AD9634BCPZRL7-170 [ADI]

12-Bit, 170 MSPS/210 MSPS/250 MSPS; 12位, 170 MSPS / 210 MSPS / 250 MSPS
AD9634BCPZRL7-170
型号: AD9634BCPZRL7-170
厂家: ADI    ADI
描述:

12-Bit, 170 MSPS/210 MSPS/250 MSPS
12位, 170 MSPS / 210 MSPS / 250 MSPS

转换器 模数转换器
文件: 总32页 (文件大小:1575K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-Bit, 170 MSPS/210 MSPS/250 MSPS,  
1.8 V Analog-to-Digital Converter  
AD9634  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
AVDD  
AGND  
DRVDD  
SNR = 69.7 dBFS at 185 MHz AIN and 250 MSPS  
SFDR = 87 dBc at 185 MHz AIN and 250 MSPS  
−150.6 dBFS/Hz input noise at 185 MHz, −1 dBFS AIN and  
250 MSPS  
Total power consumption: 360 mW at 250 MSPS  
1.8 V supply voltages  
VIN+  
PIPELINE  
12-BIT  
ADC  
12  
D0±/D1±  
.
.
.
VIN–  
VCM  
PARALLEL  
DDR LVDS  
AND  
AD9634  
D10±/D11±  
DRIVERS  
LVDS (ANSI-644 levels) outputs  
Integer 1-to-8 input clock divider (625 MHz maximum input)  
Sample rates of up to 250 MSPS  
IF sampling frequencies of up to 350 MHz  
Internal ADC voltage reference  
REFERENCE  
DCO±  
OR±  
1-TO-8  
CLOCK DIVIDER  
SERIAL PORT  
Flexible analog input range  
SCLK SDIO  
CSB  
CLK+  
CLK–  
1.4 V p-p to 2.0 V p-p (1.75 V p-p nominal)  
ADC clock duty cycle stabilizer  
Figure 1.  
Serial port control  
Energy-saving power-down modes  
User-configurable, built-in self test (BIST) capability  
APPLICATIONS  
Communications  
Diversity radio systems  
Multimode digital receivers (3G)  
TD-SCDMA, WiMAX, W-CDMA, CDMA2000, GSM, EDGE, LTE  
I/Q demodulation systems  
Smart antenna systems  
General-purpose software radios  
Ultrasound equipment  
Broadband data applications  
GENERAL DESCRIPTION  
The AD9634 is a 12-bit, analog-to-digital converter (ADC) with  
sampling speeds of up to 250 MSPS. The AD9634 is designed to  
support communications applications where low cost, small size,  
wide bandwidth, and versatility are desired.  
Programming for setup and control is accomplished using a  
3-wire, SPI-compatible serial interface.  
The AD9634 is available in a 32-lead LFCSP and is specified over  
the industrial temperature range of −40°C to +85°C. This product  
is protected by a U.S. patent.  
The ADC core features a multistage, differential pipelined  
architecture with integrated output error correction logic. The  
ADC features wide bandwidth inputs that can support a variety  
of user-selectable input ranges. An integrated voltage reference  
eases design considerations. A duty cycle stabilizer (DCS) is  
provided to compensate for variations in the ADC clock duty cycle,  
allowing the converter to maintain excellent performance.  
PRODUCT HIGHLIGHTS  
1. Integrated 12-bit, 170 MSPS/210 MSPS/250 MSPS ADC.  
2. Fast overrange and threshold detect.  
3. Proprietary differential input maintains excellent SNR  
performance for input frequencies of up to 350 MHz.  
4. 3-pin, 1.8 V SPI port for register programming and readback.  
5. Pin compatibility with the AD9642, allowing a simple  
migration up to 14 bits, and with the AD6672.  
The ADC output data are routed directly to the external 12-bit  
LVDS output port.  
Flexible power-down options allow significant power savings,  
when desired.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
AD9634  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ADC Architecture ...................................................................... 19  
Analog Input Considerations ................................................... 19  
Voltage Reference ....................................................................... 21  
Clock Input Considerations...................................................... 21  
Power Dissipation and Standby Mode .................................... 23  
Digital Outputs ........................................................................... 23  
ADC Overrange (OR)................................................................ 23  
Serial Port Interface (SPI).............................................................. 24  
Configuration Using the SPI..................................................... 24  
Hardware Interface..................................................................... 24  
SPI Accessible Features.............................................................. 25  
Memory Map .................................................................................. 26  
Reading the Memory Map Register Table............................... 26  
Memory Map Register Table..................................................... 27  
Applications Information.............................................................. 29  
Design Guidelines ...................................................................... 29  
Outline Dimensions....................................................................... 30  
Ordering Guide .......................................................................... 30  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
ADC DC Specifications................................................................. 3  
ADC AC Specifications ................................................................. 4  
Digital Specifications ................................................................... 6  
Switching Specifications ................................................................ 7  
Timing Specifications .................................................................. 8  
Absolute Maximum Ratings............................................................ 9  
Thermal Characteristics .............................................................. 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 12  
Equivalent Circuits......................................................................... 18  
Theory of Operation ...................................................................... 19  
REVISION HISTORY  
7/11—Revision 0: Initial Version  
Rev. 0 | Page 2 of 32  
 
AD9634  
SPECIFICATIONS  
ADC DC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.75 V p-p full scale input range,  
DCS enabled, unless otherwise noted.  
Table 1.  
AD9634-170  
AD9634-210  
AD9634-250  
Min Typ Max  
Parameter  
Temperature  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
RESOLUTION  
Full  
12  
12  
12  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Gain Error  
Full  
Full  
Full  
Full  
25°C  
Full  
25°C  
Guaranteed  
Guaranteed  
Guaranteed  
11  
+2/−11  
0.ꢀ  
11  
11  
mV  
+1/−8  
0.ꢀ  
+3/−7 %FSR  
Differential Nonlinearity (DNL)  
0.ꢀ  
0.ꢁ  
LSB  
LSB  
LSB  
LSB  
0.22  
0.2  
0.22  
0.2  
0.22  
0.27  
Integral Nonlinearity (INL)1  
0.ꢀ  
0.ꢀ  
TEMPERATURE DRIFT  
Offset Error  
Gain Error  
Full  
Full  
7
55  
7
58  
7
75  
ppm/°C  
ppm/°C  
INPUT REFERRED NOISE  
VREF = 1.0 V  
25°C  
0.531  
0.391  
0.ꢀ07  
LSB rms  
ANALOG INPUT  
Input Span  
Full  
Full  
Full  
Full  
1.75  
2.5  
20  
1.75  
2.5  
20  
1.75  
2.5  
20  
V p-p  
pF  
kΩ  
V
Input Capacitance2  
Input Resistance3  
Input Common-Mode Voltage  
POWER SUPPLIES  
Supply Voltage  
AVDD  
0.9  
0.9  
0.9  
Full  
Full  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
V
V
DRVDD  
Supply Current  
1
IAVDD  
Full  
Full  
123  
50  
13ꢀ  
5ꢀ  
129  
5ꢁ  
139  
ꢁ0  
13ꢁ  
ꢁꢀ  
1ꢀ5  
ꢁ8  
mA  
mA  
1
IDRVDD  
POWER CONSUMPTION  
Sine Wave Input (DRVDD = 1.8 V) Full  
311  
50  
5
3ꢀ0  
333  
50  
5
3ꢁ0  
3ꢁ0  
50  
5
385  
mW  
mW  
mW  
Standby Powerꢀ  
Full  
Full  
Power-Down Power  
1 Measured with a low input frequency, full-scale sine wave.  
2 Input capacitance refers to the effective capacitance between one differential input pin and its complement.  
3 Input resistance refers to the effective resistance between one differential input pin and its complement.  
Standby power is measured with a dc input and the CLK pin inactive (that is, set to AVDD or AGND).  
Rev. 0 | Page 3 of 32  
 
 
AD9634  
ADC AC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.75 V p-p full-scale input range, unless  
otherwise noted.  
Table 2.  
AD9634-170  
AD9634-210  
AD9634-250  
Parameter1  
Temperature Min  
Typ  
Max Min  
Typ  
Max Min Typ Max Unit  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 30 MHz  
fIN = 90 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
Full  
70.3  
70.1  
70.2  
70.1  
70.1  
70.0  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
ꢁ9.1  
ꢁ8.8  
fIN = 1ꢀ0 MHz  
fIN = 185 MHz  
ꢁ9.9  
ꢁ9.5  
70.0  
ꢁ9.ꢁ  
ꢁ9.9  
ꢁ9.7  
ꢁ7.8  
fIN = 220 MHz  
25°C  
ꢁ9.2  
ꢁ9.2  
ꢁ9.3  
SIGNAL-TO-NOISE AND DISTORTION (SINAD)  
fIN = 30 MHz  
fIN = 90 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
Full  
ꢁ9.ꢀ  
ꢁ9.2  
ꢁ9.2  
ꢁ9.1  
ꢁ9.2  
ꢁ9.0  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
ꢁ8.1  
ꢁ7.8  
fIN = 1ꢀ0 MHz  
fIN = 185 MHz  
ꢁ8.9  
ꢁ8.5  
ꢁ9.1  
ꢁ8.7  
ꢁ9.0  
ꢁ8.7  
ꢁꢁ.7  
fIN = 220 MHz  
25°C  
ꢁ8.3  
ꢁ8.3  
ꢁ8.ꢀ  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 30 MHz  
fIN = 90 MHz  
fIN = 1ꢀ0 MHz  
fIN = 185 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
11.2  
11.2  
11.1  
11.1  
11.0  
11.2  
11.2  
11.2  
11.1  
11.0  
11.2  
11.2  
11.2  
11.1  
11.1  
Bits  
Bits  
Bits  
Bits  
Bits  
fIN = 220 MHz  
WORST SECOND OR THIRD HARMONIC  
fIN = 30 MHz  
fIN = 90 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
Full  
−9ꢁ  
−95  
−9ꢁ  
−92  
−90  
−89  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
−83  
−80  
fIN = 1ꢀ0 MHz  
fIN = 185 MHz  
−97  
−8ꢁ  
−9ꢀ  
−95  
−91  
−87  
−80  
fIN = 220 MHz  
25°C  
−8ꢀ  
−8ꢀ  
−93  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 30 MHz  
fIN = 90 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
Full  
9ꢁ  
95  
9ꢁ  
92  
90  
89  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
83  
80  
fIN = 1ꢀ0 MHz  
fIN = 185 MHz  
97  
8ꢁ  
9ꢀ  
95  
91  
87  
80  
fIN = 220 MHz  
25°C  
8ꢀ  
8ꢀ  
93  
WORST OTHER (HARMONIC OR SPUR)  
fIN = 30 MHz  
fIN = 90 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
Full  
−98  
−97  
−9ꢁ  
−95  
−95  
−95  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
−87  
−83  
fIN = 1ꢀ0 MHz  
fIN = 185 MHz  
−98  
−95  
−97  
−95  
−9ꢁ  
−9ꢀ  
−81  
fIN = 220 MHz  
25°C  
−9ꢁ  
−95  
−9ꢀ  
Rev. 0 | Page ꢀ of 32  
 
AD9634  
AD9634-170  
AD9634-210  
AD9634-250  
Parameter1  
Temperature Min  
Typ  
Max Min  
Typ  
Max Min Typ  
Max Unit  
TWO-TONE SFDR  
fIN = 18ꢀ.1 MHz, 187.1 MHz (−7 dBFS)  
FULL POWER BANDWIDTH2  
NOISE BANDWIDTH3  
25°C  
25°C  
25°C  
87  
89  
88  
dBc  
350  
1000  
350  
1000  
350  
1000  
MHz  
MHz  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
2 Full power bandwidth is the bandwidth of operation where typical ADC performance can be achieved.  
3 Noise bandwidth is the −3 dB bandwidth for the ADC inputs across which noise may enter the ADC and is not attenuated internally.  
Rev. 0 | Page 5 of 32  
 
AD9634  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference, DCS enabled, unless  
otherwise noted.  
Table 3.  
Parameter  
Temperature  
Min  
Typ  
Max  
Unit  
DIFFERENTIAL CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
CMOS/LVDS/LVPECL  
Internal Common-Mode Bias  
Differential Input Voltage  
Input Voltage Range  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
0.9  
3.ꢁ  
V
V p-p  
V
0.3  
AGND  
0.9  
10  
−22  
AVDD  
1.ꢀ  
22  
Input Common-Mode Range  
V
High Level Input Current  
Low Level Input Current  
Input Capacitance  
μA  
μA  
pF  
kΩ  
−10  
Input Resistance  
12  
15  
18  
LOGIC INPUT (CSB)1  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
50  
−5  
2.1  
0.ꢁ  
71  
V
V
μA  
μA  
kΩ  
pF  
+5  
2ꢁ  
2
Input Capacitance  
LOGIC INPUT (SCLK)2  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
ꢀ5  
−5  
2.1  
0.ꢁ  
70  
V
V
μA  
μA  
kΩ  
pF  
+5  
2ꢁ  
2
Input Capacitance  
LOGIC INPUTS (SDIO)1  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
ꢀ5  
−5  
2.1  
0.ꢁ  
70  
V
V
μA  
μA  
kΩ  
pF  
+5  
2ꢁ  
5
Input Capacitance  
DIGITAL OUTPUTS  
LVDS Data and OR Outputs (OR+, OR−)  
Differential Output Voltage (VOD), ANSI Mode  
Output Offset Voltage (VOS), ANSI Mode  
Differential Output Voltage (VOD), Reduced Swing Mode  
Output Offset Voltage (VOS), Reduced Swing Mode  
Full  
Full  
Full  
Full  
250  
1.15  
150  
1.15  
350  
1.25  
200  
1.25  
ꢀ50  
1.35  
280  
1.35  
mV  
V
mV  
V
1 Pull-up.  
2 Pull-down.  
Rev. 0 | Page ꢁ of 32  
 
 
AD9634  
SWITCHING SPECIFICATIONS  
Table 4.  
AD9634-170  
AD9634-210  
AD9634-250  
Parameter  
CLOCK INPUT PARAMETERS1  
Temperature  
Min  
Typ Max Min Typ Max Min Typ Max Unit  
Input Clock Rate  
Conversion Rate2  
Full  
ꢁ25  
ꢁ25  
ꢁ25  
MHz  
DCS Enabled  
DCS Disabled  
CLK Period, Divide-by-1 Mode (tCLK  
CLK Pulse Width High (tCH)  
Full  
Full  
Full  
ꢀ0  
10  
5.8  
170  
170  
ꢀ0  
10  
ꢀ.8  
210  
210  
ꢀ0  
10  
250  
250  
MSPS  
MSPS  
ns  
)
Divide-by-1 Mode, DCS Enabled  
Divide-by-1 Mode, DCS Disabled  
Divide-by-2 Mode Through  
Divide-by-8 Mode  
Full  
Full  
Full  
2.ꢁ1 2.9  
2.7ꢁ 2.9  
0.8  
3.19  
3.05  
2.1ꢁ 2.ꢀ  
2.28 2.ꢀ  
0.8  
2.ꢁꢀ  
2.52  
1.8  
1.9  
0.8  
2.0  
2.0  
2.2  
2.1  
ns  
ns  
ns  
Aperture Delay (tA)  
Full  
Full  
1.0  
0.1  
1.0  
0.1  
1.0  
0.1  
ns  
ps rms  
Aperture Uncertainty (Jitter, tJ)  
DATA OUTPUT PARAMETERS1  
Data Propagation Delay (tPD)  
DCO Propagation Delay (tDCO  
DCO to Data Skew (tSKEW  
Pipeline Delay (Latency)  
Wake-Up Time (from Standby)  
Wake-Up Time (from Power-Down)  
Out-of-Range Recovery Time  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
ꢀ.1  
ꢀ.7  
0.3  
ꢀ.7  
5.3  
0.5  
10  
10  
100  
3
5.2  
5.8  
0.7  
ꢀ.1  
ꢀ.7  
0.3  
ꢀ.7  
5.3  
0.5  
10  
10  
100  
3
5.2  
5.8  
0.7  
ꢀ.1  
ꢀ.7  
0.3  
ꢀ.7  
5.3  
0.5  
10  
10  
100  
3
5.2  
5.8  
0.7  
ns  
ns  
ns  
Cycles  
μs  
)
)
μs  
Cycles  
1 See Figure 2.  
2 Conversion rate is the clock rate after the divider.  
Timing Diagram  
N – 1  
N + 4  
tA  
N + 5  
N
N + 3  
VIN  
N + 1  
N + 2  
tCH  
tCLK  
CLK+  
CLK–  
tDCO  
DCO–  
DCO+  
tSKEW  
tPD  
D0±/D1±  
D0  
N – 10  
D1  
N – 10  
D0  
N – 9  
D1  
N – 9  
D0  
N – 8  
D1  
N – 8  
D0  
N – 7  
D1  
N – 7  
D0  
N – 6  
EVEN/ODD  
(LSB)  
D10±/D11±  
(MSB)  
D10  
N – 10  
D11  
N – 10  
D10  
N – 9  
D11  
N – 9  
D10  
N – 8  
D11  
N – 8  
D10  
N – 7  
D11  
N – 7  
D10  
N – 6  
Figure 2. Even/Odd LVDS Mode Data Output Timing  
Rev. 0 | Page 7 of 32  
 
 
 
AD9634  
TIMING SPECIFICATIONS  
Table 5.  
Parameter  
Test Conditions/Comments  
Min Typ Max Unit  
SPI TIMING REQUIREMENTS  
tDS  
tDH  
tCLK  
tS  
See Figure 58 for the SPI timing diagram  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the SCLK  
2
2
ꢀ0  
2
2
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Setup time between CSB and SCLK  
tH  
Hold time between CSB and SCLK  
tHIGH  
tLOW  
tEN_SDIO  
Minimum period that SCLK should be in a logic high state  
Minimum period that SCLK should be in a logic low state  
Time required for the SDIO pin to switch from an input to an output  
relative to the SCLK falling edge (not shown in Figure 58)  
tDIS_SDIO  
Time required for the SDIO pin to switch from an output to an input  
relative to the SCLK rising edge (not shown in Figure 58)  
10  
ns  
Rev. 0 | Page 8 of 32  
 
 
AD9634  
ABSOLUTE MAXIMUM RATINGS  
THERMAL CHARACTERISTICS  
Table 6.  
The exposed paddle must be soldered to the ground plane for the  
LFCSP package. Soldering the exposed paddle to the customer  
board increases the reliability of the solder joints, maximizing  
the thermal capability of the package.  
Parameter  
Rating  
Electrical  
AVDD to AGND  
DRVDD to AGND  
VIN+, VIN− to AGND  
CLK+, CLK− to AGND  
VCM to AGND  
CSB to AGND  
SCLK to AGND  
SDIO to AGND  
D0 /D1 through D10 /D11  
to AGND  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
Table 7. Thermal Resistance  
Airflow  
Velocity  
(m/sec)  
Package  
Type  
1, 2  
1, 3  
1, 4  
θJA  
θJC  
3.1  
θJB  
20.7  
Unit  
°C/W  
°C/W  
°C/W  
32-Lead LFCSP  
5 mm × 5 mm  
(CP-32-12)  
0
37.1  
32.ꢀ  
29.1  
1.0  
2.0  
1 Per JEDEC 51-7, plus JEDEC 25-5 2S2P test board.  
DCO+/DCO− to AGND  
OR+/OR− to AGND  
Environmental  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
2 Per JEDEC JESD51-2 (still air) or JEDEC JESD51-ꢁ (moving air).  
3 Per MIL-Std 883, Method 1012.1.  
Per JEDEC JESD51-8 (still air).  
Operating Temperature Range  
(Ambient)  
Maximum Junction Temperature  
Under Bias  
Storage Temperature Range  
(Ambient)  
−ꢀ0°C to +85°C  
150°C  
Typical θJA is specified for a 4-layer PCB with solid ground plane.  
As shown in Table 7, airflow increases heat dissipation, which  
reduces θJA. In addition, metal in direct contact with the package  
leads from metal traces, through holes, ground, and power  
planes reduces the θJA.  
−ꢁ5°C to +125°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. 0 | Page 9 of 32  
 
 
 
AD9634  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
CLK+ 1  
24 CSB  
23  
2
CLK–  
SCLK  
AVDD 3  
OR– 4  
22 SDIO  
21 DCO+  
AD9634  
TOP VIEW  
5
6
20  
19  
OR+  
D0–/D1– (LSB)  
DCO–  
D10+/D11+ (MSB)  
(Not to Scale)  
D0+/D1+ (LSB) 7  
DRVDD 8  
18 D10–/D11– (MSB)  
17 DRVDD  
NOTES  
1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN.  
2. THE EXPOSED THERMAL PADDLE ON THE BOTTOM OF THE PACKAGE  
PROVIDES THE ANALOG GROUND FOR THE PART. THIS EXPOSED  
PADDLE MUST BE CONNECTED TO GROUND FOR PROPER OPERATION.  
Figure 3. Pin Configuration  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic  
Type  
Description  
ADC Power Supplies  
8, 17  
DRVDD  
AVDD  
Supply  
Supply  
Ground  
Digital Output Driver Supply (1.8 V Nominal).  
Analog Power Supply (1.8 V Nominal).  
3, 27, 28, 31, 32  
0
AGND, Exposed  
Paddle  
Analog Ground. The exposed thermal paddle on the bottom of the  
package provides the analog ground for the part. This exposed paddle  
must be connected to ground for proper operation.  
25  
DNC  
Do No Connect. Do not connect to this pin.  
ADC Analog  
30  
29  
2ꢁ  
VIN+  
VIN−  
VCM  
Input  
Input  
Output  
Differential Analog Input Pin (+).  
Differential Analog Input Pin (−).  
Common-Mode Level Bias Output for Analog Inputs. This pin should be  
decoupled to ground using a 0.1 μF capacitor.  
1
2
CLK+  
CLK−  
Input  
Input  
ADC Clock Input—True.  
ADC Clock Input—Complement.  
Digital Outputs  
5
7
10  
9
12  
11  
1ꢀ  
13  
1ꢁ  
15  
19  
18  
21  
20  
OR+  
OR−  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Overrange—True.  
Overrange—Complement.  
D0+/D1+ (LSB)  
D0−/D1− (LSB)  
D2+/D3+  
D2−/D3−  
Dꢀ+/D5+  
Dꢀ−/D5−  
Dꢁ+/D7+  
Dꢁ−/D7−  
D8+/D9+  
D8−/D9−  
D10+/D11+ (MSB)  
D10−/ D11− (MSB)  
DCO+  
DDR LVDS Output Data 0/Data 1—True (LSB).  
DDR LVDS Output Data 0/Data 1—Complement (LSB).  
DDR LVDS Output Data 2/Data 3—True.  
DDR LVDS Output Data 2/Data 3—Complement.  
DDR LVDS Output Data ꢀ/Data 5—True.  
DDR LVDS Output Data ꢀ/Data 5—Complement.  
DDR LVDS Output Data ꢁ/Data 7—True.  
DDR LVDS Output Data ꢁ/Data 7—Complement.  
DDR LVDS Output Data 8/Data 9—True.  
DDR LVDS Output Data 8/Data 9—Complement.  
DDR LVDS Output Data 10/Data 11—True (MSB).  
DDR LVDS Output Data 10/Data 11—Complement (MSB).  
LVDS Data Clock Output—True.  
DCO−  
LVDS Data Clock Output—Complement.  
Rev. 0 | Page 10 of 32  
 
AD9634  
Pin No.  
Mnemonic  
Type  
Description  
SPI Control  
23  
22  
2ꢀ  
SCLK  
SDIO  
CSB  
Input  
Input/Output  
Input  
SPI Serial Clock.  
SPI Serial Data I/O.  
SPI Chip Select (Active Low).  
Rev. 0 | Page 11 of 32  
AD9634  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD = 1.8 V, DRVDD = 1.8 V, sample rate = maximum sample rate per speed grade, DCS enabled, 1.75 V p-p differential input,  
VIN = −1.0 dBFS, 32k sample, TA = 25°C, unless otherwise noted.  
0
–20  
0
170MSPS  
170MSPS  
305.1MHz @ –1.0dBFS  
SNR = 67.2dB (68.2dBFS)  
SFDR = 86dBc  
90.1MHz @ –1.0dBFS  
SNR = 69.1dB (70.1dBFS)  
SFDR = 93dBc  
–20  
–40  
–40  
–60  
–60  
SECOND  
HARMONIC  
THIRD  
HARMONIC  
THIRD  
HARMONIC  
SECOND  
HARMONIC  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 4. AD9634-170 Single-Tone FFT with fIN = 90.1 MHz  
Figure 7. AD9634-170 Single-Tone FFT with fIN = 305.1 MHz  
0
120  
170MSPS  
185.1MHz @ –1.0dBFS  
SNR = 68.5dB (69.5dBFS)  
SFDR (dBFS)  
–20  
100  
80  
60  
40  
20  
0
SFDR = 86dBc  
–40  
–60  
SNR (dBFS)  
THIRD  
HARMONIC  
SECOND  
HARMONIC  
–80  
SFDR (dBc)  
–100  
–120  
–140  
SNR (dBc)  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 8. AD9634-170 Single-Tone SNR/SFDR vs.  
Input Amplitude (AIN) with fIN = 90.1 MHz, fS = 170 MSPS  
Figure 5. AD9634-170 Single-Tone FFT with fIN = 185.1 MHz  
100  
0
170MSPS  
220.1MHz @ –1.0dBFS  
SNR = 68.2dB (69.2dBFS)  
SFDR = 84dBc  
95  
90  
85  
80  
75  
70  
65  
60  
–20  
SFDR (dBc)  
–40  
–60  
THIRD  
HARMONIC  
SECOND  
HARMONIC  
–80  
–100  
–120  
–140  
SNR (dBFS)  
60  
90  
120 150 180 210 240 270 300 330  
INPUT FREQUENCY (MHz)  
0
10  
20  
30  
40  
50  
60  
70  
80  
FREQUENCY (MHz)  
Figure 9. AD9634-170 Single-Tone SNR/SFDR vs. Input Frequency (fIN),  
fS = 170 MSPS  
Figure 6. AD9634-170 Single-Tone FFT with fIN = 220.1 MHz  
Rev. 0 | Page 12 of 32  
 
 
AD9634  
0
–20  
0
–20  
170MSPS  
184.12MHz @ –7.0dBFS  
187.12MHz @ –7.0dBFS  
SFDR = 85dBc (92dBFS)  
SFDR (dBc)  
–40  
–40  
IMD3 (dBc)  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
SFDR (dBFS)  
IMD3 (dBFS)  
–100  
–120  
–90.0 –81.7 –73.4 –65.1 –56.8 –48.5 –40.2 –31.9 –23.6 –15.3 –7.0  
INPUT AMPLITUDE (dBFS)  
0
10  
20  
30  
40  
50  
60  
70  
80  
FREQUENCY (MHz)  
Figure 10. AD9634-170 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with  
fIN1 = 89.12 MHz, fIN2 = 92.12 MHz, fS = 170 MSPS  
Figure 13. AD9634-170 Two Tone FFT with fIN1 = 184.12 MHz, fIN2 = 187.12 MHz  
0
100  
SFDR  
95  
–20  
SFDR (dBc)  
90  
85  
80  
75  
–40  
IMD3 (dBc)  
–60  
–80  
SFDR (dBFS)  
–100  
SNR  
70  
IMD3 (dBFS)  
–120  
65  
–90.0 –81.7 –73.4 –65.1 –56.8 –48.5 –40.2 –31.9 –23.6 –15.3 –7.0  
40 50 60 70 80 90 100 110 120 130 140 150 160 170  
INPUT AMPLITUDE (dBFS)  
SAMPLE RATE (MSPS)  
Figure 11. AD9634-170 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN  
)
Figure 14. AD9634-170 Single-Tone SNR/SFDR vs. Sample Rate (fS)  
with fIN = 90 MHz  
with fIN1 = 184.12 MHz, fIN2 = 187.12 MHz, fS = 170 MSPS  
0
14000  
170MSPS  
0.531 LSB rms  
16,384 TOTAL HITS  
89.12MHz @ –7.0dBFS  
92.12MHz @ –7.0dBFS  
SFDR = 89dBc (96dBFS)  
–20  
–40  
12000  
10000  
8000  
6000  
4000  
2000  
0
–60  
–80  
–100  
–120  
–140  
0
10  
20  
30  
40  
50  
60  
70  
80  
N – 1  
N
N + 1  
FREQUENCY (MHz)  
OUTPUT CODE  
Figure 12. AD9634-170 Two-Tone FFT with fIN1 = 89.12 MHz, fIN2 = 92.12 MHz  
Figure 15. AD9634-170 Grounded Input Histogram, fS = 170 MSPS  
Rev. 0 | Page 13 of 32  
AD9634  
0
0
–20  
210MSPS  
210MSPS  
90.1MHz @ –1.0dBFS  
SNR = 69.1dB (70.1dBFS)  
SFDR = 92dBc  
305.1MHz @ –1.0dBFS  
SNR = 67.6dB (68.6dBFS)  
SFDR = 83dBc  
–20  
–40  
–40  
–60  
–60  
SECOND  
HARMONIC  
THIRD  
HARMONIC  
SECOND  
HARMONIC  
THIRD  
HARMONIC  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
15  
30  
45  
60  
75  
90  
105  
0
15  
30  
45  
60  
75  
90  
105  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 16. AD9634-210 Single-Tone FFT with fIN = 90.1 MHz  
Figure 19. AD9634-210 Single-Tone FFT with fIN = 305.1 MHz  
0
120  
210MSPS  
185.1MHz @ –1.0dBFS  
SNR = 68.6dB (69.6dBFS)  
SFDR = 93dBc  
SFDR (dBFS)  
–20  
100  
–40  
–60  
80  
SNR (dBFS)  
SECOND  
HARMONIC  
THIRD  
HARMONIC  
60  
–80  
SFDR (dBc)  
40  
–100  
–120  
–140  
SNR (dBc)  
20  
0
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
0
15  
30  
45  
60  
75  
90  
105  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 20. AD9634-210 Single-Tone SNR/SFDR vs. Input Amplitude (AIN) with  
fIN = 90.1 MHz, fS = 210 MSPS  
Figure 17. AD9634-210 Single-Tone FFT with fIN = 185.1 MHz  
100  
0
210MSPS  
SFDR (dBc)  
220.1MHz @ –1.0dBFS  
95  
90  
85  
80  
75  
SNR = 68.3dB (69.3dBFS)  
SFDR = 84dBc  
–20  
–40  
–60  
SECOND  
HARMONIC  
THIRD  
HARMONIC  
–80  
–100  
–120  
–140  
SNR (dBFS)  
70  
65  
60  
60  
90  
120 150 180 210 240 270 300 330  
INPUT FREQUENCY (MHz)  
0
15  
30  
45  
60  
75  
90  
105  
FREQUENCY (MHz)  
Figure 21. AD9634-210 Single-Tone SNR/SFDR vs. Input Frequency (fIN),  
fS = 210 MSPS  
Figure 18. AD9634-210 Single-Tone FFT with fIN = 220.1 MHz  
Rev. 0 | Page 1ꢀ of 32  
AD9634  
0
–20  
0
–20  
210MSPS  
184.12MHz @ –7.0dBFS  
187.12MHz @ –7.0dBFS  
SFDR = 89dBc (96dBFS)  
SFDR (dBc)  
–40  
–40  
IMD3 (dBc)  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
SFDR (dBFS)  
IMD3 (dBFS)  
–100  
–120  
–90.0 –81.7 –73.4 –65.1 –56.8 –48.5 –40.2 –31.9 –23.6 –15.3 –7.0  
INPUT AMPLITUDE (dBFS)  
0
15  
30  
45  
60  
75  
90  
105  
FREQUENCY (MHz)  
Figure 22. AD9634-210 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with  
fIN1 = 89.12 MHz, fIN2 = 92.12 MHz, fS = 210 MSPS  
Figure 25. AD9634-210 Two Tone FFT with fIN1 = 184.12 MHz, fIN2 = 187.12 MHz  
0
100  
SFDR  
95  
90  
85  
80  
75  
–20  
SFDR (dBc)  
–40  
IMD3 (dBc)  
–60  
–80  
SFDR (dBFS)  
–100  
SNR  
70  
IMD3 (dBFS)  
–120  
65  
–90.0 –81.7 –73.4 –65.1 –56.8 –48.5 –40.2 –31.9 –23.6 –15.3 –7.0  
40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210  
INPUT AMPLITUDE (dBFS)  
SAMPLE RATE (MSPS)  
Figure 23. AD9634-210 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with  
fIN1 = 184.12 MHz, fIN2 = 187.12 MHz, fS = 210 MSPS  
Figure 26. AD9634-210 Single-Tone SNR/SFDR vs. Sample Rate (fS) with  
fIN = 90 MHz  
0
16000  
210MSPS  
0.391 LSB rms  
16,384 TOTAL HITS  
89.12MHz @ –7.0dBFS  
92.12MHz @ –7.0dBFS  
14000  
–20  
SFDR = 88dBc (95dBFS)  
–40  
12000  
10000  
8000  
6000  
4000  
2000  
0
–60  
–80  
–100  
–120  
–140  
0
15  
30  
45  
60  
75  
90  
105  
N – 1  
N
N + 1  
FREQUENCY (MHz)  
OUTPUT CODE  
Figure 24. AD9634-210 Two-Tone FFT with fIN1 = 89.12 MHz, fIN2 = 92.12 MHz  
Figure 27. AD9634-210 Grounded Input Histogram, fS = 210 MSPS  
Rev. 0 | Page 15 of 32  
AD9634  
0
0
–20  
250MSPS  
250MSPS  
90.1MHz @ –1.0dBFS  
SNR = 69.0dB (70.0dBFS)  
SFDR = 89dBc  
305.1MHz @ –1.0dBFS  
SNR = 67.4dB (68.4dBFS)  
SFDR = 82dBc  
–20  
–40  
–40  
–60  
–60  
SECOND  
THIRD  
SECOND  
HARMONIC  
THIRD  
HARMONIC  
HARMONIC  
HARMONIC  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 28. AD9634-250 Single-Tone FFT with fIN = 90.1 MHz  
Figure 31. AD9634-250 Single-Tone FFT with fIN = 305.1 MHz  
0
120  
250MSPS  
185.1MHz @ –1.0dBFS  
SFDR (dBFS)  
SNR = 68.7dB (69.7dBFS)  
SFDR = 87dBc  
–20  
–40  
100  
80  
SNR (dBFS)  
–60  
THIRD  
HARMONIC  
SECOND  
HARMONIC  
60  
–80  
SFDR (dBc)  
40  
–100  
–120  
–140  
SNR (dBc)  
20  
0
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
0
25  
50  
75  
100  
125  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 32. AD9634-250 Single-Tone SNR/SFDR vs. Input Amplitude (AIN) with  
fIN = 90.1 MHz, fS = 250 MSPS  
Figure 29. AD9634-250 Single-Tone FFT with fIN = 185.1 MHz  
100  
0
250MSPS  
220.1MHz @ –1.0dBFS  
SNR = 68.3dB (69.3dBFS)  
SFDR = 91dBc  
95  
–20  
–40  
SFDR (dBc)  
90  
85  
80  
75  
70  
–60  
SECOND  
HARMONIC  
THIRD  
HARMONIC  
–80  
–100  
–120  
–140  
SNR (dBFS)  
65  
60  
60  
90  
120 150 180 210 240 270 300 330  
INPUT FREQUENCY (MHz)  
0
25  
50  
75  
100  
125  
FREQUENCY (MHz)  
Figure 33. AD9634-250 Single-Tone SNR/SFDR vs. Input Frequency (fIN),  
fS = 250 MSPS  
Figure 30. AD9634-250 Single-Tone FFT with fIN = 220.1 MHz  
Rev. 0 | Page 1ꢁ of 32  
AD9634  
0
–20  
0
–20  
250MSPS  
184.12MHz @ –7.0dBFS  
187.12MHz @ –7.0dBFS  
SFDR = 88dBc (95dBFS)  
SFDR (dBc)  
–40  
–40  
IMD3 (dBc)  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
SFDR (dBFS)  
IMD3 (dBFS)  
–100  
–120  
–90.0 –81.7 –73.4 –65.1 –56.8 –48.5 –40.2 –31.9 –23.6 –15.3 –7.0  
INPUT AMPLITUDE (dBFS)  
0
25  
50  
75  
100  
125  
FREQUENCY (MHz)  
Figure 34. AD9634-250 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with  
fIN1 = 89.12 MHz, fIN2 = 92.12 MHz, fS = 250 MSPS  
Figure 37. AD9634-250 Two Tone FFT with fIN1 = 184.12 MHz, fIN2 = 187.12 MHz  
0
100  
SFDR  
95  
–20  
SFDR (dBc)  
90  
85  
80  
75  
–40  
IMD3 (dBc)  
–60  
–80  
SFDR (dBFS)  
SNR  
–100  
70  
IMD3 (dBFS)  
–120  
65  
–90.0 –81.7 –73.4 –65.1 –56.8 –48.5 –40.2 –31.9 –23.6 –15.3 –7.0  
40  
60  
80 100 120 140 160 180 200 220 240 260  
SAMPLE RATE (MSPS)  
INPUT AMPLITUDE (dBFS)  
Figure 35. AD9634-250 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN  
)
Figure 38. AD9634-250 Single-Tone SNR/SFDR vs. Sample Rate (fS)  
with fIN = 90 MHz  
with fIN1 = 184.12 MHz, fIN2 = 187.12 MHz, fS = 250 MSPS  
0
16000  
250MSPS  
0.407 LSB rms  
16,384 TOTAL HITS  
89.12MHz @ –7.0dBFS  
92.12MHz @ –7.0dBFS  
SFDR = 88dBc (95dBFS)  
14000  
–20  
–40  
12000  
10000  
8000  
6000  
4000  
2000  
0
–60  
–80  
–100  
–120  
–140  
0
25  
50  
75  
100  
125  
N – 1  
N
N + 1  
FREQUENCY (MHz)  
OUTPUT CODE  
Figure 36. AD9634-250 Two-Tone FFT with fIN1 = 89.12 MHz, fIN2 = 92.12 MHz  
Figure 39. AD9634-250 Grounded Input Histogram, fS = 250 MSPS  
Rev. 0 | Page 17 of 32  
AD9634  
EQUIVALENT CIRCUITS  
DRVDD  
AVDD  
VIN  
350  
SDIO  
26kΩ  
Figure 43. Equivalent SDIO Circuit  
Figure 40. Equivalent Analog Input Circuit  
AVDD  
AVDD  
AVDD  
0.9V  
350  
26kΩ  
SCLK  
15k  
15kΩ  
CLK+  
CLK–  
Figure 44. Equivalent SCLK Input Circuit  
Figure 41. Equivalent Clock lnput Circuit  
DRVDD  
AVDD  
26k  
350Ω  
CSB  
V+  
DATAOUT–  
V–  
V–  
DATAOUT+  
V+  
Figure 45. Equivalent CSB Input Circuit  
Figure 42. Equivalent LVDS Output Circuit  
Rev. 0 | Page 18 of 32  
 
AD9634  
THEORY OF OPERATION  
In intermediate frequency (IF) undersampling applications, reduce  
the shunt capacitors. In combination with the driving source  
impedance, the shunt capacitors limit the input bandwidth.  
Refer to the AN-742 Application Note, Frequency Domain  
Response of Switched-Capacitor ADCs; the AN-827 Application  
Note, A Resonant Approach to Interfacing Amplifiers to Switched-  
Capacitor ADCs; and the Analog Dialogue article, “Transformer-  
Coupled Front-End for Wideband A/D Converters” for more  
information on this subject.  
The AD9634 can sample any fS/2 frequency segment from dc to  
250 MHz using appropriate low-pass or band-pass filtering at  
the ADC inputs with little loss in ADC performance.  
Programming and control of the AD9634 are accomplished  
using a 3-pin, SPI-compatible serial interface.  
ADC ARCHITECTURE  
The AD9634 architecture consists of a front-end sample-and-  
hold circuit, followed by a pipelined, switched-capacitor ADC.  
The quantized outputs from each stage are combined into a  
final 12-bit result in the digital correction logic. The pipelined  
architecture permits the first stage to operate on a new input  
sample and the remaining stages to operate on the preceding  
samples. Sampling occurs on the rising edge of the clock.  
BIAS  
S
S
C
C
FB  
S
VIN+  
VIN–  
C
C
PAR1  
PAR2  
S
H
S
S
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched-capacitor digital-  
to-analog converter (DAC) and an interstage residue amplifier  
(MDAC). The MDAC magnifies the difference between the  
reconstructed DAC output and the flash input for the next stage  
in the pipeline. One bit of redundancy is used in each stage to  
facilitate digital correction of flash errors. The last stage simply  
consists of a flash ADC.  
C
S
C
C
FB  
C
PAR1  
PAR2  
S
BIAS  
Figure 46. Switched-Capacitor Input  
For best dynamic performance, match the source impedances  
driving VIN+ and VIN− and differentially balance the inputs.  
The input stage contains a differential sampling circuit that can  
be ac- or dc-coupled in differential or single-ended modes. The  
output staging block aligns the data, corrects errors, and passes the  
data to the output buffers. The output buffers are powered from a  
separate supply, allowing digital output noise to be separated from  
the analog core. During power-down, the output buffers go into  
a high impedance state.  
Input Common Mode  
The analog inputs of the AD9634 are not internally dc biased. In  
ac-coupled applications, the user must provide this bias externally.  
Setting the device so that VCM = 0.5 × AVDD (or 0.9 V) is  
recommended for optimum performance. An on-board common-  
mode voltage reference is included in the design and is available  
from the VCM pin. Using the VCM output to set the input  
common mode is recommended. Optimum performance is  
achieved when the common-mode voltage of the analog input  
is set by the VCM pin voltage (typically 0.5 × AVDD). The  
VCM pin must be decoupled to ground by a 0.1 μF capacitor,  
as described in the Applications Information section. Place this  
decoupling capacitor close to the pin to minimize the series  
resistance and inductance between the part and this capacitor.  
ANALOG INPUT CONSIDERATIONS  
The analog input to the AD9634 is a differential switched-capacitor  
circuit that has been designed to attain optimum performance  
when processing a differential input signal.  
The clock signal alternatively switches the input between sample  
mode and hold mode (see the configuration shown in Figure 46).  
When the input is switched into sample mode, the signal source  
must be capable of charging the sampling capacitors and settling  
within ½ clock cycle.  
A small resistor in series with each input can help reduce the  
peak transient current required from the output stage of the  
driving source. A shunt capacitor can be placed across the  
inputs to provide dynamic charging currents. This passive  
network creates a low-pass filter at the ADC input; therefore,  
the precise values are dependent on the application.  
Rev. 0 | Page 19 of 32  
 
 
AD9634  
Differential Input Configurations  
C2  
R3  
Optimum performance can be achieved when driving the  
AD9634 in a differential input configuration. For baseband  
applications, the AD8138, ADA4937-1, and ADA4930-1  
differential drivers provide excellent performance and a flexible  
interface to the ADC.  
R2  
R2  
VIN+  
VIN–  
R1  
C1  
R1  
2V p-p  
49.9  
ADC  
VCM  
The output common-mode voltage of the ADA4930-1 is easily  
set with the VCM pin of the AD9634 (see Figure 47), and the  
driver can be configured in a Sallen-Key filter topology to  
provide band limiting of the input signal.  
15pF  
0.1µF  
R3  
0.1µF  
C2  
Figure 48. Differential Transformer-Coupled Configuration  
The signal characteristics must be considered when selecting  
a transformer. Most RF transformers saturate at frequencies  
below a few megahertz. Excessive signal power can also cause  
core saturation, which leads to distortion.  
200  
33Ω  
5pF  
15Ω  
90Ω  
VIN–  
VIN+  
76.8Ω  
AVDD  
ADC  
VCM  
VIN  
ADA4930-1  
At input frequencies in the second Nyquist zone and above, the  
noise performance of most amplifiers is not adequate to achieve  
the true SNR performance of the AD9634. For applications where  
SNR is a key parameter, differential double balun coupling is  
the recommended input configuration (see Figure 49). In this  
configuration, the input is ac-coupled and the VCM voltage is  
provided to each input through a 33 Ω resistor. These resistors  
compensate for losses in the input baluns to provide a 50 Ω  
impedance to the driver.  
0.1µF  
33Ω  
15pF  
15Ω  
120Ω  
200Ω  
0.1µF  
Figure 47. Differential Input Configuration Using the ADA4930-1  
For baseband applications where SNR is a key parameter,  
differential transformer coupling is the recommended input  
configuration. An example is shown in Figure 48. To bias the  
analog input, connect the VCM voltage to the center tap of the  
secondary winding of the transformer.  
In the double balun and transformer configurations, the value  
of the input capacitors and resistors is dependent on the input  
frequency and source impedance. Based on these parameters  
the value of the input resistors and capacitors may need to be  
adjusted, or some components may need to be removed. Table 9  
displays recommended values to set the RC network for different  
input frequency ranges. However, these values are dependent on  
the input signal and bandwidth and should be used only as a  
starting guide. Note that the values given in Table 9 are for the  
R1, R2, R3, C1, and C2 components shown in Figure 49.  
Table 9. Example RC Network  
Frequency Range (MHz)  
R1 Series (Ω)  
C1 Differential (pF)  
R2 Series (Ω)  
C2 Shunt (pF)  
R3 Shunt (Ω)  
ꢀ9.9  
ꢀ9.9  
0 to 100  
100 to 300  
33  
15  
8.2  
3.9  
0
0
15  
8.2  
C2  
R3  
R1  
0.1µF  
0.1µF  
R2  
R2  
VIN+  
2V p-p  
33  
P
S
S
P
C1  
ADC  
A
0.1µF  
33Ω  
0.1µF  
R1  
VCM  
VIN–  
R3  
0.1µF  
C2  
Figure 49. Differential Double Balun Input Configuration  
Rev. 0 | Page 20 of 32  
 
 
 
 
AD9634  
1000pF 180nH 220nH  
1µH  
165  
VPOS  
15pF  
VCM  
1nF  
AD8375  
5.1pF 3.9pF  
301Ω  
2.5kΩ║2pF  
165Ω  
1nF  
1µH  
68nH  
AD9634  
180nH 220nH  
1000pF  
NOTES  
1. ALL INDUCTORS ARE COILCRAFT 0603CS COMPONENTS  
WITH THE EXCEPTION OF THE 1µH CHOKE INDUCTORS (0603LS).  
2. FILTER VALUES SHOWN ARE FOR A 20MHz BANDWIDTH FILTER CENTERED AT 140MHz.  
Figure 50. Differential Input Configuration Using the AD8375  
An alternative to using a transformer-coupled input at  
frequencies in the second Nyquist zone is to use an amplifier  
with variable gain. The AD8375 digital variable gain amplifier  
(DVGA) provides good performance for driving the AD9634.  
Figure 50 shows an example of the AD8375 driving the AD9634  
through a band-pass antialiasing filter.  
The RF balun configuration is recommended for clock frequencies  
between 125 MHz and 625 MHz, and the RF transformer is  
recommended for clock frequencies from 10 MHz to 200 MHz.  
The back-to-back Schottky diodes across the secondary windings  
of the transformer limit clock excursions into the AD9634 to  
approximately 0.8 V p-p differential. This limit helps prevent the  
large voltage swings of the clock from feeding through to other  
portions of the AD9634, while preserving the fast rise and fall times  
of the signal, which are critical for low jitter performance.  
VOLTAGE REFERENCE  
A stable and accurate voltage reference is built into the AD9634.  
The full-scale input range can be adjusted by varying the reference  
voltage via SPI. The input span of the ADC tracks reference  
voltage changes linearly.  
®
Mini-Circuits  
ADT1-1WT, 1:1Z  
ADC  
390pF  
390pF  
390pF  
XFMR  
CLOCK  
INPUT  
CLK+  
CLK–  
CLOCK INPUT CONSIDERATIONS  
100  
50Ω  
For optimum performance, the AD9634 sample clock inputs,  
CLK+ and CLK−, should be clocked with a differential signal.  
The signal is typically ac-coupled into the CLK+ and CLK− pins by  
means of a transformer or a passive component configuration.  
These pins are biased internally (see Figure 51) and require no  
external bias. If the inputs are floated, the CLK− pin is pulled low  
to prevent spurious clocking.  
SCHOTTKY  
DIODES:  
HSMS2822  
Figure 52. Transformer Coupled Differential Clock (Up to 200 MHz)  
25Ω  
ADC  
390pF  
1nF  
390pF  
390pF  
AVDD  
CLOCK  
INPUT  
CLK+  
0.9V  
CLK–  
CLK+  
CLK–  
SCHOTTKY  
DIODES:  
HSMS2822  
25Ω  
4pF  
4pF  
Figure 53. Balun-Coupled Differential Clock (Up to 625 MHz)  
If a low jitter clock source is not available, another option is to  
ac couple a differential PECL signal to the sample clock input pins  
as shown in Figure 54. The AD9510, AD9511,AD9512, AD9513,  
AD9514, AD9515, AD9516, AD9517, AD9518, AD9520, AD9522,  
AD9523, AD9524, ADCLK905, ADCLK907, and ADCLK925  
clock drivers offer excellent jitter performance.  
Figure 51. Equivalent Clock Input Circuit  
Clock Input Options  
The AD9634 has a very flexible clock input structure. Clock input  
can be a CMOS, LVDS, LVPECL, or sine wave signal. Regardless  
of the type of signal being used, clock source jitter is of the most  
concern, as described in the Jitter Considerations section.  
0.1µF  
0.1µF  
Figure 52 and Figure 53 show two preferable methods for clocking  
the AD9634 (at clock rates of up to 625 MHz). A low jitter clock  
source is converted from a single-ended signal to a differential  
signal using an RF balun or RF transformer.  
CLOCK  
INPUT  
CLK+  
AD95xx,  
100  
ADCLKxxx  
ADC  
CLK–  
0.1µF PECL DRIVER  
0.1µF  
CLOCK  
INPUT  
240Ω  
240Ω  
50kΩ  
50kΩ  
Figure 54. Differential PECL Sample Clock (Up to 625 MHz)  
Rev. 0 | Page 21 of 32  
 
 
 
 
 
 
AD9634  
A third option is to ac couple a differential LVDS signal to the  
sample clock input pins, as shown in Figure 55. The AD9510,  
AD9511,AD9512, AD9513, AD9514, AD9515, AD9516, AD9517,  
AD9518, AD9520, AD9522, AD9523, AD9524 clock drivers offer  
excellent jitter performance.  
Jitter Considerations  
High speed, high resolution ADCs are sensitive to the quality  
of the clock input. The degradation in SNR at a given input  
frequency (fIN) due to jitter (tJ) can be calculated by  
SNRHF = −10 log[(2π × fIN × tJRMS)2 + 10 (SNR /10)  
]
LF  
In the equation, the rms aperture jitter represents the root-  
mean-square of all jitter sources, which include the clock input,  
the analog input signal, and the ADC aperture jitter specification.  
IF undersampling applications are particularly sensitive to jitter,  
as shown in Figure 56.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
AD95xx  
LVDS DRIVER  
100  
ADC  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
50kΩ  
50kΩ  
80  
Figure 55. Differential LVDS Sample Clock (Up to 625 MHz)  
75  
70  
65  
60  
Input Clock Divider  
The AD9634 contains an input clock divider with the ability to  
divide the input clock by integer values between 1 and 8. For  
divide ratios other than 1, the DCS is enabled by default on  
power-up.  
Clock Duty Cycle  
0.05ps  
0.2ps  
0.5ps  
1ps  
1.5ps  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals and, as a result, may be sensitive to  
clock duty cycle. Commonly, a 5% tolerance is required on the  
clock duty cycle to maintain dynamic performance characteristics.  
55  
MEASURED  
50  
1
10  
100  
1000  
INPUT FREQUENCY (MHz)  
The AD9634 contains a DCS that retimes the nonsampling  
(falling) edge, providing an internal clock signal with a nominal  
50% duty cycle. This allows the user to provide a wide range of  
clock input duty cycles without affecting the performance of the  
AD9634.  
Figure 56. AD9634-250 SNR vs. Input Frequency and Jitter  
In cases where aperture jitter may affect the dynamic range of the  
AD9634, treat the clock input as an analog signal. In addition,  
use separate power supplies for the clock drivers and the ADC  
output driver to avoid modulating the clock signal with digital  
noise. Low jitter, crystal controlled oscillators provide the best clock  
sources. If the clock is generated from another type of source (by  
gating, dividing, or another method), it should be retimed by the  
original clock during the last step.  
Jitter on the rising edge of the input clock is still of paramount  
concern and is not reduced by the duty cycle stabilizer. The duty  
cycle control loop does not function for clock rates less than  
40 MHz nominally. The loop has a time constant associated  
with it that must be considered when the clock rate may change  
dynamically. A wait time of 1.5 μs to 5 μs is required after a  
dynamic clock frequency increase or decrease before the DCS loop  
is relocked to the input signal. During the time that the loop is  
not locked, the DCS loop is bypassed, and internal device timing  
is dependent on the duty cycle of the input clock signal. In such  
applications, it may be appropriate to disable the duty cycle  
stabilizer. In all other applications, enabling the DCS circuit is  
recommended to maximize ac performance.  
Refer to AN-501 Application Note, Aperture Uncertainty and ADC  
System Performance, and AN-756 Application Note, Sampled  
Systems and the Effects of Clock Phase Noise and Jitter, for more  
information about jitter performance as it relates to ADCs.  
Rev. 0 | Page 22 of 32  
 
 
 
AD9634  
When using the SPI port interface, the user can place the ADC  
in power-down mode or standby mode. Standby mode allows  
the user to keep the internal reference circuitry powered when  
faster wake-up times are required. To put the part into standby  
mode, set the internal power-down mode bits (Bits[1:0]) in the  
power modes register (Address 0x08) to 10. See the Memory  
Map section and AN-877 Application Note, Interfacing to High  
Speed ADCs via SPI for additional details.  
POWER DISSIPATION AND STANDBY MODE  
As shown in Figure 57, the power dissipated by the AD9634 is  
proportional to its sample rate. The data in Figure 57 was taken  
using the same operating conditions as those used for the Typical  
Performance Characteristics section.  
0.4  
0.3  
0.2  
0.1  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
DIGITAL OUTPUTS  
TOTAL POWER  
The AD9634 output drivers can be configured for either ANSI  
LVDS or reduced swing LVDS using a 1.8 V DRVDD supply.  
As detailed in the AN-877 Application Note, Interfacing to High  
Speed ADCs via SPI, the data format can be selected for offset  
binary, twos complement, or gray code when using the SPI  
control.  
I
AVDD  
I
DRVDD  
Digital Output Enable Function (OEB)  
The AD9634 has a flexible three-state ability for the digital output  
pins. The three-state mode is enabled using the SPI interface.  
The data outputs can be three-stated by using the output enable  
bar bit (Bit 4) in Register 0x14. This OEB function is not intended  
for rapid access to the data bus.  
40 55 70 85 100 115 130 145 160 175 190 205 220 235 250  
ENCODE FREQUENCY (MSPS)  
Figure 57. AD9634-250 Power and Current vs. Sample Rate  
By setting the internal power-down mode bits (Bits[1:0]) in the  
power modes register (Address 0x08) to 01, the AD9634 is placed  
in power-down mode. In this state, the ADC typically dissipates  
5 mW. During power-down, the output drivers are placed in a  
high impedance state.  
Timing  
The AD9634 provides latched data with a pipeline delay of 10 input  
sample clock cycles. Data outputs are available one propagation  
delay (tPD) after the rising edge of the clock signal.  
Low power dissipation in power-down mode is achieved by  
shutting down the reference, reference buffer, biasing networks,  
and clock. Internal capacitors are discharged when entering power-  
down mode and then must be recharged when returning to  
normal operation. As a result, wake-up time is related to the  
time spent in power-down mode, and shorter power-down  
cycles result in proportionally shorter wake-up times.  
Minimize the length of the output data lines as well as the loads  
placed on these lines to reduce transients within the AD9634.  
These transients may degrade converter dynamic performance.  
The lowest typical conversion rate of the AD9634 is 40 MSPS. At  
clock rates below 40 MSPS, dynamic performance can degrade.  
Data Clock Output (DCO)  
The AD9634 also provides the data clock output (DCO) intended  
for capturing the data in an external register. Figure 2 shows  
timing diagram of the AD9634 output modes.  
ADC OVERRANGE (OR)  
The ADC overrange indicator is asserted when an overrange is  
detected on the input of the ADC. The overrange condition is  
determined at the output of the ADC pipeline and, therefore, is  
subject to a latency of 10 ADC clock cycles. An overrange at the  
input is indicated by this bit 10 clock cycles after it occurs.  
Table 10. Output Data Format  
Input (V)  
VIN+ − VIN−, Input Span = 1.75 V p-p (V)  
Offset Binary Output Mode  
0000 0000 0000  
0000 0000 0000  
Twos Complement Mode (Default)  
1000 0000 0000  
1000 0000 0000  
OR  
1
0
VIN+ − VIN− < −0.875  
VIN+ − VIN− = −0.875  
VIN+ − VIN− = 0  
1000 0000 0000  
0000 0000 0000  
0
VIN+ − VIN− = +0.875  
VIN+ − VIN− > +0.875  
1111 1111 1111  
1111 1111 1111  
0111 1111 1111  
0111 1111 1111  
0
1
Rev. 0 | Page 23 of 32  
 
 
AD9634  
SERIAL PORT INTERFACE (SPI)  
The AD9634 serial port interface (SPI) allows the user to configure  
the converter for specific functions or operations through a  
structured register space provided inside the ADC. The SPI offers  
added flexibility and customization, depending on the application.  
Addresses are accessed via the serial port and can be written to  
or read from via the port. Memory is organized into bytes that can  
be further divided into fields. These fields are documented in the  
Memory Map section. For detailed operational information, see  
the AN-877 Application Note, Interfacing to High Speed ADCs  
via SPI.  
All data is composed of 8-bit words. The first bit of each individual  
byte of serial data indicates whether a read or write command is  
issued. This allows the serial data input/output (SDIO) pin to  
change direction from an input to an output.  
In addition to word length, the instruction phase determines  
whether the serial frame is a read or write operation, allowing  
the serial port to be used both to program the chip and to read  
the contents of the on-chip memory. If the instruction is a readback  
operation, performing a readback causes the serial data input/  
output (SDIO) pin to change direction from an input to an output  
at the appropriate point in the serial frame.  
CONFIGURATION USING THE SPI  
Data can be sent in MSB-first mode or in LSB-first mode. MSB-  
first mode is the default on power-up and can be changed via  
the SPI port configuration register. For more information about  
this and other features, see the AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI.  
Three pins define the SPI of this ADC: the SCLK pin, the SDIO  
pin, and the CSB pin (see Table 11). The SCLK (serial clock) pin  
is used to synchronize the read and write data presented from  
and to the ADC. The SDIO (serial data input/output) pin is a  
dual-purpose pin that allows data to be sent and read from the  
internal ADC memory map registers. The CSB (chip select bar)  
pin is an active-low control that enables or disables the read and  
write cycles.  
HARDWARE INTERFACE  
The pins described in Table 11 comprise the physical interface  
between the user programming device and the serial port of the  
AD9634. The SCLK pin and the CSB pin function as inputs when  
using the SPI interface. The SDIO pin is bidirectional, functioning  
as an input during write phases and as an output during readback.  
Table 11. Serial Port Interface Pins  
Pin  
Function  
SCLK Serial clock. The serial shift clock input, which is used to  
synchronize serial interface reads and writes.  
SDIO Serial data input/output. A dual-purpose pin that  
typically serves as an input or an output, depending on  
the instruction being sent and the relative position in the  
timing frame.  
The SPI interface is flexible enough to be controlled by either  
FPGAs or microcontrollers. One method for SPI configuration  
is described in detail in the AN-812 Application Note,  
Microcontroller-Based Serial Port Interface (SPI) Boot Circuit.  
CSB  
Chip select bar. An active-low control that gates the read  
and write cycles.  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK signal, the CSB signal, and the SDIO signal are typically  
asynchronous to the ADC clock, noise from these signals can  
degrade converter performance. If the on-board SPI bus is used for  
other devices, it may be necessary to provide buffers between  
this bus and the AD9634 to prevent these signals from transi-  
tioning at the converter inputs during critical sampling periods.  
The falling edge of CSB, in conjunction with the rising edge of  
SCLK, determines the start of the framing. An example of the serial  
timing and its definitions can be found in Figure 58 and Table 5.  
Other modes involving the CSB are available. The CSB can be  
held low indefinitely, which permanently enables the device;  
this is called streaming. The CSB can stall high between bytes to  
allow for additional external timing. When CSB is tied high, SPI  
functions are placed in a high impedance mode. This mode turns  
on any SPI pin secondary functions.  
During an instruction phase, a 16-bit instruction is transmitted.  
Data follows the instruction phase, and its length is determined  
by the W0 and W1 bits.  
Rev. 0 | Page 2ꢀ of 32  
 
 
AD9634  
Table 12. Features Accessible Using the SPI  
SPI ACCESSIBLE FEATURES  
Feature Name  
Description  
Table 12 provides a brief description of the general features that  
are accessible via the SPI. These features are described in detail in  
AN-877 Application Note, Interfacing to High Speed ADCs via  
SPI.  
Mode  
Allows the user to set either power-down mode  
or standby mode  
Clock  
Offset  
Allows the user to access the DCS via the SPI  
Allows the user to digitally adjust the  
converter offset  
Test I/O  
Allows the user to set test modes to have  
known data on output bits  
Output Mode  
Output Phase  
Output Delay  
VREF  
Allows the user to set up outputs  
Allows the user to set the output clock polarity  
Allows the user to vary the DCO delay  
Allows the user to set the reference voltage  
Digital  
Processing  
Allows the user to enable the synchronization  
features  
tHIGH  
tDS  
tCLK  
tH  
tS  
tDH  
tLOW  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 58. Serial Port Interface Timing Diagram  
Rev. 0 | Page 25 of 32  
 
 
 
AD9634  
MEMORY MAP  
Default Values  
READING THE MEMORY MAP REGISTER TABLE  
After the AD9634 is reset, critical registers are loaded with  
default values. The default values for the registers are given in  
the memory map register table (see Table 13).  
Each row in the memory map register table has eight bit  
locations. The memory map is roughly divided into three  
sections: the chip configuration registers (Address 0x00 to  
Address 0x02), the transfer register (Address 0xFF), and the  
ADC functions registers (Address 0x08 to Address 0x25),  
including setup, control, and test.  
Logic Levels  
An explanation of logic level terminology follows:  
“Bit is set” is synonymous with “bit is set to Logic 1” or  
“writing Logic 1 for the bit.”  
The memory map register table (Table 13) documents the  
default hexadecimal value for each hexadecimal address shown.  
The Bit 7 (MSB) column is the start of the default hexadecimal  
value given. For example, Address 0x14, the output mode register,  
has a hexadecimal default value of 0x01. This means that Bit 0 = 1  
and the remaining bits are 0s. This setting is the default output  
format value, which is twos complement. For more information  
on this function and others, see the AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI. This document details  
the functions controlled by Register 0x00 to Register 0x25.  
“Clear a bit” is synonymous with “bit is set to Logic 0” or  
“writing Logic 0 for the bit.”  
Transfer Register Map  
Address 0x08 to Address 0x20 are shadowed. Writes to these  
addresses do not affect part operation until a transfer command is  
issued by writing 0x01 to Address 0xFF, setting the transfer bit. This  
allows these registers to be updated internally and simultaneously  
when the transfer bit is set. The internal update takes place  
when the transfer bit is set, and then the bit autoclears.  
Open Locations  
All address and bit locations that are not included in Table 13  
are not currently supported for this device. Write 0s to unused  
bits of a valid address location. Writing to these locations is  
required only when part of an address location is open (for  
example, Address 0x18). If the entire address location is open  
(for example, Address 0x13), do not write to this address location.  
Rev. 0 | Page 2ꢁ of 32  
 
 
AD9634  
MEMORY MAP REGISTER TABLE  
All address and bit locations that are not included in Table 13 are not currently supported for this device.  
Table 13. Memory Map Registers  
Default Default  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Notes/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Chip Configuration Registers  
0x00  
SPI port  
configuration  
0
LSB first  
Soft reset  
1
1
Soft reset  
LSB first  
0
0x18  
Nibbles are  
mirrored so  
that LSB-  
first mode  
or MSB-first  
mode is set  
correctly,  
regardless  
of shift  
mode.  
0x01  
0x02  
Chip ID  
8-bit chip ID[7:0], AD9ꢁ3ꢀ = 0x87 (default)  
0x87  
0x00  
Read only.  
Chip grade  
Open  
Open  
Open  
Open  
Speed grade ID;  
00 = 250 MSPS  
01 = 210 MSPS  
11 = 170 MSPS  
Open  
Open  
Open  
Open  
Open  
Speed  
grade ID  
used to  
differentiate  
devices;  
read only.  
Transfer Register  
0xFF Transfer  
Open  
Open  
Open  
Open  
Transfer  
Synchro-  
nously  
transfers  
data from  
the master  
shift  
register to  
the slave.  
ADC Function Registers  
0x08  
Power modes  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Internal power-down mode  
00 = normal operation  
01 = full power-down  
10 = standby  
0x00  
Determines  
various  
generic  
modes of  
chip  
operation.  
11 = reserved  
0x09  
0x0B  
Global clock  
Clock divide  
Open  
Open  
Open  
Open  
Open  
Duty cycle  
stabilizer  
(default)  
0x01  
0x00  
Input clock divider phase adjust  
000 = no delay  
Clock divide ratio  
Clock divide  
values other  
than 000  
auto-  
matically  
cause the  
duty cycle  
stabilizer to  
become  
000 = divide by 1  
001 = divide by 2  
010 = divide by 3  
011 = divide by ꢀ  
100 = divide by 5  
101 = divide by ꢁ  
110 = divide by 7  
111 = divide by 8  
001 = 1 input clock cycle  
010 = 2 input clock cycles  
011 = 3 input clock cycles  
100 = ꢀ input clock cycles  
101 = 5 input clock cycles  
110 = ꢁ input clock cycles  
111 = 7 input clock cycles  
active.  
0x0D  
Test mode  
Test mode  
0 = contin-  
uous/  
repeat  
pattern  
1 = single  
pattern  
then zeros  
Open  
Reset PN  
long gen  
Reset PN  
short gen  
Output test mode  
0x00  
When this  
register is  
set, the test  
data is  
placed on  
the output  
pins in  
place of  
normal  
data.  
0000 = off (default)  
0001 = midscale short  
0010 = positive FS  
0011 = negative FS  
0100 = alternating checkerboard  
0101 = PN long sequence  
0110 = PN short sequence  
0111 = one/zero word toggle  
1000 = user test mode  
1001 to 1110 = unused  
1111 = ramp output  
Rev. 0 | Page 27 of 32  
 
 
AD9634  
Default Default  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Notes/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0x0E  
0x10  
0x1ꢀ  
BIST enable  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Reset BIST  
sequence  
Open  
BIST enable  
0x00  
0x00  
0x01  
Offset adjust  
Output mode  
Open  
Open  
Offset adjust in LSBs from +31 to −32  
(twos complement format)  
Open  
Open  
Output  
enable bar  
0 = on  
(default)  
1 = off  
Open  
Output  
invert  
0 = normal  
(default)  
1 =  
Output format  
00 = offset binary  
01 = twos complement  
(default)  
Configures  
the outputs  
and the  
format of  
the data.  
10 = gray code  
11 = reserved  
inverted  
0x15  
Output adjust  
Open  
Open  
Open  
LVDS output drive current adjust  
0000 = 3.72 mA output drive current  
0001 = 3.5 mA output drive current (default)  
0010 = 3.30 mA output drive current  
0011 = 2.9ꢁ mA output drive current  
0100 = 2.82 mA output drive current  
0101 = 2.57 mA output drive current  
0110 = 2.27 mA output drive current  
0x01  
0111 = 2.0 mA output drive current (reduced range)  
1000 to 1111 = reserved  
0x1ꢁ  
0x17  
Clock phase  
control  
Invert  
DCO clock  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
0x00  
0x00  
DCO output  
delay  
Enable  
DCO  
clock  
delay  
DCO clock delay  
[delay = (3100 ps × register value/31 + 100)]  
00000 = 100 ps  
00001 = 200 ps  
00010 = 300 ps  
11110 = 3100 ps  
11111 = 3200 ps  
0x18  
Input span  
select  
Open  
Open  
Open  
Full-scale input voltage selection  
01111 = 2.087 V p-p  
00001 = 1.772 V p-p  
00000 = 1.75 V p-p (default)  
11111 = 1.727 V p-p  
0x00  
Full-scale  
input  
adjustment  
in 0.022 V  
steps.  
10000 = 1.383 V p-p  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x2ꢀ  
0x25  
User Test  
Pattern 1 LSB  
User Test Pattern 1[7:0]  
User Test Pattern 1[15:8]  
User Test Pattern 2[7:0]  
User Test Pattern 2[15:8]  
User Test Pattern 3[7:0]  
User Test Pattern 3[15:8]  
User Test Pattern ꢀ[7:0]  
User Test Pattern ꢀ[15:8]  
BIST signature[7:0]  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
User Test  
Pattern 1 MSB  
User Test  
Pattern 2 LSB  
User Test  
Pattern 2 MSB  
User Test  
Pattern 3 LSB  
User Test  
Pattern 3 MSB  
User Test  
Pattern ꢀ LSB  
User Test  
Pattern ꢀ MSB  
0x00  
0x00  
BIST signature  
LSB  
Read only.  
Read only.  
BIST signature  
MSB  
BIST signature[15:8]  
0x00  
Rev. 0 | Page 28 of 32  
AD9634  
APPLICATIONS INFORMATION  
The copper plane should have several vias to achieve the lowest  
possible resistive thermal path for heat dissipation to flow through  
the bottom of the PCB. These vias should be filled or plugged with  
nonconductive epoxy.  
DESIGN GUIDELINES  
Before starting system-level design and layout of the AD9634, it  
is recommended that the designer become familiar with these  
guidelines, which describe the special circuit connections and  
layout requirements needed for certain pins.  
To maximize the coverage and adhesion between the ADC and  
the PCB, overlay a silkscreen to partition the continuous plane on  
the PCB into several uniform sections. This provides several tie  
points between the ADC and the PCB during the reflow process.  
Using one continuous plane with no partitions guarantees only one  
tie point between the ADC and the PCB. See the evaluation  
board for a PCB layout example. For detailed information about  
the packaging and PCB layout of chip scale packages, refer to  
the AN-772 Application Note, A Design and Manufacturing  
Guide for the Lead Frame Chip Scale Package (LFCSP).  
Power and Ground Recommendations  
When connecting power to the AD9634, it is recommended that  
two separate 1.8 V supplies be used: use one supply for analog  
(AVDD) and a separate supply for digital outputs (DRVDD).  
The designer can employ several different decoupling capacitors  
to cover both high and low frequencies. Locate these capacitors  
close to the point of entry at the PC board level and close to the  
pins of the part with minimal trace length.  
A single PCB ground plane should be sufficient when using the  
AD9634. With proper decoupling and smart partitioning of the  
PCB analog, digital, and clock sections, optimum performance  
can be easily achieved.  
VCM  
Decouple the VCM pin to ground with a 0.1 μF capacitor, as  
shown in Figure 48.  
SPI Port  
Exposed Paddle Thermal Heat Slug Recommendations  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK, CSB, and SDIO signals are typically asynchronous to the  
ADC clock, noise from these signals can degrade converter  
performance. If the on-board SPI bus is used for other devices,  
it may be necessary to provide buffers between this bus and the  
AD9634 to keep these signals from transitioning at the converter  
input pins during critical sampling periods.  
It is mandatory that the exposed paddle on the underside of the  
ADC be connected to analog ground (AGND) to achieve the  
best electrical and thermal performance. A continuous, exposed  
(no solder mask) copper plane on the PCB should be connected  
to the AD9634 exposed paddle, Pin 0.  
Rev. 0 | Page 29 of 32  
 
 
AD9634  
OUTLINE DIMENSIONS  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
25  
32  
24  
1
0.50  
BSC  
*
3.75  
EXPOSED  
PAD  
3.60 SQ  
3.55  
17  
8
16  
9
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD-5  
WITH EXCEPTION TO EXPOSED PAD DIMENSION.  
Figure 59. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
5 mm × 5 mm Body, Very Very Thin Quad  
(CP-32-12)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
CP-32-12  
CP-32-12  
CP-32-12  
CP-32-12  
AD9ꢁ3ꢀBCPZ-250  
AD9ꢁ3ꢀBCPZRL7-250  
AD9ꢁ3ꢀBCPZ-210  
AD9ꢁ3ꢀBCPZRL7-210  
AD9ꢁ3ꢀBCPZ-170  
AD9ꢁ3ꢀBCPZRL7-170  
AD9ꢁ3ꢀ-170EBZ  
AD9ꢁ3ꢀ-210EBZ  
AD9ꢁ3ꢀ-250EBZ  
−ꢀ0°C to +85°C  
−ꢀ0°C to +85°C  
−ꢀ0°C to +85°C  
−ꢀ0°C to +85°C  
−ꢀ0°C to +85°C  
−ꢀ0°C to +85°C  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
Evaluation Board with AD9ꢁ3ꢀ and Software  
CP-32-12  
CP-32-12  
Evaluation Board with AD9ꢁ3ꢀ and Software  
Evaluation Board with AD9ꢁ3ꢀ and Software  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 30 of 32  
 
AD9634  
NOTES  
Rev. 0 | Page 31 of 32  
AD9634  
NOTES  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09996-0-7/11(0)  
Rev. 0 | Page 32 of 32  

相关型号:

AD9634BCPZRL7-210

12-Bit, 170 MSPS/210 MSPS/250 MSPS
ADI

AD9634BCPZRL7-250

12-Bit, 170 MSPS/210 MSPS/250 MSPS
ADI

AD9635

1.8 V Analog-to-Digital Converter
ADI

AD9635-125EBZ

1.8 V Analog-to-Digital Converter
ADI

AD9635BCPZ-125

1.8 V Analog-to-Digital Converter
ADI

AD9635BCPZ-80

1.8 V Analog-to-Digital Converter
ADI

AD9635BCPZRL7-125

1.8 V Analog-to-Digital Converter
ADI

AD9635BCPZRL7-80

1.8 V Analog-to-Digital Converter
ADI

AD9635_17

1.8 V Analog-to-Digital Converter
ADI

AD9637

Octal, 12-Bit, 40/80 MSPS, Serial LVDS
ADI

AD9637-80EBZ

Octal, 12-Bit, 40/80 MSPS, Serial LVDS
ADI

AD9637BCPZ-40

Octal, 12-Bit, 40/80 MSPS, Serial LVDS
ADI