AD9640ABCPZ-150 [ADI]

14-Bit, 80/105/125/150 MSPS, 1.8 V Dual Analog-to-Digital Converter; 14位, 80/105/125/150 MSPS , 1.8 V双通道模拟数字转换器
AD9640ABCPZ-150
型号: AD9640ABCPZ-150
厂家: ADI    ADI
描述:

14-Bit, 80/105/125/150 MSPS, 1.8 V Dual Analog-to-Digital Converter
14位, 80/105/125/150 MSPS , 1.8 V双通道模拟数字转换器

转换器
文件: 总52页 (文件大小:1235K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
14-Bit, 80/105/125/150 MSPS, 1.8 V  
Dual Analog-to-Digital Converter  
AD9640  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
SDIO/SCLK/  
SNR = 71.8 dBc (72.8 dBFS) to 70 MHz @ 125 MSPS  
SFDR = 85 dBc to 70 MHz @ 125 MSPS  
Low power: 750 mW @ 125 MSPS  
SNR = 71.6 dBc (72.6 dBFS) to 70 MHz @ 150 MSPS  
SFDR = 84 dBc to 70 MHz @ 150 MSPS  
Low power: 820 mW @ 150 MSPS  
1.8 V analog supply operation  
1.8 V to 3.3V CMOS output supply or 1.8 V LVDS  
output supply  
Integer 1 to 8 input clock divider  
IF sampling frequencies to 450 MHz  
Internal ADC voltage reference  
AVDD DVDD  
FD(0:3)A  
DCS DFS CSB DRVDD  
FD BITS/THRESHOLD  
DETECT  
SPI  
D13A  
D0A  
PROGRAMMING DATA  
VIN+A  
VIN–A  
SHA  
ADC  
SIGNAL  
MONITOR  
CLK+  
VREF  
CLK–  
SENSE  
DIVIDE  
DCOA  
1 TO 8  
DCO  
GENERATION  
CML  
REF  
SELECT  
DCOB  
D13B  
DUTY CYCLE  
STABILIZER  
RBIAS  
Integrated ADC sample-and-hold inputs  
Flexible analog input range: 1 V p-p to 2 V p-p  
Differential analog inputs with 650 MHz bandwidth  
ADC clock duty cycle stabilizer  
D0B  
VIN–B  
VIN+B  
SHA  
ADC  
SIGNAL MONITOR  
DATA  
95 dB channel isolation/crosstalk  
Serial port control  
MULTICHIP  
SYNC  
FD BITS/THRESHOLD  
DETECT  
SIGNAL MONITOR  
INTERFACE  
User-configurable, built-in self-test (BIST) capability  
Energy-saving power-down modes  
Integrated receive features  
AGND SYNC  
FD(0:3)B  
SMI  
SMI  
SMI DRGND  
SDFS SCLK/ SDO/  
PDWN OEB  
Fast detect/threshold bits  
Figure 1.  
Composite signal monitor  
PRODUCT HIGHLIGHTS  
APPLICATIONS  
Communications  
1. Integrated dual 14-bit, 80/105/125/150 MSPS ADC.  
2. Fast overrange detect and signal monitor with serial output.  
3. Signal monitor block with dedicated serial output mode.  
4. Proprietary differential input that maintains excellent SNR  
performance for input frequencies up to 450 MHz.  
5. Operation from a single 1.8 V supply and a separate digital  
output driver supply to accommodate 1.8 V to 3.3 V logic  
families.  
6. A standard serial port interface that supports various  
product features and functions, such as data formatting  
(offset binary, twos complement, or gray coding), enabling  
the clock DCS, power-down, and voltage reference mode.  
7. Pin compatibility with the AD9627, AD9627-11, and the  
AD9600 for a simple migration from 14 bits to 12 bits, 11  
bits, or 10 bits.  
Diversity radio systems  
Multimode digital receivers  
GSM, EDGE, WCDMA, LTE,  
CDMA2000, WiMAX, TD-SCDMA  
I/Q demodulation systems  
Smart antenna systems  
General-purpose software radios  
Broadband data applications  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2007–2009 Analog Devices, Inc. All rights reserved.  
 
 
 
AD9640  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Clock Input Considerations...................................................... 28  
Power Dissipation and Standby Mode .................................... 30  
Digital Outputs ........................................................................... 31  
Timing ......................................................................................... 31  
ADC Overrange and Gain Control.............................................. 32  
Fast Detect Overview................................................................. 32  
ADC Fast Magnitude................................................................. 32  
ADC Overrange (OR)................................................................ 33  
Gain Switching............................................................................ 33  
Signal Monitor ................................................................................ 35  
Peak Detector Mode................................................................... 35  
RMS/MS Magnitude Mode......................................................... 35  
Threshold Crossing Mode......................................................... 36  
Additional Control Bits ............................................................. 36  
DC Correction............................................................................ 36  
Signal Monitor SPORT Output ................................................ 37  
Built-In Self-Test (BIST) and Output Test .................................. 38  
Built-In Self-Test (BIST)............................................................ 38  
Output Test Modes..................................................................... 38  
Channel/Chip Synchronization.................................................... 39  
Serial Port Interface (SPI).............................................................. 40  
Configuration Using the SPI..................................................... 40  
Hardware Interface..................................................................... 40  
Configuration Without the SPI ................................................ 41  
SPI Accessible Features.............................................................. 41  
Memory Map .................................................................................. 42  
Reading the Memory Map Table.............................................. 42  
External Memory Map .............................................................. 43  
Memory Map Register Description ......................................... 46  
Applications Information.............................................................. 49  
Design Guidelines ...................................................................... 49  
Outline Dimensions....................................................................... 50  
Ordering Guide .......................................................................... 51  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 3  
General Description......................................................................... 4  
Specifications..................................................................................... 5  
ADC DC Specifications—AD9640ABCPZ-80,  
AD9640BCPZ-80, AD9640ABCPZ-105, and  
AD9640BCPZ-105......................................................................... 5  
ADC DC Specifications—AD9640ABCPZ-125,  
AD9640BCPZ-125, AD9640ABCPZ-150, and  
AD9640BCPZ-150......................................................................... 6  
ADC AC Specifications—AD9640ABCPZ-80,  
AD9640BCPZ-80, AD9640ABCPZ-105, and  
AD9640BCPZ-105......................................................................... 7  
ADC AC Specifications—AD9640ABCPZ-125,  
AD9640BCPZ-125, AD9640ABCPZ-150, and  
AD9640BCPZ 150 ......................................................................... 8  
Digital Specifications ................................................................... 9  
Switching Specifications—AD9640ABCPZ-80,  
AD9640BCPZ-80, AD9640ABCPZ-105, and  
AD9640BCPZ-105 ..................................................................... 10  
Switching Specifications—AD9640ABCPZ-125,  
AD9640BCPZ-125, AD9640ABCPZ-150, and  
AD9640BCPZ-150 ..................................................................... 11  
Timing Specifications ................................................................ 12  
Absolute Maximum Ratings.......................................................... 14  
Thermal Characteristics ............................................................ 14  
ESD Caution................................................................................ 14  
Pin Configurations and Function Descriptions ......................... 15  
Equivalent Circuits......................................................................... 19  
Typical Performance Characteristics ........................................... 20  
Theory of Operation ...................................................................... 25  
ADC Architecture ...................................................................... 25  
Analog Input Considerations.................................................... 25  
Voltage Reference ....................................................................... 27  
Rev. B | Page 2 of 52  
AD9640  
REVISION HISTORY  
Changes to Figure 11, Figure 12, Figure 14 .................................18  
Change to Table 15..........................................................................30  
Changes to ADC Overrange and Gain Control Section............31  
Changes to Signal Monitor Section ..............................................34  
Changes to Table 25 ........................................................................42  
Changes to Signal Monitor Period (Register 0x113 to  
Register 0x115) Section..................................................................47  
Added LVDS Operation Section...................................................48  
Added Exposed Pad Notation to Outline Dimensions..............49  
12/09—Rev. A to Rev. B  
Added CP-64-6 Package.................................................... Universal  
Changes to Ordering Guide...........................................................51  
6/09—Rev. 0 to Rev. A  
Changes to Applications Section and Product  
Highlights Section.............................................................................1  
Changes to General Description Section.......................................3  
Changes to Specifications Section...................................................4  
Changes to Figure 2.........................................................................11  
Changes to Figure 3.........................................................................12  
Changes to Pin Configurations and Functional  
6/07—Revision 0: Initial Version  
Descriptions Section.......................................................................12  
Rev. B | Page 3 of 52  
 
AD9640  
GENERAL DESCRIPTION  
The AD9640 is a dual 14-bit, 80/105/125/150 MSPS analog-to-  
digital converter (ADC). The AD9640 is designed to support  
communications applications where low cost, small size, and  
versatility are desired.  
In addition, the programmable threshold detector allows moni-  
toring of the incoming signal power using the four fast detect  
bits of the ADC with very low latency. If the input signal level  
exceeds the programmable threshold, the fine upper threshold  
indicator goes high. Because this threshold is set from the four  
MSBs, the user can quickly turn down the system gain to avoid an  
overrange condition.  
The dual ADC core features a multistage, differential pipelined  
architecture with integrated output error correction logic. Each  
ADC features wide bandwidth differential sample-and-hold  
analog input amplifiers supporting a variety of user-selectable  
input ranges. An integrated voltage reference eases design  
considerations. A duty cycle stabilizer is provided to compen-  
sate for variations in the ADC clock duty cycle, allowing the  
converters to maintain excellent performance.  
The second AGC-related function is the signal monitor. This  
block allows the user to monitor the composite magnitude of  
the incoming signal, which aids in setting the gain to optimize  
the dynamic range of the overall system.  
The ADC output data can be routed directly to the two external  
14-bit output ports. These outputs can be set from 1.8 V to 3.3 V  
CMOS or 1.8 V LVDS.  
The AD9640 has several functions that simplify the automatic  
gain control (AGC) function in the system receiver. The fast detect  
feature allows fast overrange detection by outputting four bits of  
input level information with very short latency.  
Flexible power-down options allow significant power savings,  
when desired.  
Programming for setup and control is accomplished using a  
3-bit SPI-compatible serial interface.  
The AD9640 is available in a 64-lead LFCSP and is specified  
over the industrial temperature range of −40°C to +85°C.  
Rev. B | Page 4 of 52  
 
AD9640  
SPECIFICATIONS  
ADC DC SPECIFICATIONS—AD9640ABCPZ-80, AD9640BCPZ-80, AD9640ABCPZ-105, AND AD9640BCPZ-105  
AVDD = 1.8 V, DVDD = 1.8 V, DRVDD = 3.3 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference,  
DCS enabled, fast detect outputs disabled, and signal monitor disabled, unless otherwise noted.  
Table 1.  
AD9640ABCPZ-  
80/AD9640BCPZ-80  
AD9640ABCPZ-  
105/AD9640BCPZ-105  
Parameter  
Temperature Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
RESOLUTION  
Full  
14  
14  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Gain Error  
Full  
Full  
Full  
Full  
25°C  
Full  
25°C  
Guaranteed  
0.3  
0.2  
Guaranteed  
0.3  
0.2  
0.6  
3.0  
0.9  
0.6  
3.0  
0.9  
% FSR  
% FSR  
LSB  
LSB  
LSB  
Differential Nonlinearity (DNL)1  
0.4  
2.0  
0.4  
2.0  
Integral Nonlinearity (INL)1  
5.0  
5.0  
LSB  
MATCHING CHARACTERISTIC  
Offset Error  
Gain Error  
Full  
Full  
0.3  
0.1  
0.6  
0.5  
0.4  
0.1  
0.7  
0.5  
% FSR  
% FSR  
TEMPERATURE DRIFT  
Offset Error  
Gain Error  
Full  
Full  
15  
95  
15  
95  
ppm/°C  
ppm/°C  
INTERNAL VOLTAGE REFERENCE  
Output Voltage Error (1 V Mode)  
Load Regulation @ 1.0 mA  
INPUT REFERRED NOISE  
VREF = 1.0 V  
Full  
Full  
2
7
15  
2
7
15  
mV  
mV  
25°C  
1.3  
1.3  
LSB rms  
ANALOG INPUT  
Input Span, VREF = 1.0 V  
Input Capacitance2  
VREF INPUT RESISTANCE  
POWER SUPPLIES  
Full  
Full  
Full  
2
8
6
2
8
6
V p-p  
pF  
kΩ  
Supply Voltage  
AVDD, DVDD  
Full  
Full  
Full  
1.7  
1.7  
1.7  
1.8  
3.3  
1.8  
1.9  
3.6  
1.9  
1.7  
1.7  
1.7  
1.8  
3.3  
1.8  
1.9  
3.6  
1.9  
V
V
V
DRVDD (CMOS Mode)  
DRVDD (LVDS Mode)  
Supply Current  
1, 3  
Full  
Full  
Full  
Full  
Full  
233  
26  
310  
34  
mA  
mA  
mA  
mA  
mA  
IAVDD  
277  
371  
1, 3  
IDVDD  
IDRVDD1 (3.3 V CMOS)  
IDRVDD1 (1.8 V CMOS)  
IDRVDD1 (1.8 V LVDS)  
27  
35  
12  
18  
54  
55  
POWER CONSUMPTION  
DC Input  
Sine Wave Input1 (DRVDD = 1.8 V)  
Sine Wave Input1 (DRVDD = 3.3 V)  
Standby Power4  
Full  
Full  
Full  
Full  
Full  
452  
487  
550  
52  
492  
6
603  
645  
730  
68  
657  
6
mW  
mW  
mW  
mW  
mW  
Power-Down Power  
2.5  
2.5  
1 Measured with a low input frequency, full-scale sine wave, with approximately 5 pF loading on each output bit.  
2 Input capacitance refers to the effective capacitance between one differential input pin and AGND. See Figure 8 for the equivalent analog input structure.  
3 The maximum limit applies to the combination of IAVDD and IDVDD currents.  
4 Standby power is measured with a dc input and with the CLK pins (CLK+, CLK) inactive (set to AVDD or AGND).  
Rev. B | Page 5 of 52  
 
AD9640  
ADC DC SPECIFICATIONS—AD9640ABCPZ-125, AD9640BCPZ-125, AD9640ABCPZ-150, AND AD9640BCPZ-150  
AVDD = 1.8 V, DVDD = 1.8 V, DRVDD = 3.3 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference,  
DCS enabled, fast detect outputs disabled, and signal monitor disabled, unless otherwise noted.  
Table 2.  
AD9640ABCPZ-125/  
AD9640BCPZ-125  
AD9640ABCPZ-150/  
AD9640BCPZ-150  
Parameter  
Temperature  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
RESOLUTION  
Full  
14  
14  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Gain Error  
Full  
Full  
Full  
Full  
25°C  
Full  
25°C  
Guaranteed  
Guaranteed  
0.3  
0.2  
0.3  
0.2  
0.6  
3.0  
0.9  
0.6  
3.0  
% FSR  
% FSR  
LSB  
LSB  
LSB  
Differential Nonlinearity (DNL)1  
−0.95/+1.5  
0.4  
2
−0.4/+0.6  
2
Integral Nonlinearity (INL)1  
5.0  
5.0  
LSB  
MATCHING CHARACTERISTIC  
Offset Error  
Gain Error  
25°C  
25°C  
0.4  
0.1  
0.7  
0.6  
0.4  
0.2  
0.7  
0.6  
% FSR  
% FSR  
TEMPERATURE DRIFT  
Offset Error  
Gain Error  
Full  
Full  
15  
95  
15  
95  
ppm/°C  
ppm/°C  
INTERNAL VOLTAGE REFERENCE  
Output Voltage Error (1 V Mode)  
Load Regulation @ 1.0 mA  
INPUT REFERRED NOISE  
VREF = 1.0 V  
Full  
Full  
2
7
15  
3
7
15  
mV  
mV  
25°C  
1.3  
1.3  
LSB rms  
ANALOG INPUT  
Input Span, VREF = 1.0 V  
Input Capacitance2  
VREF INPUT RESISTANCE  
POWER SUPPLIES  
Full  
Full  
Full  
2
8
6
2
8
6
V p-p  
pF  
kΩ  
Supply Voltage  
AVDD, DVDD  
Full  
Full  
Full  
1.7  
1.7  
1.7  
1.8  
3.3  
1.8  
1.9  
3.6  
1.9  
1.7  
1.7  
1.7  
1.8  
3.3  
1.8  
1.9  
3.6  
1.9  
V
V
V
DRVDD (CMOS Mode)  
DRVDD (LVDS Mode)  
Supply Current  
1, 3  
Full  
Full  
Full  
Full  
385  
42  
419  
50  
mA  
mA  
mA  
mA  
IAVDD  
470  
517  
1, 3  
IDVDD  
IDRVDD1 (3.3 V CMOS)  
IDRVDD1 (1.8 V CMOS)  
44  
53  
22  
27  
IDRVDD1 (1.8 V LVDS)  
56  
57  
POWER CONSUMPTION  
DC Input  
Sine Wave Input1 (DRVDD = 1.8 V)  
Sine Wave Input1 (DRVDD = 3.3 V)  
Standby Power4  
Full  
Full  
Full  
Full  
Full  
750  
810  
910  
77  
846  
6
820  
895  
1000  
77  
938  
6
mW  
mW  
mW  
mW  
mW  
Power-Down Power  
2.5  
2.5  
1 Measured with a low input frequency, full-scale sine wave, with approximately 5 pF loading on each output bit.  
2 Input capacitance refers to the effective capacitance between one differential input pin and AGND. See Figure 8 for the equivalent analog input structure.  
3 The maximum limit applies to the combination of IAVDD and IDVDD currents.  
4 Standby power is measured with a dc input and with the CLK pins (CLK+, CLK) inactive (set to AVDD or AGND).  
Rev. B | Page 6 of 52  
 
AD9640  
ADC AC SPECIFICATIONS—AD9640ABCPZ-80, AD9640BCPZ-80, AD9640ABCPZ-105, AND AD9640BCPZ-105  
AVDD = 1.8 V, DVDD = 1.8 V, DRVDD = 3.3 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference,  
DCS enabled, fast detect outputs disabled, and signal monitor disabled, unless otherwise noted.  
Table 3.  
AD9640ABCPZ-80/  
AD9640BCPZ-80  
AD9640ABCPZ-105/  
AD9640BCPZ-105  
Parameter1  
Temperature  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 2.3 MHz  
fIN = 70 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
72.5  
72.1  
72.3  
71.9  
dB  
dB  
dB  
dB  
dB  
70.5  
70.2  
fIN = 140 MHz  
fIN = 200 MHz  
71.6  
71.0  
71.3  
70.3  
SIGNAL-TO-NOISE AND DISTORTION (SINAD)  
fIN = 2.3 MHz  
fIN = 70 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
72.2  
71.6  
72.0  
71.6  
dB  
dB  
dB  
dB  
dB  
69  
69.5  
fIN = 140 MHz  
fIN = 200 MHz  
71.1  
70.4  
70.9  
70.0  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 2.3 MHz  
fIN = 70 MHz  
fIN = 140 MHz  
fIN = 200 MHz  
25°C  
25°C  
25°C  
25°C  
11.9  
11.8  
11.7  
11.6  
11.8  
11.8  
11.7  
11.5  
Bits  
Bits  
Bits  
Bits  
WORST SECOND OR THIRD HARMONIC  
fIN = 2.3 MHz  
fIN = 70 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
−87  
−85  
−87  
−85  
dBc  
dBc  
dBc  
dBc  
dBc  
−75  
−74  
fIN = 140 MHz  
fIN = 200 MHz  
−84  
−83  
−84  
−83  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 2.3 MHz  
fIN = 70 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
87  
85  
87  
85  
dBc  
dBc  
dBc  
dBc  
dBc  
75  
74  
fIN = 140 MHz  
fIN = 200 MHz  
84  
83  
84  
83  
WORST OTHER HARMONIC OR SPUR  
fIN = 2.3 MHz  
fIN = 70 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
−93  
−89  
−93  
−89  
dBc  
dBc  
dBc  
dBc  
dBc  
−82  
−81  
fIN = 140 MHz  
fIN = 200 MHz  
−89  
−89  
−89  
−89  
TWO TONE SFDR  
fIN = 29.1 MHz, 32.1 MHz (−7 dBFS)  
fIN = 169.1 MHz, 172.1 MHz (−7 dBFS)  
CROSSTALK2  
25°C  
25°C  
Full  
85  
82  
85  
82  
dBc  
dBc  
dB  
−95  
650  
−95  
650  
ANALOG INPUT BANDWIDTH  
25°C  
MHz  
1 See Application Note AN-835, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
2 Crosstalk is measured at 100 MHz with −1 dBFS on one channel and no input on the alternate channel.  
Rev. B | Page 7 of 52  
 
AD9640  
ADC AC SPECIFICATIONS—AD9640ABCPZ-125, AD9640BCPZ-125, AD9640ABCPZ-150, AND AD9640BCPZ 150  
AVDD = 1.8 V, DVDD = 1.8 V, DRVDD = 3.3 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference,  
DCS enabled, fast detect outputs disabled, and signal monitor disabled, unless otherwise noted.  
Table 4.  
AD9640ABCPZ-125  
AD9640BCPZ-125  
AD9640ABCPZ-150/  
AD9640BCPZ-150  
Parameter1  
Temperature  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 2.3 MHz  
fIN = 70 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
72.1  
71.8  
71.9  
71.6  
dB  
dB  
dB  
dB  
dB  
70.2  
69.5  
fIN = 140 MHz  
fIN = 200 MHz  
71.4  
70.8  
70.9  
70.0  
SIGNAL-TO-NOISE AND DISTORTION (SINAD)  
fIN = 2.3 MHz  
fIN = 70 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
71.8  
71.4  
71.6  
71.0  
dB  
dB  
dB  
dB  
dB  
69.5  
67.5  
fIN = 140 MHz  
fIN = 200 MHz  
71.0  
70.3  
70.5  
69.9  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 2.3 MHz  
fIN = 70 MHz  
fIN = 140 MHz  
fIN = 200 MHz  
25°C  
25°C  
25°C  
25°C  
11.8  
11.7  
11.7  
11.6  
11.8  
11.8  
11.6  
11.5  
Bits  
Bits  
Bits  
Bits  
WORST SECOND OR THIRD HARMONIC  
fIN = 2.3 MHz  
fIN = 70 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
−86.5  
−85  
−86.5  
−84  
dBc  
dBc  
dBc  
dBc  
dBc  
−74  
−73  
fIN = 140 MHz  
fIN = 200 MHz  
−84  
−83  
−83.5  
−77  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 2.3 MHz  
fIN = 70 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
86.5  
85  
86.5  
84  
dBc  
dBc  
dBc  
dBc  
dBc  
74  
73  
fIN = 140 MHz  
fIN = 200 MHz  
84  
83  
83.5  
77  
WORST OTHER HARMONIC OR SPUR  
fIN = 2.3 MHz  
fIN = 70 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
−92  
−89  
−92  
−90  
dBc  
dBc  
dBc  
dBc  
dBc  
−80  
−80  
fIN = 140 MHz  
fIN = 200 MHz  
−89  
−89  
−90  
−90  
TWO TONE SFDR  
fIN = 29.1 MHz, 32.1 MHz (−7 dBFS)  
fIN = 169.1 MHz, 172.1 MHz (−7 dBFS)  
CROSSTALK2  
25°C  
25°C  
Full  
85  
82  
85  
82  
dBc  
dBc  
dB  
−95  
650  
−95  
650  
ANALOG INPUT BANDWIDTH  
25°C  
MHz  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
2 Crosstalk is measured at 100 MHz with −1 dBFS on one channel and no input on the alternate channel.  
Rev. B | Page 8 of 52  
 
 
AD9640  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V, DVDD = 1.8 V, DRVDD = 3.3 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference, and  
DCS enabled, unless otherwise noted.  
Table 5.  
Parameter  
Temperature  
Min  
Typ  
Max  
Unit  
DIFFERENTIAL CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
CMOS/LVDS/LVPECL  
Internal Common-Mode Bias  
Differential Input Voltage  
Input Voltage Range  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
1.2  
V
V p-p  
V
0.2  
6
AVDD + 1.6  
AVDD  
3.6  
0.8  
+10  
AGND − 0.3  
Input Common-Mode Range  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
1.1  
1.2  
0
−10  
−10  
V
V
V
μA  
μA  
pF  
kΩ  
+10  
4
10  
Input Resistance  
8
12  
SYNC INPUT  
Logic Compliance  
Internal Bias  
Input Voltage Range  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
CMOS  
1.2  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
V
AGND − 0.3  
1.2  
0
−10  
−10  
AVDD + 1.6  
3.6  
V
V
0.8  
V
+10  
+10  
μA  
μA  
pF  
kΩ  
4
10  
Input Resistance  
8
12  
LOGIC INPUT (CSB)1  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
−10  
40  
3.6  
0.6  
+10  
132  
V
V
μA  
μA  
kΩ  
pF  
26  
2
Input Capacitance  
LOGIC INPUT (SCLK/DFS)2  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current (VIN = 3.3 V)  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
−92  
−10  
3.6  
0.6  
−135  
+10  
V
V
μA  
μA  
kΩ  
pF  
26  
2
Input Capacitance  
LOGIC INPUTS/OUTPUTS (SDIO/DCS, SMI SDFS)1  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
−10  
38  
3.6  
0.6  
+10  
128  
V
V
μA  
μA  
kΩ  
pF  
26  
5
Input Capacitance  
LOGIC INPUTS/OUTPUTS (SMI SDO/OEB, SMI SCLK/PDWN)2  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current (VIN = 3.3 V)  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
−90  
−10  
3.6  
0.6  
−134  
+10  
V
V
μA  
μA  
kΩ  
pF  
26  
5
Input Capacitance  
Rev. B | Page 9 of 52  
 
AD9640  
Parameter  
Temperature  
Min  
Typ  
Max  
Unit  
DIGITAL OUTPUTS  
CMOS Mode—DRVDD = 3.3 V  
High Level Output Voltage (IOH = 50 μA)  
High Level Output Voltage (IOH = 0.5 mA)  
Low Level Output Voltage (IOL = 1.6 mA)  
Low Level Output Voltage (IOL = 50 μA)  
CMOS Mode—DRVDD = 1.8 V  
Full  
Full  
Full  
Full  
3.29  
3.25  
V
V
V
V
0.2  
0.05  
High Level Output Voltage (IOH = 50 μA)  
High Level Output Voltage (IOH = 0.5 mA)  
Low Level Output Voltage (IOL = 1.6 mA)  
Low Level Output Voltage (IOL = 50 μA)  
LVDS Mode—DRVDD = 1.8 V  
Full  
Full  
Full  
Full  
1.79  
1.75  
V
V
V
V
0.2  
0.05  
Differential Output Voltage (VOD), ANSI Mode  
Output Offset Voltage (VOS), ANSI Mode  
Differential Output Voltage (VOD), Reduced Swing Mode  
Output Offset Voltage (VOS), Reduced Swing Mode  
Full  
Full  
Full  
Full  
250  
1.15  
150  
1.15  
350  
1.25  
200  
1.25  
450  
1.35  
280  
1.35  
mV  
V
mV  
V
1 Pull up.  
2 Pull down.  
SWITCHING SPECIFICATIONS—AD9640ABCPZ-80, AD9640BCPZ-80, AD9640ABCPZ-105, AND  
AD9640BCPZ-105  
AVDD = 1.8 V, DVDD = 1.8 V, DRVDD = 3.3 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference,  
DCS enabled, unless otherwise noted.  
Table 6.  
AD9640ABCPZ-80  
AD9640BCPZ-80  
AD9640ABCPZ-105/  
AD9640BCPZ-105  
Parameter  
Temp  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
CLOCK INPUT PARAMETERS  
Input Clock Rate  
Full  
625  
625  
MHz  
Conversion Rate  
DCS Enabled1  
Full  
Full  
Full  
20  
10  
80  
80  
20  
10  
9.5  
105  
105  
MSPS  
MSPS  
ns  
DCS Disabled1  
CLK Period—Divide by 1 Mode (tCLK  
CLK Pulse Width High  
Divide by 1 Mode, DCS Enabled  
Divide by 1 Mode, DCS Disabled  
Divide by 2 Mode, DCS Enabled  
Divide by 3 Through 8, DCS Enabled  
DATA OUTPUT PARAMETERS (DATA, FD)  
CMOS Mode—DRVDD = 3.3 V  
)
12.5  
Full  
Full  
Full  
Full  
3.75  
5.63  
1.6  
6.25  
6.25  
8.75  
6.88  
2.85  
4.28  
1.6  
4.75  
4.75  
6.65  
5.23  
ns  
ns  
ns  
ns  
0.8  
0.8  
Data Propagation Delay (tPD)2  
DCO Propagation Delay (tDCO  
Setup Time (tS)  
Hold Time (tH)  
Full  
Full  
Full  
Full  
2.2  
3.8  
4.5  
5.0  
6.25  
5.75  
6.4  
6.8  
2.2  
3.8  
4.5  
5.0  
5.25  
4.25  
6.4  
6.8  
ns  
ns  
ns  
ns  
)
CMOS Mode—DRVDD = 1.8 V  
Data Propagation Delay (tPD)2  
Full  
Full  
2.4  
4.0  
5.2  
5.6  
6.9  
7.3  
2.4  
4.0  
5.2  
5.6  
6.9  
7.3  
ns  
ns  
DCO Propagation Delay (tDCO  
LVDS Mode—DRVDD = 1.8 V  
Data Propagation Delay (tPD)2  
)
Full  
Full  
3.0  
5.4  
3.7  
7.0  
4.4  
8.4  
3.0  
5.2  
3.7  
6.4  
4.4  
7.6  
ns  
ns  
DCO Propagation Delay (tDCO  
)
Rev. B | Page 10 of 52  
 
 
AD9640  
AD9640ABCPZ-80  
AD9640BCPZ-80  
AD9640ABCPZ-105/  
AD9640BCPZ-105  
Parameter  
Temp  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
CMOS Mode Pipeline Delay (Latency)  
LVDS Mode Pipeline Delay (Latency)  
Channel A/Channel B  
Full  
12  
12/12.5  
12  
12/12.5  
Cycles  
Cycles  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter, tJ)  
Wake-Up Time3  
Full  
Full  
Full  
Full  
1.0  
0.1  
350  
2
1.0  
0.1  
350  
2
ns  
ps rms  
μs  
OUT-OF-RANGE RECOVERY TIME  
Cycles  
1 Conversion rate is the clock rate after the divider.  
2 Output propagation delay is measured from CLK 50% transition to DATA 50% transition, with 5 pF load.  
3 Wake-up time is dependent on the value of the decoupling capacitors.  
SWITCHING SPECIFICATIONS—AD9640ABCPZ-125, AD9640BCPZ-125, AD9640ABCPZ-150, AND  
AD9640BCPZ-150  
AVDD = 1.8 V, DVDD = 1.8V, DRVDD = 3.3 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference, DCS  
enabled, unless otherwise noted.  
Table 7.  
AD9640ABCPZ-125/  
AD9640BCPZ-125  
AD9640ABCPZ-150/  
AD9640BCPZ-150  
Parameter  
Temperature Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
CLOCK INPUT PARAMETERS  
Input Clock Rate  
Full  
625  
625  
MHz  
Conversion Rate  
DCS Enabled1  
Full  
Full  
Full  
20  
10  
8
125  
125  
20  
10  
150  
150  
MSPS  
MSPS  
ns  
DCS Disabled1  
CLK Period—Divide by 1 Mode (tCLK  
CLK Pulse Width High  
Divide by 1 Mode, DCS Enabled  
Divide by 1 Mode, DCS Disabled  
Divide by 2 Mode, DCS Enabled  
Divide by 3 Through 8, DCS Enabled  
DATA OUTPUT PARAMETERS (DATA, FD)  
CMOS Mode—DRVDD = 3.3 V  
)
6.66  
Full  
Full  
Full  
Full  
2.4  
3.6  
1.6  
0.8  
4
4
5.6  
4.4  
2.0  
3.0  
1.6  
0.8  
3.33  
3.33  
4.66  
3.66  
ns  
ns  
ns  
ns  
Data Propagation Delay (tPD)2  
DCO Propagation Delay (tDCO  
Setup Time (tS)  
Hold Time (tH)  
Full  
Full  
Full  
Full  
2.2  
3.8  
4.5  
5.0  
4.5  
3.5  
6.4  
6.8  
2.2  
3.8  
4.5  
5.0  
3.83  
2.83  
6.4  
6.8  
ns  
ns  
ns  
ns  
)
CMOS Mode—DRVDD = 1.8 V  
Data Propagation Delay (tPD)2  
Full  
Full  
2.4  
4.0  
5.2  
5.6  
6.9  
7.3  
2.4  
4.0  
5.2  
5.6  
6.9  
7.3  
ns  
ns  
DCO Propagation Delay (tDCO  
LVDS Mode—DRVDD = 1.8 V  
Data Propagation Delay (tPD)2  
)
Full  
Full  
Full  
3.0  
5.0  
3.8  
4.5  
7.4  
3.0  
4.8  
3.8  
4.5  
7.3  
ns  
DCO Propagation Delay (tDCO  
)
6.2  
12  
12/12.5  
5.9  
12  
12/12.5  
ns  
Cycles  
Cycles  
CMOS Mode Pipeline Delay (Latency)  
LVDS Mode Pipeline Delay (Latency)  
Channel A/Channel B  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter, tJ)  
Wake-Up Time3  
Full  
Full  
Full  
Full  
1.0  
0.1  
350  
3
1.0  
0.1  
350  
3
ns  
ps rms  
μs  
OUT-OF-RANGE RECOVERY TIME  
Cycles  
1 Conversion rate is the clock rate after the divider.  
2 Output propagation delay is measured from CLK 50% transition to DATA 50% transition, with 5 pF load.  
3 Wake-up time is dependent on the value of the decoupling capacitors.  
Rev. B | Page 11 of 52  
 
 
 
AD9640  
TIMING SPECIFICATIONS  
Table 8.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SYNC TIMING REQUIREMENTS  
tSSYNC  
tHSYNC  
SYNC to rising edge of CLK setup time  
SYNC to rising edge of CLK hold time  
0.24  
0.40  
ns  
ns  
SPI TIMING REQUIREMENTS  
tDS  
tDH  
tCLK  
tS  
tH  
tHIGH  
tLOW  
tEN_SDIO  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the SCLK  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
SCLK pulse width high  
SCLK pulse width low  
Time required for the SDIO pin to switch from an input to an  
output relative to the SCLK falling edge  
2
2
40  
2
2
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDIS_SDIO  
Time required for the SDIO pin to switch from an output to  
an input relative to the SCLK rising edge  
10  
ns  
SPORT TIMING REQUIREMENTS  
tCSSCLK  
tSSCLKSDO  
tSSCLKSDFS  
Delay from rising edge of CLK+ to rising edge of SMI SCLK  
Delay from rising edge of SMI SCLK to SMI SDO  
Delay from rising edge of SMI SCLK to SMI SDFS  
3.2  
−0.4  
−0.4  
4.5  
0
0
6.2  
+0.4  
+0.4  
ns  
ns  
ns  
Timing Diagrams  
N + 2  
N + 1  
N + 3  
N
N + 4  
N + 8  
tA  
N + 5  
N + 6  
N + 7  
tCLK  
CLK+  
CLK–  
tPD  
CH A/B DATA  
N – 13  
N – 3  
N – 12  
N – 2  
N – 11  
N – 1  
N – 10  
N
N – 9  
N + 1  
N – 8  
N + 2  
N – 7  
N + 3  
N – 6  
N + 4  
N – 5  
N – 4  
N + 6  
CH A/B FAST  
DETECT  
N + 5  
tS  
tH  
tDCO  
tCLK  
DCOA/DCOB  
Figure 2. CMOS Output Mode Data and Fast Detect Output Timing (Fast Detect Mode 0)  
Rev. B | Page 12 of 52  
 
 
 
AD9640  
N + 2  
N + 1  
N + 3  
N
N + 4  
N + 8  
tA  
N + 5  
N + 7  
N + 6  
tCLK  
CLK+  
CLK–  
tPD  
CH A/CH B DATA  
A
B
A
B
A
B
A
B
A
A
B
A
B
A
B
A
B
A
B
B
A
N – 13  
N – 12  
N – 11  
N – 10  
N – 9  
N – 8  
N – 7  
N – 6  
N – 5  
N – 4  
A
CH A/CH B FAST  
DETECT  
A
B
A
B
A
B
A
B
B
A
B
A
B
A
B
A
N – 7  
N – 6  
N – 5  
N – 4  
N – 3  
tDCO  
N – 2  
N – 1  
tCLK  
N
N + 1  
N + 2  
DCO+  
DCO–  
Figure 3. LVDS Mode Data and Fast Detect Output Timing (Fast Detect Mode 1 Through Fast Detect Mode 5)  
CLK+  
tSSYNC  
tHSYNC  
SYNC  
Figure 4. SYNC Input Timing Requirements  
CLK+  
CLK–  
tCSSCLK  
SMI SCLK  
tSSCLKSDFS  
tSSCLKSDO  
SMI SDFS  
SMI SDO  
DATA  
DATA  
Figure 5. Signal Monitor SPORT Output Timing (Divide by 2 Mode)  
Rev. B | Page 13 of 52  
 
AD9640  
ABSOLUTE MAXIMUM RATINGS  
THERMAL CHARACTERISTICS  
Table 9.  
The exposed paddle must be soldered to the ground plane for  
the LFCSP package. Soldering the exposed paddle to the customer  
board increases the reliability of the solder joints and maximizes  
the thermal capability of the package.  
Parameter  
Rating  
ELECTRICAL  
AVDD, DVDD to AGND  
DRVDD to DRGND  
AGND to DRGND  
AVDD to DRVDD  
VIN+A/VIN+B, VIN−A/VIN−B to AGND  
CLK+, CLK− to AGND  
SYNC to AGND  
VREF to AGND  
SENSE to AGND  
CML to AGND  
−0.3 V to +2.0 V  
−0.3 V to +3.9 V  
−0.3 V to +0.3 V  
−3.9 V to +2.0 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to +3.9 V  
−0.3 V to +3.9 V  
−0.3V to AVDD + 0.2 V  
−0.3V to AVDD + 0.2 V  
−0.3V to AVDD + 0.2 V  
−0.3V to AVDD + 0.2 V  
−0.3 V to +3.9 V  
Table 10. Thermal Resistance  
Airflow  
Velocity  
(m/s)  
Package  
Type  
1, 2  
1, 3  
1, 4  
θJA  
θJC  
0.6  
θJB  
Unit  
°C/W  
°C/W  
°C/W  
64-lead LFCSP  
9 mm × 9 mm  
0
18.8  
16.5  
15.8  
6.0  
1.0  
2.0  
1 JEDEC 51-7, plus JEDEC 25-5 2S2P test board.  
2 Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).  
3 Per MIL-Std 883, Method 1012.1.  
RBIAS to AGND  
CSB to AGND  
4 Per JEDEC JESD51-8 (still air).  
SCLK/DFS to DRGND  
SDIO/DCS to DRGND  
SMI SDO/OEB  
SMI SCLK/PDWN  
SMI SDFS  
−0.3 V to +3.9 V  
Typical θJA is specified for a 4-layer PCB with a solid ground  
plane. As shown, airflow improves heat dissipation, which  
reduces θJA. In addition, metal in direct contact with the  
package leads from metal traces, through holes, ground, and  
power planes, reduces the θJA.  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
D0A/D0B through D13A/D13B to  
DRGND  
ESD CAUTION  
FD0A/FD0B through FD3A/FD3B to  
DRGND  
DCOA/DCOB to DRGND  
ENVIRONMENTAL  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
Operating Temperature Range  
(Ambient)  
Maximum Junction Temperature  
Under Bias  
−40°C to +85°C  
150°C  
Storage Temperature Range  
(Ambient)  
−65°C to +150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. B | Page 14 of 52  
 
 
 
 
AD9640  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
PIN 1  
DRVDD  
D6B  
D7B  
D8B  
D9B  
D10B  
D11B  
D12B  
1
2
3
4
5
6
7
8
9
INDICATOR  
48 SCLK/DFS  
47 SDIO/DCS  
46 AVDD  
45 AVDD  
44 VIN+B  
43 VIN–B  
42 RBIAS  
41 CML  
40 SENSE  
39 VREF  
EXPOSED PADDLE, PIN 0  
(BOTTOM OF PACKAGE)  
AD9640  
PARALLEL CMOS  
TOP VIEW  
D13B (MSB)  
DCOB 10  
DCOA 11  
D0A (LSB) 12  
D1A 13  
38 VIN–A  
37 VIN+A  
36 AVDD  
(Not to Scale)  
D2A 14  
D3A 15  
D4A 16  
35 SMI SDFS  
34 SMI SCLK/PDWN  
33 SMI SDO/OEB  
NOTES  
1. NC = NO CONNECT.  
2. THE EXPOSED THERMAL PAD ON THE BOTTOM OF THE PACKAGE PROVIDES THE  
ANALOG GROUND FOR THE PART. THIS EXPOSED PAD MUST BE CONNECTED TO  
GROUND FOR PROPER OPERATION.  
Figure 6. Pin Configuration, LFCSP Parallel CMOS (Top View)  
Table 11. Pin Function Descriptions (Parallel CMOS Mode)  
Pin No.  
Mnemonic  
Type  
Description  
ADC Power Supplies  
20, 64  
1, 21  
24, 57  
36, 45, 46  
0
DRGND  
Ground  
Supply  
Supply  
Supply  
Ground  
Digital Output Ground.  
DRVDD  
DVDD  
AVDD  
AGND,  
Exposed Pad  
Digital Output Driver Supply (1.8 V to 3.3 V).  
Digital Power Supply (1.8 V Nominal).  
Analog Power Supply (1.8 V Nominal).  
The exposed thermal pad on the bottom of the package provides the analog ground  
for the part. This exposed pad must be connected to ground for proper operation.  
ADC Analog  
37  
38  
44  
43  
39  
40  
42  
41  
49  
50  
VIN+A  
VIN−A  
VIN+B  
VIN−B  
VREF  
SENSE  
RBIAS  
CML  
Input  
Input  
Input  
Input  
Differential Analog Input Pin (+) for Channel A.  
Differential Analog Input Pin (−) for Channel A.  
Differential Analog Input Pin (+) for Channel B.  
Differential Analog Input Pin (−) for Channel B.  
Input/Output Voltage Reference Input/Output.  
Input  
Input/Output External Reference Bias Resistor.  
Output  
Input  
Voltage Reference Mode Select. See Table 14 for details.  
Common Mode Level Bias Output for Analog Inputs.  
ADC Clock Input—True.  
ADC Clock Input—Complement.  
CLK+  
CLK−  
Input  
Rev. B | Page 15 of 52  
 
AD9640  
Pin No.  
Mnemonic  
Type  
Description  
ADC Fast Detect Outputs  
29  
30  
31  
32  
53  
54  
55  
56  
FD0A  
FD1A  
FD2A  
FD3A  
FD0B  
FD1B  
FD2B  
FD3B  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Channel A Fast Detect Indicator. See Table 18 for details.  
Channel A Fast Detect Indicator. See Table 18 for details.  
Channel A Fast Detect Indicator. See Table 18 for details.  
Channel A Fast Detect Indicator. See Table 18 for details.  
Channel B Fast Detect Indicator. See Table 18 for details.  
Channel B Fast Detect Indicator. See Table 18 for details.  
Channel B Fast Detect Indicator. See Table 18 for details.  
Channel B Fast Detect Indicator. See Table 18 for details.  
Digital Inputs  
52  
SYNC  
Input  
Digital Synchronization Pin. Slave mode only.  
Digital Outputs  
12  
13  
14  
15  
16  
17  
18  
19  
22  
23  
25  
26  
27  
28  
58  
59  
60  
61  
62  
63  
2
3
4
5
6
7
8
9
11  
10  
D0A (LSB)  
D1A  
D2A  
D3A  
D4A  
D5A  
D6A  
D7A  
D8A  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel A Data Clock Output.  
Channel B Data Clock Output.  
D9A  
D10A  
D11A  
D12A  
D13A (MSB)  
D0B (LSB)  
D1B  
D2B  
D3B  
D4B  
D5B  
D6B  
D7B  
D8B  
D9B  
D10B  
D11B  
D12B  
D13B (MSB)  
DCOA  
DCOB  
SPI Control  
48  
47  
51  
SCLK/DFS  
SDIO/DCS  
CSB  
Input  
SPI Serial Clock/Data Format Select Pin in External Pin Mode.  
Input/Output SPI Serial Data I/O/Duty Cycle Stabilizer in External Pin Mode.  
Input SPI Chip Select (Active Low).  
Serial Port  
33  
35  
34  
SMI SDO/OEB  
SMI SDFS  
Input/Output Signal Monitor Serial Data Output/Output Enable Input (Active Low) in External Pin Mode.  
Output Signal Monitor Serial Data Frame Sync.  
SMI SCLK/PDWN Input/Output Signal Monitor Serial Clock Output/Power-Down Input in External Pin Mode.  
Rev. B | Page 16 of 52  
AD9640  
PIN 1  
DRVDD  
D1–  
1
2
3
4
5
6
7
8
9
INDICATOR  
48 SCLK/DFS  
47 SDIO/DCS  
46 AVDD  
45 AVDD  
44 VIN+B  
43 VIN–B  
42 RBIAS  
41 CML  
40 SENSE  
39 VREF  
38 VIN–A  
37 VIN+A  
36 AVDD  
35 SMI SDFS  
34 SMI SCLK/PDWN  
33 SMI SDO/OEB  
D1+  
D2–  
D2+  
D3–  
D3+  
D4–  
D4+  
DCO– 10  
DCO+ 11  
D5– 12  
D5+ 13  
D6– 14  
D6+ 15  
D7– 16  
EXPOSED PADDLE, PIN 0  
(BOTTOM OF PACKAGE)  
AD9640  
PARALLEL LVDS  
TOP VIEW  
(Not to Scale)  
NOTES  
1. NC = NO CONNECT.  
2. THE EXPOSED THERMAL PAD ON THE BOTTOM OF THE PACKAGE PROVIDES  
THE ANALOG GROUND FOR THE PART. THIS EXPOSED PAD MUST BE  
CONNECTED TO GROUND FOR PROPER OPERATION.  
Figure 7. Pin Configuration, LFCSP LVDS (Top View)  
Table 12. Pin Function Descriptions (Interleaved Parallel LVDS Mode)  
Pin No.  
Mnemonic  
Type  
Function  
ADC Power Supplies  
20, 64  
1, 21  
DRGND  
DRVDD  
DVDD  
Ground  
Supply  
Supply  
Supply  
Ground  
Digital Output Ground.  
Digital Output Driver Supply (1.8 V to 3.3 V).  
Digital Power Supply (1.8 V Nominal).  
Analog Power Supply (1.8 V Nominal).  
24, 57  
36, 45, 46 AVDD  
0
AGND,  
Exposed Pad  
The exposed thermal pad on the bottom of the package provides the analog ground for the  
part. This exposed pad must be connected to ground for proper operation.  
ADC Analog  
37  
38  
44  
43  
39  
40  
42  
41  
49  
50  
VIN+A  
VIN−A  
VIN+B  
VIN−B  
VREF  
SENSE  
RBIAS  
CML  
Input  
Input  
Input  
Input  
Differential Analog Input Pin (+) for Channel A.  
Differential Analog Input Pin (−) for Channel A.  
Differential Analog Input Pin (+) for Channel B.  
Differential Analog Input Pin (−) for Channel B.  
Input/Output Voltage Reference Input/Output.  
Input  
Input/Output External Reference Bias Resistor.  
Output  
Input  
Voltage Reference Mode Select. See Table 14 for details.  
Common-Mode Level Bias Output for Analog Inputs.  
ADC Clock Input—True.  
ADC Clock Input—Complement.  
CLK+  
CLK−  
Input  
ADC Fast Detect Outputs  
54  
53  
56  
55  
59  
58  
61  
60  
FD0+  
FD0−  
FD1+  
FD1−  
FD2+  
FD2−  
FD3+  
FD3−  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Channel A/Channel B LVDS Fast Detect Indicator 0—True. See Table 18 for details.  
Channel A/Channel B LVDS Fast Detect Indicator 0—Complement. See Table 18 for details.  
Channel A/Channel B LVDS Fast Detect Indicator 1—True. See Table 18 for details.  
Channel A/Channel B LVDS Fast Detect Indicator 1—Complement. See Table 18 for details.  
Channel A/Channel B LVDS Fast Detect Indicator 2—True. See Table 18 for details.  
Channel A/Channel B LVDS Fast Detect Indicator 2—Complement. See Table 18 for details.  
Channel A/Channel B LVDS Fast Detect Indicator 3—True. See Table 18 for details.  
Channel A/Channel B LVDS Fast Detect Indicator 3—Complement. See Table 18 for details.  
Rev. B | Page 17 of 52  
AD9640  
Pin No.  
Mnemonic  
Type  
Function  
Digital Inputs  
52  
SYNC  
Input  
Digital Synchronization Pin. Slave mode only.  
Digital Outputs  
63  
62  
3
2
5
4
7
6
D0+ (LSB)  
D0− (LSB)  
D1+  
D1−  
D2+  
D2−  
D3+  
D3−  
D4+  
D4−  
D5+  
D5−  
D6+  
D6−  
D7+  
D7−  
D8+  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Channel A/Channel B LVDS Output Data 0—True.  
Channel A/Channel B LVDS Output Data 0—Complement.  
Channel A/Channel B LVDS Output Data 1—True.  
Channel A/Channel B LVDS Output Data 1—Complement.  
Channel A/Channel B LVDS Output Data 2—True.  
Channel A/Channel B LVDS Output Data 2—Complement.  
Channel A/Channel B LVDS Output Data 3—True.  
Channel A/Channel B LVDS Output Data 3—Complement.  
Channel A/Channel B LVDS Output Data 4—True.  
Channel A/Channel B LVDS Output Data 4—Complement.  
Channel A/Channel B LVDS Output Data 5—True.  
Channel A/Channel B LVDS Output Data 5—Complement.  
Channel A/Channel B LVDS Output Data 6 —True.  
Channel A/Channel B LVDS Output Data 6—Complement.  
Channel A/Channel B LVDS Output Data 7—True.  
Channel A/Channel B LVDS Output Data 7—Complement.  
Channel A/Channel B LVDS Output Data 8—True.  
9
8
13  
12  
15  
14  
17  
16  
19  
18  
23  
22  
26  
25  
28  
27  
30  
29  
32  
31  
11  
10  
SPI Control  
48  
47  
51  
D8−  
D9+  
D9−  
Channel A/Channel B LVDS Output Data 8—Complement.  
Channel A/Channel B LVDS Output Data 9—True.  
Channel A/Channel B LVDS Output Data 9—Complement.  
Channel A/Channel B LVDS Output Data 10—True.  
Channel A/Channel B LVDS Output Data 10—Complement.  
Channel A/Channel B LVDS Output Data 11—True.  
Channel A/Channel B LVDS Output Data 11—Complement.  
Channel A/Channel B LVDS Output Data 12—True.  
Channel A/Channel B LVDS Output Data 12—Complement.  
Channel A/Channel B LVDS Output Data 13—True.  
Channel A/Channel B LVDS Output Data 13—Complement.  
Channel A/Channel B LVDS Data Clock Output—True.  
Channel A/Channel B LVDS Data Clock Output—Complement.  
D10+  
D10−  
D11+  
D11−  
D12+  
D12−  
D13+ (MSB)  
D13− (MSB)  
DCO+  
DCO−  
SCLK/DFS  
SDIO/DCS  
CSB  
Input  
SPI Serial Clock/Data Format Select Pin in External Pin Mode.  
Input/Output SPI Serial Data I/O/Duty Cycle Stabilizer in External Pin Mode.  
Input SPI Chip Select (Active Low).  
Signal Monitor Ports  
33  
35  
34  
SMI SDO/OEB  
SMI SDFS  
Input/Output Signal Monitor Serial Data Output/Output Enable Input (Active Low) in External Pin Mode.  
Output Signal Monitor Serial Data Frame Sync.  
SMI SCLK/PDWN Input/Output Signal Monitor Serial Clock Output/Power-Down Input in External Pin Mode.  
Rev. B | Page 18 of 52  
AD9640  
EQUIVALENT CIRCUITS  
DVDD  
1k  
26kΩ  
SCLK/DFS  
VIN  
Figure 8. Equivalent Analog Input Circuit  
Figure 12. Equivalent SCLK/DFS Input Circuit  
AVDD  
1k  
1.2V  
SENSE  
10kΩ  
10kΩ  
CLK+  
CLK–  
Figure 13. Equivalent SENSE Circuit  
Figure 9. Equivalent Clock Input Circuit  
DRVDD  
DVDD  
DVDD  
26k  
1kΩ  
CSB  
DRGND  
Figure 10. Digital Output  
Figure 14. Equivalent CSB Input Circuit  
DRVDD  
DVDD  
AVDD  
26kΩ  
DVDD  
1kΩ  
VREF  
SDIO/DCS  
6k  
DRVDD  
Figure 11. Equivalent SDIO/DCS or SMI SDFS Circuit  
Figure 15. Equivalent VREF Circuit  
Rev. B | Page 19 of 52  
 
 
AD9640  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD = 1.8 V; DVDD = 1.8 V; DRVDD = 3.3 V; sample rate = 150 MSPS, DCS enabled, 1 V internal reference;  
2 V p-p differential input; VIN = −1.0 dBFS; and 64k sample; TA = 25°C, unless otherwise noted.  
0
0
150MSPS  
150MSPS  
2.3MHz @ –1dBFS  
SNR = 71.9dBc (72.9dBFS)  
ENOB = 11.8 BITS  
SFDR = 86dBc  
140.3MHz @ –1dBFS  
SNR = 70.9dBc (71.9dBFS)  
ENOB = 11.6 BITS  
SFDR = 85.1dBc  
–20  
–20  
–40  
–40  
–60  
–60  
SECOND HARMONIC  
THIRD HARMONIC  
SECOND HARMONIC  
THIRD HARMONIC  
–80  
–80  
–100  
–120  
–100  
–120  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 16. AD9640-150 Single-Tone FFT with fIN = 2.3 MHz  
Figure 19. AD9640-150 Single-Tone FFT with fIN = 140.3 MHz  
0
0
150MSPS  
150MSPS  
30.3MHz @ –1dBFS  
SNR = 71.7dBc (72.7dBFS)  
ENOB = 11.8 BITS  
SFDR = 89.9dBc  
200.3MHz @ –1dBFS  
SNR = 70dBc (71dBFS)  
ENOB = 11.5 BITS  
SFDR = 80dBc  
–20  
–20  
–40  
–60  
–40  
SECOND HARMONIC  
–60  
SECOND HARMONIC  
THIRD HARMONIC  
THIRD HARMONIC  
–80  
–80  
–100  
–120  
–100  
–120  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 17. AD9640-150 Single-Tone FFT with fIN = 30.3 MHz  
Figure 20. AD9640-150 Single-Tone FFT with fIN = 200.3 MHz  
0
0
150MSPS  
150MSPS  
70MHz @ –1dBFS  
337MHz @ –1dBFS  
SNR = 71.5dBc (72.5dBFS)  
ENOB = 11.7 BITS  
SNR = 68dBc (69dBFS)  
ENOB = 11 BITS  
–20  
–20  
SFDR = 84dBc  
SFDR = 72.4dB  
–40  
–40  
THIRD HARMONIC  
–60  
–60  
SECOND HARMONIC  
THIRD HARMONIC  
SECOND HARMONIC  
–80  
–80  
–100  
–120  
–100  
–120  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 18. AD9640-150 Single-Tone FFT with fIN = 70 MHz  
Figure 21. AD9640-150 Single-Tone FFT with fIN = 337 MHz  
Rev. B | Page 20 of 52  
 
 
AD9640  
0
–20  
0
–20  
150MSPS  
125MSPS  
440MHz @ –1dBFS  
SNR = 65dBc (66dBFS)  
ENOB = 10.4 BITS  
SFDR = 70.0dB  
70MHz @ –1dBFS  
SNR = 71.8dBc (72.8dBFS)  
ENOB = 11.7 BITS  
SFDR = 85dBc  
–40  
–40  
SECOND HARMONIC  
THIRD HARMONIC  
–60  
–60  
THIRD HARMONIC  
SECOND HARMONIC  
–80  
–80  
–100  
–120  
–100  
–120  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 22. AD9640-150 Single-Tone FFT with fIN = 440 MHz  
Figure 25. AD9640-125 Single-Tone FFT with fIN = 70 MHz  
0
0
125 MSPS  
125 MSPS  
2.3MHz @ –1dBFS  
SNR = 72.3dBc (73.3dBFS)  
ENOB = 11.8 BITS  
SFDR = 88.4dBc  
140MHz @ –1dBFS  
SNR = 71.4dBc (72.4dBFS)  
ENOB = 11.7 BITS  
SFDR = 87.1dBc  
–20  
–20  
–40  
–60  
–40  
–60  
SECOND HARMONIC  
THIRD HARMONIC  
SECOND HARMONIC  
THIRD HARMONIC  
–80  
–80  
–100  
–120  
–100  
–120  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 23. AD9640-125 Single-Tone FFT with fIN = 2.3 MHz  
Figure 26. AD9640-125 Single-Tone FFT with fIN = 140 MHz  
0
0
125 MSPS  
125 MSPS  
30.3MHz @ –1dBFS  
SNR = 72.1dBc (73.1dBFS)  
ENOB = 11.8 BITS  
SFDR = 89.1dBc  
200MHz @ –1dBFS  
SNR = 70.8dBc (71.8dBFS)  
ENOB = 11.6 BITS  
SFDR = 80.5dBc  
–20  
–20  
–40  
–60  
–40  
–60  
THIRD HARMONIC  
THIRD HARMONIC  
SECOND HARMONIC  
SECOND HARMONIC  
–80  
–80  
–100  
–120  
–100  
–120  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 24. AD9640-125 Single-Tone FFT with fIN = 30.3 MHz  
Figure 27. AD9640-125 Single-Tone FFT with fIN = 200 MHz  
Rev. B | Page 21 of 52  
AD9640  
120  
100  
80  
95  
90  
85  
80  
75  
70  
65  
60  
SFDR (dBFS)  
SNR (dBFS)  
SFDR = +25°C  
SFDR = –40°C  
60  
SFDR = +85°C  
SFDR (dBc)  
40  
SNR = –40°C  
SNR = +25°C  
SNR (dBc)  
20  
85dB REFERENCE LINE  
SNR = +85°C  
200 250  
INPUT FREQUENCY (MHz)  
0
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
0
50  
100  
150  
300  
350  
400  
450  
INPUT AMPLITUDE (dBFS)  
Figure 31. AD9640-150 Single-Tone SNR/SFDR vs.  
Figure 28. AD9640-150 Single-Tone SNR/SFDR vs. Input Amplitude (AIN  
)
Input Frequency (fIN) and Temperature with 1 V p-p Full Scale  
with fIN = 2.3 MHz  
120  
0.8  
0.6  
SFDR (dBFS)  
100  
0.4  
0.2  
OFFSET  
80  
60  
40  
20  
0
SNR (dBFS)  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
SFDR (dBc)  
SNR (dBc)  
GAIN  
60  
85dB REFERENCE LINE  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
–40  
–20  
0
20  
40  
80  
INPUT AMPLITUDE (dBFS)  
TEMPERATURE (°C)  
Figure 29. AD9640-150 Single-Tone SFDR vs. Input Amplitude with  
fIN = 98.12 MHz  
Figure 32. AD9640 Gain and Offset vs. Temperature  
95  
0
–20  
90  
SFDR = +25°C  
SFDR (dBc)  
85  
–40  
SFDR = –40°C  
80  
IMD3 (dBc)  
–60  
SFDR = +85°C  
SNR = –40°C  
75  
–80  
70  
SFDR (dBFS)  
SNR = +25°C  
–100  
–120  
65  
SNR = +85°C  
IMD3 (dBFS)  
–42 –30  
INPUT AMPLITUDE (dBFS)  
60  
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
–90  
–78  
–66  
–54  
–18  
–6  
INPUT FREQUENCY (MHz)  
Figure 30. AD9640-150 Single-Tone SNR/SFDR vs.  
Input Frequency (fIN) and Temperature with 2 V p-p Full Scale  
Figure 33. AD9640-150 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN  
)
with fIN1 = 29.1 MHz, fIN2 = 32.1 MHz, fS = 150 MSPS  
Rev. B | Page 22 of 52  
AD9640  
0
–20  
0
–20  
150 MSPS  
169.1MHz @–7dBFS  
172.1MHz @–7dBFS  
SFDR = 83.8dBc (90.8dBFS)  
SFDR (dBc)  
–40  
–40  
–60  
–60  
IMD3 (dBc)  
IMD3 (dBFS)  
–80  
–80  
SFDR (dBFS)  
–100  
–100  
–120  
–120  
–90  
–78  
–66  
–54  
–42  
–30  
–18  
–6  
0
10  
20  
30  
40  
50  
60  
70  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 34. AD9640-150 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN  
)
Figure 37. AD9640-150 Two-Tone FFT with fIN1 = 169.1 MHz and  
fIN2 = 172.1 MHz  
with fIN1 = 169.1 MHz, fIN2 = 172.1 MHz, fS = 150 MSPS  
0
–20  
0
NPR = 64.7dBc  
NOTCH @ 18.5MHz  
NOTCH WIDTH = 3MHz  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
15.625  
31.25  
46.875  
0
15.36  
30.72  
46.08  
61.44  
0
62.5  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 35. AD9640-125, Two 64 k WCDMA Carriers  
with fIN = 170 MHz, fS = 122.88 MSPS  
Figure 38. AD9640 Noise Power Ratio (NPR)  
0
–20  
100  
95  
90  
85  
80  
75  
70  
150 MSPS  
29.1MHz @–7dBFS  
32.1MHz @–7dBFS  
SFDR = 86.1dBc (93dBFS)  
SFDR—SIDE A  
–40  
–60  
SFDR—SIDE B  
–80  
SNR—SIDE B  
SNR—SIDE A  
–100  
–120  
0
10  
20  
30  
40  
50  
60  
70  
0
25  
50  
75  
100  
125  
150  
FREQUENCY (MHz)  
CLOCK FREQUENCY (Msps)  
Figure 36. AD9640-150 Two-Tone FFT with fIN1 = 29.1 MHz and fIN2 = 32.1 MHz  
Figure 39. AD9640-125 Single-Tone SNR/SFDR vs. Clock Frequency (fS)  
with fIN = 2.3 MHz  
Rev. B | Page 23 of 52  
AD9640  
10  
100  
95  
90  
85  
80  
75  
70  
65  
60  
1.3 LSB rms  
SFDR DCS ON  
8
SFDR DCS OFF  
6
SNR DCS ON  
4
2
SNR DCS OFF  
60  
0
N – 4 N – 3 N – 2 N – 1  
N
N + 1 N + 2 N + 3 N + 4  
20  
80  
40  
OUTPUT CODE  
DUTY CYCLE (%)  
Figure 40. AD9640 Grounded Input Histogram  
Figure 43. AD9640 SNR/SFDR vs. Duty Cycle with fIN = 10.3 MHz  
2.0  
1.5  
90  
SFDR  
1.0  
85  
80  
75  
0.5  
0
–0.5  
–1.0  
–1.5  
SNR  
–2.0  
0
70  
0.5  
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
1.3  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
OUTPUT CODE  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 41. AD9640 INL with fIN = 10.3 MHz  
Figure 44. AD9640 SNR/SFDR vs. Input Common Mode Voltage (VCM)  
with fIN = 30 MHz  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4.  
–0.5  
0
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
OUTPUT CODE  
Figure 42. AD9640 DNL with fIN = 10.3 MHz  
Rev. B | Page 24 of 52  
 
 
AD9640  
THEORY OF OPERATION  
A small resistor in series with each input can help reduce the  
The AD9640 dual ADC design can be used for diversity reception  
of signals, where the ADCs are operating identically on the same  
carrier but from two separate antennae. The ADCs can also be  
operated with independent analog inputs. The user can sample  
any fS/2 frequency segment from dc to 200 MHz using appropriate  
low-pass or band-pass filtering at the ADC inputs with little loss  
in ADC performance. Operation to 450 MHz analog input is  
permitted but occurs at the expense of increased ADC distortion.  
peak transient current required from the output stage of the  
driving source. A shunt capacitor can be placed across the  
inputs to provide dynamic charging currents. This passive  
network creates a low-pass filter at the ADC input; therefore,  
the precise values are dependent on the application.  
In intermediate frequency (IF) undersampling applications,  
any shunt capacitors should be reduced. In combination with  
the driving source impedance, they limit the input bandwidth.  
See the AN-742 Application Note, Frequency Domain Response  
of Switched-Capacitor ADCs; the AN-827 Application Note, A  
Resonant Approach to Interfacing Amplifiers to Switched-Capacitor  
ADCs; and the Analog Dialogue article, “Transformer-Coupled  
Front-End for Wideband A/D Converters” for more information  
on this subject.  
In nondiversity applications, the AD9640 can be used as a base-  
band receiver, where one ADC is used for I input data and the  
other is used for Q input data.  
Synchronizaton capability is provided to allow synchronized  
timing between multiple channels or multiple devices.  
Programming and control of the AD9640 are accomplished  
using a 3-bit SPI-compatible serial interface.  
S
ADC ARCHITECTURE  
C
H
S
S
The AD9640 architecture consists of a dual front-end sample-  
and-hold amplifier (SHA), followed by a pipelined, switched  
capacitor ADC. The quantized outputs from each stage are  
combined into a final 14-bit result in the digital correction  
logic. The pipelined architecture permits the first stage to  
operate on a new input sample, and the remaining stages  
operate on preceding samples. Sampling occurs on the rising  
edge of the clock.  
C
C
S
VIN+  
C
PIN, PAR  
H
S
VIN–  
C
C
H
PIN, PAR  
S
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched capacitor digital-  
to-analog converter (DAC) and an interstage residue amplifier  
(MDAC). The residue amplifier magnifies the difference between  
the reconstructed DAC output and the flash input for the next  
stage in the pipeline. One bit of redundancy is used in each stage  
to facilitate digital correction of flash errors. The last stage  
simply consists of a flash ADC.  
Figure 45. Switched-Capacitor SHA Input  
For best dynamic performance, the source impedances driving  
VIN+ and VIN− should be matched.  
An internal differential reference buffer creates positive and  
negative reference voltages that define the input span of the ADC  
core. The span of the ADC core is set by the buffer to 2 × VREF.  
Input Common Mode  
The input stage of each channel contains a differential SHA that  
can be ac- or dc-coupled in differential or single-ended modes.  
The output staging block aligns the data, carries out error correc-  
tion, and passes the data to the output buffers. The output buffers  
are powered from a separate supply, allowing adjustment of the  
output voltage swing. During power-down, the output buffers go  
into a high impedance state.  
The analog inputs of the AD9640 are not internally dc biased.  
In ac-coupled applications, the user must provide this bias  
externally. Setting the device so that VCM = 0.55 × AVDD  
is recommended for optimum performance, but the device  
functions over a wider range with reasonable performance  
(see Figure 44). An on-board common-mode voltage reference  
is included in the design and is available from the CML pin.  
Optimum performance is achieved when the common-mode  
voltage of the analog input is set by the CML pin voltage  
(typically 0.55 × AVDD). The CML pin must be decoupled to  
ground by a 0.1 μF capacitor, as described in the Applications  
Information section.  
ANALOG INPUT CONSIDERATIONS  
The analog input to the AD9640 is a differential switched  
capacitor SHA that has been designed for optimum performance  
while processing a differential input signal.  
The clock signal alternatively switches the SHA between sample  
mode and hold mode (see Figure 45). When the SHA is switched  
into sample mode, the signal source must be capable of charging  
the sample capacitors and settling within ½ of a clock cycle.  
Differential Input Configurations  
Optimum performance is achieved while driving the AD9640  
in a differential input configuration. For baseband applications,  
the AD8138 differential driver provides excellent performance  
and a flexible interface to the ADC.  
Rev. B | Page 25 of 52  
 
 
 
 
AD9640  
The output common-mode voltage of the AD8138 is easily set  
with the CML pin of the AD9640 (see Figure 46), and the driver  
can be configured in a Sallen-Key filter topology to provide  
band limiting of the input signal.  
An alternative to using a transformer coupled input at frequencies  
in the second Nyquist zone is to use the AD8352 differential  
driver. An example is shown in Figure 50. See the AD8352 data  
sheet for more information.  
499  
In any configuration, the value of Shunt Capacitor C is dependent  
on the input frequency and source impedance and may need to  
be reduced or removed. Table 13 displays recommended values to  
set the RC network. However, these values are dependent on the  
input signal and should be used only as a starting guide.  
R
1V p-p  
VIN+  
49.9Ω  
AVDD  
499Ω  
523Ω  
C
AD9640  
AD8138  
0.1µF  
R
CML  
VIN–  
499Ω  
Table 13. Example RC Network  
Figure 46. Differential Input Configuration Using the AD8138  
R Series  
Frequency Range (MHz)  
0 to 70  
70 to 200  
200 to 300  
>300  
(Ω Each)  
C Differential (pF)  
For baseband applications where SNR is a key parameter,  
differential transformer coupling is the recommended input  
configuration. An example is shown in Figure 47. To bias the  
analog input, the CML voltage can be connected to the center  
tap of the transformers secondary winding.  
33  
33  
15  
15  
15  
5
5
Open  
R
VIN+  
Single-Ended Input Configuration  
49.9  
C
2V p-p  
AD9640  
A single-ended input can provide adequate performance in cost  
sensitive applications. In this configuration, SFDR and distortion  
performance degrade due to the large input common-mode swing.  
If the source impedances on each input are matched, there should  
be little effect on SNR performance. Figure 48 details a typical  
single-ended input configuration.  
R
CML  
VIN–  
0.1µF  
Figure 47. Differential Transformer-Coupled Configuration  
The signal characteristics must be considered when selecting  
a transformer. Most RF transformers saturate at frequencies  
below a few MHz, and excessive signal power can also cause  
core saturation, which leads to distortion.  
AVDD  
10µF  
1kΩ  
R
VIN+  
0.1µF  
49.9Ω  
1kΩ  
AVDD  
1V p-p  
AD9640  
C
At input frequencies in the second Nyquist zone and above, the  
noise performance of most amplifiers is not adequate to achieve  
the true SNR performance of the AD9640. For applications where  
SNR is a key parameter, differential double balun coupling is the  
recommended input configuration (see Figure 49 for an example).  
1kΩ  
R
VIN–  
10µF  
1kΩ  
0.1µF  
Figure 48. Single-Ended Input Configuration  
0.1µF  
0.1µF  
R
R
VIN+  
2V p-p  
25  
25Ω  
P
A
S
S
P
C
AD9640  
0.1µF  
0.1µF  
CML  
VIN–  
Figure 49. Differential Double Balun Input Configuration  
V
CC  
0.1µF  
0.1µF  
0  
16  
1
8, 13  
11  
ANALOG INPUT  
0.1µF  
0.1µF  
R
R
VIN+  
2
200Ω  
200Ω  
AD8352  
10  
R
D
R
C
AD9640  
C
G
D
3
4
5
CML  
VIN–  
14  
0.1µF  
ANALOG INPUT  
0Ω  
0.1µF  
0.1µF  
Figure 50. Differential Input Configuration Using the AD8352  
Rev. B | Page 26 of 52  
 
 
 
 
 
 
AD9640  
VIN+A/VIN+B  
VIN–A/VIN–B  
VOLTAGE REFERENCE  
A stable and accurate voltage reference is built into the AD9640.  
The input range can be adjusted by varying the reference voltage  
applied to the AD9640, using either the internal reference or an  
externally applied reference voltage. The input span of the ADC  
tracks reference voltage changes linearly. The various reference  
modes are summarized in the next few sections. The Reference  
Decoupling section describes the best practices PCB layout of  
the reference.  
ADC  
CORE  
VREF  
0.1µF  
1.0µF  
R2  
SELECT  
LOGIC  
SENSE  
Internal Reference Connection  
0.5V  
R1  
A comparator within the AD9640 detects the potential at the  
SENSE pin and configures the reference into four possible  
modes, which are summarized in Table 14. If SENSE is grounded,  
the reference amplifier switch is connected to the internal  
resistor divider (see Figure 51), setting VREF to 1 V. Connecting  
the SENSE pin to VREF switches the reference amplifier output  
to the SENSE pin, completing the loop and providing a 0.5 V  
reference output. If a resistor divider is connected external to  
the chip, as shown in Figure 52, the switch again sets to the  
SENSE pin. This puts the reference amplifier in a noninverting  
mode with the VREF output defined as  
AD9640  
Figure 52. Programmable Reference Configuration  
If the internal reference of the AD9640 is used to drive multiple  
converters to improve gain matching, the loading of the reference  
by the other converters must be considered. Figure 53 shows  
how the internal reference voltage is affected by loading.  
0
VREF = 0.5V  
–0.25  
R2  
R1  
VREF = 1V  
VREF = 0.5× 1+  
–0.50  
The input range of the ADC always equals twice the voltage at  
the reference pin for either an internal or an external reference.  
–0.75  
–1.00  
–1.25  
VIN+A/VIN+B  
VIN–A/VIN–B  
ADC  
CORE  
0
0.5  
1.0  
1.5  
2.0  
LOAD CURRENT (mA)  
VREF  
Figure 53. VREF Accuracy vs. Load  
1.0µF  
0.1µF  
SELECT  
LOGIC  
External Reference Operation  
SENSE  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or improve thermal drift charac-  
teristics. Figure 54 shows the typical drift characteristics of the  
internal reference in 1 V mode.  
0.5V  
AD9640  
Figure 51. Internal Reference Configuration  
Table 14. Reference Configuration Summary  
Selected Mode  
SENSE Voltage  
Resulting VREF (V)  
Resulting Differential Span (V p-p)  
External Reference  
Internal Fixed Reference  
Programmable Reference  
AVDD  
VREF  
0.2 V to VREF  
N/A  
0.5  
2 × External Reference  
1.0  
2 × VREF  
R2  
R1  
(see Figure 52)  
0.5 × 1+  
Internal Fixed Reference  
AGND to 0.2 V  
1.0  
2.0  
Rev. B | Page 27 of 52  
 
 
 
 
 
AD9640  
2.5  
This helps prevent the large voltage swings of the clock from  
feeding through to other portions of the AD9640, while preserving  
the fast rise and fall times of the signal that are critical to a low  
jitter performance.  
2.0  
1.5  
1.0  
0
MINI-CIRCUITS  
ADT1–1WT, 1:1Z  
0.1µF  
0.1µF  
–0.5  
–1.0  
–1.5  
–2.0  
XFMR  
CLOCK  
INPUT  
CLK+  
100Ω  
ADC  
AD9640  
50Ω  
0.1µF  
CLK–  
SCHOTTKY  
DIODES:  
HSMS2822  
0.1µF  
–2.5  
–40  
Figure 56. Transformer Coupled Differential Clock (Up to 200 MHz)  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 54. Typical VREF Drift  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. An internal  
reference buffer loads the external reference with an equivalent  
6 kΩ load (see Figure 15). The internal buffer generates the  
positive and negative full-scale references for the ADC core.  
Therefore, the external reference must be limited to a maximum  
of 1 V.  
1nF  
50Ω  
1nF  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
ADC  
AD9640  
CLK–  
SCHOTTKY  
DIODES:  
HSMS2822  
Figure 57. Balun Coupled Differential Clock (Up to 625 MHz)  
If a low jitter clock source is not available, another option is to  
ac couple a differential PECL signal to the sample clock input  
pins, as shown in Figure 58. The AD9510/AD9511/AD9512/  
AD9513/AD9514/AD9515/AD9516 clock drivers offer excellent  
jitter performance.  
CLOCK INPUT CONSIDERATIONS  
For optimum performance, the AD9640 sample clock inputs  
CLK+, and CLK− should be clocked with a differential signal.  
The signal is typically ac-coupled into the CLK+ and CLK− pins  
via a transformer or capacitors. These pins are biased internally  
(see Figure 55) and require no external bias.  
AVDD  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
ADC  
AD9640  
AD951x  
100  
1.2V  
PECL DRIVER  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
CLK+  
CLK–  
240Ω  
240Ω  
50kΩ  
50kΩ  
2pF  
2pF  
Figure 58. Differential PECL Sample Clock (Up to 625 MHz)  
A third option is to ac-couple a differential LVDS signal to the  
sample clock input pins, as shown in Figure 59. The AD9510/  
AD9511/AD9512/AD9513/AD9514/AD9515/AD9516 clock  
drivers offer excellent jitter performance.  
Figure 55. Equivalent Clock Input Circuit  
Clock Input Options  
The AD9640 has a very flexible clock input structure. Clock input  
can be a CMOS, LVDS, LVPECL, or sine wave signal. Regardless of  
the type of signal being used, the jitter of the clock source is of the  
most concern, as described in the Jitter Considerations section.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
ADC  
AD9640  
AD951x  
LVDS DRIVER  
100Ω  
0.1µF  
0.1µF  
Figure 56 and Figure 57 show two preferred methods for clocking  
the AD9640 (at clock rates to 625 MHz). A low jitter clock source  
is converted from a single-ended signal to a differential signal  
using either an RF balun or an RF transformer. The RF balun  
configuration is recommended for clock frequencies between  
125 MHz and 625 MHz, and the RF transformer is recommended  
for clock frequencies from 10 MHz to 200MHz. The back-to-back  
Schottky diodes across the transformer/balun secondary limit  
clock excursions into the AD9640 to approximately 0.8 V p-p  
differential.  
CLOCK  
INPUT  
CLK–  
50kΩ  
50kΩ  
Figure 59. Differential LVDS Sample Clock (Up to 625 MHz)  
In some applications, it may be acceptable to drive the sample  
clock inputs with a single-ended CMOS signal. In such applica-  
tions, CLK+ should be directly driven from a CMOS gate, and  
the CLK− pin should be bypassed to ground with a 0.1 ꢀF  
capacitor in parallel with a 39 kꢁ resistor (see Figure 60).  
Rev. B | Page 28 of 52  
 
 
 
 
 
 
 
AD9640  
CLK+ can be directly driven from a CMOS gate. Although the  
CLK+ input circuit supply is AVDD (1.8 V), this input is designed  
to withstand input voltages up to 3.6 V, making the selection of  
the drive logic voltage very flexible.  
Jitter in the rising edge of the input is still of paramount concern  
and is not easily reduced by the internal stabilization circuit.  
The duty cycle control loop does not function for clock rates  
less than 20 MHz nominally. The loop has a time constant  
associated with it that needs to be considered where the clock  
rate can change dynamically. This requires a wait time of 1.5 μs  
to 5 μs after a dynamic clock frequency increase or decrease before  
the DCS loop is relocked to the input signal. During the time  
period the loop is not locked, the DCS loop is bypassed, and  
internal device timing is dependent on the duty cycle of the input  
clock signal. In such applications, it may be appropriate to disable  
the duty cycle stabilizer. In all other applications, enabling the DCS  
circuit is recommended to maximize ac performance.  
V
CC  
OPTIONAL  
100Ω  
0.1µF  
1
0.1µF  
1kΩ  
1kΩ  
AD951x  
CMOS DRIVER  
CLOCK  
INPUT  
CLK+  
50Ω  
ADC  
AD9640  
CLK–  
0.1µF  
39kΩ  
1
50RESISTOR IS OPTIONAL  
Figure 60. Single-Ended 1.8 V CMOS Sample Clock (Up to 150 MSPS)  
Jitter Considerations  
High speed, high resolution ADCs are sensitive to the quality  
of the clock input. The degradation in SNR from the low  
frequency SNR (SNRLF) at a given input frequency (fINPUT) due  
to jitter (tJRMS) can be calculated by  
V
CC  
1kΩ  
1kΩ  
OPTIONAL  
100Ω  
0.1µF  
0.1µF  
0.1µF  
1
AD951x  
CMOS DRIVER  
CLOCK  
INPUT  
CLK+  
50Ω  
ADC  
AD9640  
SNRHF = −10 log[(2π × fINPUT × tJRMS)2 + 10 (SNR /10)  
]
LF  
CLK–  
In the equation, the rms aperture jitter represents the clock input  
jitter specification. IF undersampling applications are particularly  
sensitive to jitter, as illustrated in Figure 62.  
75  
1
50RESISTOR IS OPTIONAL  
Figure 61. Single-Ended 3.3 V CMOS Sample Clock (Up to 150 MSPS)  
Input Clock Divider  
The AD9640 contains an input clock divider with the ability to  
divide the input clock by integer values between 1 and 8. If a  
divide ratio other than 1 is selected, the duty cycle stabilizer is  
automatically enabled.  
0.05ps  
70  
MEASURED  
PERFORMANCE  
65  
60  
55  
50  
45  
40  
0.20ps  
0.5ps  
The AD9640 clock divider can be synchronized using the external  
SYNC input. Bit 1 and Bit 2 of Register 0x100 allow the clock  
divider to be resynchronized on every SYNC signal or only on  
the first SYNC signal after the register is written. A valid SYNC  
causes the clock divider to reset to its initial state. This synchro-  
nization feature allows multiple parts to have their clock dividers  
aligned to guarantee simultaneous input sampling.  
1.0ps  
1.50ps  
2.00ps  
2.50ps  
3.00ps  
1
10  
100  
1000  
Clock Duty Cycle  
INPUT FREQUENCY (MHz)  
Typical high speed ADCs use both clock edges to generate  
a variety of internal timing signals and, as a result, may be  
sensitive to clock duty cycle. Commonly, a 5% tolerance is  
required on the clock duty cycle to maintain dynamic  
performance characteristics.  
Figure 62. SNR vs. Input Frequency and Jitter  
The clock input should be treated as an analog signal in cases  
where aperture jitter may affect the dynamic range of the AD9640.  
Power supplies for clock drivers should be separated from the  
ADC output driver supplies to avoid modulating the clock  
signal with digital noise. Low jitter, crystal-controlled oscillators  
make the best clock sources. If the clock is generated from  
another type of source (by gating, dividing, or other methods),  
it should be retimed by the original clock at the last step.  
The AD9640 contains a duty cycle stabilizer (DCS) that retimes  
the nonsampling (falling) edge, providing an internal clock  
signal with a nominal 50% duty cycle. This allows the user to  
provide a wide range of clock input duty cycles without affecting  
the performance of the AD9640. Noise and distortion performance  
are nearly flat for a wide range of duty cycles with the DCS on,  
as shown in Figure 43.  
See the AN-501 Application Note and AN-756 Application  
Note for more information about jitter performance as it  
relates to ADCs.  
Rev. B | Page 29 of 52  
 
 
 
AD9640  
0.4  
0.3  
0.2  
0.1  
0
1
0.75  
0.5  
POWER DISSIPATION AND STANDBY MODE  
As shown in Figure 63, the power dissipated by the AD9640  
is proportional to its sample rate. In CMOS output mode,  
the digital power dissipation is determined primarily by the  
strength of the digital drivers and the load on each output bit.  
I
AVDD  
TOTAL POWER  
The maximum DRVDD current (IDRVDD) can be calculated as  
IDRVDD = VDRVDD × CLOAD × fCLK × N  
where N is the number of output bits (30 in the case of the AD9640  
with the FD bits disabled). This maximum current occurs when  
every output bit switches on every clock cycle, that is, a full-  
scale square wave at the Nyquist frequency of fCLK/2. In practice,  
the DRVDD current is established by the average number of  
output bits switching, which is determined by the sample rate  
and the characteristics of the analog input signal.  
0.25  
0
I
DRVDD  
I
DVDD  
25  
50  
75  
100  
0
ENCODE FREQUENCY (MHz)  
Figure 65. AD9640-105 Power and Current vs. Clock Frequency  
Reducing the capacitive load presented to the output drivers can  
minimize digital power consumption. The data in Figure 63 was  
taken with the same operating conditions as the Typical  
Performance Characteristics, with a 5 pF load on each output  
driver.  
0.75  
0.3  
0.2  
0.1  
0
I
AVDD  
0.5  
0.25  
0
1.25  
1.0  
0.75  
0.5  
0.25  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
TOTAL POWER  
I
AVDD  
TOTAL POWER  
I
DRVDD  
I
DVDD  
20  
40  
ENCODE FREQUENCY (MHz)  
60  
0
80  
I
DRVDD  
125  
Figure 66. AD9640-80 Power and Current vs. Clock Frequency  
I
DVDD  
By asserting PDWN (either through the SPI port or by asserting  
the PDWN pin high), the AD9640 is placed in power-down  
mode. In this state, the ADC typically dissipates 2.5 mW.  
During power-down, the output drivers are placed in a high  
impedance state. Asserting the PDWN pin low returns the  
AD9640 to its normal operational mode. Note that PDWN is  
referenced to the digital supplies (DRVDD) and should not  
exceed that supply voltage.  
25  
50  
75  
100  
0
150  
ENCODE FREQUENCY (MHz)  
Figure 63. AD9640-150 Power and Current vs. Clock Frequency  
1.25  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.75  
0.5  
I
AVDD  
Low power dissipation in power-down mode is achieved by  
shutting down the reference, reference buffer, biasing networks,  
and clock. Internal capacitors are discharged when entering power-  
down mode and then must be recharged when returning to normal  
operation. As a result, wake-up time is related to the time spent  
in power-down mode, and shorter power-down cycles result in  
proportionally shorter wake-up times.  
TOTAL POWER  
I
0.25  
0
DRVDD  
100  
I
DVDD  
When using the SPI port interface, the user can place the ADC  
in power-down mode or standby mode. Standby mode allows  
the user to keep the internal reference circuitry powered when  
faster wake-up times are required. See the Memory Map Register  
Description section for more details.  
25  
50  
75  
0
125  
ENCODE FREQUENCY (MHz)  
Figure 64. AD9640-125 Power and Current vs. Clock Frequency  
Rev. B | Page 30 of 52  
 
 
AD9640  
Digital Output Enable Function (OEB)  
DIGITAL OUTPUTS  
The AD9640 has a flexible three-state ability for the digital output  
pins. The three-state mode is enabled using the SMI SDO/OEB  
pin or through the SPI interface. If the SMI SDO/OEB pin is low,  
the output data drivers are enabled. If the SMI SDO/OEB pin is  
high, the output data drivers are placed in a high impedance state.  
This OEB function is not intended for rapid access to the data  
bus. Note that OEB is referenced to the digital supplies (DRVDD)  
and should not exceed that supply voltage.  
The AD9640 output drivers can be configured to interface with  
1.8 V to 3.3 V CMOS logic families by matching DRVDD to the  
digital supply of the interfaced logic. The AD9640 can also be  
configured for LVDS outputs using a DRVDD supply voltage  
of 1.8 V.  
In CMOS output mode, the output drivers are sized to provide  
sufficient output current to drive a wide variety of logic families.  
However, large drive currents tend to cause current glitches on  
the supplies that may affect converter performance.  
When using the SPI interface, the data and fast detect outputs  
of each channel can be independently three-stated by using the  
output enable bar bit in Register 0x14.  
Applications requiring the ADC to drive large capacitive loads  
or large fan-outs may require external buffers or latches.  
TIMING  
The output data format can be selected for either offset binary  
or twos complement by setting the SCLK/DFS pin when operating  
in the external pin mode (see Table 15).  
The AD9640 provides latched data with a pipeline delay of  
twelve clock cycles. Data outputs are available one propagation  
delay (tPD) after the rising edge of the clock signal.  
As detailed in the AN-877 Application Note, Interfacing to High  
Speed ADCs via SPI, the data format can be selected for offset  
binary, twos complement, or gray code when using the SPI control.  
The length of the output data lines and loads placed on them  
should be minimized to reduce transients within the AD9640.  
These transients can degrade converter dynamic performance.  
Table 15. SCLK/DFS Mode Selection (External Pin Mode)  
The lowest typical conversion rate of the AD9640 is 10 MSPS.  
At clock rates below 10 MSPS, dynamic performance can degrade.  
Voltage at Pin SCLK/DFS  
SDIO/DCS  
Offset binary (default) DCS disabled  
Twos complement DCS enabled (default)  
AGND  
AVDD  
Data Clock Output (DCO)  
The AD9640 provides two data clock output (DCO) signals  
intended for capturing the data in an external register. The data  
outputs are valid on the rising edge of DCO, unless the DCO clock  
polarity has been changed via the SPI. See Figure 2 and Figure 3  
for a graphical timing description.  
Table 16. Output Data Format  
Input (V)  
Condition (V)  
Offset Binary Output Mode  
00 0000 0000 0000  
00 0000 0000 0000  
10 0000 0000 0000  
11 1111 1111 1111  
11 1111 1111 1111  
Twos Complement Mode  
10 0000 0000 0000  
10 0000 0000 0000  
00 0000 0000 0000  
01 1111 1111 1111  
01 1111 1111 1111  
OVR  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
< −VREF − 0.5 LSB  
= −VREF  
= 0  
= +VREF − 1.0 LSB  
> +VREF − 0.5 LSB  
1
0
0
0
1
Rev. B | Page 31 of 52  
 
 
 
 
AD9640  
ADC OVERRANGE AND GAIN CONTROL  
In receiver applications, it is desirable to have a mechanism to  
reliably determine when the converter is about to be clipped.  
The standard overflow indicator provides after-the-fact infor-  
mation on the state of the analog input that is of limited usefulness.  
Therefore, it is helpful to have a programmable threshold below  
full scale that allows time to reduce the gain before the clip  
actually occurs. In addition, because input signals can have  
significant slew rates, latency of this function is of major concern.  
Highly pipelined converters can have significant latency. A good  
compromise is to use the output bits from the first stage of the  
ADC for this function. Latency for these output bits is very low,  
and overall resolution is not highly significant. Peak input signals  
are typically between full scale and 6 dB to 10 dB below full  
scale. A 3-bit or 4-bit output provides adequate range and  
resolution for this function.  
Table 17. Fast Detect Mode Select Bits Settings  
Information Presented on  
Fast Detect  
Mode Select Bits  
Fast Detect (FD) Pins of Each ADC1, 2  
(Register 0x104[3:1])  
FD3  
FD2  
FD1  
FD0  
000  
001  
010  
011  
ADC fast magnitude  
(see Table 18)  
ADC fast magnitude  
(see Table 19)  
OR  
ADC fast magnitude  
(see Table 20)  
OR  
F_LT  
ADC fast magnitude  
(see Table 20)  
C_UT F_LT  
100  
101  
OR  
OR  
C_UT  
F_UT  
F_UT  
IG  
F_LT  
DG  
1 The fast detect pins are FD0A/FD0B to FD3A/FD3B for the CMOS mode  
configuration and FD0+/FD0− to FD3+/FD3− for the LVDS mode configuration.  
2 See the ADC Overrange (OR) and Gain Switching sections for more  
information about OR, C_UT, F_UT, F_LT, IG, and DG.  
Using the SPI port, the user can provide a threshold above which  
an overrange output is active. As long as the signal is below that  
threshold, the output should remain low. The fast detect outputs  
can also be programmed via the SPI port so that one of the pins  
functions as a traditional overrange pin for customers who  
currently use this feature. In this mode, all 14 bits of the converter  
are examined in the traditional manner, and the output is high for  
the condition normally defined as overflow. In either mode, the  
magnitude of the data is considered in the calculation of the  
condition (but the sign of the data is not considered). The threshold  
detection responds identically to positive and negative signals  
outside the desired range (magnitude).  
ADC FAST MAGNITUDE  
When the fast detect output pins are configured to output the ADC  
fast magnitude (that is, when the fast detect mode select bits are  
set to 0b000), the information presented is the ADC level from  
an early converter stage with a latency of only two clock cycles  
(when in CMOS output mode). Using the fast detect output pins  
in this configuration provides the earliest possible level indication  
information. Because this information is provided early in the  
datapath, there is significant uncertainty in the level indicated.  
The nominal levels, along with the uncertainty indicated by the  
ADC fast magnitude, are shown in Table 18.  
FAST DETECT OVERVIEW  
The AD9640 contains circuitry to facilitate fast overrange detec-  
tion, allowing very flexible external gain control implementations.  
Each ADC has four fast detect (FD) output pins that are used  
to output information about the current state of the ADC input  
level. The function of these pins is programmable via the fast detect  
mode select bits and the fast detect enable bit in Register 0x104,  
allowing range information to be output from several points in  
the internal datapath. These output pins can also be set up to  
indicate the presence of overrange or underrange conditions,  
according to programmable threshold levels. Table 17 shows the  
six configurations available for the fast detect pins.  
Table 18. ADC Fast Magnitude Nominal Levels with Fast Detect  
Mode Select Bits = 000  
Nominal Input  
Magnitude  
ADC Fast  
Magnitude on  
Nominal Input  
Magnitude  
FD[3:0] Pins  
Below FS (dB)  
Uncertainty (dB)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
<−24  
Minimum to −18.07  
−30.14 to −12.04  
−18.07 to −8.52  
−12.04 to −6.02  
−8.52 to −4.08  
−6.02 to −2.5  
−4.08 to −1.16  
−2.5 to FS  
−24 to −14.5  
−14.5 to −10  
−10 to −7  
−7 to −5  
−5 to −3.25  
−3.25 to −1.8  
−1.8 to −0.56  
−0.56 to 0  
−1.16 to 0  
Rev. B | Page 32 of 52  
 
 
 
 
 
 
AD9640  
When the fast detect mode select bits are set to 0b001, 0b010, or  
0b011, a subset of the fast detect output pins is available. In these  
modes, the fast detect output pins have a latency of six clock cycles.  
Table 19 shows the corresponding ADC input levels when the  
fast detect mode select bits are set to 0b001 (that is, when ADC fast  
magnitude is presented on the FD[3:1] pins).  
Coarse Upper Threshold (C_UT)  
The coarse upper threshold indicator is asserted if the ADC fast  
magnitude input level is greater than the level programmed in  
the coarse upper threshold register (Address 0x105[2:0]). The  
coarse upper threshold output is output two clock cycles after the  
level is exceeded at the input and, therefore, provides a fast indi-  
cation of the input signal level. The coarse upper threshold levels  
are listed in Table 21. This indicator remains asserted for a  
minimum of two ADC clock cycles or until the signal drops  
below the threshold level.  
Table 19. ADC Fast Magnitude Nominal Levels with  
Fast Detect Mode Select Bits = 001  
Nominal Input  
ADC Fast Magnitude Magnitude  
Nominal Input  
Magnitude  
on FD[3:1] Pins  
Below FS (dB)  
Uncertainty (dB)  
Table 21. Coarse Upper Threshold Levels  
000  
001  
010  
011  
100  
101  
110  
111  
<−24  
Minimum to −18.07  
−30.14 to −12.04  
−18.07 to −8.52  
−12.04 to −6.02  
−8.52 to −4.08  
−6.02 to −2.5  
C_UT Is Active When Signal  
Magnitude Below FS  
Is Greater Than (dB)  
−24 to −14.5  
−14.5 to −10  
−10 to −7  
Coarse Upper Threshold  
Register 0x105[2:0]  
000  
001  
010  
011  
100  
101  
110  
111  
<−24  
−24  
−14.5  
−10  
−7  
−5  
−3.25  
−1.8  
−7 to −5  
−5 to −3.25  
−3.25 to −1.8  
−1.8 to 0  
−4.08 to −1.16  
−2.5 to 0  
When the fast detect mode select bits are set to 0b010 or 0b011  
(that is, when ADC fast magnitude is presented on the FD[3:2]  
pins), the LSB is not provided. The input ranges for this mode  
are shown in Table 20.  
Fine Upper Threshold (F_UT)  
Table 20. ADC Fast Magnitude Nominal Levels with  
Fast Detect Mode Select Bits = 010 or 011  
The fine upper threshold indicator is asserted if the input  
magnitude exceeds the value programmed in the fine upper  
threshold register located in Register 0x106 and Register 0x107.  
The 13-bit threshold register is compared with the signal magni-  
tude at the output of the ADC. This comparison is subject to the  
ADC clock latency but is accurate in terms of the converter  
resolution. The fine upper threshold magnitude is defined by  
the following equation:  
ADC Fast  
Magnitude on  
FD[2:1] Pins  
Nominal Input  
Magnitude  
Below FS (dB)  
Nominal Input  
Magnitude  
Uncertainty (dB)  
00  
01  
10  
11  
<−14.5  
Minimum to −12.04  
−18.07 to −6.02  
−8.52 to −2.5  
−14.5 to −7  
−7 to −3.25  
−3.25 to 0  
−4.08 to 0  
dBFS = 20 log(Threshold Magnitude/213)  
ADC OVERRANGE (OR)  
Fine Lower Threshold (F_LT)  
The ADC overrange indicator is asserted when an overrange is  
detected on the input of the ADC. The overrange condition is  
determined at the output of the ADC pipeline and, therefore, is  
subject to a latency of 12 ADC clock cycles. An overrange at the  
input is indicated by this bit 12 clock cycles after it occurs.  
The fine lower threshold indicator is asserted if the input  
magnitude is less than the value programmed in the fine lower  
threshold register located at Register 0x108 and Register 0x109.  
The fine lower threshold register is a 13-bit register that is  
compared with the signal magnitude at the output of the ADC.  
This comparison is subject to ADC clock latency but is accurate  
in terms of the converter resolution. The fine lower threshold  
magnitude is defined by the following equation:  
GAIN SWITCHING  
The AD9640 includes circuitry that is useful in applications either  
where large dynamic ranges exist or where gain ranging converters  
are employed. This circuitry allows digital thresholds to be set  
such that an upper threshold and a lower threshold can be  
programmed. Fast detect mode select bit = 010 through fast  
detect mode select bit = 101 support various combinations of the  
gain switching options.  
dBFS = 20 log(Threshold Magnitude/213)  
The operation of the fine upper threshold indicators and fine  
lower threshold indicators is shown in Figure 67.  
Increment Gain (IG) and Decrement Gain (DG)  
The increment gain and decrement gain indicators are intended  
to be used together to provide information to enable external  
gain control. The decrement gain indicator works in conjunction  
with the coarse upper threshold bits, asserting when the input  
magnitude is greater than the 3-bit value in the coarse upper  
threshold register (Address 0x105). The increment gain indicator,  
One such use is to detect when an ADC is about to reach full  
scale with a particular input condition. The result is to provide  
an indicator that can be used to quickly insert an attenuator that  
prevents ADC overdrive.  
Rev. B | Page 33 of 52  
 
 
 
 
 
 
 
AD9640  
similarly, corresponds to the fine lower threshold bits, except  
that it is asserted only if the input magnitude is less than the  
value programmed in the fine lower threshold register after the  
dwell time elapses. The dwell time is set by the 16-bit dwell time  
value located at Address 0x10A and Address 0x10B and is set in  
units of ADC input clock cycles ranging from 1 to 65,535. The  
fine lower threshold register is a 13-bit register that is compared  
with the magnitude at the output of the ADC. This comparison  
is subject to the ADC clock latency but allows a finer, more  
accurate comparison. The fine upper threshold magnitude is  
defined by the following equation:  
dBFS = 20 log(Threshold Magnitude/213)  
The decrement gain output works from the ADC fast detect  
output pins, providing a fast indication of potential overrange  
conditions. The increment gain uses the comparison at the  
output of the ADC, requiring the input magnitude to remain  
below an accurate, programmable level for a predefined period  
before signaling external circuitry to increase the gain.  
The operation of the increment gain output and the decrement  
gain output is shown in Figure 67.  
FINE UPPER THRESHOLD  
FINE LOWER THRESHOLD  
F_UT  
F_LT  
Figure 67. Threshold Settings for F_UT and F_LT  
Rev. B | Page 34 of 52  
 
AD9640  
SIGNAL MONITOR  
The signal monitor block provides additional information  
about the signal being digitized by the ADC. The signal monitor  
computes the rms input magnitude, the peak magnitude,  
and/or the number of samples by which the magnitude exceeds  
a particular threshold. Together, these functions can be used to  
gain insight into the signal characteristics and to estimate the  
peak/average ratio or even the shape of the complementary cumu-  
lative distribution function (CCDF) curve of the input signal. This  
information can be used to drive an AGC loop to optimize the  
range of the ADC in the presence of real-world signals.  
When the monitor period timer reaches a count of 1, the 13-bit  
peak level value is transferred to the signal monitor holding register  
(not accessible to the user), which can be read through the SPI port  
or output through the SPORT serial interface. The monitor period  
timer is reloaded with the value in the SMPR, and the countdown is  
restarted. In addition, the magnitude of the first input sample is  
updated in the peak level holding register, and the comparison and  
update procedure, as explained previously, continues.  
Figure 68 is a block diagram of the peak detector logic. The SMR  
register contains the absolute magnitude of the peak detected by  
the peak detector logic.  
The signal monitor result values can be obtained from the part by  
reading back internal registers at Address 0x116 to Address 0x11B,  
using the SPI port or the signal monitor SPORT output. The output  
contents of the SPI-accessible signal monitor registers are set via  
the two signal monitor mode bits of the signal monitor control  
register. Both ADC channels must be configured for the same  
signal monitor mode (Address 0x112). Separate SPI-accessible,  
20-bit signal monitor result (SMR) registers are provided for each  
ADC channel. Any combination of the signal monitor functions  
can also be output to the user via the serial SPORT interface.  
These outputs are enabled using the peak detector output enable  
bit, the rms/ms magnitude output enable bit, and the threshold  
crossing output enable bit in the signal monitor SPORT control  
register.  
FROM  
MEMORY  
MAP  
SIGNAL MONITOR  
PERIOD REGISTER  
DOWN  
COUNTER  
IS COUNT = 1?  
LOAD  
TO  
FROM  
INPUT  
PORTS  
CLEAR  
MAGNITUDE  
STORAGE  
REGISTER  
MEMORY  
MAP/SPORT  
SIGNAL MONITOR  
HOLDING  
REGISTER (SMR)  
LOAD  
LOAD  
COMPARE  
A>B  
Figure 68. ADC Input Peak Detector Block Diagram  
RMS/MS MAGNITUDE MODE  
For each signal monitor measurement, a programmable signal  
monitor period register (SMPR) controls the duration of the  
measurement. This period of time is programmed as the number  
of input clock cycles in a 24-bit signal monitor period register  
located at Address 0x113, Address 0x114, and Address 0x115.  
This register can be programmed with a period from 128 samples  
to 16.78 (224) million samples.  
In this mode, the root-mean-square (rms) or mean-square (ms)  
magnitude of the input port signal is integrated (by adding an  
accumulator) over a programmable period of time (determined by  
the SMPR) to give the rms or ms magnitude of the input signal.  
This mode is set by programming Logic 0 in the signal monitor  
mode bits of the signal monitor control register or by setting the  
rms/ms magnitude output enable bit in the signal monitor SPORT  
control register. The 24-bit SMPR, representing the period over  
which integration is performed, must be programmed before acti-  
vating this mode.  
Because the dc offset of the ADC can be significantly larger  
than the signal of interest (affecting the results from the signal  
monitor), a dc correction circuit is included as part of the signal  
monitor block to null the dc offset before measuring the power.  
After enabling the rms/ms magnitude mode, the value in the SMPR  
is loaded into a monitor period timer, and the countdown is started  
immediately. Each input sample is converted to floating-point  
format and squared. It is then converted to 11-bit, fixed-point  
format and added to the contents of the 24-bit accumulator.  
The integration continues until the monitor period timer reaches  
a count of 1.  
PEAK DETECTOR MODE  
The magnitude of the input port signal is monitored over a  
programmable time period (determined by the SMPR) to give  
the peak value detected. This function is enabled by programming  
a Logic 1 in the signal monitor mode bits of the signal monitor  
control register or by setting the peak detector output enable bit  
in the signal monitor SPORT control register. The 24-bit SMPR  
must be programmed before activating this mode.  
When the monitor period timer reaches a count of 1, the square  
root of the value in the accumulator is taken and transferred,  
after some formatting, to the signal monitor holding register, which  
can be read through the SPI port or output through the SPORT  
serial port. The monitor period timer is reloaded with the value  
in the SMPR, and the countdown is restarted. In addition, the  
first input sample signal power is updated in the accumulator,  
and the accumulation continues with the subsequent input  
samples.  
After enabling this mode, the value in the SMPR is loaded into  
a monitor period timer, and the countdown is started. The magni-  
tude of the input signal is compared with the value in the internal  
peak level holding register (not accessible to the user), and the  
greater of the two is updated as the current peak level. The initial  
value of the peak level holding register is set to the current ADC  
input signal magnitude. This comparison continues until the  
monitor period timer reaches a count of 1.  
Rev. B | Page 35 of 52  
 
 
 
 
AD9640  
Figure 69 illustrates the rms magnitude monitoring logic.  
When the monitor period timer reaches a count of 1, the value  
in the internal count register is transferred to the signal monitor  
holding register, which can be read through the SPI port or output  
through the SPORT serial port.  
FROM  
MEMORY  
MAP  
SIGNAL MONITOR  
PERIOD REGISTER  
DOWN  
IS COUNT = 1?  
COUNTER  
The monitor period timer is reloaded with the value in the SMPR  
register, and the countdown is restarted. The internal count  
register is also cleared to a value of 0. Figure 70 illustrates the  
threshold crossing logic. The value in the SMR register is the  
number of samples that have a magnitude greater than the  
threshold register.  
LOAD  
CLEAR  
ACCUMULATOR  
TO  
FROM  
INPUT  
PORTS  
LOAD  
MEMORY  
MAP/SPORT  
SIGNAL MONITOR  
HOLDING  
REGISTER (SMR)  
Figure 69. ADC Input RMS Magnitude Monitoring Block Diagram  
FROM  
MEMORY  
MAP  
For rms magnitude mode, the value in the signal monitor result  
(SMR) register is a 20-bit fixed-point number. The following  
equation can be used to determine the rms magnitude in dBFS  
from the MAG value in the register. Note that if the signal monitor  
period (SMP) is a power of 2, the second term in the equation  
becomes 0.  
SIGNAL MONITOR  
PERIOD REGISTER  
DOWN  
COUNTER  
IS COUNT = 1?  
LOAD  
CLEAR  
TO  
FROM  
INPUT  
PORTS  
LOAD  
MEMORY  
MAP/SPORT  
SIGNAL MONITOR  
HOLDING  
REGISTER (SMR)  
A
COMPARE  
COMPARE  
A>B  
A>B  
FROM  
MEMORY  
MAP  
B
UPPER  
THRESHOLD  
REGISTER  
MAG  
SMP  
RMS Magnitude = 20 log  
10 log  
220  
2
ceil log (SMP)  
[ ]  
2
For ms magnitude mode, the value in the SMR is a 20-bit fixed-  
point number. The following equation can be used to determine  
the ms magnitude in dBFS from the MAG value in the register.  
Note that if the SMP is a power of 2, the second term in the  
equation becomes 0.  
Figure 70. ADC Input Threshold Crossing Block Diagram  
ADDITIONAL CONTROL BITS  
For additional flexibility in the signal monitoring process, two  
control bits are provided in the signal monitor control register.  
They are the signal monitor enable bit and the complex power  
calculation mode enable bit.  
MAG  
SMP  
MS Magnitude = 10 log  
10 log  
220  
2
ceil log (SMP)  
[ ]  
2
Signal Monitor Enable Bit  
THRESHOLD CROSSING MODE  
The signal monitor enable bit, Bit 0 of Register 0x112, enables  
operation of the signal monitor block. If the signal monitor  
function is not needed in a particular application, this bit should  
be cleared (default) to conserve power.  
In the threshold crossing mode of operation, the magnitude of  
the input port signal is monitored over a programmable time  
period (given by the SMPR) to count the number of times it  
crosses a certain programmable threshold value. This mode is set  
by programming Logic 1x (where x is a don’t care bit) in the  
signal monitor mode bits of the signal monitor control register  
or by setting the threshold crossing output enable bit in the  
signal monitor SPORT control register. Before activating this  
mode, the user needs to program the 24-bit SMPR and the  
13-bit upper threshold register for each individual input port.  
The same upper threshold register is used for both signal moni-  
toring and gain control (see the ADC Overrange and Gain  
Control section).  
Complex Power Calculation Mode Enable Bit  
When this bit is set, the part assumes that Channel A is digitizing  
the I data and Channel B is digitizing the Q data for a complex  
input signal (or vice versa). In this mode, the power reported is  
equal to the following:  
I 2 + Q2  
This result is presented in the Signal Monitor DC Value Channel A  
register if the signal monitor mode bits are set to 00. The Signal  
Monitor DC Value Channel B register continues to compute the  
Channel B value.  
After entering this mode, the value in the SMPR is loaded into  
a monitor period timer, and the countdown is started. The magni-  
tude of the input signal is compared with the upper threshold  
register (programmed previously) on each input clock cycle.  
If the input signal has a magnitude greater than the upper  
threshold register, the internal count register is incremented by 1.  
DC CORRECTION  
Because the dc offset of the ADC may be significantly larger  
than the signal being measured, a dc correction circuit is included  
to null the dc offset before measuring the power. The dc correction  
circuit can also be switched into the main signal path, but this  
may not be appropriate if the ADC is digitizing a time-varying  
signal with significant dc content, such as GSM.  
The initial value of the internal count register is set to 0. This  
comparison and incrementing of the internal count register  
continues until the monitor period timer reaches a count of 1.  
Rev. B | Page 36 of 52  
 
 
 
 
 
AD9640  
DC Correction Bandwidth  
SIGNAL MONITOR SPORT OUTPUT  
The dc correction circuit is a high-pass filter with a programmable  
bandwidth (ranging between 0.15 Hz and 1.2 kHz at 125 MSPS).  
The bandwidth is controlled by writing Bits[5:2] of the signal  
monitor dc correction control register, located at Address 0x10C.  
The SPORT is a serial interface with three output pins:  
SMI SCLK (SPORT clock), SMI SDFS (SPORT frame sync), and  
SMI SDO (SPORT data output). The SPORT is the master and  
drives all three SPORT output pins on the chip.  
The following equation can be used to compute the bandwidth  
value for the dc correction circuit:  
SMI SCLK  
The data output and frame sync are driven on the positive edge of  
the SMI SCLK. The SMI SCLK has three possible baud rates: 1/2,  
1/4, or 1/8 the ADC clock rate, based on the SPORT controls. The  
SMI SCLK can also be gated off when not sending any data, based  
on the SPORT SMI SCLK sleep bit. Using this bit to disable the SMI  
SCLK when it is not needed can reduce any coupling errors back  
into the signal path, if these prove to be a problem in the system.  
Doing so, however, has the disadvantage of spreading the frequency  
content of the clock. If desired, the SMI SCLK can be left running  
to ease frequency planning.  
fCLK  
2× π  
DC _Corr _ BW = 2k 14  
×
where:  
k is the 4 bit value programmed in Register 0x10C, Bits[5:2]  
(values between 0 and 13 are valid for k; programming 14 or  
15 provides the same result as programming 13).  
fCLK is the ADC sample rate in hertz (Hz).  
DC Correction Readback  
The current dc correction value can be read back in Register 0x10D  
and Register 0x10E for Channel A and in Register 0x10F and  
Register 0x110 for Channel B. The dc correction value is a 14-bit  
value that can span the entire input range of the ADC.  
SMI SDFS  
The SMI SDFS is the serial data frame sync, and it defines the  
start of a frame. One SPORT frame includes data from both  
datapaths. The data from Datapath A is sent just after the frame  
sync, followed by data from Datapath B.  
DC Correction Freeze  
Setting Bit 6 of Register 0x10C freezes the dc correction at its  
current state and continues to use the last updated value as the  
dc correction value. Clearing this bit restarts dc correction and  
adds the currently calculated value to the data.  
SMI SDO  
The SMI SDO is the serial data output of the block. The data  
is sent MSB first on the next positive edge after the SMI SDFS.  
Each data output block includes one or more rms/ms magnitude,  
peak level, and threshold crossing values from each datapath in  
the stated order. If enabled, the data is sent, rms first, followed by  
peak and threshold, as shown in Figure 71.  
DC Correction Enable Bits  
Setting Bit 0 of Register 0x10C enables dc correction for use in  
the signal monitor calculations. The calculated dc correction  
value can be added to the output data signal path by setting Bit 1  
of Register 0x10C.  
GATED, BASED ON CONTROL  
SMI SCLK  
SMI SDFS  
RMS/MS CH B LSB  
20 CYCLES  
SMI SDO  
MSB RMS/MS CH A LSB  
20 CYCLES  
PK CH A  
THR CH A  
MSB  
PK CH B  
THR CH B  
RMS/MS CH A  
16 CYCLES  
16 CYCLES  
16 CYCLES  
16 CYCLES  
Figure 71. Signal Monitor SPORT Output Timing (RMS/MS, Peak, and Threshold Enabled)  
GATED, BASED ON CONTROL  
SMI SCLK  
SMI SDFS  
SMI SDO  
MSB  
RMS/MS CH A LSB  
20 CYCLES  
THR CH A  
MSB  
RMS/MS CH B LSB  
20 CYCLES  
THR CH B  
RMS/MS CH A  
16 CYCLES  
16 CYCLES  
Figure 72. Signal Monitor SPORT Output Timing (RMS/MS and Threshold Enabled)  
Rev. B | Page 37 of 52  
 
 
AD9640  
BUILT-IN SELF-TEST (BIST) AND OUTPUT TEST  
The AD9640 includes built-in test features to enable verification  
of the integrity of each channel as well as to facilitate board level  
debugging. A built-in self-test (BIST) feature is included that  
verifies the integrity of the digital data path of the AD9640.  
Various output test options are also provided to place predictable  
values on the outputs of the AD9640.  
The outputs are not disconnected during this test, so the PN  
sequence can be observed as it runs. The PN sequence can be  
continued from its last value or started from the beginning,  
based on the value programmed in Register 0x00E, Bit 2. The  
BIST signature result varies based on the channel configuration.  
OUTPUT TEST MODES  
BUILT-IN SELF-TEST (BIST)  
The output test options are shown in Table 25. When an output  
test mode is enabled, the analog section of the ADC is discon-  
nected from the digital backend blocks and the test pattern is run  
through the output formatting block. Some of the test patterns are  
subject to output formatting and some are not. The seed value for  
the PN sequence tests can be forced if the PN reset bits are used  
to hold the generator in reset mode by setting Bit 4 or Bit 5 of  
Register 0x0D. These tests can be performed with or without  
an analog signal (if present, the analog signal is ignored), but  
they do require an encode clock. For more information, see the  
AN-877 Application Note, Interfacing to High Speed ADCs via SPI.  
The BIST is a thorough test of the digital portion of the selected  
AD9640 signal path. When enabled, the test runs from an internal  
PN source through the digital data path starting at the ADC  
block output. The BIST sequence runs for 512 cycles and stops.  
The BIST signature value for Channel A or Channel B is placed  
in Register 0x024 and Register 0x025. If one channel is chosen,  
its BIST signature is written to the two registers. If both channels  
are chosen, the results from the A channel are placed in the  
BIST signature register.  
Rev. B | Page 38 of 52  
 
 
 
AD9640  
CHANNEL/CHIP SYNCHRONIZATION  
The AD9640 has a SYNC input that allows the user flexible  
synchronization options for synchronizing the internal blocks.  
The clock divider sync feature is useful to guarantee synchronized  
sample clocks across multiple ADCs. The signal monitor block  
can also be synchronized using the SYNC input allowing properties  
of the input signal to be measured during a specific time period.  
The input clock divider can be enabled to synchronize on a single  
occurrence of the sync signal or on every occurrence. The signal  
monitor block is synchronized on every SYNC input signal.  
The SYNC input is internally synchronized to the sample clock;  
however, to ensure there is no timing uncertainty between multiple  
parts, the SYNC input signal should be externally synchronized to  
the input clock signal, meeting the setup and hold times shown  
in Table 8. The SYNC input should be driven using a single-  
ended CMOS-type signal.  
Rev. B | Page 39 of 52  
 
AD9640  
SERIAL PORT INTERFACE (SPI)  
The AD9640 serial port interface (SPI) allows the user to  
configure the converter for specific functions or operations  
through a structured register space provided inside the ADC.  
This gives the user added flexibility and customization  
depending on the application. Addresses are accessed via the  
serial port and can be written to or read from via the port.  
Memory is organized into bytes that can be further divided into  
fields, which are documented in the Memory Map section. For  
detailed operational information, see the AN-877 Application  
Note, Interfacing to High Speed ADCs via SPI.  
In addition to word length, the instruction phase determines if  
the serial frame is a read or write operation, allowing the serial  
port to be used to both program the chip as well as read the  
contents of the on-chip memory. If the instruction is a readback  
operation, performing a readback causes the serial data input/  
output (SDIO) pin to change direction from an input to an output  
at the appropriate point in the serial frame.  
Data can be sent in MSB first mode or LSB first mode. MSB  
first is the default on power-up and can be changed via the  
configuration register. For more information about this and  
other features, see the AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI.  
CONFIGURATION USING THE SPI  
There are three pins that define the SPI of this ADC. They are  
the SCLK/DFS pin, the SDIO/DCS pin, and the CSB pin (see  
Table 22). The SCLK/DFS (a serial clock) is used to synchronize  
the read and write data presented from and to the ADC. The  
SDIO/DCS (serial data input/output) is a dual-purpose pin that  
allows data to be sent and read from the internal ADC memory  
map registers. The CSB (chip select bar) is an active-low control  
that enables or disables the read and write cycles.  
HARDWARE INTERFACE  
The pins described in Table 22 comprise the physical interface  
between the users programming device and the serial port of  
the AD9640. The SCLK pin and the CSB pin function as inputs  
when using the SPI interface. The SDIO pin is bidirectional,  
functioning as an input during write phases and as an output  
during readback.  
Table 22. Serial Port Interface Pins  
The SPI interface is flexible enough to be controlled by either  
FPGAs or microcontrollers. One method for SPI configuration  
is described in detail in the AN-812 Application Note,  
Pin  
Function  
SCLK Serial Clock. The serial shift clock input. SCLK is used to  
synchronize serial interface reads and writes.  
SDIO Serial Data Input/Output. A dual-purpose pin. The typical  
role for this pin is an input and output depending on the  
instruction being sent and the relative position in the  
timing frame.  
Microcontroller-Based Serial Port Interface Boot Circuit.  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK signal, the CSB signal, and the SDIO signal are typically  
asynchronous to the ADC clock, noise from these signals can  
degrade converter performance. If the on-board SPI bus is utilized  
for other devices, it may be necessary to provide buffers between  
this bus and the AD9640 to keep these signals from transitioning  
at the converter inputs during critical sampling periods.  
CSB  
Chip Select Bar. An active-low control that gates the read  
and write cycles.  
The falling edge of the CSB, in conjunction with the rising edge  
of the SCLK, determines the start of the framing. An example of  
the serial timing and its definitions can be found in Figure 73  
and Table 8.  
Some pins serve a dual function when the SPI interface is not  
being used. When the pins are strapped to AVDD or ground  
during device power-on, they are associated with a specific  
function. The Digital Outputs section describes the strappable  
functions supported on the AD9640.  
Other modes involving the CSB are available. The CSB can be  
held low indefinitely, which permanently enables the device;  
this is called streaming. The CSB may stall high between bytes  
to allow for additional external timing. When CSB is tied high,  
SPI functions are placed in high impedance mode. This mode  
turns on any SPI pin secondary functions.  
During an instruction phase, a 16-bit instruction is transmitted.  
Data follows the instruction phase, and its length is determined  
by the W0 and W1 bits. All data is composed of 8-bit words.  
The first bit of the first byte in a multibyte serial data transfer frame  
indicates whether a read command or a write command is  
issued. This allows the serial data input/output (SDIO) pin to  
change direction from an input to an output.  
Rev. B | Page 40 of 52  
 
 
 
 
AD9640  
CONFIGURATION WITHOUT THE SPI  
SPI ACCESSIBLE FEATURES  
In applications that do not interface to the SPI control registers,  
the SDIO/DCS pin, the SCLK/DFS pin, the SMI SDO/OEB pin,  
and the SMI SCLK/PDWN pin serve as standalone, CMOS-  
compatible control pins. When the device is powered up, it is  
assumed that the user intends to use the pins as static control  
lines for the duty cycle stabilizer, output data format, output  
enable, and power-down feature control. In this mode, the CSB  
chip select should be connected to AVDD, which disables the  
serial port interface.  
A brief description of general features accessible via the SPI  
follows. These features are described in detail in the AN-877  
Application Note, Interfacing to High Speed ADCs via SPI. The  
AD9640 part-specific features are described in detail following  
Table 25, the external memory map register table.  
Table 24. Features Accessible Using the SPI  
Feature Name  
Description  
Modes  
Allows user to set either power-down mode or  
standby mode.  
Clock  
Offset  
Allows user to access the DCS via the SPI.  
Allows user to digitally adjust the converter  
offset.  
Table 23. Mode Selection  
External  
Pin  
Voltage  
Configuration  
Test I/O  
Allows user to set test modes to have known  
data on output bits.  
Allows user to set up outputs.  
Allows user to set the output clock polarity.  
Allows user to vary the DCO delay.  
Allows user to set the reference voltage.  
SDIO/DCS  
AVDD (default) Duty cycle stabilizer enabled.  
AGND  
AVDD  
Duty cycle stabilizer disabled.  
Twos complement enabled.  
Output Mode  
Output Phase  
Output Delay  
VREF  
SCLK/DFS  
AGND (default) Offset binary enabled.  
AVDD Outputs in high impedance.  
AGND (default) Outputs enabled.  
SMI SDO/OEB  
SMI SCLK/PDWN AVDD  
Chip in power-down or  
standby.  
AGND (default) Normal operation.  
tHIGH  
tDS  
tCLK  
tH  
tS  
tDH  
tLOW  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 73. Serial Port Interface Timing Diagram  
Rev. B | Page 41 of 52  
 
 
AD9640  
MEMORY MAP  
READING THE MEMORY MAP TABLE  
Logic Levels  
An explanation of logic level terminology follows:  
Each row in the memory map table has eight bit locations. The  
memory map is roughly divided into four sections: chip configura-  
tion and ID register map (Address 0x00 to Address 0x02); ADC  
setup, control, and test (Address 0x08 to Address 0x25); the  
channel index and transfer register map (Address 0x05 to  
Address 0xFF); and digital feature control (Address 0x100 to  
Address 0x11B).  
“Bit is set” is synonymous with “Bit is set to Logic 1” or  
“Writing Logic 1 for the bit.”  
“Clear a bit” is synonymous with “Bit is set to Logic 0” or  
“Writing Logic 0 for the bit.”  
Transfer Register Map  
Address 0x08 to Address 0x18 are shadowed. Writes to these  
addresses do not affect part operation until a transfer command  
is issued by writing 0x01 to Address 0xFF, setting the transfer bit.  
This allows these registers to be updated internally and simulta-  
neously when the transfer bit is set. The internal update takes  
place when the transfer bit is set, and the bit autoclears.  
Starting from the right hand column, the memory map register  
in Table 25 documents the default hex value for each hex address  
shown. The column with the heading Bit 7 (MSB) is the start  
of the default hex value given. For example, Address 0x18, VREF  
select, has a hex default value of 0xC0. This means Bit 7 = 1,  
Bit 6 = 1, and the remaining bits are 0s. This setting is the default  
reference selection setting. The default value uses a 2.0 V peak-  
to-peak reference. For more information on this function and  
others, see the AN-877 Application Note, Interfacing to High Speed  
ADCs via SPI. This document details the functions controlled by  
Register 0x00 to Register 0xFF. The remaining registers, from  
Register 0x100 to Register 0x11B, are documented in the Memory  
Map Register Description section.  
Channel-Specific Registers  
Some channel setup functions, such as the signal monitor  
thresholds, can be programmed differently for each channel.  
In these cases, channel address locations are internally duplicated  
for each channel. These registers are designated in the parameter  
name column of Table 25 as local registers. These local registers  
can be accessed by setting the appropriate Channel A or Channel B  
bits in Register 0x05. If both bits are set, the subsequent write  
affects the registers of both channels. In a read cycle, only  
Channel A or Channel B should be set to read one of the two  
registers. If both bits are set during an SPI read cycle, the part  
returns the value for Channel A. Registers designated as global  
in the parameter name column of Table 25 affect the entire part  
or the channel features where independent settings are not  
allowed between the channels. The settings in Register 0x05  
do not affect the global registers.  
Open Locations  
All address and bit locations that are not included in Table 25  
are currently not supported for this device. Unused bits of a  
valid address location should be written with 0s. Writing to these  
locations is required only when part of an address location is  
open (for example, Address 0x18). If the entire address location  
is open (for example, Address 0x13), this address location should  
not be written.  
Default Values  
Coming out of reset, critical registers are loaded with default  
values. The default values for the registers are given in the  
memory map register table, Table 25.  
Rev. B | Page 42 of 52  
 
 
 
AD9640  
EXTERNAL MEMORY MAP  
Table 25. Memory Map Registers  
Default Default  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Notes/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Chip Configuration Registers  
0x00  
SPI Port  
Configuration  
(Global)  
0
LSB first  
Soft reset  
1
1
Soft reset  
LSB first  
0
0x18  
The nibbles  
are mirrored  
so that  
LSB-first mode  
or MSB-first  
mode registers  
correctly,  
regardless of  
shift mode  
0x01  
0x02  
Chip ID  
(Global)  
8-bit Chip ID[7:0]  
(AD9640 = 0x11)  
(default)  
0x11  
Read  
only  
Read only  
Chip Grade  
(Global)  
Open  
Open  
Open  
Speed grade ID  
00 = 150 MSPS  
Open  
Open  
Open  
Open  
Open  
Read  
only  
Speed grade  
ID used to  
differentiate  
devices  
01 = 125 MSPS  
10 = 105 MSPS  
11 = 80 MSPS  
Channel Index and Transfer Registers  
0x05  
Channel Index  
Open  
Open  
Open  
Open  
Data  
Channel B  
(default)  
Data  
Channel A  
(default)  
0x03  
Bits are set  
to determine  
which device  
on the chip  
receives the  
next write  
command;  
applies to local  
registers  
0xFF  
Device Update  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Transfer  
0x00  
0x00  
Synchronously  
transfers data  
from the  
master shift  
register to the  
slave  
ADC Functions  
0x08  
Power Modes  
External  
power-  
Open  
Internal power-down  
mode (local)  
00 = normal operation  
01 = full power-down  
10 = standby  
Determines  
various generic  
modes of chip  
operation  
down pin  
function  
(global)  
0 = pdwn  
1 = stndby  
11 = normal operation  
0x09  
0x0B  
Global Clock  
(Global)  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Duty cycle  
stabilizer  
(default)  
0x01  
0x00  
Clock Divide  
(Global)  
Open  
Clock divide ratio  
000 = divide by 1  
001 = divide by 2  
010 = divide by 3  
011 = divide by 4  
100 = divide by 5  
101 = divide by 6  
110 = divide by 7  
111 = divide by 8  
Clock divide  
values other  
than 000  
automatically  
cause the duty  
cycle stabilizer  
to become  
active  
0x0D  
Test Mode  
(Local)  
Open  
Open  
Reset PN  
long gen  
Reset  
PNshort  
gen  
Open  
Output test mode  
000 = off (default)  
001 = midscale short  
010 = positive FS  
011 = negative FS  
0x00  
When set,  
the test data  
is placed on  
the output  
pins in place of  
normal data  
100 = alternating checker board  
101 = PN long sequence  
110 = PN short sequence  
111 = one/zero word toggle  
Rev. B | Page 43 of 52  
 
 
AD9640  
Default Default  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Notes/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0x0E  
0x10  
0x14  
BIST Enable  
(Local)  
Open  
Open  
Open  
Open  
Open  
Open  
Reset BIST  
sequence  
Open  
BIST enable  
0x00  
0x00  
0x00  
Offset Adjust  
(Local)  
Open  
Offset adjust in LSBs from +31 to −32  
(twos complement format)  
Output Mode  
Drive  
Output type  
0 = CMOS  
1 = LVDS  
(global)  
Open  
Output  
enable bar  
(local)  
Open  
Output  
invert  
(local)  
00 = offset binary  
Configures the  
outputs and  
the format of  
the data  
strength  
0 V to 3.3 V  
CMOS or  
ANSI  
01 = twos complement  
01 = gray code  
11 = offset binary  
(local)  
LVDS:  
1 V to 1.8 V  
CMOS or  
reduced:  
LVDS  
(global)  
0x16  
0x17  
0x18  
Clock Phase  
Control  
(Global)  
Invert DCO Open  
clock  
Open  
Open  
Open  
Open  
Open  
Input clock divider phase adjust  
000 = no delay  
0x00  
0x00  
0xC0  
Allows  
selection of  
clock delays  
into the input  
clock divider  
001 = 1 input clock cycle  
010 = 2 input clock cycles  
011 = 3 input clock cycles  
100 = 4 input clock cycles  
101 = 5 input clock cycles  
110 = 6 input clock cycles  
DCO Output  
Delay (Global)  
Open  
Open  
DCO clock delay  
(delay = 2500 ps × register value/31)  
00000 = 0 ps  
00001 = 81 ps  
00010 = 161 ps  
11110 = 2419 ps  
11111 = 2500 ps  
VREF Select  
(Global)  
Reference voltage selection  
00 = 1.25 V p-p  
Open  
Open  
Open  
Open  
Open  
01 = 1.5 V p-p  
10 = 1.75 V p-p  
11 = 2.0 V p-p (default)  
0x24  
0x25  
BIST Signature  
LSB (Local)  
BIST signature[7:0]  
BIST signature[15:8]  
0x00  
0x00  
Read only  
Read only  
BIST Signature  
MSB (Local)  
Digital Feature Control  
0x100  
Sync Control  
(Global)  
SM sync  
enable  
Open  
Open  
Open  
Open  
Open  
Open  
Clock  
divider next  
sync only  
Clock  
divider  
sync  
Master  
sync  
enable  
0x00  
enable  
0x104  
0x106  
Fast Detect  
Control (Local)  
Open  
Open  
Fast Detect Mode Select[2:0]  
Fast detect  
enable  
0x00  
0x00  
Fine Upper  
Threshold  
Register 0  
(Local)  
Fine Upper Threshold[7:0]  
0x107  
0x108  
0x109  
Fine Upper  
Threshold  
Register 1  
(Local)  
Open  
Open  
Open  
Open  
Open  
Fine Upper Threshold[12:8]  
0x00  
0x00  
0x00  
Fine Lower  
Threshold  
Register 0  
(Local)  
Fine Lower Threshold[7:0]  
Fine Lower  
Threshold  
Register 1  
(Local)  
Open  
Fine Lower Threshold[12:8]  
Rev. B | Page 44 of 52  
AD9640  
Default Default  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Notes/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0x10C  
Signal Monitor  
DC Correction  
Control  
Open  
DC  
correction  
freeze  
DC Correction Bandwidth[3:0]  
DC  
DC  
0x00  
correction correction  
for signal  
path  
for SM  
enable  
(Global)  
enable  
0x10D Signal Monitor  
DC Value  
DC Value Channel A[7:0]  
Read only  
Read only  
Read only  
Read only  
Channel A  
Register 0  
(Global)  
0x10E  
0x10F  
0x110  
0x111  
Signal Monitor  
DC Value  
Channel A  
Register 1  
(Global)  
Open  
Open  
DC Value Channel A[13:8]  
Signal Monitor  
DC Value  
Channel B  
Register 0  
(Global)  
DC Value Channel B[7:0]  
Signal Monitor  
DC Value  
Channel B  
Register 1  
(Global)  
Open  
Open  
Open  
DC Value Channel B[13:8]  
Signal Monitor  
SPORT Control  
(Global)  
RMS/MS  
magnitude  
output  
Peak  
Threshold  
crossing  
output  
SPORT SMI  
CLK divide  
00 = undefined  
01 = divide by 2  
10 = divide by 4  
11 = divide by 8  
SPORT  
SMI SCLK  
sleep  
Signal  
0x04  
0x00  
power  
output  
enable  
monitor  
SPORT  
output  
enable  
enable  
enable  
0x112  
Signal Monitor  
Control  
Complex  
power  
calculation  
mode  
Open  
Open  
Open  
MS  
mode  
0 =  
Signal monitor mode  
00 = RMS/MS Magnitude  
01 = peak power  
Signal  
monitor  
enable  
(Global)  
rms  
1 = ms  
1x = threshold count  
enable  
0x113  
0x114  
0x115  
0x116  
Signal Monitor  
Period  
Register 0  
(Global)  
Signal Monitor Period[7:0]  
Signal Monitor Period[15:8]  
Signal Monitor Period[23:16]  
0x40  
0x00  
0x00  
In ADC clock  
cycles  
Signal Monitor  
Period  
Register 1  
(Global)  
In ADC clock  
cycles  
Signal Monitor  
Period  
Register 2  
(Global)  
In ADC clock  
cycles  
Signal Monitor  
Result  
Channel A  
Register 0  
(Global)  
Signal Monitor Result Channel A[7:0]  
Read only  
Read only  
Read only  
Read only  
0x117  
0x118  
0x119  
Signal Monitor  
Result  
Channel A  
Register 1  
(Global)  
Signal Monitor Result Channel A[15:8]  
Signal Monitor  
Result  
Channel A  
Register 2  
(Global)  
Open  
Open  
Open  
Open  
Signal Monitor Value Channel A[19:16]  
Signal Monitor  
Result  
Signal Monitor Result Channel B[7:0]  
Channel B  
Register 0  
(Global)  
Rev. B | Page 45 of 52  
AD9640  
Default Default  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Notes/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0x11A  
Signal Monitor  
Result  
Signal Monitor Result Channel B[15:8]  
Read only  
Channel B  
Register 1  
(Global)  
0x11B  
Signal Monitor  
Result  
Open  
Open  
Open  
Open  
Signal Monitor Result Channel B[19:16]  
Read only  
Channel B  
Register 2  
(Global)  
Fine Upper Threshold (Register 0x106 and Register 0x107)  
Register 0x106, Bits[7:0]—Fine Upper Threshold[7:0]  
Register 0x107, Bits[7:5]—Reserved  
MEMORY MAP REGISTER DESCRIPTION  
For additional information about functions controlled in  
Register 0x00 to Register 0xFF, see the AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI.  
Register 0x107, Bits[4:0]—Fine Upper Threshold[12:8]  
Sync Control (Register 0x100)  
These registers provide the fine upper limit threshold. This 13-bit  
value is compared to the 13-bit magnitude from the ADC block  
and, if the ADC magnitude exceeds this threshold value, the  
F_UT flag is set.  
Bit 7—Signal Monitor Sync Enable  
Bit 7 enables the sync pulse from the external SYNC input to  
the signal monitor block. The sync signal is passed when Bit 7  
is high and Bit 0 is high. This is continuous sync mode.  
Fine Lower Threshold (Register 0x108 and Register 0x109)  
Bits[6:3]—Reserved  
Register 0x108, Bits[7:0]—Fine Lower Threshold[7:0]  
Register 0x109, Bits[7:5]—Reserved  
Register 0x109, Bits[4:0]—Fine Lower Threshold[12:8]  
Bit 2—Clock Divider Next Sync Only  
If the sync enable bit (Address 0x100[0]) is high and the clock  
divider sync enable (Address 0x100[1]) is high, Bit 2 allows the  
clock divider to sync to the first sync pulse it receives and ignore  
the rest. Address 0x100[1] resets after it syncs.  
These registers provide a fine lower limit threshold. This 13-bit  
value is compared to the 13-bit magnitude from the ADC block  
and, if the ADC magnitude is less than this threshold value, the  
F_LT flag is set.  
Bit 1—Clock Divider Sync Enable  
Signal Monitor DC Correction Control (Register 0x10C)  
Bit 1 gates the sync pulse to the clock divider. The sync signal is  
passed when Bit 1 is high and Bit 0 is high. This is continuous  
sync mode.  
Bit 7—Reserved  
Bit 6—DC Correction Freeze  
When Bit 6 is set high, the dc correction is no longer updated  
to the signal monitoring block. It holds the last dc value it  
calculated.  
Bit 0—Master Sync Enable  
Bit 0 must be high to enable any of the sync functions.  
Fast Detect Control (Register 0x104)  
Bits[7:4]—Reserved  
Bits[5:2]—DC Correction Bandwidth  
These bits set the averaging time of the signal monitor dc correc-  
tion function. It is a 4-bit word that sets the bandwidth of the  
correction block (see Table 26).  
Bits[3:1]—Fast Detect Mode Select  
These bits set the mode of the fast detect output bits according  
to Table 17.  
Bit 0—Fast Detect Enable  
Bit 0 is used to enable the fast detect bits. When the fast detect  
outputs are disabled, the outputs go into a high impedance state.  
In LVDS mode, when the outputs are interleaved, the outputs go  
high-Z only if both channels are turned off (power-down/standby/  
output disabled). If only one channel is turned off (power-down/  
standby/output disabled), the fast detect outputs repeat the data  
of the active channel.  
Rev. B | Page 46 of 52  
 
 
AD9640  
Bit 5—Peak Power Output Enable  
Table 26. DC Correction Bandwidth  
Bit 5 enables the 13-bit peak measurement as output on  
the SPORT.  
DC Correction Control Register 0x10C[5:2]  
Bandwidth (Hz)  
1218.56  
609.28  
304.64  
152.32  
76.16  
38.08  
19.04  
9.52  
4.76  
2.38  
1.19  
0.60  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Bit 4—Threshold Crossing Output Enable  
Bit 4 enables the 13-bit threshold measurement as output on  
the SPORT.  
Bits[3:2]—SPORT SMI SCLK Divide  
The values of these bits set the SPORT SMI SCLK divide ratio  
from the input clock. A value of 0x01 sets divide by 2 (default),  
a value of 0x10 sets divide by 4, and a value of 0x11 sets divide by 8.  
Bit 1— SPORT SMI SCLK Sleep  
Setting Bit 1 high causes the SMI SCLK to remain low when the  
signal monitor block has no data to transfer.  
0.30  
0.15  
0.15  
0.15  
Bit 0—Signal Monitor SPORT Output Enable  
When set, Bit 0 enables the SPORT output of the signal monitor  
to begin shifting out the result data from the signal monitor block.  
Bit 1—DC Correction for Signal Path Enable  
Signal Monitor Control (Register 0x112)  
Setting Bit 1 high causes the output of the dc measurement  
block to be summed with the data in the signal path to remove  
the dc offset from the signal path.  
Bit 7—Complex Power Calculation Mode Enable  
This mode assumes I data is present on one channel and Q data  
is present on the opposite channel. The result reported is the  
complex power, measured as  
Bit 0—DC Correction for SM Enable  
Bit 0 enables the dc correction function in the signal monitoring  
block. The dc correction is an averaging function that can be  
used by the signal monitor to remove dc offset in the signal.  
Removing this dc from the measurement allows a more accurate  
reading.  
I 2 + Q2  
Bits[6:4]—Reserved  
Bit 3—Signal Monitor RMS/MS Select  
Setting Bit 3 low selects rms power measurement mode. Setting  
Bit 3 high selects ms power measurement mode.  
Signal Monitor DC Value Channel A (Register 0x10D and  
Register 0x10E)  
Bits[2:1]—Signal Monitor Mode  
Register 0x10D, Bits[7:0]—Channel A DC Value[7:0]  
Register 0x10E, Bits[7:0]—Channel A DC Value[13:8]  
Bit 2 and Bit 1 set the mode of the signal monitor for data output  
to Register 0x116 to Register 0x11B. Setting Bit 2 and Bit 1 to  
0x00 selects rms/ms power output; setting these bits to 0x01  
selects peak power output; and setting 0x10 or 0x11 selects  
threshold crossing output.  
These read-only registers hold the latest dc offset value computed  
by the signal monitor for Channel A.  
Signal Monitor DC Value Channel B (Register 0x10F and  
Register 0x110)  
Bit 0—Signal Monitor Enable  
Register 0x10F Bits[7:0]—Channel B DC Value[7:0]  
Register 0x110 Bits[7:0]—Channel B DC Value[13:8]  
Setting Bit 0 high enables the signal monitor block.  
Signal Monitor Period (Register 0x113 to Register 0x115)  
Register 0x113, Bits[7:0]—Signal Monitor Period[7:0]  
Register 0x114, Bits[7:0]—Signal Monitor Period[15:8]  
Register 0x115, Bits[7:0]—Signal Monitor Period[23:16]  
These read-only registers hold the latest dc offset value computed  
by the signal monitor for Channel B.  
Signal Monitor SPORT Control (Register 0x111)  
Bit 7—Reserved  
This 24-bit value sets the number of clock cycles over which the  
signal monitor performs its operation. Although this register  
defaults to 64 (0x40), the minimum value for this register is 128  
(0x80) cycles – writing values less than 128 can cause inaccurate  
results.  
Bit 6—RMS/MS Magnitude Output Enable  
These bits enable the 20-bit rms or ms magnitude measurement  
as output on the SPORT.  
Rev. B | Page 47 of 52  
 
AD9640  
Signal Monitor Result Channel A (Register 0x116 to  
Register 0x118)  
Signal Monitor Result Channel B (Register 0x119 to  
Register 0x11B)  
Register 0x116, Bits[7:0]—Signal Monitor Result  
Channel A[7:0]  
Register 0x119, Bits[7:0]— Signal Monitor Result  
Channel B[7:0]  
Register 0x117, Bits[7:0]—Signal Monitor Result  
Channel A[15:8]  
Register 0x11A, Bits[7:0]—Signal Monitor Result  
Channel B[15:8]  
Register 0x118, Bits[7:4]—Reserved  
Register 0x11B, Bits[7:4]—Reserved  
Register 0x118, Bits[3:0]—Signal Monitor Result  
Channel A[19:16]  
Register 0x11B, Bits[3:0]—Signal Monitor Result  
Channel B[19:16]  
This 20-bit value contains the result calculated by the signal  
monitoring block for Channel A. The content is dependent on the  
settings in Register 0x112[2:1].  
This 20-bit value contains the result calculated by the signal  
monitoring block for Channel B. The content is dependent on  
the settings in Register 0x112[2:1].  
Rev. B | Page 48 of 52  
AD9640  
APPLICATIONS INFORMATION  
The copper plane should have several vias to achieve the lowest  
possible resistive thermal path for heat dissipation to flow  
through the bottom of the PCB. These vias should be filled or  
plugged with nonconductive epoxy.  
DESIGN GUIDELINES  
Before starting design and layout of the AD9640 as a system,  
it is recommended that the designer become familiar with these  
guidelines, which discuss the special circuit connections and  
layout requirements needed for certain pins.  
To maximize the coverage and adhesion between the ADC and  
PCB, a silkscreen should be overlaid to partition the continuous  
plane on the PCB into several uniform sections. This provides  
several tie points between the two during the reflow process.  
Using one continuous plane with no partitions guarantees only  
one tie point between the ADC and PCB. See the evaluation  
board for a PCB layout example. For detailed information about  
packaging and PCB layout of chip scale packages, see the AN-772  
Application Note, A Design and Manufacturing Guide for the  
Lead Frame Chip Scale Package (LFCSP).  
Power and Ground Recommendations  
When connecting power to the AD9640, it is recommended  
that two separate 1.8 V supplies be used: one supply should be  
used for analog (AVDD) and digital (DVDD), and a separate  
supply should be used for the digital outputs (DRVDD). The  
AVDD and DVDD supplies, while derived from the same  
source, should be isolated with a ferrite bead or filter choke  
and separate decoupling capacitors. The user can employ  
several different decoupling capacitors to cover both high  
and low frequencies. These should be located close to the  
point of entry at the PC board level and close to the parts  
pins with minimal trace length.  
CML  
The CML pin should be decoupled to ground with a 0.1 ꢀF  
capacitor, as shown in Figure 47.  
RBIAS  
A single PCB ground plane should be sufficient when using the  
AD9640. With proper decoupling and smart partitioning of the  
PCB analog, digital, and clock sections, optimum performance  
is easily achieved.  
The AD9640 requires that a 10 kΩ resistor be placed between  
the RBIAS pin and ground. This resistor sets the master current  
reference of the ADC core and should have at least a 1% tolerance.  
Reference Decoupling  
LVDS Operation  
The VREF pin should be externally decoupled to ground with a  
low ESR 1.0 ꢀF capacitor in parallel with a 0.1 ꢀF ceramic, low  
ESR capacitor.  
The AD9640 defaults to CMOS output mode on power-up.  
If LVDS operation is desired, this mode must be programmed  
using the SPI configuration registers after power-up. When the  
AD9640 powers up in CMOS mode with LVDS termination  
resistors (100 Ω) on the outputs, the DRVDD current may be  
higher than the typical value until the part is placed in LVDS  
mode. This additional DRVDD current does not cause damage  
to the AD9640, but it should be taken into account when consid-  
ering the maximum DRVDD current for the part.  
SPI Port  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK, CSB, and SDIO signals are typically asynchronous to the  
ADC clock, noise from these signals can degrade converter  
performance. If the on-board SPI bus is used for other devices,  
it may be necessary to provide buffers between this bus and the  
AD9640 to keep these signals from transitioning at the converter  
inputs during critical sampling periods.  
To avoid this additional DRVDD current, the AD9640 outputs  
can be disabled at power-up by taking the OEB pin high. After  
the part is placed into LVDS mode via the SPI port, the OEB  
pin can be taken low to enable the outputs.  
Exposed Paddle Thermal Heat Slug Recommendations  
It is mandatory that the exposed paddle on the underside of the  
ADC be connected to analog ground (AGND) to achieve the  
best electrical and thermal performance. A continuous, exposed  
(no solder mask), copper plane on the PCB should mate to the  
AD9640 exposed paddle, Pin 0.  
Rev. B | Page 49 of 52  
 
 
 
 
AD9640  
OUTLINE DIMENSIONS  
0.60 MAX  
9.00  
BSC SQ  
0.60  
MAX  
PIN 1  
INDICATOR  
64  
49  
48  
1
PIN 1  
INDICATOR  
0.50  
BSC  
7.25  
7.10 SQ  
6.95  
8.75  
BSC SQ  
TOP VIEW  
EXPOSED PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
16  
17  
33  
32  
0.25 MIN  
7.50  
REF  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
0.30  
0.23  
0.18  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VMMD-4  
Figure 74. 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
9 mm × 9 mm Body, Very Thin Quad  
(CP-64-3)  
Dimensions shown in millimeters  
0.60 MAX  
9.00  
BSC SQ  
0.60  
MAX  
PIN 1  
INDICATOR  
64  
49  
1
48  
PIN 1  
INDICATOR  
0.50  
BSC  
7.65  
7.50 SQ  
7.35  
8.75  
BSC SQ  
TOP VIEW  
EXPOSED PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
16  
17  
33  
32  
0.25 MIN  
7.50  
REF  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
0.30  
0.23  
0.18  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VMMD-4  
Figure 75. 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
9 mm × 9 mm Body, Very Thin Quad  
(CP-64-6)  
Dimensions shown in millimeters  
Rev. B | Page 50 of 52  
 
AD9640  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
CP-64-6  
CP-64-6  
CP-64-6  
CP-64-6  
CP-64-6  
CP-64-3  
CP-64-3  
CP-64-3  
AD9640ABCPZ-1501, 2  
AD9640ABCPZ-1251, 2  
AD9640ABCPZ-1051, 2  
AD9640ABCPZ-801, 2  
AD9640ABCPZRL7-801, 2  
AD9640BCPZ-1501  
AD9640BCPZ-1251  
AD9640BCPZ-1051  
AD9640BCPZ-801  
AD9640-150EBZ1  
AD9640-125EBZ1  
AD9640-105EBZ1  
AD9640-80EBZ1  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Evaluation Board  
CP-64-3  
Evaluation Board  
Evaluation Board  
Evaluation Board  
1 Z = RoHS Compliant Part.  
2 Recommended for use in new designs; reference PCN 09_0156.  
Rev. B | Page 51 of 52  
 
 
AD9640  
NOTES  
©2007–2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06547-0-12/09(B)  
Rev. B | Page 52 of 52  

相关型号:

AD9640ABCPZ-80

14-Bit, 80/105/125/150 MSPS, 1.8 V Dual Analog-to-Digital Converter
ADI

AD9640ABCPZ-80

2-CH 14-BIT FLASH METHOD ADC, PARALLEL ACCESS, QCC64, 9 X 9 MM, ROHS COMPLIANT, MO-220VMMD-4, LFCSP-64
ROCHESTER

AD9640ABCPZRL7-80

14-Bit, 80/105/125/150 MSPS, 1.8 V Dual Analog-to-Digital Converter
ADI

AD9640BCPZ-105

14-Bit, 80/105/125/150 MSPS, 1.8 V Dual Analog-to-Digital Converter
ADI

AD9640BCPZ-125

14-Bit, 80/105/125/150 MSPS, 1.8 V Dual Analog-to-Digital Converter
ADI

AD9640BCPZ-150

14-Bit, 80/105/125/150 MSPS, 1.8 V Dual Analog-to-Digital Converter
ADI

AD9640BCPZ-80

14-Bit, 80/105/125/150 MSPS, 1.8 V Dual Analog-to-Digital Converter
ADI

AD9640BCPZ-80

2-CH 14-BIT FLASH METHOD ADC, PARALLEL ACCESS, QCC64, 9 X 9 MM, ROHS COMPLIANT, MO-220VMMD-4, LFCSP-64
ROCHESTER

AD9641BCPZ-155

14-Bit, 80 MSPS/155 MSPS, 1.8 V Serial Output Analog-to-Digital Converter (ADC)
ADI

AD9641BCPZ-80

暂无描述
ADI

AD9641BCPZRL7-155

14-Bit, 80 MSPS/155 MSPS, 1.8 V Serial Output Analog-to-Digital Converter (ADC)
ADI

AD9641BCPZRL7-80

14-Bit, 80 MSPS/155 MSPS, 1.8 V Serial Output Analog-to-Digital Converter (ADC)
ADI