  
360  
830  
430  
mV  
mV  
Magnitude of voltage across pins;  
output driver static  
Common-Mode Output Voltage  
LVDS (OUT4_x TO OUT6_x ONLY )  
Differential Output Voltage (VOD)  
Output driver static  
100 Ω termination (differential)  
247  
350  
454  
mV  
Magnitude of voltage across pins;  
output driver static  
Delta VOD  
50  
mV  
V
Output Offset Voltage (VOS)  
Delta VOS  
1.125  
1.25  
14  
1.375  
50  
mV  
mA  
Short-Circuit Current (ISA, ISB)  
1.8 V CMOS (OUT6_x ONLY )  
Output High Voltage (VOH)  
Output Low Voltage (VOL)  
24  
Output shorted to GND  
1.7  
V
V
ILOAD = 1 mA  
ILOAD = 1 mA  
0.1  
0.5  
3.3 V CMOS (OUT0_x, OUT1_x, AND  
OUT6_x ONLY )  
Output High Voltage (VOH)  
Output Low Voltage (VOL)  
VDD1 − 0.5  
V
V
ILOAD = 10 mA  
ILOAD = 10 mA  
1 VDD is the supply of all VDD_x pins.  
CLOCK OUTPUTS (OUT0_x TO OUT6_x)—DYNAMIC  
Typical is given for VS = 3.3 V 10%, TA = 25°C, unless otherwise noted. Minimum and maximum values are given over full VS and TA  
(−40°C to +85°C) variation. Rise and fall time measurement thresholds are 20% and 80% of the nominal low and high amplitude of the  
waveform.  
Table 7.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
100 Ω termination (differential)  
Measured differentially  
HSTL (OUT1_x TO OUT5_x ONLY )  
OUT0_x and OUT1_x  
Output Rise Time, tRL  
Output Fall Time, tFL  
OUT2_x to OUT5_x  
Output Rise Time, tRP  
Output Fall Time, tFP  
Duty Cycle  
161  
164  
195  
193  
232  
226  
ps  
ps  
Measured differentially  
114  
111  
144  
143  
175  
177  
ps  
ps  
OUT0_x and OUT1_x  
45  
45  
55  
55  
%
%
Assumes 50% reference input duty cycle; duty  
cycle specification does not apply to OUT0_x  
for 38.88 MHz and 50 MHz operation  
OUT2_x to OUT5_x  
HCSL (OUT4_x AND OUT5_x ONLY )  
Output Rise Time, tRL  
Output Fall Time, tFL  
50 Ω from each output pin to GND  
Measured differentially  
195  
188  
45  
206  
211  
221  
238  
55  
ps  
ps  
%
Measured differentially  
Duty Cycle  
Rev. B | Page 6 of 35  
Data Sheet  
AD9574  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
LVDS (OUT4_x TO OUT6_x ONLY )  
OUT4_x, OUT5_x  
Output Rise Time, tRL  
Output Fall Time, tFL  
OUT6_x  
100 Ω termination (differential)  
151  
152  
193  
195  
238  
242  
ps  
ps  
Measured differentially  
Measured differentially  
Output Rise Time, tRL  
Output Fall Time, tFL  
Duty Cycle  
221  
224  
242  
241  
273  
270  
ps  
ps  
Measured differentially  
Measured differentially  
OUT4_x, OUT5_x  
OUT6_x  
45  
45  
55  
55  
%
%
1.8 V CMOS (OUT6_x ONLY )  
Output Rise Time, tRC  
Output Fall Time, tFC  
Duty Cycle  
CLOAD = 10 pF  
1.2  
1.2  
1.7  
1.8  
55  
ns  
ns  
%
45  
45  
3.3 V CMOS (OUT0_x, OUT1_x, AND  
OUT6_x ONLY )  
CLOAD = 10 pF  
Output Rise Time, tRC  
Output Fall Time, tFC  
Duty Cycle  
0.5  
0.6  
1.0  
1.1  
ns  
ns  
OUT0_x  
55  
%
Not applicable for 38.88 MHz and 50 MHz  
operation  
OUT1_x  
OUT6_x  
45  
45  
55  
55  
%
%
MONITOR CLOCK INPUTS (MCLK_x)—STATIC  
Typical is given for VS = 3.3 V 10%, TA = 25°C, unless otherwise noted. Minimum and maximum values are given over full VS and TA  
(−40°C to +85°C) variation.  
Table 8.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DIFFERENTIAL INPUT MODE  
Common-Mode Internally Generated Bias  
Voltage  
1.192  
V
V
Common-Mode Voltage Tolerance  
0.6  
1.5  
The acceptable common-mode range for a  
200 mV p-p dc-coupled input signal  
Differential Input Capacitance  
Differential Input Resistance  
SINGLE-ENDED INPUT CMOS MODE  
Hysteresis  
2
5
pF  
kΩ  
230  
1
mV  
MΩ  
pF  
V
Input Resistance  
Input Capacitance  
2
Input High Voltage  
2
Input Low Voltage  
1.2  
V
Rev. B | Page 7 of 35  
AD9574  
Data Sheet  
MONITOR CLOCK INPUTS (MCLK_x)—DYNAMIC  
Typical is given for VS = 3.3 V 10%, TA = 25°C, unless otherwise noted. Minimum and maximum values are given over full VS and TA  
(−40°C to +85°C) variation.  
Table 9.  
Parameter  
Min Typ Max Unit  
Test Conditions/Comments  
DIFFERENTIAL INPUT MODE  
Input Sensitivity  
100  
50  
mV p-p  
Minimum Input Slew Rate  
Duty Cycle  
V/µs  
%
Ensures proper device function when using a sinusoidal source  
40  
60  
60  
SINGLE-ENDED INPUT CMOS MODE  
Duty Cycle  
40  
%
REFERENCE INPUTS (REF0_x AND REF1_x)—STATIC  
Typical is given for VS = 3.3 V 10%, TA = 25°C, unless otherwise noted. Minimum and maximum values are given over full VS and TA  
(−40°C to +85°C) variation.  
Table 10.  
Parameter  
Min  
Typ  
Max Unit Test Conditions/Comments  
DIFFERENTIAL INPUT MODE  
Common-Mode Internally Generated  
Bias Voltage  
1.218  
V
Common-Mode Voltage Tolerance  
0.650  
1.8  
V
The acceptable common-mode range for a 200 mV p-p  
dc-coupled input signal  
Differential Input Capacitance  
Differential Input Resistance  
SINGLE-ENDED INPUT CMOS MODE  
Hysteresis  
2
pF  
4.3  
kΩ  
220  
1
mV  
MΩ  
pF  
V
Input Resistance  
Input Capacitance  
2
Input High Voltage  
2
Input Low Voltage  
1.2  
V
REFERENCE INPUTS (REF0_x AND REF1_x)—DYNAMIC  
Typical is given for VS = 3.3 V 10%, TA = 25°C, unless otherwise noted. Minimum and maximum values are given over full VS and TA  
(−40°C to +85°C) variation.  
Table 11.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DIFFERENTIAL INPUT MODE  
Input Sensitivity  
200  
100  
mV p-p  
V/µs  
Minimum Input Slew Rate  
Minimum limit imposed for jitter performance (when using a  
sinusoidal source, for example)  
Duty Cycle  
PLL ×2 Multiplier Bypass  
PLL ×2 Multiplier Active  
OUT0 ×2 Multiplier Active  
SINGLE-ENDED INPUT CMOS MODE  
Duty Cycle  
40  
40  
40  
60  
60  
60  
%
%
%
PLL ×2 Multiplier Bypass  
PLL ×2 Multiplier Active  
OUT0 ×2 Multiplier Active  
40  
40  
40  
60  
60  
60  
%
%
%
Ensures OUT0_x duty cycle limits with OUT0 ×2 multiplier  
enabled  
Rev. B | Page 8 of 35  
Data Sheet  
AD9574  
REFERENCE SWITCHOVER OUTPUT DISTURBANCE  
Typical is given for VS = 3.3 V 10%, TA = 25°C, unless otherwise noted. Minimum and maximum values are given over full VS and TA  
(−40°C to +85°C) variation.  
Table 12.  
Parameter  
Min Typ Max Unit  
Test Conditions/Comments  
INSTANTANEOUS FREQUENCY (dθ/dt) DISTURBANCE  
DUE TO REFERENCE SWITCHOVER  
250 500  
ppm pk Applies only to PLL outputs; 1 ppm frequency  
offset between the REF0 and REF1 channels  
INSTANTANEOUS PHASE DISTURBANCE DUE TO  
REFERENCE SWITCHOVER  
220  
ps  
Applies to OUT0 and OUT1 with OUT0 ×2 multiplier  
bypassed  
CONTROL PINS  
Typical is given for VS = 3.3 V 10%, TA = 25°C, unless otherwise noted. Minimum and maximum values are given over full VS and TA  
(−40°C to +85°C) variation.  
Table 13.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
INPUT CHARACTERISTICS  
REF_SEL Pin  
Internal 30 kΩ pull-down resistor  
Logic 1 Voltage (VIH)  
Logic 0 Voltage (VIL)  
Logic 1 Current (IIH)  
Logic 0 Current (IIL)  
RESET Pin  
2.0  
V
0.8  
V
150  
150  
µA  
µA  
VIH = VDD  
VIL = GND  
Internal 30 kΩ pull-up resistor  
Logic 1 Voltage (VIH)  
Logic 0 Voltage (VIL)  
Logic 1 Current (IIH)  
Logic 0 Current (IIL)  
REFMON Pin  
2.0  
V
0.8  
V
350  
350  
µA  
µA  
VIH = VDD  
VIL = GND  
Do not float this pin or toggle it during device  
operation; connect to a static Logic 0 or Logic 1  
Logic 1 Voltage (VIH)  
Logic 0 Voltage (VIL)  
Logic 1 Current (IIH)  
Logic 0 Current (IIL)  
PPR0 to PPR6 Pins  
PPRx State 0  
VDD – 0.5  
V
0.5  
V
150  
150  
µA  
µA  
VIH = VDD  
VIL = GND  
Maximum resistor tolerance = 10%  
Pull-down to GND  
Pull-down to GND  
Pull-down to GND  
Pull-down to GND  
Pull-up to VDD  
820  
PPRx State 1  
1800  
3900  
8200  
820  
PPRx State 2  
PPRx State 3  
PPRx State 4  
PPRx State 5  
1800  
3900  
8200  
Pull-up to VDD  
PPRx State 6  
Pull-up to VDD  
PPRx State 7  
Pull-up to VDD  
Rev. B | Page 9 of 35  
AD9574  
Data Sheet  
STATUS PINS  
Typical is given for VS = 3.3 V 10%, TA = 25°C, unless otherwise noted. Minimum and maximum values are given over full VS and TA  
(−40°C to +85°C) variation.  
Table 14.  
Parameter  
Min  
2.0  
2.0  
2.0  
2.0  
2.0  
Typ  
Max  
Unit  
Test Conditions/Comments  
OUTPUT CHARACTERISTICS  
LD Pin  
ILOAD = 1 mA (source or sink)  
Logic 1 Voltage  
Logic 0 Voltage  
REF_ACT Pin  
V
V
0.8  
0.8  
0.8  
0.8  
0.8  
Logic 1 Voltage  
Logic 0 Voltage  
REF_SW Pin  
V
V
Logic 1 Voltage  
Logic 0 Voltage  
REF_FHI Pin  
V
V
Internal 30 kΩ pull-down resistor  
Internal 30 kΩ pull-down resistor  
Logic 1 Voltage  
Logic 0 Voltage  
REF_FLO Pin  
V
V
Logic 1 Voltage  
Logic 0 Voltage  
V
V
POWER SUPPLY AND DISSIPATION  
Typical is given for VS = 3.3 V 10%, TA = 25°C, unless otherwise noted. Minimum and maximum values are given over full VS and TA  
(−40°C to +85°C) variation.  
Table 15.  
Parameter  
Min Typ Max  
2.97 3.3 3.63  
Unit Test Conditions/Comments  
POWER SUPPLY VOLTAGE  
POWER DISSIPATION  
Typical Configuration  
V
466 569 654  
mW PPR0 State 0 (REF0_x: 25 MHz, 3.3 V CMOS buffer; REF1_x: no connection)  
PPR1 State 0 (PLL input ×2: off; OUT2: 156.25 MHz, HSTL; OUT3: 156.25 MHz, HSTL)  
PPR2 State 7 (OUT0: 25 MHz, HSTL, ×2 off; OUT1: disabled)  
PPR3 State 0 (OUT4: 100 MHz, HSTL; OUT5: 125 MHz, HSTL)  
PPR4 State 5 (OUT6: 66.67 MHz, 3.3 V CMOS)  
PPR5 State 0 (reference monitor threshold: not applicable (25 ppm))  
PPR6 State 0 (MCLK_x: no connection (19.44 MHz differential))  
REFMON: GND  
All Blocks Running  
579 698 803  
mW PPR0 State 4 (REF0_x: 25 MHz, differential; REF1_x: 25 MHz, differential)  
PPR1 State 0 (PLL input ×2: off; OUT2: 156.25 MHz, HSTL; OUT3: 156.25 MHz, HSTL)  
PPR2 State 2 (OUT0: 50 MHz, 3.3 V CMOS, ×2 on; OUT1: 25 MHz, 3.3 V CMOS)  
PPR3 State 2 (OUT4: 100 MHz, HCSL; OUT5: 125 MHz, HSTL)  
PPR4 State 1 (OUT6: 133.33 MHz, 3.3 V CMOS)  
PPR5 State 6 (reference monitor threshold: 100 ppm)  
PPR6 State 4 (MCLK_x: 38.88 MHz, differential)  
REFMON: VDD  
Rev. B | Page 10 of 35  
 
Data Sheet  
AD9574  
Parameter  
Min Typ Max  
Unit Test Conditions/Comments  
Minimal Power  
Configuration  
346 422 486  
mW PPR0 State 0 (REF0_x: 19.44 MHz, 3.3 V CMOS buffer; REF1_x: 19.44 MHz, 3.3 V  
CMOS buffer)  
PPR1 State 4 (PLL input ×2: off, OUT2: 155.52 MHz, HSTL; OUT3: 155.52 MHz, HSTL)  
PPR2 State 4 (OUT0: disabled; OUT1: disabled)  
PPR3 State 7 (OUT4: disabled; OUT5: disabled)  
PPR4 State 0 (OUT6: disabled)  
PPR5 State 0 (reference monitor threshold: not applicable (25 ppm)  
PPR6 State 1 (MCLK_x: no connection (19.44 MHz, 3.3 V CMOS buffer))  
REFMON: GND  
Incremental Power  
Dissipation  
Typical configuration; values show the change in power due to the indicated  
operation  
Input Reference On/Off  
Single-Ended  
Applies to one reference clock input  
0.23 0.30 0.36  
20.5 25.1 30.0  
mW  
mW  
Differential  
Output Driver On/Off  
LVDS (at 312.5 MHz)  
18.1 22.5 27.2  
mW  
HSTL (at 156.25 MHz) 30.6 36.6 42.5  
mW  
1.8 V CMOS (at  
66 MHz)  
13.7 16.2 19.2  
mW A single 1.8 V CMOS output with an 10 pF load  
3.3 V CMOS (at  
25 MHz)  
9.5  
3.1  
12.2 15.2  
mW A single 3.3 V CMOS output with an 10 pF load  
Other Blocks On/Off  
OUT0 ×2 On/Off  
4.0  
5.4  
mW  
POWER SUPPLY CURRENT  
)
Total supply current for VDD_x pins1 in aggregate  
(ISUPPLY  
Typical Configuration  
157 172 180  
195 212 221  
mA  
mA  
For power dissipation with typical configuration settings  
All Blocks Running  
Configuration  
For power dissipation with all blocks running configuration settings  
Minimal Power  
Configuration  
117 128 134  
mA  
For power dissipation with minimal power configuration settings  
1 VDD_x pins include VDD_REF0, VDD_REF1, VDD_OUT01, VDD_PLL, VDD_VCO, VDD_RFDIV, VDD_OUT6, VDD_OUT4, VDD_OUT5, VDD_OUT23, and VDD_MCLK.  
TIMING SPECIFICATIONS  
Typical is given for VS = 3.3 V 10%, TA = 25°C, unless otherwise noted. Minimum and maximum values are given over full VS and TA  
(−40°C to +85°C) variation. The indicated times assume the voltage applied to all 3.3 V power supply pins is within specification and stable.  
Table 16.  
Parameter  
Min Typ Max Unit Test Conditions/Comments  
Elapsed time from the first rising edge of the monitor clock input signal to  
MONITOR CLOCK INPUT  
TO REF_FHI/REF_FLO TIME  
the valid reference status as indicated by the REF_FHI and REF_FLO pins (the  
active reference must be stable)  
fMCLK = 8 kHz  
4200 ms  
3400 ms  
1800 ms  
1400 ms  
fMCLK = 10 MHz  
fMCLK = 19.44 MHz  
fMCLK = 25 MHz  
fMCLK = 38.88 MHz  
870  
ms  
Rev. B | Page 11 of 35  
 
 
AD9574  
Data Sheet  
Parameter  
Min Typ Max Unit Test Conditions/Comments  
OUTPUT READY TIME  
OUT0 to OUT1  
0.2  
ms  
Typical start-up time of the external crystal oscillator dominates the output  
ready time of the OUT0 and OUT1 channels  
OUT2 to OUT6  
PPR1 State 0  
PPR1 State 1  
PPR1 State 2  
PPR1 State 3  
PPR1 State 4  
PPR1 State 5  
PPR1 State 6  
PPR1 State 7  
Time interval from RESET pin = Logic 1 to LD pin = Logic 1 (PLL lock detection)  
5.0  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
2.8  
5.0  
2.8  
6.4  
3.6  
22.3  
11.5  
TIMING DIAGRAMS  
DIFFERENTIAL  
80%  
SINGLE-ENDED  
80%  
LVDS/HSTL/HCSL  
CMOS  
10pF LOAD  
20%  
20%  
tRL  
tFL  
tRC  
tFC  
Figure 3. LVDS, HSTL, HCSL Timing, Differential  
Figure 2. CMOS Timing, Single-Ended, 10 pF Load  
Rev. B | Page 12 of 35  
Data Sheet  
AD9574  
ABSOLUTE MAXIMUM RATINGS  
Table 17.  
ESD CAUTION  
Parameter  
Rating  
VDD_x to GND  
Junction Temperature1  
Storage Temperature Range  
1
−0.3 V to +3.6 V  
150°C  
−65°C to +150°C  
See the Thermal Performance section for details on junction temperature.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. B | Page 13 of 35  
AD9574  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
REF0_P  
REF0_N  
1
2
36 VDD_OUT23  
35 REF_FHI  
3
4
5
6
7
8
9
10  
VDD_REF0  
VDD_REF1  
REF1_N  
REF1_P  
PPR2  
34 REF_FLO  
33  
32  
OUT5_N  
OUT5_P  
AD9574  
TOP VIEW  
(Not to Scale)  
31 VDD_OUT5  
30 VDD_OUT4  
29 OUT4_P  
VDD_OUT01  
OUT0_N  
28  
27  
OUT4_N  
PPR3  
OUT0_P  
OUT1_P 11  
26 PPR4  
25  
12  
OUT1_N  
REFMON  
NOTES  
1. THE EXPOSED DIE PAD MUST BE CONNECTED  
TO THE POWER SUPPLY COMMON (GND).  
Figure 4. Pin Configuration  
Table 18. Pin Function Descriptions  
Pin No. Mnemonic Input/Output Pin Type  
Description  
1
2
3
REF0_P  
Input  
Input  
Input  
Configurable  
clock input  
Reference Clock Input 0, Positive. Configurable via PPR0 (Pin 47).  
REF0_N  
Configurable  
clock input  
Reference Clock Input 0, Negative. Configurable via PPR0 (Pin 47).  
VDD_REF0  
Power  
3.3 V Input Supply for Reference Clock Input 0 (REF0_x). This pin supplies the  
single-ended input receiver and internal low dropout (LDO) regulator for the  
differential receiver.  
4
VDD_REF1  
Input  
Power  
3.3 V Input Supply for Reference Clock Input 1 (REF1_x). This pin supplies the  
single-ended input receiver and internal LDO regulator for the differential  
receiver.  
5
6
7
REF1_N  
REF1_P  
PPR2  
Input  
Input  
Input  
Configurable  
clock input  
Reference Clock Input 1, Negative. Configurable via PPR0 (Pin 47).  
Configurable  
clock input  
Reference Clock Input 1, Positive. Configurable via PPR0 (Pin 47).  
Control  
Pin Program Reader 2. Connect a resistor to this pin to configure the OUT0 and  
OUT1 channels (see the PPR2—OUT0 and OUT1 Configuration section for more  
information).  
8
VDD_OUT01 Input  
Power  
3.3 V Supply. 3.3 V input for the CMOS drivers of OUT0_x and OUT1_x and the  
source for an internal 1.8 V LDO regulator for the differential drivers of OUT0_x  
and OUT1_x.  
9
OUT0_N  
OUT0_P  
OUT1_P  
OUT1_N  
Output  
Output  
Output  
Output  
Configurable  
clock output  
Clock Output 0, Negative. Configurable via PPR2 (Pin 7).  
Clock Output 0, Positive. Configurable via PPR2 (Pin 7).  
Clock Output 1, Positive. Configurable via PPR2 (Pin 7).  
Clock Output 1, Negative. Configurable via PPR2 (Pin 7).  
10  
11  
12  
Configurable  
clock output  
Configurable  
clock output  
Configurable  
clock output  
13  
14  
15  
VDD_PLL  
Input  
Power  
3.3 V Input to the Internal LDO Regulator for the PLL.  
LD  
LF  
Output  
3.3 V CMOS  
Analog  
PLL Lock Detector Status. Logic 0 = unlocked; Logic 1 = locked.  
Input/Output  
Loop Filter. Connect a capacitor or series RC network (see Table 32) from this pin  
to LDO_BYP (Pin 16).  
16  
LDO_BYP  
Output  
Analog  
LDO Bypass. Connect a 470 nF capacitor from this pin to GND.  
Rev. B | Page 14 of 35  
Data Sheet  
AD9574  
Pin No. Mnemonic  
Input/Output Pin Type  
Description  
17  
18  
19  
VDD_VCO  
VDD_RFDIV  
PPR6  
Input  
Input  
Input  
Power  
Power  
Control  
3.3 V Supply. 3.3 V input to the internal LDO regulator for the VCO.  
3.3 V Supply. 3.3 V input to the internal LDO regulator for the VCO RF dividers.  
Pin Program Reader 6. Connect a resistor to this pin to configure the MCLK_x  
input (see the PPR6—Monitor Clock (MCLK_x) Input Configuration section for  
more information).  
20  
21  
22  
23  
RESET  
Input  
3.3 V CMOS  
Reset. Logic 0 (GND) initializes the device to its default state (see the PPRx Pins  
section for details). This pin has an internal 30 kΩ pull-up resistor.  
OUT6_N  
OUT6_P  
VDD_OUT6  
Output  
Output  
Input  
Configurable  
clock output  
Clock Output 6, Negative. Configurable via PPR4 (Pin 26).  
Configurable  
clock output  
Clock Output 6, Positive. Configurable via PPR4 (Pin 26).  
Power  
3.3 V Supply. 3.3 V input for the CMOS drivers of OUT6_x and the source for an  
internal 1.8 V LDO regulator for the 1.8 V CMOS drivers and differential drivers of  
OUT6_x.  
24  
PPR5  
Input  
Control  
Pin Program Reader 5. Connect a resistor to this pin to configure the reference  
clock frequency error threshold (see the PPR5—Reference Monitor Threshold  
section for more information).  
25  
26  
27  
REFMON  
PPR4  
Input  
Input  
Input  
Control  
Control  
Control  
Reference Frequency Monitor Enable/Disable. Do not float this pin or toggle it  
during device operation. Connect it to a static Logic 0 or Logic 1.  
Pin Program Reader 4. Connect a resistor to this pin to configure the OUT6  
channel (see the PPR4—OUT6 Configuration section for more information).  
PPR3  
Pin Program Reader 3. Connect a resistor to this pin to configure the OUT4 and  
OUT5 channels (see the PPR3—OUT4 and OUT5 Configuration section for more  
information).  
28  
29  
30  
31  
32  
33  
34  
OUT4_N  
OUT4_P  
Output  
Output  
Input  
Configurable  
clock output  
Clock Output 4, Negative. Configurable via PPR3 (Pin 27).  
Configurable  
clock output  
Clock Output 4, Positive. Configurable via PPR3 (Pin 27).  
VDD_OUT4  
VDD_OUT5  
OUT5_P  
Power  
3.3 V Supply. 3.3 V input for an internal 1.8 V LDO regulator for the differential  
drivers of OUT4_x.  
Input  
Power  
3.3 V Supply. 3.3 V input for an internal 1.8 V LDO regulator for the differential  
drivers of OUT5_x.  
Output  
Output  
Output  
Configurable  
clock output  
Clock Output 5, Positive. Configurable via PPR3 (Pin 27).  
OUT5_N  
REF_FLO  
Configurable  
clock output  
Clock Output 5, Negative. Configurable via PPR3 (Pin 27).  
3.3 V CMOS  
3.3 V CMOS  
Power  
Low Reference Frequency Status Indicator. A Logic 1 indicates that the reference  
frequency is below the lower threshold limit (see the Reference Monitor section for  
details). This pin is an open-drain output with an internal 30 kΩ pull-down resistor.  
35  
REF_FHI  
Output  
High Reference Frequency Status Indicator. A Logic 1 indicates that the reference  
frequency is above the upper threshold limit (see the Reference Monitor section for  
details). This pin is an open-drain output with an internal 30 kΩ pull-down resistor.  
36  
37  
38  
39  
40  
41  
VDD_OUT23 Input  
3.3 V Supply. 3.3 V input for an internal 1.8 V LDO regulator for the differential  
drivers of OUT2_x and OUT3_x.  
OUT2_N  
OUT2_P  
OUT3_P  
OUT3_N  
PPR1  
Output  
Output  
Output  
Output  
Input  
Configurable  
clock output  
Clock Output 2, Negative (HSTL). Configurable via PPR2 (Pin 7).  
Clock Output 2, Positive (HSTL). Configurable via PPR2 (Pin 7).  
Clock Output 3, Positive (HSTL). Configurable via PPR2 (Pin 7).  
Clock Output 3, Negative (HSTL). Configurable via PPR2 (Pin 7).  
Configurable  
clock output  
Configurable  
clock output  
Configurable  
clock output  
Control  
Pin Program Reader 1. Connect a resistor to this pin to select a predefined  
frequency translation configuration (see the PPR1—Frequency Translation  
Settings section for more information).  
42  
VDD_MCLK  
Input  
Power  
3.3 V Supply. 3.3 V input for Reference Monitor Clock 0 (MCLK_x). This pin  
supplies the single-ended input receiver and internal LDO regulator for the  
differential receiver.  
Rev. B | Page 15 of 35  
AD9574  
Data Sheet  
Pin No. Mnemonic  
Input/Output Pin Type  
Description  
43  
REF_SW  
Output  
3.3 V CMOS  
Reference Switchover Status Indicator. This pin indicates when the device is in  
the process of switching references (see the Reference Monitor section for more  
information).  
44  
45  
REF_ACT  
MCLK_P  
Output  
Input  
3.3 V CMOS  
Reference Active Status Indicator. This pin indicates whether REF0 or REF1 is the  
active reference (see the Reference Monitor section for more information).  
Configurable  
monitor clock  
input  
Reference Monitor Clock Normal Input. Configurable via PPR6 (Pin 18).  
46  
47  
48  
MCLK_N  
PPR0  
Input  
Input  
Input  
Input  
Configurable  
monitor clock  
input  
Reference Monitor Clock Complementary Input. Configurable via PPR6 (Pin 18).  
Control  
3.3 V CMOS  
GND  
Pin Program Reader 0. Connect a resistor to this pin to configure the reference  
clock inputs (see the PPR0—Reference Clock Input Configuration section for  
more information).  
REF_SEL  
EP  
Reference Clock Select. The pin selects Input Reference Clock 0 or Input  
Reference Clock 1 as the internal reference clock source (Logic 0 or Logic 1,  
respectively). This pin has an internal 30 kΩ pull-down resistor.  
Exposed Pad. The exposed die pad must be connected to the power supply  
common (GND).  
Rev. B | Page 16 of 35  
Data Sheet  
AD9574  
TYPICAL PERFORMANCE CHARACTERISTICS  
PHASE NOISE AND VOLTAGE WAVEFORMS  
VDD = nominal, TA = 25°C. The only enabled output channels are those indicated in the figure captions. The phase noise plots (see Figure 5  
to Figure 9) show the Taitien XO A0145-L-006-3 phase noise normalized to the output frequency. The voltage waveform plots (see Figure 10 to  
Figure 16) embody ac coupling to the measurement instrument.  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–100  
RMS JITTER  
HSTL: 0.234ps  
INTEGRATION BANDWIDTH: 12kHz TO 20MHz  
HSTL  
CMOS 3.3V  
TAITIEN XO A0145-L-006-3  
–110  
RMS JITTER  
HSTL: 0.197ps  
CMOS: 0.195ps  
HSTL  
–120  
–130  
–140  
–150  
–160  
–170  
TAITIEN XO A0145-L-006-3  
INTEGRATION BANDWIDTH: 12kHz TO 20MHz  
1k  
100k  
10k  
FREQUENCY OFFSET (Hz)  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100  
1M  
10M  
FREQUENCY OFFSET (Hz)  
Figure 5. Phase Noise (OUT0)—fOUT0 = 25 MHz  
Figure 8. Phase Noise (OUT2)—fOUT2 = 156.25 MHz  
–100  
–110  
–100  
–110  
RMS JITTER  
HSTL: 0.245ps  
HCSL: 0.244ps  
RMS JITTER  
HSTL: 0.228ps  
INTEGRATION BANDWIDTH: 12kHz TO 20MHz  
INTEGRATION BANDWIDTH: 12kHz TO 20MHz  
HSTL  
–120  
–130  
–140  
–150  
–160  
–170  
–120  
–130  
–140  
–150  
–160  
–170  
TAITIEN XO A0145-L-006-3  
HSTL  
HCSL  
TAITIEN XO A0145-L-006-3  
1k  
100k  
FREQUENCY OFFSET (Hz)  
100M  
1k  
100k  
FREQUENCY OFFSET (Hz)  
100M  
100  
10k  
1M  
10M  
100  
10k  
1M  
10M  
Figure 6. Phase Noise (OUT4)—fOUT4 = 100 MHz, fOUT5 = 125 MHz  
Figure 9. Phase Noise (OUT5)—fOUT4 = 100 MHz, fOUT5 = 125 MHz  
–90  
1.25  
25MHz  
312.5MHz  
RMS JITTER  
1.00  
0.75  
0.50  
0.25  
0
HSTL: 0.230ps  
HCSL: 0.245ps  
LVDS: 0.254ps  
INTEGRATION BANDWIDTH: 12kHz TO 20MHz  
–100  
–110  
–120  
–130  
–0.25  
–0.50  
–0.75  
–1.00  
–1.25  
–140  
HSTL  
HCSL  
LVDS  
–150  
TAITEN XO A0145-L-006-3  
–160  
1k  
100k  
FREQUENCY OFFSET (Hz)  
100M  
100  
10k  
1M  
10M  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
TIME (ns)  
Figure 7. Phase Noise (OUT4)—fOUT4 = 312.5 MHz  
Figure 10. Output Waveform, HSTL (25 MHz, 312.5 MHz)  
Rev. B | Page 17 of 35  
 
 
 
AD9574  
Data Sheet  
0.5  
0.4  
1.00  
0.75  
0.50  
0.25  
0
66.67MHz  
312.5MHz  
100MHz  
312.5MHz  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.25  
–0.50  
–0.75  
–1.00  
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
0
5
10  
15  
20  
25  
30  
TIME (ns)  
TIME (ns)  
Figure 11. Output Waveform, HCSL (100 MHz, 312.5 MHz)  
Figure 14. Output Waveform, LVDS (66.67 MHz, 312.5 MHz)  
1.0  
2.5  
2.0  
1.5  
0.5  
0
66.67MHz,  
2pF_P  
1.0  
25MHz,  
2pF_P  
66.67MHz,  
2pF_N  
0.5  
25MHz,  
10pF_P  
66.67MHz,  
10pF_P  
0
25MHz,  
2pF_N  
66.67MHz,  
10pF_N  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
25MHz,  
10pF_N  
–0.5  
–1.0  
0
5
10  
15  
20  
25  
30  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80  
TIME (ns)  
TIME (ns)  
Figure 12. Output Waveform, 1.8 V CMOS (66.67 MHz)  
Figure 15. Output Waveform, 3.3 V CMOS (25 MHz)  
2.5  
2.0  
1.0  
0.5  
133.3MHz,  
2pF_P  
133.3MHz,  
10pF_P  
1.5  
1.0  
0.5  
133.3MHz,  
2pF_P  
133.3MHz,  
2pF_N  
0
0
133.3MHz,  
10pF_P  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
133.3MHz,  
10pF_N  
–0.5  
–1.0  
133.3MHz,  
2pF_N  
133.3MHz,  
10pF_N  
0
5
10  
15  
20  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
TIME (ns)  
TIME (ns)  
Figure 16. Output Waveform, 3.3 V CMOS (133.3 MHz)  
Figure 13. Output Waveform, 1.8 V CMOS (133.3 MHz)  
Rev. B | Page 18 of 35  
Data Sheet  
AD9574  
REFERENCE SWITCHING FREQUENCY AND PHASE DISTURBANCE  
VDD = nominal, TA = 25°C. The only enabled output channels are those indicated in the figure captions. The reference switchover phase  
disturbance plots (see Figure 18 and Figure 19) each show a collection of output phase variations due to approximately 250 reference  
switching events between two references with a frequency offset of approximately 2 ppm. Each reference switch event (initiated by  
toggling the REF_SEL pin) occurs at a random phase offset between the two references. The plots demonstrate the tightly controlled  
phase disturbance at the output as a result of the reference switching logic seeking the optimal moment to switch references.  
50000  
45000  
40000  
35000  
30000  
25000  
20000  
15000  
5000  
2.0  
–1 PPM REFERENCE  
FREQUENCY OFFSET  
1.5  
1.0  
1.5 DEGREES  
0.5  
0
0
–5000  
–10000  
–15000  
–20000  
–25000  
–30000  
–35000  
–40000  
–45000  
–0.5  
–1.0  
–1.5  
–2.0  
+1 PPM REFERENCE  
FREQUENCY OFFSET  
1 DEGREE = 111.1ps  
0.2 0.3  
–0.2  
–0.1  
0
0.1  
–1.5  
–0.5  
0.5  
RELATIVE TIME (µs)  
1.5  
2.5  
RELATIVE TIME (µs)  
Figure 17. Reference Switchover Frequency Disturbance for OUT2 at  
156.25 MHz (PPR0 = 0, PPR1 = 1, PPR2 = 2, PPR3 = 0, PPR4 = 0, PPR5 = 0,  
PPR6 = 2)  
Figure 19. Reference Switchover Phase Disturbance for OUT0 at 25 MHz with  
Output ×2 Multiplier Bypassed (PPR0 = 0, PPR1 = 1, PPR2 = 3, PPR3 = 2,  
PPR4 = 1, PPR5 = 7, PPR6 = 7)  
7
6
5
10 DEGREES  
4
3
2
1
0
–1  
–2  
–3  
–4  
–5  
–6  
1 DEGREE = 17.78ps  
0.2 0.3  
–7  
–0.2  
–0.1  
0
0.1  
RELATIVE TIME (µs)  
Figure 18. Reference Switchover Phase Disturbance for OUT3 at 156.25 MHz  
(PPR0 = 0, PPR1 = 1, PPR2 = 3, PPR3 = 2, PPR4 = 1, PPR5 = 7, PPR6 = 7)  
Rev. B | Page 19 of 35  
 
 
AD9574  
Data Sheet  
TERMINOLOGY  
Phase Jitter  
Time Jitter  
An ideal sine wave can be thought of as having a continuous and  
even progression of phase with time from 0° to 360° for each cycle.  
Actual signals, however, display a certain amount of variation from  
ideal phase progression over time. This phenomenon is called  
phase jitter. Although many causes can contribute to phase jitter,  
one major cause is random noise, which is characterized  
statistically as Gaussian (normal) in distribution.  
Phase noise is a frequency domain phenomenon. In the time  
domain, the same effect is exhibited as time jitter. When  
observing a sine wave, the time of successive zero crossings is  
seen to vary. In a square wave, the time jitter is seen as a  
displacement of the edges from their ideal (regular) times of  
occurrence. In both cases, the variations in timing from the  
ideal are the time jitter. Because these variations are random in  
nature, the time jitter is specified in units of seconds root mean  
square (rms) or 1 sigma of the Gaussian distribution.  
This phase jitter leads to the energy of the sine wave spreading out  
in the frequency domain, producing a continuous power spectrum.  
This power spectrum is usually reported as a series of values whose  
units are dBc/Hz at a given offset in frequency from the sine wave  
(carrier). The value is a ratio (expressed in dB) of the power  
contained within a 1 Hz bandwidth with respect to the power at the  
carrier frequency. For each measurement, the offset from the  
carrier frequency is also given.  
Additive Phase Noise  
Additive phase noise is the amount of phase noise that is  
attributable to the device or subsystem being measured. The phase  
noise of any external oscillators or clock sources is subtracted. This  
makes it possible to predict the degree to which the device impacts  
the total system phase noise when used in conjunction with the  
various oscillators and clock sources, each of which contributes its  
own phase noise to the total. In many cases, the phase noise of one  
element dominates the system phase noise.  
Phase Noise  
When the total power contained within some interval of offset  
frequencies (for example, 12 kHz to 20 MHz) is integrated, it is  
called the integrated phase noise over that frequency offset interval,  
and it can be readily related to the time jitter due to the phase noise  
within that offset frequency interval.  
Additive Time Jitter  
Additive time jitter is the amount of time jitter that is attributable to  
the device or subsystem being measured. The time jitter of any  
external oscillators or clock sources is subtracted. This makes it  
possible to predict the degree to which the device impacts the total  
system time jitter when used in conjunction with the various  
oscillators and clock sources, each of which contributes its own  
time jitter to the total. In many cases, the time jitter of the external  
oscillators and clock sources dominates the system time jitter.  
Phase noise has a detrimental effect on error rate performance by  
increasing eye closure at the transmitter output and reducing the  
jitter tolerance/sensitivity of the receiver.  
Rev. B | Page 20 of 35  
Data Sheet  
AD9574  
THEORY OF OPERATION  
10  
9
11  
12  
3.3V CMOS  
HSTL  
HSTL  
HSTL  
38 OUT2_P  
REF0_P  
REF0_N  
1
2
×2  
16  
37 OUT2_N  
39 OUT3_P  
A
REF.  
SWITCH  
3.3V CMOS  
A
48  
40  
REF_SEL  
OUT3_N  
LVDS/HCSL/HSTL  
2, 4, 5, 8, 16  
29  
28  
32  
33  
45  
46  
MCLK_P  
MCLK_N  
OUT4_P  
OUT4_N  
OUT5_P  
OUT5_N  
2488MHz  
2500MHz  
2560MHz  
PLL  
1/2, 1, 5/2, 5  
4
5
LOOP  
FILTER  
25  
44  
43  
35  
34  
PFD  
VCO  
REFMON  
REF_ACT  
REF_SW  
REF_FHI  
REF_FLO  
CP  
LVDS/HCSL/HSTL  
3.3V CMOS  
50, 64, 100,  
128, 256, 512  
LOCK  
DET  
1.8V  
CMOS  
22  
REF1_P  
REF1_N  
6
5
OUT6_P  
LVDS  
AD9574  
3.75  
2
2
21 OUT6_N  
RESET  
1.8V  
CMOS  
PPR CONTROL  
3.3V CMOS  
47 41  
7
27 26 24 19  
20  
14  
15  
Figure 20. Detailed Block Diagram  
The integrated PLL provides the necessary frequency translations.  
The divider block at the input to the PLL consists of a ×2 multiplier,  
a divide-by-5, and a multiplexer configured to provide the four  
possible divide values (1/2, 1, 5/2, or 5), as shown in Figure 20.  
OVERVIEW  
Figure 20 shows a block diagram of the AD9574. The AD9574  
accepts a 19.44 MHz or 25 MHz reference clock at the REF0_x  
and/or REF1_x inputs. It also accepts a 0.008 MHz, 10 MHz,  
19.44 MHz, 25 MHz, or 38.88 MHz monitor input clock at the  
MCLK_x input. The monitor input clock serves as a stable  
frequency reference for the internal reference frequency  
monitor of the device. The input clock receivers provide  
differential or single-ended input configurations.  
PPRx PINS  
The AD9574 makes use of seven PPRx pins to configure the  
device. Internal circuitry scans the PPRx pins for the presence  
of resistor terminations and configures the device accordingly.  
A PPRx pin scan occurs automatically as part of the power-on  
reset sequence (see the Power-On Reset (POR) section) or  
The AD9574 provides up to seven output channel clocks  
(OUT0 to OUT6). The OUT0 and OUT1 channels provide a  
replica of the REF0 or REF1 channel frequency with a  
frequency doubling option for OUT0. The OUT2 through  
OUT6 channels provide various output frequencies by means of  
an integrated PLL and divider chains. The output clock drivers  
provide for a variety of modes including LVDS, HSTL, HCSL,  
1.8 V CMOS, and 3.3 V CMOS, although not all modes are  
available at every output.  
RESET  
following assertion of the  
pin.  
Each PPRx pin controls a specific function or functional block  
within the device (see Table 19). The configuration of a functional  
block depends on the scanned state of the corresponding PPRx pin.  
The scan of a PPRx pin identifies one of eight possible states based  
on an external pull-up or pull-down resistor (maximum 10%  
tolerance) per Table 20.  
Rev. B | Page 21 of 35  
 
 
 
AD9574  
Data Sheet  
Table 19. PPRx Pin Function Assignments  
PPR0—Reference Clock Input Configuration  
Mnemonic Pin No. Function Assignment  
The PPR0 pin controls the configuration of the reference clock  
inputs (REF0_x and REF1_x). The selected PPR0 state applies  
to both references (REF0_x and REF1_x). Table 21 associates  
each PPR0 state with a particular reference input configuration.  
PPR0  
PPR1  
PPR2  
PPR3  
PPR4  
PPR5  
47  
41  
7
Reference input configuration  
Frequency translation settings  
OUT0 and OUT1 channel configuration  
OUT4 and OUT5 channel configuration  
OUT6 channel configuration  
27  
26  
24  
Table 21. PPR0—Reference Input Options  
PPR0 State  
Reference Clock Input Configuration  
Single-ended 3.3 V CMOS buffer  
Not applicable  
Reference clock frequency monitor error  
threshold  
0
1
2
3
4
5
6
7
PPR6  
19  
Monitor clock (MCLK_x) input  
configuration  
Not applicable  
Not applicable  
Device programming consists of connecting the appropriate  
value programming resistors to the PPRx pins and terminating  
the resistors to VDD or GND (per Table 20). For example, Figure 21  
shows how to program PPR0 to State 3.  
Differential  
Not applicable  
Not applicable  
Not applicable  
Table 20. PPRx State  
PPR1—Frequency Translation Settings  
PPRx State  
Resistance  
820 Ω  
Terminus  
GND  
GND  
GND  
GND  
VDD  
The PPR1 pin allows the user to select from a predefined set of  
frequency translation groups per Table 22 (with all frequency  
entries in MHz). The frequency translations apply to the OUT4  
and OUT5 channels with respect to the reference frequency  
(fREF) at the REF0_x or REF1_x inputs. This also establishes the  
frequency at the OUT2 and OUT3 channels, as shown in Table 22.  
Note that the frequency translation associated with each PPRx  
state relies on one of three possible VCO frequencies shown in  
Table 22. The ×2 column in Table 22 indicates the status of the  
×2 multiplier associated with the divider at the input to the PLL  
(as explained in the Overview section). The PLL bandwidth  
column indicates the −3 dB closed-loop bandwidth of the PLL.  
0
1
2
3
4
5
6
7
1.8 kΩ  
3.9 kΩ  
8.2 kΩ  
820 Ω  
1.8 kΩ  
3.9 kΩ  
8.2 kΩ  
VDD  
VDD  
VDD  
AD9574  
The frequency group for a given PPR1 state defines a pair of  
OUT4 and OUT5 frequencies. The frequency pair associated  
with a PPR1 state may apply to the OUT4 or OUT5 channel in  
any combination. For example, although PPR1 State 0 defines  
both 100 MHz and 125 MHz output frequencies, OUT4 and  
OUT5 may be any pairing of the two frequencies: 100 MHz at  
both output channels, 100 MHz on OUT4 and 125 MHz at  
OUT5, 125 MHz at OUT4 and 100 MHz at OUT5, or 125 MHz  
at both output channels. The specific OUT4 and OUT5 frequency  
assignments depend on the state of PPR3 (see Table 24). See the  
Output Clocks section for details for the specific frequency  
translations on a per output basis.  
47  
PPR0  
8.2kΩ  
Figure 21. PPRx Programming Resistor Example  
For details regarding the device configuration based on the  
scanned PPRx states, see the description of each PPRx pin in  
the following sections.  
Table 22. PPR1—Frequency Translation Options  
PPR1 State fREF (MHz) OUT4/OUT5 Frequency (MHz)  
×2  
Bypass 0.7  
Active 0.6  
Bypass 0.7  
Active 0.6  
Bypass 0.6  
Active 0.6  
Bypass 0.3  
Active 0.6  
PLL Bandwidth (MHz) fVCO  
OUT2/OUT3 Frequency (MHz)  
0
1
2
3
4
5
6
7
25  
100, 125  
2500 156.25  
25  
100,125  
2500 156.25  
2500 156.25  
2500 156.25  
2488 155.52  
2488 155.52  
2560 160  
25  
125, 312.5  
125, 312.5  
38.88, 77.76  
38.88, 77.76  
80, 160  
25  
19.44  
19.44  
25  
25  
80, 160  
2560 160  
Rev. B | Page 22 of 35  
 
 
 
 
Data Sheet  
AD9574  
PPR2—OUT0 and OUT1 Configuration  
PPR3—OUT4 and OUT5 Configuration  
The PPR2 pin allows the user to select from a predefined set of  
configurations for the OUT0 and OUT1 channels per Table 23.  
The output configuration includes the type of output driver and  
a frequency scale factor that indicates whether the output  
frequency is the same or twice the input reference frequency.  
See the Output Drivers section for details regarding output  
driver types.  
The PPR3 pin allows the user to select from a predefined set of  
configurations for the OUT4 and OUT5 channels per Table 24.  
The output configuration includes the frequency (in MHz) and  
type of output driver assignment (see the Output Drivers section  
for details regarding output driver types). Note that the state of  
PPR1 (frequency translation options) determines the frequency  
pair available for assignment to the OUT4 and OUT5 channels.  
Table 23. PPR2—OUT0/OUT1 Options  
OUT0  
OUT1  
PPR2 State  
Driver  
Scale  
Driver  
Scale  
0
1
2
3
4
5
6
7
HSTL  
1
HSTL  
1
HSTL  
2
HSTL  
1
3.3 V CMOS  
3.3 V CMOS  
Disabled  
3.3 V CMOS  
HSTL  
2
3.3 V CMOS  
3.3 V CMOS  
Disabled  
Disabled  
Disabled  
Disabled  
1
1
1
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
1
2
1
HSTL  
Table 24. PPR3—OUT4/OUT5 Options  
PPR State  
OUT4  
fOUT4 (MHz)  
OUT5  
fOUT5 (MHz)  
PPR1  
PPR3  
0
Driver  
HSTL  
Driver  
HSTL  
HCSL  
HSTL  
LVDS  
HSTL  
HCSL  
HSTL  
Disabled  
HSTL  
LVDS  
HCSL  
HSTL  
LVDS  
HCSL  
HSTL  
HCSL  
HSTL  
LVDS  
LVDS  
HSTL  
HSTL  
LVDS  
HSTL  
Disabled  
HSTL  
HSTL  
LVDS  
HSTL  
LVDS  
HSTL  
HSTL  
Disabled  
0 or 1  
100  
100  
100  
125  
125  
100  
100  
125  
100  
125  
125  
125  
100  
100  
1
HCSL  
2
HCSL  
3
LVDS  
4
HSTL  
5
LVDS  
6
HSTL  
7
Disabled  
HSTL  
Not applicable  
312.5  
Not applicable  
312.5  
312.5  
312.5  
125  
2 or 3  
4 or 5  
6 or 7  
0
1
LVDS  
312.5  
2
HCSL  
312.5  
3
HSTL  
312.5  
4
LVDS  
312.5  
125  
5
HCSL  
312.5  
125  
6
LVDS  
312.5  
125  
7
HCSL  
125  
125  
0
HSTL  
38.88  
77.76  
77.76  
38.88  
38.88  
77.76  
77.76  
38.88  
Not applicable  
80  
1
LVDS  
38.88  
2
LVDS  
38.88  
3
HSTL  
38.88  
4
HSTL  
77.76  
5
LVDS  
77.76  
6
Disabled  
Disabled  
HSTL  
Not applicable  
Not applicable  
80  
7
0
1
LVDS  
80  
80  
2
LVDS  
80  
160  
3
Disabled  
LVDS  
Not applicable  
80  
80  
4
80  
5
HSTL  
80  
160  
6
Disabled  
Disabled  
Not applicable  
Not applicable  
160  
7
Not applicable  
Rev. B | Page 23 of 35  
 
 
AD9574  
Data Sheet  
PPR4—OUT6 Configuration  
PPR6—Monitor Clock (MCLK_x) Input Configuration  
The PPR4 pin allows the user to select from a predefined set of  
configurations for the OUT6 channel per Table 25. The output  
configuration includes the frequency (MHz) and type of output  
driver assignment (see the Output Drivers section for details  
regarding output driver types). Note that the PPR4 assignments  
share a dependency with the state of PPR1 (frequency translation  
options) in that the OUT6 channel is disabled for PPR1 State 2  
through State 7.  
The PPR6 pin controls the configuration of the MCLK_x  
inputs, which includes a combination of both frequency (MHz)  
and input type (see the Monitor Clock Input section for details  
regarding MCLK_x input types). Table 27 associates each PPR6  
state with a particular MCLK_x input configuration.  
Table 27. PPR6—MCLK_x Input Options  
PPR6 State  
fMCLK (MHz)  
19.44  
19.44  
0.008  
0.008  
38.88  
25  
MCLK_x Input Configuration  
Differential  
0
1
2
3
4
5
6
7
Table 25. PPR4—OUT6 Options  
Single-ended 3.3 V CMOS buffer  
Single-ended 3.3 V CMOS buffer  
Differential  
PPR State  
PPR4  
OUT6  
fOUT6 (MHz)  
PPR1  
Driver  
Differential  
0 or 1  
0
Disabled  
3.3 V CMOS  
1.8 V CMOS  
LVDS  
Not applicable  
133.3  
Differential  
1
10  
Single-ended 3.3 V CMOS buffer  
Differential  
2
133.3  
10  
3
133.3  
4
LVDS  
66.67  
Dependency of PPR3 and PPR4 on PPR1  
5
3.3 V CMOS  
1.8 V CMOS  
3.3 V CMOS  
Disabled  
66.67  
PPR1 defines the input reference frequency, configures the  
internal PLL to yield certain OUT2 and OUT3 frequencies and  
establishes the state of the ×2 multiplier at the input of the PLL  
(bypass/active). PPR3 and PPR4 affect the frequency and output  
driver of the OUT4, OUT5, and OUT6 channels, but with a  
dependency on the state of PPR1, as summarized in Table 28.  
6
66.67  
7
33.33  
2 to 7  
0 to 7  
Not applicable  
PPR5—Reference Monitor Threshold  
The PPR5 pin controls the range of the frequency error  
threshold associated with the reference frequency monitor (see  
the Reference Monitor section) per Table 26. The threshold has  
units of parts per million (ppm) relative to the nominal input  
reference frequency (19.44 MHz or 25 MHz).  
With regard to Table 28, the user may select any PPR3 state and  
any PPR4 state for a given PPR1 state (that is, PPR3 and PPR4  
are completely independent of one another).  
Table 26. PPR5—Reference Monitor Threshold Options  
PPR5 State  
Threshold (ppm)  
0
1
2
3
4
5
6
7
25  
25  
10  
10  
50  
50  
100  
100  
Rev. B | Page 24 of 35  
 
 
 
 
 
Data Sheet  
AD9574  
Table 28. PPR1, PPR3, and PPR4 Dependencies1  
OUT4  
Frequency  
OUT5  
Frequency  
OUT6  
OUT2/OUT3  
Frequency  
(MHz)  
PPR1  
State  
fREF  
(MHz)  
PLL  
×2  
PPR3  
State  
PPR4 Frequency  
State (MHz)  
(MHz)  
Driver  
(MHz)  
Driver  
Driver  
0
1
25  
25  
Bypass 156.25  
Active 156.25  
0
1
100  
HSTL  
125  
HSTL  
0
1
N/A  
Disabled  
100  
HCSL  
100  
HCSL  
133.3  
3.3 V  
CMOS  
2
100  
HCSL  
125  
HSTL  
2
133.3  
1.8 V  
CMOS  
3
4
5
125  
125  
100  
LVDS  
HSTL  
LVDS  
125  
125  
100  
LVDS  
HSTL  
HCSL  
3
4
5
133.3  
66.67  
66.67  
LVDS  
LVDS  
3.3 V  
CMOS  
6
7
100  
N/A  
HSTL  
100  
HSTL  
6
7
66.67  
33.33  
1.8 V  
CMOS  
Disabled N/A  
Disabled  
3.3 V  
CMOS  
2
3
25  
25  
Bypass 156.25  
Active 156.25  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
312.5  
312.5  
312.5  
312.5  
312.5  
312.5  
312.5  
125  
HSTL  
LVDS  
HCSL  
HSTL  
LVDS  
HCSL  
LVDS  
HCSL  
HSTL  
LVDS  
LVDS  
HSTL  
HSTL  
LVDS  
312.5  
HSTL  
LVDS  
HCSL  
HSTL  
LVDS  
HCSL  
HSTL  
HCSL  
HSTL  
LVDS  
LVDS  
HSTL  
HSTL  
LVDS  
HSTL  
Disabled  
HSTL  
HSTL  
LVDS  
HSTL  
LVDS  
HSTL  
HSTL  
Disabled  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
312.5  
312.5  
125  
125  
125  
125  
125  
4
5
19.44  
19.44  
Bypass 155.52  
Active 155.52  
38.88  
38.88  
38.88  
38.88  
77.76  
77.76  
N/A  
77.76  
77.76  
38.88  
38.88  
77.76  
77.76  
Disabled 38.88  
Disabled N/A  
N/A  
6
7
25  
25  
Bypass 160  
Active 160  
80  
HSTL  
LVDS  
LVDS  
80  
80  
80  
80  
160  
N/A  
Disabled 80  
80  
LVDS  
HSTL  
80  
80  
160  
N/A  
Disabled 160  
Disabled N/A  
N/A  
1 N/A means not applicable.  
Assuming the presence of the active reference, the reference  
signal appears at the input to the PLL and at the OUT0 and  
OUT1 channels. With a reference signal applied to the input of  
the PLL, the VCO calibration sequence initiates. Assuming a  
valid input reference signal, the PLL eventually locks to the  
reference signal as indicated by assertion of the LD pin. This lock  
enables the prescale dividers at the output of the VCO, which  
starts the output drivers toggling (that is, those output drivers  
enabled per the PPRx settings).  
POWER-ON RESET (POR)  
Applying power to the AD9574 causes an internal power-on  
reset (POR) event. A POR event allows the device to initialize to  
a known state at power-up by initiating a scan of the PPRx pins  
(see the PPRx Pins section).  
In general, the AD9574 follows an orderly power-on sequence  
beginning with the POR circuit detecting a valid 3.3 V supply.  
This activates the internal LDO regulators. Detection of valid  
LDO voltages by the POR circuit triggers a PPRx scan sequence,  
which results in the configuration of the input reference receivers.  
Rev. B | Page 25 of 35  
AD9574  
Data Sheet  
To ensure maximum operational robustness, the power-on  
initialization sequence shown in Figure 22 is recommended.  
The power supply initialization loop assumes the user can monitor  
the VDD supply voltages applied to the device. The chip level  
reset loop assumes the user can monitor the state of the lock  
RESET  
count (RST_COUNT) represents an integer  
The  
counter implemented in the software to track the number of  
RESET  
times the  
pin is asserted under software control. Time is  
a variable implemented in the software to track elapsed time.  
The PLL timeout (PLL_TO) variable is implemented in the  
software to indicate the maximum amount of time allowed for the  
RESET  
detect pin (LD, Pin 14) and assert the  
pin (Pin 20) under  
software control. The variables RST_COUNT, time, and PLL_TO  
denote quantities maintained in the power-on initialization  
software routine of the user.  
RESET  
PLL to lock following an assertion of the  
pin. Note that  
the value of PLL_TO depends on the selected PPR state. See Table  
16 in the Timing Specifications section to determine the  
appropriate value for the PLL_TO variable.  
START  
USER POWER  
SUPPLIES  
INITIALIZATION  
LOOP  
APPLY V  
(ALL DOMAINS)  
DD  
NO  
V
SETTLED?  
YES  
DD  
APPLY REFERENCE  
CLOCK(S)  
(REF0 / REF1)  
CHIP LEVEL RESET LOOP  
RST_COUNT = 0  
ISSUE A  
PIN LEVEL  
RESET  
RST_COUNT =  
RST_COUNT + 1  
PLL LOCK DETECT  
POLLING LOOP  
START TIMEOUT CLOCK:  
TIME = 0  
NO  
NO  
RAISE FLAG  
FOR  
DEBUGGING  
NO  
YES  
YES  
TIMEOUT CLOCK:  
TIME > PLL_TO  
LD PIN = LOGIC 1  
YES  
RST_COUNT >0  
END  
Figure 22. Recommended Power-On Initialization Sequence  
Rev. B | Page 26 of 35  
 
Data Sheet  
AD9574  
The reference switching logic provides information about which  
reference channel (REF0 or REF1) is the currently active  
reference via the REF_ACT output pin. The REF_ACT pin is  
Logic 0 when REF0 is the active reference and Logic 1 when  
REF1 is the active reference. Furthermore, the reference  
switching logic indicates when the device is in the process of  
performing a reference switchover via the REF_SW pin (that is,  
REF_SW is Logic 1 when a reference switch is in progress). The  
REF_SW pin assumes a Logic 1 state when REF_SEL changes  
states and returns to a Logic 0 state when the device completes  
the reference switchover process. See the Reference Switching  
section for additional information.  
REFERENCE CLOCK INPUTS  
The REF0 and REF1 input channels provide for two operating  
modes based on the scanned state of PPR0. Note that the  
resulting mode applies to both the REF0 and REF1 channels.  
That is, independent input mode selection is not an option.  
In single-ended 3.3 V CMOS buffer mode, the user may  
connect a 3.3 V clock source directly to the positive reference  
input pin (REF0_P, for example). Note that in single-ended  
mode, it is best to connect a 0.1 nF capacitor from the negative  
input pin (REF0_N, for example) to GND.  
In differential mode, the user may connect a differential clock  
driver to the two reference input pins (REF0_P and REF0_N,  
for example). Note that differential operation requires ac  
coupling, that is, a series connected 0.1 nF capacitor from each  
output of an external differential clock driver to the corresponding  
reference input pin. This mode also supports a single-ended  
1.8 V CMOS clock source by connecting the source to either of  
the reference input pins (REF0_P or REF0_N, for example).  
Connect the unused input pin to GND via a 0.1 nF capacitor.  
Changing the state of the REF_SEL pin triggers the internal  
state machine to perform the reference switching process.  
Confirm (via the REF_ACT pin) that the device has switched to  
the desired reference before a subsequent change of the  
REF_SEL pin. Changing the state of the REF_SEL pin before the  
internal state machine completes the reference switching  
process may cause undesired results.  
Because the reference switching logic waits for an optimal  
switchover point rather than switching immediately, there is the  
rare possibility that either or both references happen to fail  
(resulting in a loss of reference (LOR) fault condition) just after  
the user requests a reference switchover (via the REF_SEL pin),  
but before the switching logic identifies the optimal switchover  
point. In such an instance, the LOR condition associated with  
either reference causes the internal state machine to stall and  
the device fails to switch references, thereby retaining the  
currently active reference. If the currently active reference fails,  
the device loses lock, thereby necessitating a device reset. If the  
requested reference fails, the device retains the currently active  
reference, but switches to the requested reference if it becomes  
available. Note that as long as a reference remains in an LOR  
condition, the state machine remains stalled. Only a device reset  
makes the state machine disregard the initial request to switch  
references.  
MONITOR CLOCK INPUT  
The MCLK_x pins are the monitor clock inputs and are intended  
to accept a stable frequency reference source. The MCLK_x pins  
are configurable as either single-ended 3.3 V CMOS or differen-  
tial. The monitor clock accepts a fixed frequency of 0.008 MHz,  
10 MHz, 19.44 MHz, 25 MHz, or 38.88 MHz. Note that the  
monitor clock input frequency and receiver configuration  
depend on the scanned state of PPR6 (see the PPR6—Monitor  
Clock (MCLK_x) Input Configuration section for details).  
A stable monitor clock frequency source supports the operation  
of the reference monitor (see the Reference Monitor section).  
Because the reference monitor relies on the precision and  
stability of the monitor clock input signal, the user must ensure  
the frequency accuracy of the monitor clock source.  
REFERENCE SWITCHING  
The AD9574 provides for manual reference switching  
capability. Although the on-board reference monitor provides  
the user with information regarding the status of the input  
references, the device does not provide for automatic reference  
switchover as a result of status changes. Rather, the REF_SEL pin  
provides the user with manual reference switchover control. A  
Logic 0 on the REF_SEL pin informs the internal reference  
switching logic to make REF0 the active reference, whereas a  
Logic 1 makes REF1 the active reference.  
The REF_SEL pin determines which reference is the active  
reference any time device power is cycled or the user asserts the  
RESET  
pin.  
REFERENCE MONITOR  
An on-board reference frequency monitor provides the user  
with a means to validate the frequency accuracy of the active  
reference channel (REF0 or REF1) in real time. The REFMON pin  
enables or disables the reference monitoring function (Logic 1  
or Logic 0, respectively).  
The switch to a new active reference does not occur  
instantaneously with a corresponding change of state on the  
REF_SEL pin. Instead, the reference switching logic notes the  
request for a reference switch and waits for the opportune moment  
to make the physical switch. This functionality ensures a minimal  
frequency disturbance on the output clocks associated with the  
integrated PLL (the OUT2 through OUT6 channels).  
Apply a static and valid Logic 0 or Logic 1 level to the  
REFMON pin. Do not allow the REFMON pin to float. Do not  
toggle the REFMON pin during device operation.  
When enabled, the reference monitor continuously tests the  
frequency of the active reference by comparing it to the  
frequency of the MCLK_x signal. The result of this comparison  
appears on the REF_FHI and REF_FLO pins per Table 29.  
Rev. B | Page 27 of 35  
 
 
AD9574  
Data Sheet  
The above or below frequency decision threshold of the  
monitor is 10 ppm, 25 ppm, 50 ppm, or 100 ppm per the  
scanned value of PPR5 (see the PPR5—Reference Monitor  
Threshold section).  
The one exception is for fMCLK = 8 kHz, for which an LOR  
indication occurs if fMCLK is below approximately 6.1 kHz. An  
LOR condition may cause the REF_FHI and REF_FLO pins to  
indicate an indeterminate state (a Logic 1 on both the REF_FHI  
and REF_FLO pins). See the Reference Switching section for  
details regarding LOR conditions that occur during a reference  
switching operation.  
RESET  
, the reference monitor indicates  
Following a power-up or  
an indeterminate (see Table 29) condition until enough time  
elapses to make a valid decision (see the monitor clock input to  
REF_FHI/REF_FLO time parameter in Table 16). The monitoring  
process begins when the following two conditions are met: the  
REFMON pin is Logic 1 and a valid signal is present at the  
MCLK_x pins. Within the time specified by the monitor clock  
input to REF_FHI/REF_FLO time parameter (per Table 16), the  
reference monitor indicates the results on the reference monitor  
status pins, REF_FHI/REF_FLO (per Table 29).  
PLL  
The PLL consists of six functional elements.  
Frequency prescaler  
PFD  
Charge pump  
Loop filter  
VCO  
The REF_FHI and REF_FLO pins are open-drain with internal  
pull-down resistors allowing wire-ORe d operation. That is, both  
pins can be connected together to yield a single in tolerance or out  
of tolerance indication. With a wire-ORe d connection, however,  
it is not possible to discern whether the reference frequency is  
above or below the tolerance threshold.  
Feedback divider  
The AD9574 automatically configures the six functional  
elements based on the prevailing PPRx settings.  
The prescaler is shown functionally as a programmable divider in  
Figure 20. It actually consists of a ×2 frequency multiplier, a divide-  
by-5 block, and multiplexers to yield the necessary frequency  
divide ratios per Table 30.  
Table 29. Reference Frequency Monitor Status  
REF_FHI REF_FLO Active Reference Status  
0
0
1
1
0
1
0
1
Frequency within tolerance threshold  
Frequency below tolerance threshold  
Frequency above tolerance threshold  
Indeterminate or fault condition  
Table 30. PLL Frequency Prescaler  
×2  
÷5  
Frequency Division  
Active  
Bypassed  
Active  
Bypassed  
Bypassed  
Bypassed  
Active  
Active  
1/2 (same as multiply by 2)  
1
In addition to its frequency monitoring function, the reference  
monitor also checks for the presence of a clock signal at the  
REF0_x, REF1_x, and MCLK_x inputs. The absence of a clock  
signal results in an internal LOR indication for that particular  
clock input. Note that LOR indication occurs when the input  
frequency is below approximately 1 MHz.  
5/2  
5
Table 31. REF_FHI and REF_FLO Status1  
REFMON  
MCLK_x  
REF_SEL  
REF_SW2  
REF0_x  
REF1_x  
REF_Fx3  
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Not applicable  
0
0
LOR  
OK  
Not applicable  
Not applicable  
LOR  
11  
Not applicable  
0
0
00  
Not applicable  
1
0
Not applicable  
Not applicable  
LOR  
11  
Not applicable  
1
0
OK  
00  
Not applicable  
Not applicable  
1
Not applicable  
LOR  
11  
Not applicable  
Not applicable  
1
Not applicable  
OK  
11  
Not applicable  
Not applicable  
1
OK  
00  
LOR  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
Not applicable  
Not applicable  
Not applicable  
LOR  
Not applicable  
Not applicable  
Not applicable  
LOR  
11  
0
0
0
0
0
1
1
1
11  
0
OK  
00, 01, or 10  
1
Not applicable  
Not applicable  
LOR  
11  
1
OK  
00, 01, or 10  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
LOR  
11  
Not applicable  
OK  
11  
OK  
00, 01, or 10  
1 OK means the signal is present.  
2 For REF_SW = 1, LOR means a transition to a LOR condition while the device is in the process of a reference switchover.  
3 REF_Fx refers to the combined state of the REF_FHI and REF_FLO pins per Table 29.  
Rev. B | Page 28 of 35  
 
 
 
Data Sheet  
AD9574  
The PFD, charge pump, and loop filter work together to tune  
the VCO output frequency according to the phase difference  
of the clock edges at the input to the PFD. The closed-loop  
configuration gradually causes the phase difference at the PFD  
input to settle near zero and the VCO output frequency to settle  
to a value of N times the PFD input frequency (N is the  
feedback divider value). Based on the PPRx pin settings, the  
AD9574 automatically selects the value of N and the prescaler  
value to yield one of three VCO frequencies (2488 MHz,  
2500 MHz, or 2560 MHz) per Table 22.  
The OUT2 through OUT6 channels are static (outputs do not  
toggle) while the PLL is unlocked (that is, while the LD pin is  
Logic 0).  
OUTPUT DRIVERS  
The output channels of the AD9574 offer the flexibility of a  
variety of drive formats, including HSTL, HCSL, LVDS, and  
CMOS. Each channel offers a subset of these formats (see Table 33).  
Table 33. Output Drive Formats  
Format  
The loop filter consists of a partially integrated third-order RC  
network with an external network connected between the LF  
and LDO_BYP pins. The external network consists of a 1 nF or  
2 nF capacitor or a series connected 2 nF capacitor, C, and  
4.75 kΩ resistor, R (see Table 32). The loop filter components,  
charge pump current, feedback divider, and VCO gain define  
the bandwidth of the PLL according to Table 22. The device  
automatically adjusts the internal components per the PPRx  
settings to maintain an approximately constant loop bandwidth.  
CMOS  
Output  
Channel  
HSTL  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
HCSL  
No  
LVDS  
No  
3.3 V  
Yes  
Yes  
No  
1.8 V  
No  
0
1
2
3
4
5
6
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
No  
No  
No  
No  
Yes  
Yes  
OUTPUT CLOCKS  
Table 32. External Loop Filter Components  
The seven output clock channels (OUT0 through OUT6)  
provide two different frequency translation functions. OUT0  
and OUT1 offer a replica of the reference frequency (with a  
frequency doubling option for OUT0), whereas OUT2 through  
OUT6 offer rational frequency translations by means of an  
integrated integer-N PLL. Table 34 shows a summary of the  
available frequencies for each output channel (in units of MHz).  
The indicated reference to output frequency translations  
depends on the results of a PPRx scan (see the PPRx Pins  
section for details).  
PPR1 State  
External Components  
0
1
2
3
4
5
6
7
C = 1 nF  
C = 2 nF  
C = 1 nF  
C = 2 nF  
C = 1 nF  
C = 2 nF  
C = 2 nF in series with R = 4.75 kΩ  
C = 2 nF in series with R = 4.75 kΩ  
Figure 23 is a diagram of the loop filter portion of the PLL.  
INTEGRATED LOOP FILTER  
VCO  
Table 34. Output Frequencies  
Output (MHz)  
fREF  
0
1
2
3
4
5
6
LF  
25  
25  
50  
25  
156.25 156.25 100  
125  
100  
125  
33.33  
66.67  
CHARGE  
PUMP  
EXTERNAL  
COMPONENTS  
312.5 312.5 133.3  
80  
80  
160  
160  
LDO_BYP  
19.44 19.44 19.44 155.52 155.52 38.88 38.88 N/A1  
77.76 77.76  
Figure 23. PLL Loop Filter Detail  
1 N/A means not applicable.  
The AD9574 also provides a digital lock detect output signal at  
the LD pin, which indicates (active high) when the device  
considers the PFD input phase differential to have stabilized  
near zero.  
Rev. B | Page 29 of 35  
 
 
 
 
AD9574  
Data Sheet  
APPLICATIONS INFORMATION  
DUAL OSCILLATOR REFERENCE INPUT  
APPLICATION  
required. The FPGA also controls the on/off state of the  
reference oscillators, which provides for shutting down a faulty  
reference or for keeping a redundant reference turned off until  
needed. The general configuration of the AD9574 is set via a  
group of resistors that establish the desired PPRx states.  
Although Figure 24 shows XOs with differential outputs, single-  
ended XOs can be substituted by connecting the XO output to  
the REFx_P pin and a 0.1 nF capacitor from the REFx_N pin to  
GND.  
Figure 24 depicts a typical application diagram using two  
crystal oscillators (XOs) as the reference inputs. A stable  
oscillator source supplies the MCLK_x inputs and serves as the  
timing reference for the on-board reference monitoring  
function. A field-programmable gate array (FPGA) handles the  
control interface for monitoring the status of the references and  
the PLL (lock detector) and for switching between references as  
PROGRAMMING  
RESISTORS  
3.3V  
26 24 19  
47 41  
7
27  
10  
9
OUT0_P  
OUT0_N  
OUT1_P  
OUT1_N  
OUT2_P  
OUT2_N  
OUT3_P  
OUT3_N  
OUT4_P  
OUT4_N  
OUT5_P  
OUT5_N  
OUT6_P  
OUT6_N  
PPR CONTROL  
×1/×2  
1
2
6
5
REF0_P  
REF0_N  
REF1_P  
REF1_N  
11  
12  
38  
37  
39  
40  
29  
28  
32  
33  
22  
21  
Rx  
Rx  
XO  
XO  
ON/OFF  
CONTROL  
AD9574  
MCLK_P 45  
STABLE  
REFERENCE  
PFD/  
CP  
MCLK_N  
REF_SEL  
REFMON  
REF_FHI  
LF VCO  
46  
48  
25  
35  
×1/×2  
REFERENCE  
MONITOR  
REF_FLO 34  
REF_ACT 44  
REF_SW 43  
14  
15  
16  
LD  
LF  
LDO_BYP  
FPGA  
1nF  
470nF  
Figure 24. Dual Oscillator Reference Input Application Diagram  
Rev. B | Page 30 of 35  
 
Data Sheet  
AD9574  
The value of the series termination depends on the board  
SIMPLE, SINGLE OSCILLATOR REFERENCE INPUT  
APPLICATION  
design and timing requirements (typically 10 Ω to 100 Ω).  
CMOS outputs are limited in terms of the capacitive load or  
trace length that they can drive. Typically, trace lengths less  
than 6 inches are recommended to preserve signal rise/fall  
times and signal integrity.  
Figure 27 depicts a simple application using a single crystal  
oscillator as the reference input with minimal reference  
monitoring functionality. The wire-ORed REF_FHI and  
REF_FLO connection in conjunction with REF_MON tied to  
GND (REF_MON = 0; see Table 31) yields a LOR function  
indicating only that REF0 is present (or not); that is, there is no  
specific indication of high or low frequency status. The LOR  
and LD signals can notify a controller (not shown) of a  
reference failure or an unlocked PLL condition. The general  
configuration of the AD9574 is set via a group of resistors that  
establish the desired PPRx states. Although Figure 27 shows an  
XO with differential outputs, a single-ended XO can be substi-  
tuted by connecting the XO output to the REF0_P pin and a  
0.1 nF capacitor from the REF0_N pin to GND.  
60.4Ω  
1.0 INCH  
10Ω  
CMOS  
MICROSTRIP  
5pF  
GND  
Figure 25. Series Termination of CMOS Output  
Termination at the far end of the printed circuit board (PCB)  
trace is a second option. The CMOS outputs of the AD9574 do  
not supply enough current to provide a full voltage swing with a  
low impedance resistive, far end termination, as shown in  
Figure 26. Ensure that the impedance of the far end termination  
network matches the PCB trace impedance and provides the  
desired switching point. The reduced signal swing may still  
meet receiver input requirements in some applications. This can  
be useful when driving long trace lengths on less critical nets.  
3.3V  
INTERFACING TO CMOS CLOCK OUTPUTS  
Apply the following general guidelines when using the single-  
ended 1.8 V or 3.3 V CMOS clock output drivers.  
Design point-to-point nets such that a driver has only one  
receiver on the net, if possible. This allows simple termination  
schemes and minimizes ringing due to possible mismatched  
impedances on the net. Series termination at the source is  
generally required to provide transmission line matching and/or  
to reduce current transients at the driver.  
100Ω  
100Ω  
50Ω  
10Ω  
CMOS  
5pF  
Figure 26. CMOS Output with Far End Termination  
Rev. B | Page 31 of 35  
 
AD9574  
Data Sheet  
PROGRAMMING  
RESISTORS  
3.3V  
26 24 19  
47 41  
7
27  
10  
9
OUT0_P  
OUT0_N  
OUT1_P  
OUT1_N  
OUT2_P  
OUT2_N  
OUT3_P  
OUT3_N  
OUT4_P  
OUT4_N  
OUT5_P  
OUT5_N  
OUT6_P  
OUT6_N  
PPR CONTROL  
×1/×2  
1
2
6
5
REF0_P  
11  
12  
38  
37  
39  
40  
29  
28  
32  
33  
22  
21  
Rx  
Rx  
XO  
REF0_N  
REF1_P  
REF1_N  
AD9574  
MCLK_P 45  
PFD/  
CP  
MCLK_N  
REF_SEL  
REFMON  
REF_FHI  
LF VCO  
46  
48  
25  
35  
×1/×2  
REFERENCE  
MONITOR  
LOR  
REF_FLO 34  
REF_ACT 44  
REF_SW 43  
14  
15  
16  
LD  
LF  
LDO_BYP  
LD  
1nF  
470nF  
Figure 27. Single Oscillator Reference Input Application Diagram  
INDEPENDENT  
UNCOUPLED 50  
TRANSMISSION LINES  
INTERFACING TO LVDS AND HSTL CLOCK  
OUTPUTS  
HCSL  
LVDS and HSTL both employ a differential output driver. The  
recommended termination circuit for LVDS and HSTL drivers  
appears in Figure 28.  
RECEIVER  
50Ω  
50Ω  
INDEPENDENT  
UNCOUPLED 50  
TRANSMISSION LINES  
Figure 29. HCSL Output Termination  
100Ω  
In some cases, the fast switching capability of HCSL drivers  
results in overshoot and ringing. The alternative HCSL interface  
shown in Figure 30 can mitigate this problem via a small series  
resistor, typically in the 10 Ω to 30 Ω range.  
HSTL/LVDS  
DRIVER  
RECEIVER  
Figure 28. LVDS or HSTL Output Termination  
INDEPENDENT  
UNCOUPLED 50  
TRANSMISSION LINES  
See the AN-586 Application Note for more information about  
LVDS.  
HCSL  
10TO 30Ω  
INTERFACING TO HCSL CLOCK OUTPUTS  
10TO 30Ω  
50Ω  
RECEIVER  
50Ω  
HCSL uses a differential open-drain architecture. The open-  
drain architecture necessitates the use of an external termination  
resistor. Figure 29 shows the typical method for interfacing to  
HCSL drivers.  
Figure 30. Alternate HCSL Output Termination  
Rev. B | Page 32 of 35  
 
 
 
Data Sheet  
AD9574  
POWER SUPPLY  
POWER AND GROUNDING CONSIDERATIONS AND  
POWER SUPPLY REJECTION  
The AD9574 requires a power supply of 3.3 V 10%. The  
Specifications section gives the performance expected from the  
AD9574 with the power supply voltage within this range. The  
absolute maximum range of −0.3 V to +3.6 V, with respect to  
GND, must never be exceeded on the VDD_x pins.  
Many applications seek high speed and performance under less  
than ideal operating conditions. In these application circuits,  
the implementation and construction of the PCB is as important as  
the circuit design. Proper RF techniques must be used for  
device selection, placement, and routing, as well as for power  
supply bypassing and grounding to ensure optimum  
performance.  
Follow good engineering practice in the layout of power supply  
traces and the ground plane of the PCB. Bypass the power  
supply on the PCB with adequate capacitance (>10 µF). Bypass  
the AD9574 with adequate capacitors (0.1 µF) at all power pins  
as close as possible to the device. The layout of the AD9574  
evaluation board is a good example of how to route power  
supply traces and where to place bypass capacitors.  
The exposed metal pad on the AD9574 package is an electrical  
connection, as well as a thermal enhancement. For the device to  
function properly, the pad must be properly attached to ground  
(GND). The PCB acts as a heat sink for the AD9574; therefore,  
this GND connection provides a good thermal path to a larger  
heat dissipation area, such as a ground plane on the PCB.  
Rev. B | Page 33 of 35  
AD9574  
Data Sheet  
THERMAL PERFORMANCE  
Table 35. Thermal Parameters for the 48-Lead, 7 mm × 7 mm LFCSP  
Symbol Thermal Characteristic Using a JEDEC 51-7 Plus JEDEC 51-5 2S2P Test Board8  
Value9  
32.6  
18.7  
3.5  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJA  
θJB  
θJC  
ΨJT  
ΨJT  
ΨJT  
Junction to ambient thermal resistance, 0.0 m/sec airflow per JEDEC JESD51-2 (still air)  
Junction to board thermal resistance, 0.0 m/sec airflow per JEDEC JESD51-8 (still air)  
Junction to case thermal resistance (die-to-heat sink) per MIL-Standard 883, Method 1012.1  
Junction to top of package characterization parameter, 0 m/sec airflow per JEDEC JESD51-2 (still air)  
Junction to top of package characterization parameter, 1.0 m/sec airflow per JEDEC JESD51-6 (moving air)  
Junction to top of package characterization parameter, 2.5 m/sec airflow per JEDEC JESD51-6 (moving air)  
0.3  
0.4  
0.6  
8 The exposed pad on the bottom of the package must be soldered to ground to achieve the specified thermal performance.  
9 Results are from simulations. The PCB is a JEDEC multilayer type. Thermal performance for actual applications requires careful inspection of the conditions in the  
application to determine if they are similar to those assumed in these calculations.  
The AD9574 is specified for a case temperature (TCASE). To ensure  
that TCASE is not exceeded, an airflow source can be used. Use  
the following equation to determine the junction temperature  
on the application PCB:  
Values of θJA are provided for package comparison and PCB design  
considerations. θJA can be used for a first-order approximation  
of TJ by the equation  
TJ = TA + (θJA × PD)  
TJ = TCASE + (ΨJT × PD)  
where TA is the ambient temperature (°C).  
where:  
Values of θJC are provided for package comparison and PCB  
design considerations when an external heat sink is required.  
TJ is the junction temperature (°C).  
TCASE is the case temperature (°C) measured by the customer at  
the top center of the package.  
Values of θJB are provided for package comparison and PCB  
design considerations.  
ΨJT is the value as indicated in Table 35.  
PD is the power dissipation (see Table 15).  
Rev. B | Page 34 of 35  
 
Data Sheet  
AD9574  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
7.10  
0.30  
0.23  
0.18  
7.00 SQ  
6.90  
PIN 1  
INDICATOR  
37  
36  
48  
1
PIN 1  
INDIC ATOR AREA OPTIONS  
(SEE DETAIL A)  
0.50  
BSC  
4.25  
EXPOSED  
PAD  
4.10 SQ  
3.95  
24  
13  
0.45  
0.40  
0.35  
0.20 MIN  
BOTTOM VIEW  
5.50 REF  
TOP VIEW  
END VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WKKD-4.  
Figure 31. 48-Lead Lead Frame Chip Scale Package [LFCSP]  
7 mm × 7 mm Body and 0.75 mm Package Height  
(CP-48-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
AD9574BCPZ  
AD9574BCPZ-REEL7  
AD9574/PCBZ  
−40°C to +85°C  
−40°C to +85°C  
48-Lead Lead Frame Chip Scale Package [LFCSP]  
48-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
CP-48-5  
CP-48-5  
1 Z = RoHS Compliant Part.  
©2014–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07501-0-4/17(B)  
Rev. B | Page 35 of 35  

相关型号:

AD9574BCPZ-REEL7

Ethernet/Gigabit Ethernet Clock Generator
ADI

AD9575

Network Clock Generator, Two Outputs
ADI

AD9575-EVALZ-LVD

Network Clock Generator, Two Outputs
ADI

AD9575-EVALZ-PEC

Network Clock Generator, Two Outputs
ADI

AD9575ARUZLVD

Network Clock Generator, Two Outputs
ADI

AD9575ARUZPEC

Network Clock Generator, Two Outputs
ADI

AD9576

Dual PLL, Asynchronous Clock Generator
ADI

AD9576BCPZ

Dual PLL, Asynchronous Clock Generator
ADI

AD9576BCPZ-REEL7

Dual PLL, Asynchronous Clock Generator
ADI

AD9577

Clock Generator with Dual PLLs
ADI

AD9577-EVALZ

Clock Generator with Dual PLLs
ADI

AD9577BCPZ

Clock Generator with Dual PLLs
ADI