AD9641BCPZRL7-155 [ADI]

14-Bit, 80 MSPS/155 MSPS, 1.8 V Serial Output Analog-to-Digital Converter (ADC);
AD9641BCPZRL7-155
型号: AD9641BCPZRL7-155
厂家: ADI    ADI
描述:

14-Bit, 80 MSPS/155 MSPS, 1.8 V Serial Output Analog-to-Digital Converter (ADC)

转换器
文件: 总37页 (文件大小:2087K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
14-Bit, 80 MSPS/155 MSPS, 1.8 V  
Serial Output Analog-to-Digital Converter (ADC)  
Data Sheet  
AD9641  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
SDIO SCLK CSB  
DRVDD  
JESD204A coded serial digital outputs  
SNR = 73.7 dBFS at 70 MHz/80 MSPS  
SPI  
AD9641  
SNR = 72.8 dBFS at 70 MHz and 155 MSPS  
SFDR = 94 dBc at 70 MHz and 80 MSPS  
SFDR = 90 dBc at 70 MHz and 155 MSPS  
Low power: 238 mW at 80 MSPS, 313 mW at 155 MSPS  
1.8 V supply operation  
PROGRAMMING DATA  
ADC  
DOUT+  
DOUT–  
DSYNC+  
DSYNC–  
VIN+  
VIN–  
VCM  
Integer 1-to-8 input clock divider  
IF sampling frequencies to 250 MHz  
REFERENCE  
DATA RATE  
MULTIPLIER  
−148.6 dBFS/Hz input noise at 180 MHz and 80 MSPS  
−148.1 dBFS/Hz input noise at 180 MHz and 155 MSPS  
Programmable internal ADC voltage reference  
Flexible analog input range: 1.4 V p-p to 2.1 V p-p  
ADC clock duty cycle stabilizer (DCS)  
DUTY CYCLE  
STABILIZER  
CLK+  
CLK–  
DIVIDE-BY-1  
MULTICHIP  
SYNC  
TO  
DIVIDE-BY-8  
Serial port control  
User-configurable, built-in self-test (BIST) capability  
Energy-saving power-down modes  
AGND  
SYNC  
PDWN  
DRGND  
Figure 1.  
APPLICATIONS  
The ADC output data is routed directly to the JESD204A serial  
output port. This output is at CML voltage levels. A CMOS or  
LVDS synchronization input (DSYNC) is provided.  
Communications  
Diversity radio systems  
Multimode digital receivers (3G and 4G)  
GSM, EDGE, W-CDMA, LTE,  
CDMA2000, WiMAX, TD-SCDMA  
Smart antenna systems  
General-purpose software radios  
Broadband data applications  
Ultrasound equipment  
The flexible power-down options allow significant power savings,  
when desired.  
Programming for setup and control is accomplished using a 3-wire  
SPI-compatible serial interface.  
The AD9641 is available in a 32-lead LFCSP and is specified over  
the industrial temperature range of −40°C to +85°C.  
This product is protected by a U.S. patent.  
GENERAL DESCRIPTION  
The AD9641 is a 14-bit, 80 MSPS/155 MSPS analog-to-digital  
converter (ADC) with a high speed serial output interface. The  
AD9641 is designed to support communications applications  
where high performance, combined with low cost, small size, and  
versatility, is desired. The JESD204A high speed serial interface  
reduces board routing requirements and lowers pin count  
requirements for the receiving device.  
PRODUCT HIGHLIGHTS  
1. An on-chip PLL allows users to provide a single ADC  
sampling clock. The PLL multiplies the ADC sampling clock  
to produce the corresponding JESD204A data rate clock.  
2. The configurable JESD204A output block coded data rate  
supports up to 1.6 Gbps.  
3. A proprietary differential input maintains excellent SNR  
performance for input frequencies of up to 250 MHz.  
4. Operation is from a single 1.8 V power supply.  
5. The standard serial port interface (SPI) supports various  
product features and functions, such as data formatting  
(offset binary, twos complement, or Gray coding), control-  
ling the clock DCS, power-down, test modes, voltage  
reference mode, and serial output configuration.  
The ADC core features a multistage, differential pipelined  
architecture with integrated output error correction logic. The  
ADC features wide bandwidth, differential sample-and-hold,  
analog input amplifiers that support a variety of user-selectable  
input ranges. An integrated voltage reference eases the design  
considerations. A duty cycle stabilizer (DCS) is provided to  
compensate for variations in the ADC clock duty cycle,  
allowing the converter to maintain excellent performance.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2010–2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
AD9641* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
TOOLS AND SIMULATIONS  
Visual Analog  
AD9641/AD9644-155 S-Parameter Data  
AD9641/AD9644-80 S-Parameter Data  
EVALUATION KITS  
AD9641 Evaluation Board  
REFERENCE MATERIALS  
DOCUMENTATION  
Technical Articles  
Application Notes  
Improve The Design Of Your Passive Wideband ADC  
Front-End Network  
AN-1142: Techniques for High Speed ADC PCB Layout  
AN-586: LVDS Outputs for High Speed A/D Converters  
MS-2210: Designing Power Supplies for High Speed ADC  
AN-742: Frequency Domain Response of Switched-  
DESIGN RESOURCES  
AD9641 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
Capacitor ADCs  
AN-807: Multicarrier WCDMA Feasibility  
AN-808: Multicarrier CDMA2000 Feasibility  
AN-812: MicroController-Based Serial Port Interface (SPI)  
Boot Circuit  
AN-827: A Resonant Approach to Interfacing Amplifiers to  
Switched-Capacitor ADCs  
DISCUSSIONS  
View all AD9641 EngineerZone Discussions.  
AN-878: High Speed ADC SPI Control Software  
AN-935: Designing an ADC Transformer-Coupled Front  
End  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
Data Sheet  
AD9641: 14-Bit, 80 MSPS, 1.8 V Serial Output Analog-to-  
Digital Converter (ADC)  
TECHNICAL SUPPORT  
User Guides  
Submit a technical question or find your regional support  
number.  
UG-294: Evaluating the AD9644/AD9641 Analog-to-  
Digital Converters  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD9641  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Voltage Reference ....................................................................... 19  
Clock Input Considerations...................................................... 19  
Chip Synchronization................................................................ 20  
Power Dissipation and Standby Mode .................................... 21  
Digital Outputs ........................................................................... 21  
Built-In Self-Test (BIST) and Output Test .................................. 25  
Built-In Self-Test (BIST)............................................................ 25  
Output Test Modes..................................................................... 25  
Serial Port Interface (SPI).............................................................. 27  
Configuration Using the SPI..................................................... 27  
Hardware Interface..................................................................... 28  
SPI Accessible Features.............................................................. 28  
Memory Map .................................................................................. 29  
Reading the Memory Map Register Table............................... 29  
Memory Map Register Table..................................................... 29  
Memory Map Register Descriptions........................................ 32  
Applications Information.............................................................. 35  
Design Guidelines ...................................................................... 35  
Outline Dimensions....................................................................... 36  
Ordering Guide .......................................................................... 36  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
ADC DC Specifications............................................................... 3  
ADC AC Specifications ............................................................... 4  
Digital Specifications ................................................................... 5  
Switching Specifications .............................................................. 6  
Timing Specifications .................................................................. 7  
Absolute Maximum Ratings............................................................ 8  
Thermal Characteristics .............................................................. 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 10  
Equivalent Circuits......................................................................... 16  
Theory of Operation ...................................................................... 17  
ADC Architecture ...................................................................... 17  
Analog Input Considerations.................................................... 17  
REVISION HISTORY  
1/12—Rev. A to Rev. B  
Change to General Description Section........................................ 1  
Changes to Table 2............................................................................ 4  
Added Figure 23 to Figure 40; Renumbered Sequentially ........ 13  
Changes to Clock Input Considerations Section ....................... 19  
Changes to Digital Outputs and Timing Section....................... 23  
Moved Figure 65 and Figure 66.................................................... 23  
Added Figure 68 ............................................................................. 24  
Changes to Output Test Modes Section ...................................... 25  
Changes to SPI Accessible Features Section ............................... 28  
Changes to Addr (Hex) 0x02, Table 17........................................ 29  
Changes to Ordering Guide.......................................................... 36  
8/11—Rev. 0 to Rev. A  
Added Model -155......................................................... Throughout  
Changes to Features.......................................................................... 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 4  
Changes to Table 4............................................................................ 6  
Changes to Figure 11 to Figure 14 Captions............................... 11  
7/10—Revision 0: Initial Version  
Rev. B | Page 2 of 36  
 
Data Sheet  
AD9641  
SPECIFICATIONS  
ADC DC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, 1.75 V p-p differential input, VIN = −1.0 dBFS differential input, DCS enabled,  
unless otherwise noted.  
Table 1.  
AD9641-80  
Typ  
AD9641-155  
Typ  
Parameter  
Temperature Min  
Max  
Min  
Max  
Unit  
RESOLUTION  
Full  
14  
14  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Gain Error  
Full  
Full  
Full  
Full  
±5°C  
Full  
±5°C  
Guaranteed  
±±  
−±.5  
Guaranteed  
±±  
−±.5  
±1ꢀ  
+1  
±ꢀ.55  
±11  
+1  
±ꢀ.55  
mV  
% FSR  
LSB  
LSB  
LSB  
−7  
−7.5  
Differential Nonlinearity (DNL)1  
±ꢀ.3  
±ꢀ.5  
±ꢀ.3  
±ꢀ.5  
Integral Nonlinearity (INL)1  
±1.1  
±1.±  
LSB  
TEMPERATURE DRIFT  
Offset Error  
Gain Error  
Full  
Full  
±±  
±35  
ꢀ.7  
±±  
±35  
ꢀ.7  
ppm/°C  
ppm/°C  
LSB rms  
INPUT REFERRED NOISE  
ANALOG INPUT  
Input Span  
Input Capacitance±  
Input Resistance  
VCM OUTPUT LEVEL  
POWER SUPPLIES  
Supply Voltage  
AVDD  
±5°C  
Full  
Full  
Full  
Full  
1.383  
ꢀ.88  
1.75  
6
±ꢀ  
±.ꢀ87  
ꢀ.9±  
1.383  
ꢀ.87  
1.75  
5
±ꢀ  
±.ꢀ87  
ꢀ.9±  
V p-p  
pF  
kΩ  
V
ꢀ.9  
ꢀ.9  
Full  
Full  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
V
V
DRVDD  
Supply Current  
IAVDD1  
IDRVDD1  
Full  
Full  
96  
36  
1ꢀꢀ  
4ꢀ  
1±1  
51  
13±  
54  
mA  
mA  
POWER CONSUMPTION  
Sine Wave Input1  
Standby Power3  
Power-Down Power  
Full  
Full  
Full  
±38  
56  
7
±5±  
18  
31ꢀ  
56  
7
335  
18  
mW  
mW  
mW  
1 Measured with a low input frequency, full-scale sine wave.  
± Input capacitance refers to the effective capacitance between one differential input pin and AGND.  
3 Standby power is measured with a dc input and with the CLK pins inactive (set to AVDD or AGND).  
Rev. B | Page 3 of 36  
 
 
AD9641  
Data Sheet  
ADC AC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, 1.75 V p-p differential input, VIN = −1.0 dBFS differential input, DCS enabled,  
unless otherwise noted.  
Table 2.  
AD9641-80  
AD9641-155  
Parameter1  
Temperature  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
SIGNAL-TO-NOISE-RATIO (SNR)  
fIN = 1ꢀ MHz  
fIN = 7ꢀ MHz  
±5°C  
±5°C  
±5°C  
Full  
73.8  
73.7  
7±.6  
7±.ꢀ  
71.7  
71.3  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
fIN = 18ꢀ MHz  
71.8  
69.8  
fIN = ±±ꢀ MHz  
±5°C  
71.3  
71.±  
SIGNAL-TO-NOISE AND DISTORTION (SINAD)  
fIN = 1ꢀ MHz  
fIN = 7ꢀ MHz  
±5°C  
±5°C  
±5°C  
Full  
73.7  
73.6  
7±.5  
71.ꢀ  
7ꢀ.6  
7ꢀ.±  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
fIN = 18ꢀ MHz  
71.4  
68.7  
fIN = ±±ꢀ MHz  
±5°C  
71.±  
7ꢀ.1  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 1ꢀ MHz  
fIN = 7ꢀ MHz  
fIN = 18ꢀ MHz  
fIN = ±±ꢀ MHz  
±5°C  
±5°C  
±5°C  
±5°C  
1±.ꢀ  
11.9  
11.8  
11.5  
11.5  
11.4  
11.4  
11.4  
Bits  
Bits  
Bits  
Bits  
WORST SECOND OR THIRD HARMONIC  
fIN = 1ꢀ MHz  
fIN = 7ꢀ MHz  
±5°C  
±5°C  
±5°C  
Full  
−94  
−94  
−91  
−91  
−91  
−9ꢀ  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 18ꢀ MHz  
−8ꢀ  
−8ꢀ  
fIN = ±±ꢀ MHz  
±5°C  
−9ꢀ  
−89  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 1ꢀ MHz  
fIN = 7ꢀ MHz  
±5°C  
±5°C  
±5°C  
Full  
94  
94  
91  
91  
91  
9ꢀ  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 18ꢀ MHz  
8ꢀ  
8ꢀ  
fIN = ±±ꢀ MHz  
±5°C  
9ꢀ  
89  
WORST OTHER (HARMONIC OR SPUR)  
fIN = 1ꢀ MHz  
fIN = 7ꢀ MHz  
±5°C  
±5°C  
±5°C  
Full  
−98  
−98  
−96  
−96  
−98  
−94  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 18ꢀ MHz  
−9ꢀ  
−87  
fIN = ±±ꢀ MHz  
±5°C  
−9ꢀ  
−9ꢀ  
TWO-TONE SFDR  
fIN = 3ꢀ MHz (−7 dBFS ), 33 MHz (−7 dBFS )  
fIN = 169 MHz (−7 dBFS ), 17± MHz (−7 dBFS )  
ANALOG INPUT BANDWIDTH±  
±5°C  
±5°C  
±5°C  
93  
89  
89  
89  
dBc  
dBc  
MHz  
78ꢀ  
78ꢀ  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
± The analog input bandwidth parameter specifies the −3 dB input BW of the AD9641 input. The usable full-scale BW of the part with good performance is ±5ꢀ MHz.  
Rev. B | Page 4 of 36  
 
 
 
 
Data Sheet  
AD9641  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, 1.75 V p-p differential input, VIN = −1.0 dBFS differential input, and DCS enabled,  
unless otherwise noted.  
Table 3.  
Parameter  
Temperature Min  
Typ  
Max  
Unit  
DIFFERENTIAL CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
CMOS/LVDS/LVPECL  
ꢀ.9  
Internal Common-Mode Bias  
Differential Input Voltage  
Input Voltage Range  
Input Common-Mode Range  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
Full  
V
Full  
Full  
Full  
Full  
Full  
Full  
Full  
ꢀ.3  
AGND  
ꢀ.9  
−1ꢀꢀ  
−1ꢀꢀ  
3.6  
AVDD  
1.4  
V p-p  
V
V
+1ꢀꢀ  
+1ꢀꢀ  
μA  
μA  
pF  
kΩ  
4
1ꢀ  
Input Resistance  
8
1±  
SYNC INPUT  
Logic Compliance  
Internal Bias  
CMOS  
ꢀ.9  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
V
Input Voltage Range  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
AGND  
1.±  
AGND  
−1ꢀꢀ  
−1ꢀꢀ  
AVDD  
AVDD  
ꢀ.6  
V
V
V
+1ꢀꢀ  
+1ꢀꢀ  
μA  
μA  
pF  
 
1
16  
Input Resistance  
1±  
±ꢀ  
DSYNC INPUT  
Logic Compliance  
Internal Bias  
CMOS/LVDS  
ꢀ.9  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
V
Input Voltage Range  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
AGND  
1.±  
AGND  
−1ꢀꢀ  
−1ꢀꢀ  
AVDD  
AVDD  
ꢀ.6  
V
V
V
+1ꢀꢀ  
+1ꢀꢀ  
μA  
μA  
pF  
  
1
16  
Input Resistance  
1±  
±ꢀ  
LOGIC INPUT (CSB)1  
Logic Compliance  
CMOS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.±±  
−1ꢀ  
4ꢀ  
±.1  
ꢀ.6  
+1ꢀ  
13±  
V
V
μA  
μA  
kΩ  
pF  
±6  
±
Input Capacitance  
LOGIC INPUT (SCLK)±  
Logic Compliance  
CMOS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current (VIN = 1.8 V)  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.±±  
−9±  
−1ꢀ  
±.1  
ꢀ.6  
−135  
+1ꢀ  
V
V
μA  
μA  
kΩ  
pF  
±6  
±
Input Capacitance  
Rev. B | Page 5 of 36  
 
AD9641  
Data Sheet  
Parameter  
LOGIC INPUT/OUTPUT (SDIO)1  
Temperature Min  
Typ  
Max  
Unit  
Logic Compliance  
CMOS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.±±  
−1ꢀ  
38  
±.1  
ꢀ.6  
+1ꢀ  
1±8  
V
V
μA  
μA  
kΩ  
pF  
±6  
5
Input Capacitance  
DIGITAL OUTPUTS  
Logic Compliance  
Differential Output Voltage (VOD)  
Output Offset Voltage (VOS)  
Full  
Full  
Full  
CML  
ꢀ.8  
DRVDD/±  
ꢀ.6  
ꢀ.75  
1.1  
1.ꢀ5  
V
V
1 Pull up.  
± Pull down.  
SWITCHING SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, 1.75 V p-p differential input, VIN = −1.0 dBFS differential input, and DCS enabled,  
unless otherwise noted.  
Table 4.  
AD9641-80  
Temperature Min Typ  
AD9641-155  
Typ  
Parameter  
Max Min  
Max  
Unit  
CLOCK INPUT PARAMETERS  
Input Clock Rate  
Conversion Rate1  
Full  
Full  
Full  
64ꢀ  
8ꢀ  
64ꢀ  
155  
MHz  
MSPS  
ns  
4ꢀ  
1±.5  
4ꢀ  
6.45  
CLK Period—Divide-by-1 Mode (tCLK  
)
CLK Pulse Width High (tCH)  
Divide-by-1 Mode, DCS Enabled  
Divide-by-1 Mode, DCS Disabled  
Divide-by-± ModeThrough Divide-by-8 Mode Full  
Full  
Full  
3.75 6.±5  
5.95 6.±5  
ꢀ.8  
8.75 1.935 3.±±5  
6.55 3.ꢀ65 3.±±5  
4.515 ns  
3.385 ns  
ns  
ꢀ.8  
Aperture Delay (tA)  
Full  
Full  
ꢀ.78  
ꢀ.1±5  
ꢀ.78  
ꢀ.1±5  
ns  
ps rms  
Aperture Uncertainty (Jitter, tJ)  
DATA OUTPUT PARAMETERS  
Data Output Period or UI (Unit Interval)  
Data Output Duty Cycle  
Data Valid Time  
PLL Lock Time (tLOCK  
Wake Up Time (Standby)  
Wake Up Time (Power-Down)±  
Pipeline Delay (Latency)  
Data Rate (NRZ)  
Full  
1/(±ꢀ × fCLK  
)
1/(±ꢀ × fCLK  
)
sec  
%
UI  
μs  
μs  
ms  
CLK cycles  
Gbps  
ps  
ps rms  
ps rms  
ps  
5ꢀ  
ꢀ.8  
4
5ꢀ  
ꢀ.75  
4
±5°C  
±5°C  
±5°C  
±5°C  
±5°C  
Full  
±5°C  
±5°C  
±5°C  
±5°C  
±5°C  
)
5
5
±.5  
±.5  
±3  
±4  
±3  
±4  
1.6  
4ꢀ  
9.5  
3.1  
4ꢀ  
Deterministic Jitter  
Random Jitter at 1.6 Gbps  
Random Jitter at 3.1 Gbps  
Output Rise/Fall Time  
5.±  
5ꢀ  
5ꢀ  
TERMINATION CHARACTERISTICS  
Differential Termination Resistance  
OUT-OF-RANGE RECOVERY TIME  
±5°C  
±5°C  
1ꢀꢀ  
±
1ꢀꢀ  
±
Ω
CLK cycles  
1 Conversion rate is the clock rate after the divider.  
± Wake-up time is defined as the time required to return to normal operation from power-down mode.  
Rev. B | Page 6 of 36  
 
 
 
Data Sheet  
AD9641  
TIMING SPECIFICATIONS  
Table 5.  
Parameter  
Test Conditions  
Limit  
SYNC TIMING REQUIREMENTS  
tSSYNC  
tHSYNC  
SYNC to rising edge of CLK+ setup time  
SYNC to rising edge of CLK+ hold time  
ꢀ.3ꢀ ns typ  
ꢀ.3ꢀ ns typ  
SPI TIMING REQUIREMENTS  
tDS  
tDH  
tCLK  
tS  
tH  
tHIGH  
tLOW  
tEN_SDIO  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the SCLK  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
SCLK pulse width high  
± ns min  
± ns min  
4ꢀ ns min  
± ns min  
± ns min  
1ꢀ ns min  
1ꢀ ns min  
1ꢀ ns min  
SCLK pulse width low  
Time required for the SDIO pin to switch from an input to an output relative to the SCLK  
falling edge  
tDIS_SDIO  
Time required for the SDIO pin to switch from an output to an input relative to the SCLK  
rising edge  
1ꢀ ns min  
Timing Diagrams  
SAMPLE  
N
N – 23  
ANALOG  
N – 22  
N + 1  
INPUT  
N – 21  
SIGNAL  
N – 1  
N – 20  
CLK–  
CLK+  
CLK–  
CLK+  
DOUT+  
DOUT–  
SAMPLE N – 23  
ENCODED INTO 2  
8b/10b SYMBOLS  
SAMPLE N – 22  
ENCODED INTO 2  
8b/10b SYMBOLS  
SAMPLE N – 21  
ENCODED INTO 2  
8b/10b SYMBOLS  
Figure 2. Data Output Timing  
CLK+  
SYNC  
tSSYNC  
tHSYNC  
Figure 3. SYNC Input Timing Requirements  
Rev. B | Page 7 of 36  
 
 
AD9641  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL CHARACTERISTICS  
Table 6.  
The exposed paddle must be soldered to the ground plane for  
the LFCSP package. Soldering the exposed paddle to the PCB  
increases the reliability of the solder joints and maximizes the  
thermal capability of the package.  
Parameter  
Rating  
ELECTRICAL  
AVDD to AGND  
DRVDD to AGND  
VIN+, VIN− to AGND  
CLK+, CLK− to AGND  
SYNC to AGND  
VCM to AGND  
CSB to AGND  
SCLK to AGND  
SDIO to AGND  
−0.3 V to +2.0 V  
−0.3 V to +2.0V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to DRVDD + 0.2 V  
−0.3 V to DRVDD + 0.2 V  
−0.3 V to DRVDD + 0.2 V  
−0.3 V to DRVDD + 0.2 V  
−0.3 V to DRVDD + 0.2 V  
−0.3 V to DRVDD + 0.2 V  
Table 7. Thermal Resistance  
Airflow  
Velocity  
(m/sec)  
1, 2  
1, 3  
1, 4  
Package Type  
θJA  
36  
32  
28  
θJC  
θJB  
Unit  
°C/W  
°C/W  
°C/W  
32-Lead LFCSP  
5 mm × 5 mm  
(CP-32-12)  
0
3
20  
1.0  
2.5  
PDWN to AGND  
DOUT+, DOUT− to AGND  
DSYNC+, DSYNC− to AGND  
ENVIRONMENTAL  
1 Per JEDEC 51-7, plus JEDEC 51-5 2S2P test board.  
2 Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).  
3 Per MIL-Std 883, Method 1012.1.  
4 Per JEDEC JESD51-8 (still air).  
Operating Temperature Range  
(Ambient)  
Maximum Junction Temperature  
Under Bias  
Storage Temperature Range  
(Ambient)  
−40°C to +85°C  
150°C  
Typical θJA is specified for a 4-layer PCB with a solid ground  
plane. As shown in Table 7, airflow improves heat dissipation,  
which reduces θJA. In addition, metal in direct contact with the  
package leads from metal traces, through holes, ground, and  
power planes, reduces θJA.  
−65°C to +150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. B | Page 8 of 36  
 
 
 
 
 
 
Data Sheet  
AD9641  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AVDD  
DNC  
1
2
3
4
5
6
7
8
24 PDWN  
23 DNC  
22 CSB  
21 SCLK  
20 SDIO  
19 DRVDD  
18 DRVDD  
17 DRGND  
PIN 1  
INDICATOR  
AVDD  
CLK+  
CLK–  
AVDD  
SYNC  
AVDD  
AD9641  
TOP VIEW  
(Not to Scale)  
NOTES  
1. DNC = DO NOT CONNECT.  
2. THE EXPOSED THERMAL PAD ON THE BOTTOM OF THE PACKAGE  
PROVIDES THE ANALOG GROUND FOR THE PART. THIS EXPOSED PAD  
MUST BE CONNECTED TO GROUND FOR PROPER OPERATION.  
Figure 4. LFCSP Pin Configuration (Top View)  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic  
Type  
Description  
ADC Power Supplies  
1±, 16, 18, 19  
1, 3, 6, 8, ±6, ±7, 3ꢀ, 31, 3± AVDD  
DRVDD  
Supply  
Supply  
Digital Output Driver Supply (1.8 V Nominal).  
Analog Power Supply (1.8 V Nominal).  
Do Not Connect.  
±, ±3  
DNC  
11, 13, 17  
DRGND  
AGND, Exposed pad Ground  
Driver ground Digital Driver Supply Ground.  
The exposed thermal pad on the bottom of the package provides  
the analog ground for the part. This exposed pad must be connected  
to ground for proper operation.  
ADC Analog  
±9  
±8  
±5  
4
VIN+  
VIN−  
VCM  
CLK+  
CLK−  
Input  
Input  
Output  
Input  
Input  
Differential Analog Input Pin (+).  
Differential Analog Input Pin (−).  
Common-Mode Level Bias Output.  
ADC Clock Input—True.  
5
ADC Clock Input—Complement.  
Digital Inputs  
7
1ꢀ  
SYNC  
DSYNC+  
Input  
Input  
Input Clock Divider Synchronization Pin.  
Active Low JESD±ꢀ4A LVDS Sync Input—True/Active Low  
JESD±ꢀ4A CMOS Sync Input.  
9
DSYNC−  
Input  
Active Low JESD±ꢀ4A LVDS Sync Input—Complement.  
Digital Outputs  
15  
14  
DOUT+  
DOUT−  
Output  
Output  
CML Output Data—True.  
CML Output Data—Complement.  
SPI Control  
±1  
±ꢀ  
±±  
SCLK  
SDIO  
CSB  
Input  
SPI Serial Clock.  
Input/output SPI Serial Data I/O.  
Input  
Input  
SPI Chip Select (Active Low).  
ADC Configuration  
±4  
PDWN  
Power-Down Input. Using the SPI interface, this input can be  
configured as power-down or standby.  
Rev. B | Page 9 of 36  
 
 
 
AD9641  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD = 1.8 V, DRVDD = 1.8 V, sample rate = maximum sample rate per speed grade, DCS enabled, 1.75 V p-p differential input, VIN =  
−1.0 dBFS, and 32k sample, TA = 25°C, unless otherwise noted.  
0
0
80MSPS  
80MSPS  
10.1MHz @ –1dBFS  
SNR = 73.0dB (74.0dBFS)  
SFDR = 95dBc  
140.3MHz @ –1dBFS  
SNR = 72.2dB (73.2dBFS)  
SFDR = 94.0dBc  
–20  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
THIRD HARMONIC  
–100  
–120  
–140  
–100  
–120  
–140  
0
10  
20  
30  
40  
0
10  
20  
FREQUENCY (MHz)  
30  
40  
FREQUENCY (MHz)  
Figure 5. AD9641-80 Single-Tone FFT with fIN = 10.1 MHz  
Figure 8. AD9641-80 Single-Tone FFT with fIN = 140.1 MHz  
0
0
80MSPS  
80MSPS  
30.1MHz @ –1dBFS  
SNR = 72.7dB (73.7dBFS)  
SFDR = 94dBc  
180.1MHz @ –1dBFS  
SNR = 71.6dB (72.6dBFS)  
SFDR = 93dBc  
–20  
–40  
–20  
–40  
–60  
–60  
SECOND HARMONIC  
SECOND HARMONIC  
THIRD HARMONIC  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
10  
20  
FREQUENCY (MHz)  
30  
40  
0
10  
20  
FREQUENCY (MHz)  
30  
40  
Figure 6. AD9641-80 Single-Tone FFT with fIN = 30.1 MHz  
Figure 9. AD9641-80 Single-Tone FFT with fIN = 180.1 MHz  
0
0
80MSPS  
80MSPS  
220.1MHz @ –1dBFS  
SNR = 71.1dB (72.1dBFS)  
SFDR = 92dBc  
70.1MHz @ –1dBFS  
SNR = 72.5dB (73.5dBFS)  
SFDR = 94.0dBc  
–20  
–20  
–40  
–40  
–60  
–60  
THIRD HARMONIC  
SECOND HARMONIC  
SECOND HARMONIC  
THIRD HARMONIC  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
10  
20  
FREQUENCY (MHz)  
30  
40  
0
10  
20  
FREQUENCY (MHz)  
30  
40  
Figure 10. AD9641-80 Single-Tone FFT with fIN = 220.1 MHz  
Figure 7. AD9641-80 Single-Tone FFT with fIN = 70.1 MHz  
Rev. B | Page 1ꢀ of 36  
 
Data Sheet  
AD9641  
100  
95  
90  
85  
80  
75  
70  
65  
120  
100  
80  
SNR @ –40°C  
SFDR @ –40°C  
SNR @ +25°C  
SFDR @ +25°C  
SNR @ +85°C  
SFDR @ +85°C  
SFDR (dBFS)  
60  
40  
20  
0
SFDR (dBc)  
SNR (dBFS)  
SNR (dBc)  
0
50  
100  
150  
200  
250  
INPUT FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 11. AD9641-80 Single-Tone SNR/SFDR vs. Input Amplitude (AIN)  
with fIN = 10.1 MHz, fS = 80 MSPS  
Figure 14. AD9641-80 Single-Tone SNR/SFDR vs. Input Frequency (fIN) and  
Temperature with 2.0 V p-p Full Scale, fS = 80 MSPS  
120  
100  
80  
0
–20  
–40  
SFDR (dBFS)  
SFDR (dBc)  
SNR (dBFS)  
SNR (dBc)  
–60  
60  
SFDR (dBc)  
IMD3 (dBc)  
SFDR (dBFS)  
–80  
IMD3 (dBFS)  
40  
20  
–100  
–120  
0
–90  
–78  
–66  
–54  
–42  
–30  
–18  
–6  
INPUT AMPLITUDE (dBFS)  
INPUT AMPLITUDE (dBFS)  
Figure 12. AD9641-80 Single-Tone SNR/SFDR vs. Input Amplitude (AIN)  
with fIN = 180 MHz, fS = 80 MSPS  
Figure 15. AD9641-80 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN)  
with fIN1 = 29.9 MHz, fIN2 = 32.9 MHz, fS = 80 MSPS  
0
100  
95  
–20  
–40  
90  
SNR @ –40°C  
85  
80  
75  
70  
65  
SFDR @ –40°C  
SNR @ +25°C  
SFDR @ +25°C  
SNR @ +85°C  
SFDR @ +85°C  
–60  
–80  
SFDR (dBc)  
IMD3 (dBc)  
SFDR (dBFS)  
IMD3 (dBFS)  
–100  
–120  
0
50  
100  
150  
200  
250  
–90  
–78  
–66  
–54  
–42  
–30  
–18  
–6  
INPUT FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 16. AD9641-80 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN)  
with fIN1 = 169.1 MHz, fIN2 = 172.1 MHz, fS = 80 MSPS  
Figure 13. AD9641-80 Single-Tone SNR/SFDR vs. Input Frequency (fIN) and  
Temperature with 1.75 V p-p Full Scale, fS = 80 MSPS  
Rev. B | Page 11 of 36  
AD9641  
Data Sheet  
0
14,000  
12,000  
10,000  
8000  
80MSPS  
29.9MHz @ –7dBFS  
32.9MHz @ –7dBFS  
SFDR = 94.4dBc (101.4dBFS)  
–20  
–40  
–60  
6000  
–80  
4000  
–100  
–120  
2000  
–140  
0
0
10  
20  
FREQUENCY (MHz)  
30  
40  
N – 4 N – 3 N – 2 N – 1  
N
N + 1 N + 2 N + 3 N + 4  
OUTPUT CODE  
Figure 17. AD9641-80 Two-Tone FFT with fIN1 = 29.9 MHz and fIN2 = 32.9 MHz  
Figure 20. AD9641-80 Grounded Input Histogram  
1.0  
0.8  
0
80MSPS  
169.1MHz @ –7dBFS  
172.1MHz @ –7dBFS  
SFDR = 91.9dBc (98.9dBFS)  
–20  
–40  
0.6  
0.4  
0.2  
–60  
0
–80  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–100  
–120  
–140  
0
200  
400  
600  
800  
1000 1200 1400 1600  
0
10  
20  
FREQUENCY (MHz)  
30  
40  
OUTPUT CODE  
Figure 18. AD9641-80 Two-Tone FFT with fIN1 = 169.1 MHz and  
fIN2 = 172.1 MHz  
Figure 21. AD9641-80 INL with fIN = 30.3 MHz  
0.50  
0.25  
0
100  
SFDR  
95  
90  
85  
80  
75  
70  
–0.25  
–0.50  
SNR  
45  
50  
55  
60  
65  
70  
75  
80  
0
2000 4000 6000 8000 10,000 12,000 14,000 16,000  
OUTPUT CODE  
SAMPLE RATE (MSPS)  
Figure 22. AD9641-80 DNL with fIN = 30.3 MHz  
Figure 19. AD9641-80 Single-Tone SNR/SFDR vs. Sample Rate (fS)  
with fIN = 70.1 MHz  
Rev. B | Page 1± of 36  
Data Sheet  
AD9641  
0
–20  
–40  
–60  
0
–20  
–40  
–60  
155MSPS  
155MSPS  
140.1MHz @ –1dBFS  
SNR = 70.7dB (71.7dBFS)  
SFDR = 93dBc  
10.1MHz @ –1dBFS  
SNR = 71.0dB (72.0dBFS)  
SFDR = 95dBc  
SECOND HARMONIC  
THIRD HARMONIC  
THIRD HARMONIC  
SECOND HARMONIC  
–80  
–100  
–120  
–140  
–80  
–100  
–120  
–140  
0
7.75 15.50 23.25 31.00 38.75 46.50 54.25 62.00 69.75 77.50  
FREQUENCY (MHz)  
0
7.75 15.50 23.25 31.00 38.75 46.50 54.25 62.00 69.75 77.50  
FREQUENCY (MHz)  
Figure 23. AD9641-155 Single-Tone FFT with fIN = 10.1 MHz  
Figure 26. AD9641-155 Single-Tone FFT with fIN = 140.1 MHz  
0
0
155MSPS  
155MSPS  
30.1MHz @ –1dBFS  
SNR = 70.9dB (71.9dBFS)  
SFDR = 95dBc  
180.1MHz @ –1dBFS  
SNR = 70.3dB (71.3dBFS)  
SFDR = 92dBc  
–20  
–20  
–40  
–60  
–40  
–60  
THIRD HARMONIC  
SECOND HARMONIC  
THIRD HARMONIC  
SECOND HARMONIC  
–80  
–100  
–120  
–140  
–80  
–100  
–120  
–140  
0
7.75 15.50 23.25 31.00 38.75 46.50 54.25 62.00 69.75 77.50  
FREQUENCY (MHz)  
0
7.75 15.50 23.25 31.00 38.75 46.50 54.25 62.00 69.75 77.50  
FREQUENCY (MHz)  
Figure 24. AD9641-155 Single-Tone FFT with fIN = 30.1 MHz  
Figure 27. AD9641-155 Single-Tone FFT with fIN = 180.1 MHz  
0
0
155MSPS  
155MSPS  
70.1MHz @ –1dBFS  
SNR = 70.7dB (71.7dBFS)  
SFDR = 93dBc  
220.1MHz @ –1dBFS  
SNR = 70.2dB (71.2dBFS)  
SFDR = 89dBc  
–20  
–20  
–40  
–60  
–40  
–60  
THIRD HARMONIC  
SECOND HARMONIC  
THIRD HARMONIC  
–80  
–100  
–120  
–140  
–80  
–100  
–120  
–140  
SECOND HARMONIC  
0
7.75 15.50 23.25 31.00 38.75 46.50 54.25 62.00 69.75 77.50  
FREQUENCY (MHz)  
0
7.75 15.50 23.25 31.00 38.75 46.50 54.25 62.00 69.75 77.50  
FREQUENCY (MHz)  
Figure 25. AD9641-155 Single-Tone FFT with fIN = 70.1 MHz  
Figure 28. AD9641-155 Single-Tone FFT with fIN = 220.1 MHz  
Rev. B | Page 13 of 36  
AD9641  
Data Sheet  
120  
100  
80  
100  
95  
SFDR (dBFS)  
SNR (dBFS)  
90  
85  
SNR @ –40°C  
SFDR @ –40°C  
SNR @ +25°C  
SFDR @ +25°C  
SNR @ +85°C  
SFDR @ +85°C  
60  
SFDR (dBc)  
80  
75  
70  
65  
40  
SNR (dBc)  
20  
0
–90  
0
50  
100  
150  
200  
250  
300  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
INPUT FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 29. AD9641-155 Single-Tone SNR/SFDR vs. Input Amplitude (AIN)  
with fIN = 10.1 MHz, fS = 155 MSPS  
Figure 32. AD9641-155 Single-Tone SNR/SFDR vs. Input Frequency (fIN) and  
Temperature with 2.0 V p-p Full Scale, fS = 155 MSPS  
0
120  
SFDR (dBFS)  
–20  
100  
80  
–40  
SNR (dBFS)  
SFDR (dBc)  
60  
–60  
SFDR (dBc)  
IMD3 (dBc)  
40  
–80  
SNR (dBc)  
–100  
–120  
SFDR (dBFS)  
IMD3 (dBFS)  
20  
0
–90  
–78  
–66  
–54  
–42  
–30  
–18  
–6  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
INPUT AMPLITUDE (dBFS)  
INPUT AMPLITUDE (dBFS)  
Figure 33. AD9641-155 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN)  
with fIN1 = 29.9 MHz, fIN2 = 32.9 MHz, fS = 155 MSPS  
Figure 30. AD9641-155 Single-Tone SNR/SFDR vs. Input Amplitude (AIN)  
with fIN = 180 MHz, fS = 155 MSPS  
0
100  
95  
–20  
90  
–40  
SNR @ –40°C  
SFDR (dBc)  
SFDR @ –40°C  
SNR @ +25°C  
SFDR @ +25°C  
SNR @ +85°C  
SFDR @ +85°C  
85  
–60  
80  
75  
70  
65  
IMD3 (dBc)  
–80  
SFDR (dBFS)  
IMD3 (dBFS)  
–100  
–120  
0
50  
100  
150  
200  
250  
300  
–90  
–78  
–66  
–54  
–42  
–30  
–18  
–6  
INPUT FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 31. AD9641-155 Single-Tone SNR/SFDR vs. Input Frequency (fIN) and  
Temperature with 1.75 V p-p Full Scale, fS = 155 MSPS  
Figure 34. AD9641-155 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN)  
with fIN1 = 169.1 MHz, fIN2 = 172.1 MHz, fS = 155 MSPS  
Rev. B | Page 14 of 36  
Data Sheet  
AD9641  
0
–20  
–40  
–60  
6000  
155MSPS  
29.9MHz @ –7dBFS  
32.9MHz @ –7dBFS  
SFDR = 88.7dBc (95.7dBFS)  
5000  
4000  
3000  
2000  
1000  
0
–80  
–100  
–120  
–140  
0
7.75 15.50 23.25 31.00 38.75 46.50 54.25 62.00 69.75 77.50  
FREQUENCY (MHz)  
N – 5 N – 4 N – 3 N – 2 N – 1  
N
N + 1 N + 2 N + 3 N + 4  
OUTPUT CODE  
Figure 35. AD9641-155 Two-Tone FFT with fIN1 = 29.9 MHz and fIN2 = 32.9 MHz  
Figure 38. AD9641-155 Grounded Input Histogram  
0
1.0  
0.8  
155MSPS  
169.1MHz @ –7dBFS  
172.1MHz @ –7dBFS  
SFDR = 89.8dBc (96.8dBFS)  
–20  
–40  
–60  
0.6  
0.4  
0.2  
0
–80  
–100  
–120  
–140  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
7.75 15.50 23.25 31.00 38.75 46.50 54.25 62.00 69.75 77.50  
FREQUENCY (MHz)  
0
2000 4000 6000  
8000 10,000 12,000 14,000 16,000  
OUTPUT CODE  
Figure 36. AD9641-155 Two-Tone FFT with fIN1 = 169.1 MHz and  
fIN2 = 172.1 MHz  
Figure 39. AD9641-155 INL with fIN = 30.3 MHz  
105  
0.50  
0.25  
0
SFDR  
100  
95  
90  
85  
80  
75  
70  
–0.25  
–0.50  
SNR  
50  
65  
80  
95  
110  
125  
140  
155  
0
2000 4000 6000  
8000 10,000 12,000 14,000 16,000  
SAMPLE RATE (MSPS)  
OUTPUT CODE  
Figure 37. AD9641-155 Single-Tone SNR/SFDR vs. Sample Rate (fS)  
with fIN = 70.1 MHz  
Figure 40. AD9641-155 DNL with fIN = 30.3 MHz  
Rev. B | Page 15 of 36  
AD9641  
Data Sheet  
EQUIVALENT CIRCUITS  
AVDD  
350  
30kΩ  
SCLK  
OR  
PDWN  
VIN  
Figure 41. Equivalent Analog Input Circuit  
Figure 45. Equivalent SCLK or PDWN Input Circuit  
AVDD  
AVDD  
AVDD  
AVDD  
30k  
350Ω  
0.9V  
CSB  
15k  
15kΩ  
CLK+  
CLK–  
Figure 42. Equivalent Clock Input Circuit  
Figure 46. Equivalent CSB Input Circuit  
DRVDD  
AVDD  
AVDD  
4mA  
4mA  
4mA  
4mA  
R
TERM  
V
DOUT+  
DOUT–  
DSYNC±  
OR SYNC  
CM  
0.9V  
16k  
0.9V  
Figure 47. Equivalent SYNC and DSYNC Input Circuit  
Figure 43. Digital CML Output  
DRVDD  
350Ω  
30kΩ  
SDIO  
Figure 44. Equivalent SDIO Circuit  
Rev. B | Page 16 of 36  
 
Data Sheet  
AD9641  
THEORY OF OPERATION  
In intermediate frequency (IF) undersampling applications, any  
The AD9641 can sample any fS/2 frequency segment from dc to  
250 MHz, using appropriate low-pass or band-pass filtering at  
the ADC inputs with little loss in ADC performance.  
shunt capacitors should be reduced because the input sample  
capacitor is unbuffered. In combination with the driving source  
impedance, the shunt capacitors limit the input bandwidth.  
Refer to the AN-742 Application Note, Frequency Domain  
Response of Switched-Capacitor ADCs; the AN-827 Application  
Note, A Resonant Approach to Interfacing Amplifiers to Switched-  
Capacitor ADCs; and the Analog Dialogue article, Transformer-  
Coupled Front-End for Wideband A/D Converters,for more  
information on this subject (refer to www.analog.com).  
BIAS  
Synchronization capability is provided to allow synchronized  
timing between multiple devices.  
Programming and control of the AD9641 are accomplished  
using a 3-wire, SPI-compatible serial interface.  
ADC ARCHITECTURE  
The AD9641 architecture consists of a front-end sample-and-  
hold circuit, followed by a pipelined, switched-capacitor ADC.  
The quantized outputs from each stage are combined into a final  
14-bit result in the digital correction logic. The pipelined architec-  
ture permits the first stage to operate on a new input sample  
and the remaining stages to operate on the preceding samples.  
Sampling occurs on the rising edge of the clock.  
S
S
C
FB  
C
S
VIN+  
C
PAR1  
C
PAR2  
H
S
S
S
C
Each stage of the pipeline, excluding the last, consists of a low  
resolution, flash ADC connected to a switched-capacitor digital-  
to-analog converter (DAC) and an interstage residue amplifier  
(MDAC). The MDAC magnifies the difference between the  
reconstructed DAC output and the flash input for the next stage  
in the pipeline. One bit of redundancy is used in each stage to  
facilitate digital correction of flash errors. The last stage consists  
of a flash ADC.  
S
VIN–  
C
FB  
C
C
PAR1  
PAR2  
S
BIAS  
Figure 48. Switched-Capacitor Input  
For best dynamic performance, the source impedances driving  
VIN+ and VIN− should be matched, and the inputs should be  
differentially balanced.  
The input stage contains a differential sampling circuit that can  
be ac- or dc-coupled in differential or single-ended modes. The  
output staging block aligns the data, corrects errors, and passes the  
data to the output buffers. The output buffers are powered from  
a separate supply, allowing digital output noise to be separated  
from the analog core. During power-down, the output buffers go  
into a high impedance state.  
Input Common Mode  
The analog inputs of the AD9641 are not internally dc biased.  
In ac-coupled applications, the user must provide this bias  
externally. Setting the device so that VCM = 0.5 × AVDD (or  
0.9 V) is recommended for optimum performance. An on-board,  
common-mode voltage reference is included in the design and  
is available from the VCM pin. Using the VCM output to set the  
input common mode is recommended. Optimum performance  
is achieved when the common-mode voltage of the analog input  
is set by the VCM pin voltage (typically, 0.5 × AVDD). The VCM  
pin must be decoupled to ground by a 0.1 μF capacitor. This  
decoupling capacitor should be placed close to the pin to minimize  
the series resistance and inductance between the part and this  
capacitor.  
ANALOG INPUT CONSIDERATIONS  
The analog input to the AD9641 is a differential switched-  
capacitor circuit that has been designed for optimum performance  
while processing a differential input signal.  
The clock signal switches the input alternatively between sample  
mode and hold mode (see Figure 48). When the input is switched  
into sample mode, the signal source must be capable of charging  
the sample capacitors and settling within 1/2 of a clock cycle.  
Differential Input Configurations  
Optimum performance is achieved while driving the AD9641 in a  
differential input configuration. For baseband applications, the  
AD8138, ADA4937-2, and ADA4938-2 differential drivers provide  
excellent performance and a flexible interface to the ADC.  
A small resistor in series with each input can help reduce the  
peak transient current required from the output stage of the  
driving source. A shunt capacitor can be placed across the  
inputs to provide dynamic charging currents. This passive  
network creates a low-pass filter at the ADC input; therefore,  
the precise values are dependent on the application.  
Rev. B | Page 17 of 36  
 
 
 
 
AD9641  
Data Sheet  
The signal characteristics must be considered when selecting  
a transformer. Most RF transformers saturate at frequencies  
below a few megahertz (MHz). Excessive signal power can also  
cause core saturation, which leads to distortion.  
The output common-mode voltage of the ADA4938-2 is easily  
set with the VCM pin of the AD9641 (see Figure 49), and the  
driver can be configured in a Sallen-Key filter topology to provide  
band limiting of the input signal.  
15pF  
At input frequencies in the second Nyquist zone and above, the  
noise performance of most amplifiers is not adequate to achieve  
the true SNR performance of the AD9641. For applications where  
SNR is a key parameter, differential double balun coupling is the  
recommended input configuration (see Figure 51). In this configu-  
ration, the input is ac-coupled, and the common-mode voltage  
(VCM) is provided to each input through a 33 Ω resistor. These  
resistors compensate for losses in the input baluns to provide  
a 50 Ω impedance to the driver.  
200  
33Ω  
5pF  
15Ω  
15Ω  
90Ω  
VIN–  
VIN+  
AVDD  
ADC  
VCM  
76.8Ω  
VIN  
ADA4938-2  
0.1µF  
33Ω  
120Ω  
15pF  
200Ω  
Figure 49. Differential Input Configuration Using the ADA4938-2  
For baseband applications in which SNR is a key parameter,  
differential transformer coupling is the recommended input  
configuration. An example is shown in Figure 50. To bias the  
analog input, the voltage of VCM can be connected to the  
center tap of the secondary winding of the transformer.  
In the double balun and transformer configurations, the value  
of the input capacitors and resistors is dependent on the input  
frequency and source impedance. Based on these parameters,  
the value of the input resistors and capacitors may need to be  
adjusted, or some components may need to be removed. Table 9  
displays recommended values to set the RC network for different  
input frequency ranges. However, these values are dependent on  
the input signal and bandwidth and should be used only as  
a starting guide.  
C2  
R3  
R2  
VIN+  
R1  
2V p-p  
49.9  
C1  
R1  
ADC  
VCM  
An alternative to using a transformer-coupled input at frequencies  
in the second Nyquist zone is to use the AD8376 variable gain  
amplifier. An example drive circuit including a band-pass filter  
is shown in Figure 52. See the AD8376 data sheet for more  
information.  
R2  
VIN–  
0.1µF  
R3  
C2  
Figure 50. Differential Transformer-Coupled Configuration  
C2  
R3  
0.1µF  
0.1µF  
0.1µF  
R1  
R2  
R2  
VIN+  
VIN–  
2V p-p  
33  
33Ω  
P
S
S
P
C1  
R1  
ADC  
A
0.1µF  
VCM  
R3  
C2  
Figure 51. Differential Double Balun Input Configuration  
Table 9. Example RC Network  
Frequency Range (MHz)  
R1 Series (Ω Each)  
C1 Differential (pF)  
R2 Series (Ω Each)  
C2 Shunt (pF Each)  
R3 Shunt (Ω Each)  
ꢀ to 1ꢀꢀ  
1ꢀꢀ to ±5ꢀ  
33  
15  
8.±  
3.9  
8.±  
Open  
49.9  
Open  
1000pF 180nH 220nH  
1µH  
165  
VPOS  
15pF  
AD8376  
5.1pF 3.9pF  
301Ω  
VCM  
1nF  
165Ω  
1nF  
1µH  
68nH  
AD9641  
180nH 220nH  
1000pF  
NOTES  
1. ALL INDUCTORS ARE COILCRAFT 0603CS COMPONENTS  
WITH THE EXCEPTION OF THE 1µH CHOKE INDUCTORS (0603LS).  
2. FILTER VALUES SHOWN ARE FOR A 20MHz BANDWIDTH FILTER  
CENTERED AT 140MHz.  
Figure 52. Differential Input Configuration Using the AD8376  
Rev. B | Page 18 of 36  
 
 
 
 
 
Data Sheet  
AD9641  
The RF balun configuration is recommended for clock frequencies  
between 125 MHz and 640 MHz, and the RF transformer is  
recommended for clock frequencies from 40 MHz to 200 MHz.  
The back-to-back Schottky diodes across the transformer/balun  
secondary limit clock excursions into the AD9641 to approxi-  
mately 0.8 V p-p differential.  
VOLTAGE REFERENCE  
A stable and accurate voltage reference is built into the AD9641.  
The input full-scale range can be adjusted through the SPI port by  
adjusting Bit 0 through Bit 4 of Register 0x18. These bits can be  
used to change the full-scale value between 1.383 V p-p and  
2.087 V p-p in 0.022 V steps, as shown in Table 17.  
This limit helps prevent the large voltage swings of the clock  
from feeding through to other portions of the AD9641 while  
preserving the fast rise and fall times of the signal that are  
critical to a low jitter performance.  
CLOCK INPUT CONSIDERATIONS  
For optimum performance, the AD9641 sample clock inputs,  
CLK+ and CLK−, should be clocked with a differential signal.  
The signal is typically ac-coupled into the CLK+ and CLK− pins  
by means of a transformer or a passive component configuration.  
These pins are biased internally (see Figure 53) and require no  
external bias. If the inputs are floated, the CLK− pin is pulled low  
to prevent spurious clocking.  
If a low jitter clock source is not available, another option is to  
ac couple a differential PECL signal to the sample clock input  
pins, as shown in Figure 56. The AD9510/AD9511/AD9512/  
AD9513/AD9514/AD9515/AD9516/AD9517/AD9518/  
AD9520/AD9522 clock drivers offer excellent jitter performance.  
AVDD  
0.1µF  
0.1µF  
0.9V  
CLOCK  
INPUT  
CLK+  
ADC  
CLK+  
CLK–  
AD95xx  
PECL DRIVER  
100  
0.1µF  
0.1µF  
CLOCK  
INPUT  
4pF  
4pF  
CLK–  
240Ω  
240Ω  
50kΩ  
50kΩ  
Figure 56. Differential PECL Sample Clock (Up to 640 MHz)  
Figure 53. Equivalent Clock Input Circuit  
A third option is to ac-couple a differential LVDS signal to the  
sample clock input pins, as shown in Figure 57. The AD9510/  
AD9511/AD9512/AD9513/AD9514/AD9515/AD9516/AD9517/  
AD9518/AD9520/AD9522 clock drivers offer excellent jitter  
performance.  
Clock Input Options  
The AD9641 has a very flexible clock input structure. Clock input  
can be a CMOS, LVDS, LVPECL, or sine wave signal. Regardless of  
the type of signal being used, clock source jitter is of the most  
concern, as described in the Jitter Considerations section. The  
minimum conversion rate of the AD9641 is 40 MSPS. At clock  
rates below 40 MSPS, dynamic performance of the AD9641 can  
degrade.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
ADC  
AD95xx  
LVDS DRIVER  
100Ω  
Figure 54 and Figure 55 show two preferred methods for clocking  
the AD9641 (at clock rates up to 640 MHz). A low jitter clock  
source is converted from a single-ended signal to a differential  
signal using either an RF balun or an RF transformer.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
50kΩ  
50kΩ  
Figure 57. Differential LVDS Sample Clock (Up to 640 MHz)  
®
Mini-Circuits  
ADC  
In some applications, it may be acceptable to drive the sample  
clock inputs with a single-ended CMOS signal. In such applica-  
tions, the CLK+ pin should be driven directly from a CMOS gate,  
and the CLK− pin should be bypassed to ground with a 0.1 μF  
capacitor (see Figure 58).  
ADT1-1WT, 1:1Z  
0.1µF  
0.1µF  
XFMR  
CLOCK  
INPUT  
CLK+  
CLK–  
100  
50Ω  
0.1µF  
SCHOTTKY  
DIODES:  
HSMS2822  
0.1µF  
V
CC  
OPTIONAL  
100  
0.1µF  
Figure 54. Transformer-Coupled Differential Clock (Up to 200 MHz)  
0.1µF  
1kΩ  
1kΩ  
AD95xx  
CMOS DRIVER  
CLOCK  
INPUT  
CLK+  
ADC  
50*  
ADC  
1nF  
50  
1nF  
0.1µF  
0.1µF  
CLK–  
CLOCK  
INPUT  
CLK+  
CLK–  
0.1µF  
*50RESISTOR IS OPTIONAL.  
Figure 58. Single-Ended 1.8 V CMOS Input Clock (Up to 200 MHz)  
SCHOTTKY  
DIODES:  
HSMS2822  
Figure 55. Balun-Coupled Differential Clock (Up to 640 MHz)  
Rev. B | Page 19 of 36  
 
 
 
 
 
 
 
 
AD9641  
Data Sheet  
Input Clock Divider  
In the equation, the rms aperture jitter represents the clock input  
jitter specification. IF undersampling applications are particularly  
sensitive to jitter, as illustrated in Figure 59. The measured curve  
in Figure 59 was taken using an ADC clock source with approxi-  
mately 65 fS of jitter, which combines with the 125 fS of jitter  
inherent in the AD9641 to produce the result shown.  
75  
The AD9641 contains an input clock divider with the ability  
to divide the input clock by integer values between 1 and 8.  
For divide ratios of 1, 2, or 4, the duty cycle stabilizer (DCS)  
is optional. For other divide ratios, such as 3, 5, 6, 7, and 8, the  
DCS must be enabled for proper part operation.  
The AD9641 clock divider can be synchronized using the external  
SYNC input. Bit 1 and Bit 2 of Register 0x03A allow the clock  
divider to be resynchronized on every SYNC signal or only on  
the first SYNC signal after the register is written. A valid SYNC  
causes the clock divider to reset to its initial state. This synchro-  
nization feature allows multiple parts to have their clock dividers  
aligned to guarantee simultaneous input sampling.  
70  
0.05ps  
65  
0.2ps  
0.5ps  
1ps  
1.5ps  
MEASURED  
60  
Clock Duty Cycle  
Typical high speed ADCs use both clock edges to generate  
a variety of internal timing signals and, as a result, may be  
sensitive to clock duty cycle. The AD9641 requires a tight  
tolerance on the clock duty cycle to maintain dynamic  
performance characteristics.  
55  
50  
1
10  
100  
1000  
INPUT FREQUENCY (MHz)  
Figure 59. SNR vs. Input Frequency and Jitter  
The AD9641 contains a DCS that retimes the nonsampling  
(falling) edge, providing an internal clock signal with a nominal  
50% duty cycle. This allows the user to provide a wide range of  
clock input duty cycles without affecting the performance of the  
AD9641. Noise and distortion performance are nearly flat for a  
wide range of duty cycles with the DCS enabled.  
The clock input should be treated as an analog signal in cases in  
which aperture jitter may affect the dynamic range of the AD9641.  
Power supplies for clock drivers should be separated from the  
ADC output driver supplies to avoid modulating the clock signal  
with digital noise. Low jitter, crystal-controlled oscillators make  
the best clock sources. If the clock is generated from another type  
of source (by gating, dividing, or another method), it should be  
retimed by the original clock at the last step.  
Jitter in the rising edge of the input is still of paramount concern  
and is not easily reduced by the internal stabilization circuit.  
The duty cycle control loop does not function for clock rates  
of less than 20 MHz, nominally. The loop has a time constant  
associated with it that must be considered in applications in  
which the clock rate can change dynamically. A wait time of  
1.5 μs to 5 μs is required after a dynamic clock frequency  
increase or decrease before the DCS loop is relocked to the  
input signal. During the time when the loop is not locked, the  
DCS loop is bypassed, and internal device timing is dependent  
on the duty cycle of the input clock signal. In such applications,  
it may be appropriate to disable the DCS. In all other applications,  
enabling the DCS circuit is recommended to maximize ac  
performance.  
Refer to the AN-501 Application Note and the AN-756 Application  
Note for more information about jitter performance as it relates  
to ADCs.  
CHIP SYNCHRONIZATION  
The AD9641 has a SYNC input that offers the user flexible  
synchronization options for synchronizing the clock divider.  
The clock divider sync feature is useful for guaranteeing synchro-  
nized sample clocks across multiple ADCs. The input clock  
divider can be enabled to synchronize on a single occurrence of  
the SYNC signal or on every occurrence.  
The SYNC input is internally synchronized to the sample clock;  
however, to ensure that there is no timing uncertainty between  
multiple parts, the SYNC input signal should be externally syn-  
chronized to the input clock signal, meeting the setup and hold  
times shown in Table 5. The SYNC input should be driven using  
a single-ended CMOS-type signal.  
Jitter Considerations  
High speed, high resolution ADCs are sensitive to the quality  
of the clock input. For inputs near full scale, the degradation in  
SNR from the low frequency SNR (SNRLF) at a given input  
frequency (fINPUT) due to jitter (tJRMS) can be calculated by  
SNRHF = −10 log[(2π × fINPUT × tJRMS)2 + 10 (SNR /10)  
]
LF  
Rev. B | Page ±ꢀ of 36  
 
 
 
Data Sheet  
AD9641  
POWER DISSIPATION AND STANDBY MODE  
DIGITAL OUTPUTS  
JESD204A Transmit Top Level Description  
As shown in Figure 60, the power dissipated by the AD9641  
varies with its sample rate. The data in Figure 60 was taken  
in JESD204A serial output mode, using the same operating  
conditions as those used for the Typical Performance  
Characteristics.  
The AD9641 digital output complies with the JEDEC Standard  
No. 204A (JESD204A), which describes a serial interface for  
data converters. JESD204A uses 8b/10b encoding, as well as  
optional scrambling. K28.5 and K28.7 comma symbols are used  
for frame synchronization, and the K28.3 control symbol is used  
for lane synchronization. The receiver is required to lock onto  
the serial data stream and recover the clock with the use of a PLL.  
For details on the output interface, users are encouraged to refer  
to the JESD204A standard.  
0.30  
0.20  
0.10  
0
0.15  
0.10  
0.05  
0
TOTAL  
POWER  
The JESD204A link is described according to the following  
nomenclature:  
I
AVDD  
S = samples transmitted per single converter per  
frame cycle  
M = number of converters per converter device (link)  
L = number of lanes per converter device (link)  
N = converter resolution  
N’ = total number of bits per sample  
CF = number of control words per frame clock cycle per  
converter device (link)  
I
DRVDD  
40  
50  
60  
70  
80  
ENCODE FREQUENCY (MSPS)  
Figure 60. Power and Current vs. Encode Frequency  
The AD9641 is placed in power-down mode using Register 0x08,  
Bits[1:0] or by asserting the PDWN pin high. In this state, the  
ADC typically dissipates 7 mW. During power-down, the output  
drivers are placed in a high impedance state. Pulling the PDWN  
pin low returns the AD9641 to its normal operating mode. Low  
power dissipation in power-down mode is achieved by shutting  
down the reference, reference buffer, biasing networks, and clock.  
Internal capacitors are discharged when entering power-down  
mode and then must be recharged when returning to normal  
operation.  
CS = number of control bits per conversion sample  
K = number of frames per multiframe  
HD = high density mode  
F = number of octets per frame  
C = control bit (overrange, overflow, underflow)  
T = tail bit  
SCR = scrambling enabled  
FCHK = checksum  
The JESD204A block for the AD9641 is designed to support the  
configurations described in Table 10.  
When using the SPI port interface, the user can place the ADC  
in power-down mode or standby mode (Register 0x08, Bits[1:0]).  
Standby mode allows the user to keep the internal reference  
circuitry powered and the JESD204A outputs running when  
faster wake-up times are required.  
Table 10. AD9641 JESD204A Typical Configuration  
Configuration  
JESD204A Link Settings  
M = 1; L = 1; S = 1; F = ±  
N’ = 16; CF = ꢀ  
Comments  
Maximum sample rate = 8ꢀ or 155 MSPS  
One Converter  
One JESD±ꢀ4A Link  
One Lane Per Link  
CS = ꢀ, 1, ±; K = N/A  
SCR = ꢀ, 1; HD = ꢀ  
Rev. B | Page ±1 of 36  
 
 
 
 
AD9641  
Data Sheet  
Figure 61 shows a simplified block diagram of the JESD204A link  
for the AD9641. The 8b/10b encoding works by taking eight bits of  
data (an octet) and encoding them into a 10-bit symbol. By default  
in the AD9641, the 14-bit converter word is broken into two octets.  
Bit 13 through Bit 6 are in the first octet. The second octet contains  
Bit 5 through Bit 0 and two tail bits. The MSB of the tail bits can  
also be used to indicate an out-of-range condition. The tail bits  
are configured using the JESD204A link control in JESD204A  
Link Control Register 1, Address 0x60, Bit 6.  
The two resulting octets are optionally scrambled and encoded  
into their corresponding 10-bit code. The scrambler function is  
controlled by the JESD204A scrambling and lane configuration  
register, Address 0x06E, Bit 7. Figure 62 shows how the 14-bit  
data is taken from the ADC, the tail bits are added, the two octets  
are scrambled, and the octets are encoded into two 10-bit symbols.  
Figure 63 illustrates the default data format.  
The scrambler uses a self-synchronizing, polynomial-based  
algorithm defined by the following equation: 1 + x14 + x15. The  
descrambler in the receiver should be a self-synchronizing  
version of the scrambler polynomial. Figure 64 shows the  
corresponding receiver data path.  
LINK  
DSYNC  
AD9641 ADC  
OUTPUT  
LANE  
CONVERTER  
INPUT  
CONVERTER  
SAMPLE  
JESD204 A LINK  
(M = 0, 1; L = 0, 1)  
CONVERTER  
Refer to JEDEC Standard No. 204A, April 2008, Section 5.1, for  
complete transport layer and data format details. See Section 5.2  
for a complete explanation of scrambling and descrambling.  
Figure 61. AD9641 Transmit Link Simplified Block Diagram  
DATA  
FROM  
ADC  
FRAME  
ASSEMBLER  
(ADD TAIL BITS)  
OPTIONAL  
SCRAMBLER  
14 15  
8B/10B  
ENCODER  
TO  
RECEIVER  
1 + x + x  
Figure 62. ADC Output Data Path  
WORD 0[13:6]  
SYMBOL 0[9:0]  
FRAME 0  
FRAME 1  
WORD 0[5:0], TAIL BITS[1:0]  
WORD 1[13:6]  
SYMBOL 1[9:0]  
SYMBOL 2[9:0]  
SYMBOL 3[9:0]  
TIME  
WORD 1[5:0], TAIL BITS[1:0]  
Figure 63. 14-Bit Data Transmission with Tail Bits  
OPTIONAL  
8B/10B  
DECODER  
FRAME  
ALIGNMENT  
DATA  
OUT  
FROM  
TRANSMITTER  
DESCRAMBLER  
14 15  
1 + x + x  
Figure 64. Required Receiver Data Path  
Rev. B | Page ±± of 36  
 
 
 
 
Data Sheet  
AD9641  
Initial Frame Synchronization  
A 100 Ω differential termination resistor should be placed at each  
receiver input to result in a nominal 400 mV peak-to-peak swing at  
the receiver (see Figure 65). Alternatively, single-ended 50 Ω  
termination can be used. When single-ended termination is  
used, the termination voltage should be DRVDD/2; otherwise,  
ac coupling capacitors can be used to terminate to any single-  
ended voltage.  
The serial interface must synchronize to the frame boundaries  
before data can be properly decoded. The JESD204A standard  
has a synchronization routine to identify the frame boundary.  
When the DSYNC pin is taken low for at least two clock cycles,  
the AD9641 enters the code group synchronization mode. The  
AD9641 transmits the K28.5 comma symbol until the receiver  
achieves synchronization. The receiver should then deassert the  
sync signal (take DSYNC high), and the AD9641 begins the initial  
lane alignment sequence (when enabled through Address 0x60,  
Bits[3:2]) and, subsequently, begins transmitting sample data. The  
first non-K28.5 symbol corresponds to the first octet in a frame.  
The AD9641 digital outputs can interface with custom ASICs and  
FPGA receivers, providing superior switching performance in  
noisy environments. Single point-to-point network topologies are  
recommended with a single differential 100 Ω termination resistor  
placed as close as possible to the receiver logic. The common  
mode of the digital output automatically biases itself to half the  
supply of the receiver (that is, the common-mode voltage is 0.9 V  
for a receiver supply of 1.8 V) if dc-coupled connecting is used  
(see Figure 66).  
The DSYNC input can be driven either from a differential LVDS  
source or by using a single-ended CMOS driver circuit. The  
DSYNC input default to LVDS mode but can be set to CMOS  
mode by setting Bit 4 in Address 0x61. If it is driven differen-  
tially from an LVDS source, an external 100 Ω termination  
resistor should be provided. If the DSYNC input is driven single  
endedly, the CMOS signal should be connected to the DSYNC+  
signal, and the DSYNC− signal should be left disconnected.  
100  
DIFFERENTIAL  
TRACE PAIR  
DRVDD  
DOUT + x  
RECEIVER  
100Ω  
DOUT – x  
Frame and Lane Alignment Monitoring and Correction  
Frame alignment monitoring and correction is part of the  
JESD204A specification. The 14-bit word requires two octets to  
transmit all the data. The two octets (MSB and LSB), where  
F = 2, make up a frame. During normal operating conditions,  
frame alignment is monitored via alignment characters, which  
are inserted under certain conditions at the end of a frame.  
Table 11 summarizes the conditions for character insertion,  
along with the expected characters under the various operation  
modes. If lane synchronization is enabled, the replacement  
character value depends on whether the octet is at the end of  
a frame or at the end of a multiframe.  
V
= DRVDD/2  
OUTPUT SWING = 400mV p-p  
CM  
Figure 65. AC-Coupled Digital Output Termination Example  
V
RXCM  
100  
DIFFERENTIAL  
TRACE PAIR  
DRVDD  
0.1µF  
0.1µF  
DOUT+x  
RECEIVER  
= Rx V  
100Ω  
OR  
DOUT–x  
V
OUTPUT SWING = 400mV p-p  
CM  
CM  
Based on the operating mode, the receiver can ensure that it is  
still synchronized to the frame boundary by correctly receiving  
the replace characters.  
Figure 66. DC-Coupled Digital Output Termination Example  
For receiver logic that is not within the bounds of the DRVDD  
supply, an ac-coupled connection should be used. Place a 0.1 μF  
capacitor on each output pin and derive a 100 Ω differential  
termination close to the receiver side.  
Digital Outputs and Timing  
The AD9641 has differential digital outputs that power up  
by default. The driver current is derived on-chip and sets the  
output current at each output equal to a nominal 4 mA. Each  
output presents a 100 Ω dynamic internal termination to reduce  
unwanted reflections.  
If there is no far-end receiver termination or if there is poor  
differential trace routing, timing errors may result. To avoid  
such timing errors, it is recommended that the trace length be  
less than 8 inches and that the differential output traces be close  
together and at equal lengths.  
Table 11. AD9641 JESD204A Frame Alignment Monitoring and Correction Replacement Characters  
Lane  
Synchronization  
Replacement  
Character  
Scrambling  
Character to Be Replaced  
Last Octet in Multiframe  
Off  
Off  
Off  
On  
On  
On  
On  
On  
Off  
On  
On  
Off  
Last octet in frame repeated from previous frame  
Last octet in frame repeated from previous frame  
Last octet in frame repeated from previous frame  
Last octet in frame equals D±8.7 (ꢀxFC)  
Last octet in frame equals D±8.3 (ꢀx7C)  
Last octet in frame equals D±8.7 (ꢀx7C)  
No  
Yes  
K±8.7 (ꢀxFC)  
K±8.3 (ꢀx7C)  
K±8.7 (ꢀxFC)  
K±8.7 (ꢀxFC)  
K±8.3 (ꢀx7C)  
K±8.7 (ꢀxFC)  
Not applicable  
No  
Yes  
Not applicable  
Rev. B | Page ±3 of 36  
 
 
 
AD9641  
Data Sheet  
Figure 67 shows an example of the digital output (default) data  
eye and a time interval error (TIE) jitter histogram.  
The lowest typical clock rate is 40 MSPS. For clock rates slower  
than 60 MSPS, Bit 3 should be set to 0 in the PLL control register  
(Address 0x21 in Table 17). This option sets the PLL loop band-  
width to use clock rates between 40 MSPS and 60 MSPS.  
Additional SPI options allow the user to further increase the output  
driver voltage swing of all four outputs to drive longer trace lengths  
(see Address 0x15 in Table 17). Even though this produces sharper  
rise and fall times on the data edges and is less prone to bit errors,  
the power dissipation of the DRVDD supply increases when this  
option is used. See the Memory Map section for more details.  
Setting Bit 2 in the output mode register (Address 0x14) allows  
the user to invert the digital samples from their nominal state.  
As shown in Figure 63, the MSB is transmitted first in the data  
output serial stream.  
The format of the output data is twos complement, by default.  
Table 12 provides an example of this output coding format.  
To change the output data format to offset binary or Gray code,  
see the Memory Map section (Address 0x14 in Table 17).  
WIDTH@BER1: BATHTUB  
HEIGHT1: EYE DIAGRAM  
PERIOD1: HISTOGRAM  
0
10  
1
4
3
25,000  
20,000  
15,000  
10,000  
5000  
+
+
–2  
–4  
–6  
–8  
10  
10  
10  
10  
400  
200  
0
–200  
–400  
–10  
–12  
–14  
10  
10  
10  
0.781  
EYE: TRANSITION BITS  
OFFSET: –0.004  
UIS: 8000; 639999, TOTAL: 8000; 639999  
0
–600 –400 –200  
0
200 400 600  
610 615 620 625 630 635  
TIME (ps)  
–0.5  
0
0.5  
TIME (ps)  
ULS  
Figure 67. AD9641-80 Digital Outputs Data Eye, Histogram, and Bathtub, External 100 Ω Terminations  
WIDTH@BER1: BATHTUB  
HEIGHT1: EYE DIAGRAM  
PERIOD1: HISTOGRAM  
0
10  
600  
400  
4
3
1
400k  
350k  
300k  
250k  
200k  
150k  
100k  
–2  
–4  
–6  
–8  
10  
10  
10  
10  
200  
0
–200  
–400  
–600  
–10  
–12  
–14  
10  
10  
10  
0.75  
EYE: TRANSITION BITS  
OFFSET: –0.002  
UIS: 8000; 1239996, TOTAL: 48000; 7439996  
50k  
0
–300 –200 –100  
100 200 300  
305 310 315 320 325 330 335  
TIME (ps)  
–0.5  
0
0.5  
0
TIME (ps)  
ULS  
Figure 68. AD9641-155 Digital Outputs Data Eye, Histogram, and Bathtub, External 100 Ω Terminations  
Table 12. Digital Output Coding  
Code  
8191  
(VIN+) − (VIN−), Input Span = 1.75 V p-p (V)  
Digital Output Twos Complement ([D13:D0])  
ꢀ1 1111 1111 1111  
ꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ  
+ꢀ.875  
ꢀ.ꢀꢀ  
−1  
−819±  
−ꢀ.ꢀꢀꢀ1ꢀ7  
−ꢀ.875  
11 1111 1111 1111  
1ꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ  
Rev. B | Page ±4 of 36  
 
 
Data Sheet  
AD9641  
BUILT-IN SELF-TEST (BIST) AND OUTPUT TEST  
The AD9641 includes built-in test features designed to enable  
verification of the integrity of the channel as well as facilitate  
board level debugging. A BIST (built-in self-test) feature is included  
that verifies the integrity of the digital datapath of the AD9641.  
Various output test options are also provided to place predictable  
values on the outputs of the AD9641.  
OUTPUT TEST MODES  
Digital test patterns can be inserted at various points along the  
signal path within the AD9641 as shown in Figure 69. The ability  
to inject these signals at several locations facilitates debugging  
of the JESD204A serial communication link.  
Register 0x0D allows test signals generated at the output of the  
ADC core to be fed directly into the input of the serial link. The  
output test options available from Register 0x0D are shown in  
Table 14. When an output test mode is enabled, the analog  
section of the ADC is disconnected from the digital back end  
blocks and the test pattern is run through the output formatting  
block. Some of the test patterns are subject to output formatting,  
and some are not. The seed value for the PN sequence tests can be  
forced if the PN reset bits are used to hold the generator in reset  
mode by setting Bit 4 or Bit 5 of Register 0x0D. These tests can  
be performed with or without an analog signal (if present, the  
analog signal is ignored), but they do require an encode clock.  
BUILT-IN SELF-TEST (BIST)  
The BIST is a thorough test of the digital portion of the selected  
AD9641 signal path. When enabled, the test runs from an internal  
pseudorandom noise (PN) source through the digital datapath  
starting at the ADC block output. The BIST sequence runs  
for 512 cycles and stops. The BIST signature value is placed in  
Register 0x24 and Register 0x25. The outputs are not disconnected  
during this test; therefore, the PN sequence can be observed as  
it runs. The PN sequence can be continued from its last value or  
reset from the beginning, based on the value programmed in  
Register 0x0E, Bit 2. The BIST signature result varies based on  
the channel configuration.  
For more information, see the AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI.  
JESD204A TEST PATTERNS  
10-BIT  
SPI REGISTER 0x62 BITS [5:4] =  
01 AND BITS [2:0] 000  
ADC TEST PATTERNS  
14-BIT  
SPI REGISTER 0x0D  
BITS [3:0] 0000  
JESD204A TEST PATTERNS  
16-BIT  
SPI REGISTER 0x62 BITS [5:4] =  
00 AND BITS [2:0] 000  
SERIALIZER  
OUTPUT  
FRAME  
CONSTRUCTION  
SCRAMBLER  
(OPTIONAL)  
8-BIT/10-BIT  
ENCODER  
JESD204A  
SAMPLE  
CONSTRUCTION  
ADC CORE  
FRAMER  
TAIL BITS  
Figure 69. Block Diagram Showing Digital Test Modes  
Rev. B | Page ±5 of 36  
 
 
 
 
AD9641  
Data Sheet  
There are nine digital output test pattern options available that  
can be initiated through the SPI (see Table 14 for the output bit  
sequencing options). This feature is useful when validating  
receiver capture and timing. Some test patterns have two serial  
sequential words and can be alternated in various ways, depending  
on the test pattern selected. Note that some patterns do not  
adhere to the data format select option. In addition, custom  
user-defined test patterns can be assigned in the user pattern  
registers (Address 0x19 and Address 0x20).  
A description of the PN sequence long and how it is generated  
can be found in Section 5.6 of the ITU-T O.150 (05/96) standard.  
The only differences are that the starting value must be a specific  
value instead of all 1s (see Table 13 for the initial values) and  
that the AD9641 inverts the bit stream with relation to the ITU-T  
standard.  
Table 13. PN Sequence  
Initial  
Value  
First Three Output Samples  
(MSB First)  
Sequence  
The PN sequence short pattern produces a pseudorandom bit  
sequence that repeats itself every 29 − 1 (511) bits. A description  
of the PN sequence short and how it is generated can be found  
in Section 5.1 of the ITU-T O.150 (05/96) recommendation.  
The only difference is that the starting value must be a specific  
value instead of all 1s (see Table 13 for the initial values).  
PN Sequence Short ꢀxꢀꢀ9±  
PN Sequence Long ꢀx3AFF  
ꢀx1±5B, ꢀx3C9A, ꢀx±66ꢀ  
ꢀx3FD7, ꢀxꢀꢀꢀ±, ꢀx36Eꢀ  
Register 0x62 allows patterns that are similar to those described  
in Table 14 to be input at different points along the datapath.  
This allows the user to provide predictable output data on the  
serial link without it having been manipulated by the internal  
formatting logic. Refer to Table 17 for additional information  
on the test modes available in Register 0x62.  
The PN sequence long pattern produces a pseudorandom bit  
sequence that repeats itself every 223 − 1 (8,388,607) bits.  
Table 14. Flexible Output Test Modes from SPI Register 0x0D  
Output Test Mode  
Bit Sequence  
Digital Output Word 1 (Default  
Twos Complement Format)  
Digital Output Word 2 (Default  
Twos Complement Format)  
Subject to Data  
Format Select  
Pattern Name  
Off (default)  
Midscale short  
+Full-scale short  
−Full-scale short  
Checkerboard  
ꢀꢀꢀꢀ  
ꢀꢀꢀ1  
ꢀꢀ1ꢀ  
ꢀꢀ11  
ꢀ1ꢀꢀ  
ꢀ1ꢀ1  
ꢀ11ꢀ  
ꢀ111  
1ꢀꢀꢀ  
Not applicable  
Not applicable  
Same  
Same  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
No  
ꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ  
ꢀ1 1111 1111 1111  
1ꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ  
1ꢀ 1ꢀ1ꢀ 1ꢀ1ꢀ 1ꢀ1ꢀ  
Not applicable  
Same  
ꢀ1 ꢀ1ꢀ1 ꢀ1ꢀ1 ꢀ1ꢀ1  
Not applicable  
Not applicable  
ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ  
User data from Register ꢀx19 to  
Register ꢀx±ꢀ  
PN sequence long  
PN sequence short  
Not applicable  
One-/zero-word toggle 1111 1111 1111  
User test mode  
User data from Register ꢀx19 to  
Yes  
Register ꢀx±ꢀ  
Not applicable  
N
1ꢀꢀ1 to 111ꢀ  
1111  
Not used  
Ramp output  
Not applicable  
N + 1  
No  
Rev. B | Page ±6 of 36  
 
 
Data Sheet  
AD9641  
SERIAL PORT INTERFACE (SPI)  
The AD9641 serial port interface (SPI) allows the user to configure  
the converter for specific functions or operations through a  
structured register space provided inside the ADC. The SPI  
gives the user added flexibility and customization, depending on  
the application. Addresses are accessed via the serial port and  
can be written to or read from via the port. Memory is organized  
into bytes that can be further divided into fields, which are docu-  
mented in the Memory Map section. For detailed operational  
information, see the AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI.  
The falling edge of the CSB, in conjunction with the rising edge  
of the SCLK, determines the start of the framing. An example of  
the serial timing and its definitions can be found in Figure 70  
and Table 5.  
Other modes involving the CSB are available. The CSB can be  
held low indefinitely, which permanently enables the device;  
this is called streaming. The CSB can stall high between bytes to  
allow for additional external timing. When CSB is tied high, SPI  
functions are placed in high impedance mode.  
During an instruction phase, a 16-bit instruction is transmitted.  
Data follows the instruction phase, and its length is determined  
by the W0 and W1 bits.  
CONFIGURATION USING THE SPI  
Three pins define the SPI of this ADC: the SCLK pin, the SDIO  
pin, and the CSB pin (see Table 15). The SCLK (a serial clock) is  
used to synchronize the read and write data presented from and  
to the ADC. The SDIO (serial data input/output) is a dual-purpose  
pin that allows data to be sent to and read from the internal ADC  
memory map registers. The CSB (chip select bar) is an active-  
low control that enables or disables the read and write cycles.  
In addition to word length, the instruction phase determines  
whether the serial frame is a read or write operation, allowing  
the serial port to be used both to program the chip and to read  
the contents of the on-chip memory. The first bit of the first byte in  
a multibyte serial data transfer frame indicates whether a read  
command or a write command is issued. If the instruction is  
a readback operation, performing a readback causes the serial  
data input/output (SDIO) pin to change direction from an input  
to an output at the appropriate point in the serial frame.  
Table 15. Serial Port Interface Pins  
Pin  
Function  
SCLK Serial clock. The serial shift clock input, which is used to  
synchronize serial interface reads and writes.  
SDIO Serial data input/output. A dual-purpose pin that  
typically serves as an input or an output, depending on  
the instruction being sent and the relative position in the  
timing frame.  
All data is composed of 8-bit words. Data can be sent in MSB-  
first mode or in LSB-first mode. MSB first is the default on  
power-up and can be changed via the SPI port configuration  
register. For more information about this and other features,  
see the AN-877 Application Note, Interfacing to High Speed  
ADCs via SPI.  
CSB  
Chip select bar. An active-low control that gates the read  
and write cycles.  
tHIGH  
tCLK  
tDS  
tH  
tS  
tDH  
tLOW  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 70. Serial Port Interface Timing Diagram  
Rev. B | Page ±7 of 36  
 
 
 
 
AD9641  
Data Sheet  
HARDWARE INTERFACE  
SPI ACCESSIBLE FEATURES  
The pins described in Table 15 comprise the physical interface  
between the user programming device and the serial port of  
the AD9641. The SCLK pin and the CSB pin function as inputs  
when using the SPI interface. The SDIO pin is bidirectional,  
functioning as an input during write phases and as an output  
during readback.  
Table 16 provides a brief description of the general features that  
are accessible via the SPI. These features are described in detail  
in the AN-877 Application Note, Interfacing to High Speed ADCs  
via SPI. The AD9641 part-specific features are described in detail in  
the Reading the Memory Map Register Table section.  
Table 16. Features Accessible Using the SPI  
The SPI interface is flexible enough to be controlled by either  
FPGAs or microcontrollers. One method for SPI configuration  
is described in detail in the AN-812 Application Note, Micro-  
controller-Based Serial Port Interface (SPI) Boot Circuit.  
Feature Name  
Description  
Mode  
Allows the user to set either power-down mode  
or standby mode  
Clock  
Allows the user to access the DCS, set the  
clock divider, set the clock divider phase, and  
enable the sync  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK signal, the CSB signal, and the SDIO signal are typically  
asynchronous to the ADC clock, noise from these signals can  
degrade converter performance. If the on-board SPI bus is used  
for other devices, it may be necessary to provide buffers between  
this bus and the AD9641 to prevent these signals from transi-  
tioning at the converter inputs during critical sampling periods.  
Offset  
Allows the user to digitally adjust the  
converter offset  
Test I/O  
Full Scale  
JESD±ꢀ4A  
Allows the user to set test modes to have  
known data on output bits  
Allows the user to set the input full-scale  
voltage  
Allows user to configure the JESD±ꢀ4A output  
Rev. B | Page ±8 of 36  
 
 
 
Data Sheet  
AD9641  
MEMORY MAP  
READING THE MEMORY MAP REGISTER TABLE  
Default Values  
After the AD9641 is reset, critical registers are loaded with  
default values. The default values for the registers are given in  
the memory map register table, Table 17.  
Each row in the memory map register table has eight bit locations.  
The memory map is roughly divided into four sections: the chip  
configuration registers (Address 0x00 to Address 0x02); the transfer  
register (Address 0xFF); the ADC functions registers, including  
setup, control, and test (Address 0x08 to Address 0x3A); and the  
JESD204A configuration registers (Address 0x60 to Address 0x78).  
Logic Levels  
An explanation of logic level terminology follows:  
“Bit is set” is synonymous with “bit is set to Logic 1” or  
“writing Logic 1 for the bit.”  
The memory map register table (see Table 17) lists the default  
hexadecimal value for each hexadecimal address shown. The  
column with the heading Bit 7 (MSB) is the start of the default  
hexadecimal value given. For example, Address 0x18, the input  
span select register, has a hexadecimal default value of 0x00. This  
means that Bit 0 through Bit 4 = 0, and the remaining bits are 0s.  
This setting is the default reference selection setting. The default  
value uses a 1.75 V p-p reference. For more information on this  
function and others, see the AN-877 Application Note, Interfacing  
to High Speed ADCs via SPI. This application note details the  
functions controlled by Register 0x00 to Register 0xFF.  
“Clear a bit” is synonymous with “bit is set to Logic 0” or  
“writing Logic 0 for the bit.”  
Transfer Register Map  
Address 0x08 through Address 0x78 are shadowed. Writes to the  
addresses do not affect part operation until a transfer command is  
issued by writing 0x01 to Address 0xFF, setting the transfer bit.  
This allows these registers to be updated internally and simulta-  
neously when the transfer bit is set. The internal update takes  
place when the transfer bit is set, and the bit autoclears.  
Open Locations  
All address and bit locations that are not included in Table 17  
are not currently supported for this device. Unused bits of a  
valid address location should be written with 0s. Writing to these  
locations is required only when part of an address location is  
open (for example, Address 0x18). If the entire address location  
is open (for example, Address 0x13), this address location should  
not be written.  
MEMORY MAP REGISTER TABLE  
All address and bit locations that are not included in Table 17 are not currently supported for this device.  
Table 17. Memory Map Registers  
Default Default  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Notes/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Chip Configuration Registers  
ꢀxꢀꢀ  
SPI port  
configuration  
LSB first  
Soft reset  
1
1
Soft reset  
LSB first  
ꢀx18  
Nibbles are  
mirrored so  
LSB- or MSB-  
first mode  
registers  
correctly,  
regardless of  
shift mode  
ꢀxꢀ1  
ꢀxꢀ±  
Chip ID  
8-bit chip ID[7:ꢀ]  
(AD9641 = ꢀx8ꢀ)  
(default)  
ꢀx8ꢀ  
Read only  
Chip grade  
Open  
Open  
Open  
Open  
Speed grade ID  
ꢀꢀ = 8ꢀ MSPS  
Open  
Open  
Open  
Open  
Open  
Open  
Speed grade  
ID used to  
differentiate  
devices;  
1ꢀ = 155 MSPS  
read only  
Transfer Register  
ꢀxFF Transfer  
Open  
Open  
Open  
Transfer  
ꢀxꢀꢀ  
Synchronous  
transfer of  
data from  
the master  
shift register  
to the slave  
Rev. B | Page ±9 of 36  
 
 
 
 
AD9641  
Data Sheet  
Default Default  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Notes/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
ADC Functions  
ꢀxꢀ8  
Power  
modes  
Open  
Open  
External  
power-  
down pin  
function  
ꢀ = PDWN  
1 = STNDBY  
Open  
Open  
Open  
Internal power-down mode  
ꢀꢀ = normal operation  
ꢀ1 = full power-down  
1ꢀ = standby  
ꢀxꢀꢀ  
Determines  
various  
generic  
modes of  
chip  
operation.  
11 = reserved  
ꢀxꢀ9  
Global clock  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Duty cycle  
stabilizer  
(default)  
ꢀxꢀ1  
ꢀxꢀA  
ꢀxꢀB  
PLL status  
PLL locked  
Open  
Open  
Open  
Open  
Open  
Open  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
Read only.  
Clock divide  
Input clock divider phase adjust  
ꢀꢀꢀ = no delay  
Clock divide ratio  
ꢀꢀꢀ = divide-by-1  
ꢀꢀ1 = divide-by-±  
ꢀ1ꢀ = divide-by-3  
ꢀ11 = divide-by-4  
1ꢀꢀ = divide-by-5  
1ꢀ1 = divide-by-6  
11ꢀ = divide-by-7  
111 = divide-by-8  
Clock divide  
values other  
than ꢀꢀꢀ  
cause the  
duty cycle  
stabilizer to  
become  
ꢀꢀ1 = 1 input clock cycle  
ꢀ1ꢀ = ± input clock cycles  
ꢀ11 = 3 input clock cycles  
1ꢀꢀ = 4 input clock cycles  
1ꢀ1 = 5 input clock cycles  
11ꢀ = 6 input clock cycles  
111 = 7 input clock cycles  
active.  
ꢀxꢀD  
Test mode  
User test  
mode  
control  
ꢀ =  
continuous/  
repeat  
pattern  
1 = single  
pattern  
Open  
Reset PN  
long gen  
Reset PN  
short gen  
Output test mode  
ꢀꢀꢀꢀ = off (default)  
ꢀꢀꢀ1 = midscale short  
ꢀꢀ1ꢀ = positive FS  
ꢀꢀ11 = negative FS  
ꢀ1ꢀꢀ = alternating checkerboard  
ꢀ1ꢀ1 = PN long sequence  
ꢀ11ꢀ = PN short sequence  
ꢀ111 = one-/zero- word toggle  
1ꢀꢀꢀ = user test mode  
1ꢀꢀ1 to 111ꢀ = unused  
1111 = ramp output  
ꢀxꢀꢀ  
When this  
register is  
set, the  
test data is  
placed on  
the output  
pins in place  
of normal  
data.  
ꢀxꢀE  
ꢀx1ꢀ  
ꢀx14  
BIST enable  
Offset adjust  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Reset BIST  
sequence  
Open  
BIST enable  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
ꢀxꢀ1  
Offset adjust in LSBs from +31 to −3±  
(twos complement format)  
Output  
mode  
Output  
disable  
Open  
Output  
invert  
Output format  
Configures  
the outputs  
and the  
format of  
the data.  
ꢀꢀ = offset binary  
ꢀ1 = twos complement  
(default)  
ꢀ1 = Gray code  
11 = offset binary  
ꢀx15  
ꢀx18  
Output  
adjust  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Output drive level adjust  
11 = 3±ꢀ mV  
ꢀꢀ = 4ꢀꢀ mV  
1ꢀ = 44ꢀ mV  
ꢀ1 = 5ꢀꢀ mV  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
Input span  
select  
Open  
Full scale input voltage selection  
ꢀ1111 = ±.ꢀ87 V p-p  
Full-scale  
input  
adjustment  
in ꢀ.ꢀ±± V  
steps.  
ꢀꢀꢀꢀ1 = 1.77± V p-p  
ꢀꢀꢀꢀꢀ = 1.75 V p-p (default)  
11111 = 1.7±7 V p-p  
1ꢀꢀꢀꢀ = 1.383 V p-p  
ꢀx19  
ꢀx1A  
ꢀx1B  
ꢀx1C  
ꢀx1D  
User Test  
Pattern 1 LSB  
User Test Pattern 1, Bits[7:ꢀ]  
User Test Pattern 1, Bits[15:8]  
User Test Pattern ±, Bits[7:ꢀ]  
User Test Pattern ±, Bits[15:8]  
User Test Pattern 3, Bits[7:ꢀ]  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
User Test  
Pattern 1 MSB  
User Test  
Pattern ± LSB  
User Test  
Pattern ± MSB  
User Test  
Pattern 3 LSB  
Rev. B | Page 3ꢀ of 36  
Data Sheet  
AD9641  
Default Default  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Notes/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
ꢀx1E  
ꢀx1F  
ꢀx±ꢀ  
ꢀx±1  
User Test  
Pattern 3 MSB  
User Test Pattern 3, Bits[15:8]  
User Test Pattern 4, Bits[7:ꢀ]  
User Test Pattern 4, Bits[15:8]  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
User Test  
Pattern 4 LSB  
User Test  
Pattern 4 MSB  
PLL control  
Open  
Open  
Open  
Open  
PLL low  
Open  
Open  
Open  
Bit 3 must  
be enabled  
if the ADC  
clock rate is  
<6ꢀ MHz.  
encode  
rate enable  
ꢀx±4  
ꢀx±5  
BIST  
signature LSB  
BIST signature, Bits[7:ꢀ]  
BIST signature, Bits[15:8]  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
Read only.  
BIST  
Read only.  
signature  
MSB  
ꢀx3A  
Sync control  
Open  
Open  
Open  
Open  
Open  
Clock  
Clock  
divider  
sync  
Master sync  
buffer  
enable  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
divider  
next sync  
only  
enable  
JESD±ꢀ4A Configuration Registers  
ꢀx6ꢀ  
JESD±ꢀ4A  
Link Control  
Register 1  
Open  
Serial tail  
bit enable  
Serial test  
sample  
enable  
Serial lane  
synchroni-  
zation  
Serial lane alignment  
sequence mode  
ꢀꢀ = disabled  
ꢀ1 = enabled  
Frame  
Serial  
transmit link  
power- down  
alignment  
character  
insertion  
disable  
enable  
1ꢀ = reserved  
11 = always on  
test mode  
ꢀx61  
ꢀx6±  
JESD±ꢀ4A  
Link Control  
Register ±  
Local DSYNC mode  
ꢀꢀ = individual mode  
ꢀ1 = global mode  
1ꢀ = DSYNC active mode  
11 = DSYNC pin disabled  
DSYNC  
pin input  
inverted  
CMOS  
DSYNC  
input  
ꢀ = LVDS  
1 = CMOS  
Open  
Bypass  
8b/1ꢀb  
encoding  
Invert  
transmit  
bits  
Mirror serial  
output bits  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
JESD±ꢀ4A  
Link Control  
Register 3  
Disable  
Open  
Link test generation  
input selection  
ꢀꢀ = 16-bit data injected  
at sample input to the  
link  
ꢀ1 = 1ꢀ-bit data injected  
at output of 8b/1ꢀb  
encoder  
Open  
Link test generation mode  
ꢀꢀꢀ = normal operation  
CHKSUM  
ꢀꢀ1 = alternating checkerboard  
ꢀ1ꢀ = 1/ꢀ word toggle  
ꢀ11 = PN sequence, long  
1ꢀꢀ = PN sequence, short  
1ꢀ1 = user test pattern data continuous  
11ꢀ = user test pattern data single  
111 = ramp output  
1ꢀ = reserved  
11 = reserved  
ꢀx63  
ꢀx64  
JESD±ꢀ4A  
Link Control  
Register 4  
Initial lane assignment sequence repeat count  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
JESD±ꢀ4A  
device  
JESD±ꢀ4A serial device identification (DID) number  
identification  
number  
(DID)  
ꢀx65  
ꢀx66  
ꢀx6E  
JESD±ꢀ4A  
bank  
identification  
number  
(BID)  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
JESD±ꢀ4A serial bank identification (BID) number  
JESD±ꢀ4A serial lane identification (LID) number  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
ꢀx8ꢀ  
JESD±ꢀ4A  
lane  
identification  
number  
(LID)  
JESD±ꢀ4A  
scrambler  
(SCR) and  
lane (L)  
Enable  
serial  
scrambler  
mode (SCR)  
Open  
Open  
Open  
Open  
Serial lane  
control  
ꢀ = one lane  
per link  
(L = 1)  
configuration  
1 = reserved  
Rev. B | Page 31 of 36  
AD9641  
Data Sheet  
Default Default  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Notes/  
Comments  
Bit 6  
Bit 5  
Bit 4  
JESD±ꢀ4A number of octets per frame (F)  
(bits are calculated based on the equation F = (M × ±)/L)  
Bit 3  
Bit 2  
Bit 1  
ꢀx6F  
JESD±ꢀ4A  
number of  
octets per  
frame (F)  
ꢀxꢀ1  
ꢀxꢀF  
Read only.  
ꢀx7ꢀ  
JESD±ꢀ4A  
number of  
frames per  
multiframe  
(K)  
Open  
Open  
Open  
Open  
Open  
Open  
JESD±ꢀ4A number of frames per multiframe (K)  
ꢀx71  
JESD±ꢀ4A  
number of  
converters  
per link per  
converter  
device (link)  
(M)  
Open  
Open  
Open  
Open  
Number of  
converters  
per link  
per device  
ꢀ = link  
ꢀxꢀꢀ  
Read only.  
connected to  
one ADC  
(M = 1)  
1 = reserved  
ꢀx7±  
JESD ±ꢀ4A  
converter  
resolution (N)  
and control  
bits per  
Number of control bits per  
sample (CS)  
Open  
Converter resolution (N) (read only)  
ꢀx4D  
ꢀꢀ = no control bits  
(CS = ꢀ)  
ꢀ1 = one control bit  
(CS = 1)  
sample (CS)  
1ꢀ = two control bits  
(CS = ±)  
11 = unused  
ꢀx73  
ꢀx74  
JESD±ꢀ4A  
total bits per  
sample (N’)  
Open  
Open  
Open  
Open  
Open  
Total number of bits per sample (N’) (read only)  
ꢀxꢀF  
ꢀxꢀꢀ  
Read only.  
Read only.  
JESD±ꢀ4A  
samples per  
converter (S)  
per frame  
cycle  
Open  
Samples per converter per frame cycle (S) (read only)  
(always 1 for the AD9641)  
ꢀx75  
ꢀx76  
JESD±ꢀ4A  
HD and CF  
configuration  
Enable HD  
(high  
density)  
format  
Open  
Open  
Number of control words per frame clock cycle per link (CF)  
(always ꢀ for the AD9641 (read only))  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
JESD±ꢀ4A  
Serial  
Serial Reserved Field 1 (RES1)  
(these registers are available for customer use)  
Reserved  
Field 1  
(RES1)  
ꢀx77  
ꢀx78  
JESD±ꢀ4A  
Serial  
Reserved  
Field ±  
Serial Reserved Field ± (RES±)  
(these registers are available for customer use)  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
(RES±)  
JESD±ꢀ4A  
checksum  
value for  
Serial checksum value for lane (FCHK)  
Read only  
lane (FCHK)  
receives and to ignore the rest. The clock divider sync enable bit  
(Address 0x3A, Bit 1) resets after it syncs.  
MEMORY MAP REGISTER DESCRIPTIONS  
For additional information about functions controlled in  
Register 0x00 to Register 0x25, see the AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI.  
Bit 1—Clock Divider Sync Enable  
Bit 1 gates the sync pulse to the clock divider. The sync signal  
is enabled when Bit 1 and Bit 0 are high. This is in continuous  
sync mode.  
Sync Control (Address 0x3A)  
Bits[7:3]—Open  
Bit 0—Master Sync Buffer Enable  
Bit 2—Clock Divider Next Sync Only  
Bit 0 must be high to enable any of the sync functions. If the  
sync capability is not used, this bit should remain low to  
conserve power.  
If the master sync buffer enable bit (Address 0x3A, Bit 0) and  
the clock divider sync enable bit (Address 0x3A, Bit 1) are high,  
Bit 2 allows the clock divider to sync to the first sync pulse it  
Rev. B | Page 3± of 36  
 
Data Sheet  
AD9641  
JESD204A Link Control Register 1 (Address 0x60)  
Bit 7—Open  
Bit 2—Bypass 8b/10b Encoding  
If this bit is set, the 8b/10b encoding is bypassed and the most  
significant bits are set to 0.  
Bit 6—Serial Tail Bit Enable  
Bit 1—Invert Transmit Bits  
If this bit is set, unused tail bits are padded with a pseudo random  
number sequence from a 31-bit LFSR (see JESD204A 5.1.4).  
Setting this bit inverts the 10 serial output bits. This effectively  
inverts the output signals.  
Bit 5—Serial Test Sample Enable  
Bit 0—Mirror Serial Output Bits  
If set, JESD204A test samples are enabled, and the transport  
layer test sample sequence (as specified in JESD204A section  
5.1.6.2) sent on all link lanes.  
Setting this bit reverses the order of the 10b outputs.  
JESD204A Link Control Register 3 (Address 0x62)  
Bit 4—Serial Lane Synchronization Enable  
Bit 7—Disable CHKSUM  
If this bit is set, lane synchronization is enabled. Both sides  
perform lane sync; frame alignment character insertion uses  
either /K28.3/ or /K28.7/ control characters (see JESD204A  
5.3.3.4).  
Setting this bit high disables the CHKSUM configuration  
parameter. (For testing purposes only.)  
Bit 6—Open  
Bits[5:4]—Link Test Generation Input Selection  
Bits[3:2]—Serial Lane Alignment Sequence Mode  
00: 16-bit test generation data injected at sample input to the link.  
01: 10-bit test generation data injected at output of 8b/10b  
encoder (at input to PHY).  
10: reserved.  
11: reserved.  
00: initial lane alignment sequence disabled.  
01: initial lane alignment sequence enabled.  
10: reserved.  
11: initial lane alignment sequence always on test mode; JESD204A  
data link layer test mode where repeated lane alignment sequence is  
sent on all lanes.  
Bit 3—Open  
Bit 1—Frame Alignment Character Insertion Disable  
Bits[2:0]—Link Test Generation Mode  
If Bit 1 is set, the frame alignment character insertion is  
disabled per JESD204A section 5.3.3.4.  
000: normal operation (test mode disabled).  
001: alternating checkerboard.  
010: 1/0 word toggle.  
011: PN sequence, long.  
100: PN sequence, short.  
Bit 0—Serial Transmit Link Power-Down  
If Bit 0 is set high, the serial transmit link is held in reset with its  
clock gated off. The JESD204A transmitter should be powered  
down when changing any of the link configuration bits.  
101: continuous/repeat user test mode. The most significant bits  
from the user pattern (1, 2, 3, 4) are placed on the output for one  
clock cycle and then repeated. (Output User Pattern 1, 2, 3, 4,  
1, 2, 3, 4, 1, 2, 3, 4….)  
110: single user test mode. The most significant bits from the user  
pattern (1, 2, 3, 4) are placed on the output for one clock cycle,  
and then all zeros are output. (Output User Pattern 1, 2, 3, 4;  
then output all zeros.)  
JESD204A Link Control Register 2 (Address 0x61)  
Bits[7:6]—Local DSYNC Mode  
00: individual/separate mode. Each link is controlled by a  
separate DSYNC pin that independently controls code group  
synchronization.  
01: global mode. Any DSYNC signal causes the link to begin  
code group synchronization.  
111: ramp output.  
JESD204A Link Control Register 4 (Address 0x63)  
10: DSYNC active mode. The DSYNC signal is active; force  
code group synchronization.  
Bits[7:0]—Initial Lane Alignment Sequence Repeat Count  
Bits[7:0] specify the number of times the initial lane alignment  
sequence (ILAS) is repeated. If 0 is programmed, the ILAS does  
not repeat. If 1 is programmed, the ILAS repeats one time, and  
so on. See Register 0x60, Bits[3:2] to enable the ILAS and for  
a test mode to continuously enable the initial lane alignment  
sequence.  
11: DSYNC pin disabled.  
Bit 5—DSYNC Pin Input Inverted  
If this bit is set, the DSYNC pin of the link is inverted (active  
high).  
Bit 4—CMOS DSYNC Input  
0: LVDS differential pair DSYNC input (default).  
1: CMOS single-ended DSYNC input.  
Bit 3—Open  
JESD204A Device Identification (DID) Number  
(Address 0x64)  
Bits[7:0]—Serial Device Identification (DID) Number  
Rev. B | Page 33 of 36  
AD9641  
Data Sheet  
Bit 5—Open  
JESD204A Bank Identification (BID) Number (Address 0x65)  
Bits[7:4]—Open  
Bits [4:0]—Converter Resolution (N).  
Read only bits showing the converter resolution (reads back 13  
(0xD) for 14-bit resolution).  
Bits[3:0]—Serial Bank Identification (BID) Number  
JESD204A Lane Identification (LID) Number (Address 0x66)  
Bits[7:5]—Open  
JESD204A Total Number of Bits per Sample (N’)  
(Address 0x73)  
Bits[4:0]—Serial Lane Identification (LID) Number for  
Lane  
Bits[7:5]—Reserved  
Bits[4:0]—Total Number of Bits per Sample (N’)  
JESD204A Scrambler (SCR) and Lane (L) Configuration  
(Address 0x6E)  
Read only bits showing the total number of bits per sample,  
minus 1 (reads back 15 (0xF) for 16 bits per sample).  
Bit 7—Enable Serial Scrambler Mode (SCR)  
Setting this bit high enables the scrambler (SCR = 1).  
Bits[6:1]—Open.  
JESD204A Samples per Converter per Frame Cycle (S)  
(Address 0x74)  
Bits[7:5]—Open  
Bit 0—Serial Lane Control.  
Bits[4:0]—Samples per Converter per Frame Cycle (S)  
0: one lane per link (L = 1).  
1: 11111 = reserved.  
Read only bits showing the number of samples per converter  
frame cycle, minus 1 (reads back 0 (0x0) for one sample per  
converter frame).  
JESD204A Number of Octets per Frame (Address 0x6F,  
Read Only)  
JESD204A HD and CF Configuration (Address 0x75)  
Bits[7:0]—Number of Octets per Frame (F)  
Bit 7—High Density Format Enabled (Read Only)  
The readback from this register is calculated from the following  
equation: F = (M × 2)/L.  
Read only bit. Always 0 in the AD9641.  
Bits[6:5]—Open  
Valid values for F for the AD9641 are  
F = 2, with M = 1 and L = 1  
Bits[4:0]—Number of Control Words per Frame Clock  
Cycle per Converter Device (Link) (CF)  
JESD204A Number of Frames per Multiframe (K)  
(Address 0x70)  
Read only bits. Reads back 0x0 for the AD9641.  
JESD204A Serial Reserved Field 1 (Address 0x76)  
Bits[7:5]—Open  
Bits[7:0]—Serial Reserved Field 1 (RES1)  
Bits[4:0]—Number of Frames per Multiframe (K)  
This read/write register is available for customer use.  
JESD204A Number of Converters per Converter Device  
(Link) (M) (Address 0x71)  
JESD204A Serial Reserved Field 2 (Address 0x77)  
Bits[7:1]—Open  
Bits[7:0]—Serial Reserved Field 2 (RES2)  
Bit 0—Number of Converters per Converter Device (Link)  
(M)  
This read/write register is available for customer use.  
JESD204A Serial Checksum Value for Lane (Address 0x78)  
0: link connected to one ADC. Only primary input used (M = 1).  
1: reserved.  
Bits[7:0]—Checksum Value for Lane  
This read only register is automatically calculated for the lane.  
Sum (all link configuration parameters for the lane) MOD 256.  
JESD204A Converter Resolution (N) and Control Bits per  
Sample (CS) (Address 0x72)  
Bits[7:6]—Number of Control Bits per Sample (CS)  
00: no control bits sent per sample (CS = 0).  
01: one control bit sent per sample—overrange bit enabled  
(CS = 1).  
10: two control bits sent per sample—overflow/underflow bits  
enabled (CS = 2).  
11: unused.  
Rev. B | Page 34 of 36  
Data Sheet  
AD9641  
APPLICATIONS INFORMATION  
The copper plane should have several vias to achieve the lowest  
possible resistive thermal path for heat dissipation to flow through  
the bottom of the PCB. These vias should be filled or plugged to  
prevent solder wicking through the vias, which can compromise  
the connection.  
DESIGN GUIDELINES  
Before starting design and layout of the AD9641 as a system,  
it is recommended that the designer become familiar with these  
guidelines, which discuss the special circuit connections and  
layout requirements that are needed for certain pins.  
To maximize the coverage and adhesion between the ADC and  
the PCB, a silkscreen should be overlaid to partition the continuous  
plane on the PCB into several uniform sections. This provides  
several tie points between the ADC and the PCB during the reflow  
process. Using one continuous plane with no partitions guarantees  
only one tie point between the ADC and the PCB. For detailed  
information about packaging and PCB layout of chip scale  
packages, see the AN-772 Application Note, A Design and  
Manufacturing Guide for the Lead Frame Chip Scale Package  
(LFCSP), at www.analog.com.  
Power and Ground Recommendations  
When connecting power to the AD9641, it is recommended  
that two separate 1.8 V supplies be used. Use one supply for  
analog (AVDD), and use a separate supply for the digital outputs  
(DRVDD). For both AVDD and DRVDD, several different  
decoupling capacitors should be used to cover both high and  
low frequencies. Place these capacitors close to the point of entry  
at the PCB level and close to the pins of the part, with minimal  
trace length.  
A single PCB ground plane should be sufficient when using the  
AD9641. With proper decoupling and smart partitioning of the  
PCB analog, digital, and clock sections, optimum performance  
is easily achieved.  
VCM  
The VCM pin should be decoupled to ground with a 0.1 μF  
capacitor, as shown in Figure 50.  
SPI Port  
Exposed Paddle Thermal Heat Slug Recommendations  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK, CSB, and SDIO signals are typically asynchronous to the  
ADC clock, noise from these signals can degrade converter  
performance. If the on-board SPI bus is used for other devices,  
it may be necessary to provide buffers between this bus and the  
AD9641 to keep these signals from transitioning at the converter  
inputs during critical sampling periods.  
It is mandatory that the exposed paddle on the underside of the  
ADC be connected to analog ground (AGND) to achieve the  
best electrical and thermal performance. A continuous, exposed  
(no solder mask) copper plane on the PCB should mate to the  
AD9641 exposed paddle, Pin 0.  
Rev. B | Page 35 of 36  
 
 
AD9641  
Data Sheet  
OUTLINE DIMENSIONS  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
25  
32  
24  
1
0.50  
BSC  
*
3.75  
EXPOSED  
PAD  
3.60 SQ  
3.55  
17  
8
16  
9
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD-5  
WITH EXCEPTION TO EXPOSED PAD DIMENSION.  
Figure 71. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
5 mm × 5 mm Body, Very Very Thin Quad  
(CP-32-12)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
CP-3±-1±  
CP-3±-1±  
CP-3±-1±  
CP-3±-1±  
AD9641BCPZ-8ꢀ  
AD9641BCPZRL7-8ꢀ  
AD9641BCPZ-155  
AD9641BCPZRL7-155  
AD9641-8ꢀKITZ  
AD9641-155KITZ  
−4ꢀ°C to +85°C  
−4ꢀ°C to +85°C  
−4ꢀ°C to +85°C  
−4ꢀ°C to +85°C  
3±-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
3±-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
3±-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
3±-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
Evaluation Board Kit  
Evaluation Board Kit  
1 Z = RoHS Compliant Part.  
©2010–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09210-0-1/12(B)  
Rev. B | Page 36 of 36  
 
 
 

相关型号:

AD9641BCPZRL7-80

14-Bit, 80 MSPS/155 MSPS, 1.8 V Serial Output Analog-to-Digital Converter (ADC)
ADI

AD9642

14-Bit, 170 MSPS/210 MSPS/250 MSPS, 1.8 V Analog-to-Digital Converter (ADC)
ADI

AD9642-170EBZ

14-Bit, 170 MSPS/210 MSPS/250 MSPS, 1.8 V Analog-to-Digital Converter (ADC)
ADI

AD9642-210EBZ

14-Bit, 170 MSPS/210 MSPS/250 MSPS, 1.8 V Analog-to-Digital Converter (ADC)
ADI

AD9642-250EBZ

14-Bit, 170 MSPS/210 MSPS/250 MSPS, 1.8 V Analog-to-Digital Converter (ADC)
ADI

AD9642BCPZ-170

14-Bit, 170 MSPS/210 MSPS/250 MSPS, 1.8 V Analog-to-Digital Converter (ADC)
ADI

AD9642BCPZ-210

14-Bit, 170 MSPS/210 MSPS/250 MSPS, 1.8 V Analog-to-Digital Converter (ADC)
ADI

AD9642BCPZ-250

14-Bit, 170 MSPS/210 MSPS/250 MSPS, 1.8 V Analog-to-Digital Converter (ADC)
ADI

AD9642BCPZRL7-170

14-Bit, 170 MSPS/210 MSPS/250 MSPS, 1.8 V Analog-to-Digital Converter (ADC)
ADI

AD9642BCPZRL7-210

14-Bit, 170 MSPS/210 MSPS/250 MSPS, 1.8 V Analog-to-Digital Converter (ADC)
ADI

AD9642BCPZRL7-250

14-Bit, 170 MSPS/210 MSPS/250 MSPS, 1.8 V Analog-to-Digital Converter (ADC)
ADI

AD9643

14-Bit, 170 MSPS/210 MSPS/250 MSPS, 1.8 V Dual Analog-to-Digital Converter (ADC)
ADI