AD9652-310EBZ [ADI]

Analog-to-Digital Converter (ADC);
AD9652-310EBZ
型号: AD9652-310EBZ
厂家: ADI    ADI
描述:

Analog-to-Digital Converter (ADC)

文件: 总37页 (文件大小:1475K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16-Bit, 310 MSPS, 3.3 V/1.8 V Dual  
Analog-to-Digital Converter (ADC)  
Data Sheet  
AD9652  
FEATURES  
High dynamic range  
FUNCTIONAL BLOCK DIAGRAM  
AVDD3  
AVDD  
SDIO SCLK CSB  
DRVDD  
SNR = 75.0 dBFS at 70 MHz (AIN = −1 dBFS)  
SFDR = 87 dBc at 70 MHz (AIN = −1 dBFS)  
Noise spectral density (NSD) = −156.7 dBFS/Hz input noise  
at −1 dBFS at 70 MHz  
SPI  
AD9652  
OR+, OR–  
PROGRAMMING DATA  
NSD = −157.6 dBFS/Hz for small signal at −7dBFS at 70 MHz  
90 dB channel isolation/crosstalk  
On-chip dithering (improves small signal linearity)  
Excellent IF sampling performance  
SNR = 73.7 dBFS at 170 MHz (AIN = −1 dBFS)  
SFDR = 85 dBc at 170 MHz (AIN = −1 dBFS)  
Full power bandwidth of 465 MHz  
VIN+A  
VIN–A  
DDR DATA  
INTERLEAVER  
LVDS OUTPUT  
DRIVER  
D15± (MSB)  
TO  
16  
ADC  
D0± (LSB)*  
VREF  
CLK+  
CLK–  
DIVIDE 1  
TO 8  
SENSE  
DCO+  
DCO–  
REF  
SELECT  
DUTY CYCLE  
DCO  
STABILIZER GENERATION  
VCM  
RBIAS  
VIN–B  
VIN+B  
On-chip 3.3 V buffer  
Programmable input span of 2 V p-p to 2.5 V p-p (default)  
Differential clock input receiver with 1, 2, 4, and 8 integer  
inputs (clock divider input accepts up to 1.24 GHz)  
Internal ADC clock duty cycle stabilizer  
SYNC input allows multichip synchronization  
Total power consumption: 2.16 W  
3.3 V and 1.8 V supply voltages  
DDR LVDS (ANSI-644 levels) outputs  
Serial port control  
ADC  
MULTICHIP  
SYNC  
AGND  
SYNC  
PDWN  
*THESE PINS ARE FOR CHANNEL A AND CHANNEL B.  
Figure 1.  
Energy saving power-down modes  
APPLICATIONS  
Military radar and communications  
Multimode digital receivers (3G or 4G)  
Test and instrumentation  
Smart antenna systems  
The 16-bit output data (with an overrange bit) from each ADC  
is interleaved onto a single LVDS output port along with a  
double data rate (DDR) clock. Programming for setup and control  
are accomplished using a 3-wire SPI-compatible serial interface.  
GENERAL DESCRIPTION  
The AD9652 is a dual, 16-bit analog-to-digital converter (ADC)  
with sampling speeds of up to 310 MSPS. It is designed to  
support demanding, high speed signal processing applications  
that require exceptional dynamic range over a wide input  
frequency range (up to 465 MHz). Its exceptional low noise  
floor of −157.6 dBFS and large signal spurious-free dynamic  
range (SFDR) performance (exceeding 85 dBFS, typical) allows  
low level signals to be resolved in the presence of large signals.  
The AD9652 is available in a 144-ball CSP_BGA and is  
specified over the industrial temperature range of −40°C to  
+85°C. This product is protected by pending U.S. patents.  
PRODUCT HIGHLIGHTS  
1. Integrated dual, 16-bit, 310 MSPS ADCs.  
2. On-chip buffer simplifies ADC driver interface.  
3. Operation from 3.3 V and 1.8 V supplies and a separate  
digital output driver supply accommodating LVDS outputs.  
4. Proprietary differential input maintains excellent signal-to-  
noise ratio (SNR) performance for input frequencies of up  
to 485 MHz.  
5. SYNC input allows synchronization of multiple devices.  
6. Three-wire, 3.3 V or 1.8 V SPI port for register programming  
and readback.  
The dual ADC cores feature a multistage, pipelined architecture  
with integrated output error correction logic. A high performance  
on-chip buffer and internal voltage reference simplify the inter-  
face to external driving circuitry while preserving the exceptional  
performance of the ADC.  
The AD9652 can support input clock frequencies of up to  
1.24 GHz with a 1, 2, 4, and 8 integer clock divider to generate  
the ADC sample clock. A duty cycle stabilizer is provided to  
compensate for variations in the ADC clock duty cycle.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD9652* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
ad9652 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
EVALUATION KITS  
AD-FMCOMMS6-EBZ Evaluation Board  
AD9652 Evaluation Board  
DISCUSSIONS  
View all ad9652 EngineerZone Discussions.  
DOCUMENTATION  
Data Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
AD9652: 16-Bit, 310 MSPS, 3.3 V/1.8 V Dual Analog-to-  
Digital Converter (ADC) Data Sheet  
REFERENCE MATERIALS  
Press  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
Analog Devices Unveils a 16-Bit, 310 MSPS, Dual A/D  
Converter Providing Industry-leading Noise and Linearity  
Performance Over a Wide Input Range  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD9652  
Data Sheet  
TABLE OF CONTENTS  
Features.....................................................................................1  
Voltage Reference................................................................23  
Clock Input Considerations.................................................23  
Power Dissipation and Standby Mode .................................25  
Internal Background Calibration.........................................25  
Digital Outputs....................................................................26  
ADC Overrange...................................................................26  
Fast Threshold Detection (FDA/FDB).....................................28  
Serial Port Interface.................................................................29  
Configuration Using the SPI................................................29  
Hardware Interface..............................................................29  
Configuration Without the SPI............................................29  
SPI Accessible Features........................................................30  
Memory Map...........................................................................31  
Reading the Memory Map Register Table............................31  
Memory Map Register Table................................................32  
Applications Information........................................................35  
Design Guidelines................................................................35  
Outline Dimensions ................................................................36  
Ordering Guide ...................................................................36  
Applications...............................................................................1  
Functional Block Diagram.........................................................1  
General Description ..................................................................1  
Product Highlights ....................................................................1  
Revision History........................................................................2  
Specifications.............................................................................3  
ADC DC Specifications .........................................................3  
ADC AC Specifications..........................................................4  
Digital Specifications .............................................................5  
Switching Specifications.........................................................7  
Timing Specifications ............................................................7  
Absolute Maximum Ratings......................................................9  
Thermal Characteristics.........................................................9  
ESD Caution..........................................................................9  
Pin Configuration and Function Descriptions.........................10  
Typical Performance Characteristics .......................................13  
Equivalent Circuits..................................................................19  
Theory of Operation................................................................20  
ADC Architecture................................................................20  
Analog Input Considerations...............................................20  
REVISION HISTORY  
1/2017—Rev. A to Rev. B  
Changes to DCO to Data Skew(tSKEW) Parameter, Table 4 ...........7  
Changes to Clock Input Options Section.................................24  
5/2014—Rev. 0 to Rev. A  
Changes to Supply Current, Clock Divider = 1 Parameter and  
Power Consumption, Clock Divider = 1 Parameter, Table 1......3  
4/2014—Revision0: Initial Version  
Rev. B | Page 2 of 36  
 
Data Sheet  
AD9652  
SPECIFICATIONS  
ADC DC SPECIFICATIONS  
AVD D 3 = 3.3 V, AVD D = AVDD_CLK = 1.8 V, SPIVDD = DRVDD = 1.8 V, sample rate = 310 MSPS (clock input = 1240 MHz, AD9652  
divided by 4), VIN = −1.0 dBFS differential input, 2.5 V p-p full-scale input range, duty cycle stabilizer (DCS) enabled, dither disabled,  
unless otherwise noted.  
Table 1.  
Parameter  
Temperature  
Min  
Typ  
Max  
Unit  
RESOLUTION  
Full  
16  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Full  
Full  
Full  
Full  
Full  
Guaranteed  
1.5  
mV  
Gain Error  
−0.3  
−0.76/+1.1  
−4.5/+4.5  
% FSR  
LSB  
LSB  
Differential Nonlinearity (DNL)1  
Integral Nonlinearity (INL)1  
MATCHING CHARACTERISTIC  
Offset Error  
Full  
Full  
0.7  
0.1  
mV  
%FSR  
Gain Error  
TEMPERATURE DRIFT  
Offset Error  
Full  
Full  
0.8  
16  
ppm/°C  
ppm/°C  
Gain Error  
INPUT REFERRED NOISE  
VREF = 1.25 V  
25°C  
3.7  
LSB rms  
ANALOG INPUT  
Input Span (for VREF = 1.25 V)  
Input Capacitance2  
Input Resistance3  
Input Common-Mode Voltage  
POWER SUPPLIES  
Supply Voltage  
AVDD3  
Full  
Full  
Full  
Full  
2.5  
5.8  
27  
V p-p  
pF  
kΩ  
V
2.0  
2.4  
Full  
Full  
Full  
Full  
Full  
3.15  
1.7  
1.7  
1.7  
1.7  
3.3  
1.8  
1.8  
1.8  
1.8  
3.45  
1.9  
1.9  
1.9  
3.6  
V
V
V
V
V
AVDD  
AVDD_CLK  
DRVDD  
SPIVDD  
Supply Current, Clock Divider = 1  
IAVDD3  
IAVDD  
Full  
Full  
Full  
Full  
Full  
145  
701  
56  
180  
0.005  
mA  
mA  
mA  
mA  
mA  
IAVDD_CLK  
IDRVDD  
ISPIVDD  
POWER CONSUMPTION  
Clock Divider = 1  
Normal Operation1  
Standby Power4  
Power-Down Power  
Full  
Full  
Full  
2160  
80  
2236  
mW  
mW  
mW  
1
1 Measured with a low input frequency, full-scale sine wave.  
2 Input capacitance refers to the effective capacitance between one differential input pin and AGND.  
3 Input resistance refers to the effective resistance between one differential input pin and AGND.  
4 Standby power is measured with adc input and the CLK pins inactive (that is, set to AVDD or AGND).  
Rev. B | Page 3 of 36  
 
 
AD9652  
Data Sheet  
ADC AC SPECIFICATIONS  
AVD D 3 = 3.3 V, AVDD = AVDD_CLK = 1.8 V, SPIVDD = DRVDD = 1.8 V, sample rate = 310 MSPS (clock input = 1240 MHz, AD9652  
divided by 4), VIN = −1.0 dBFS differential input, 2.5 V p-p full-scale input range, DCS enabled, dither disabled, unless otherwise noted.  
Table 2.  
VREF = 1 V  
Typ  
VREF = 1.25 V, Default  
Parameter1  
Temperature  
Min  
Max  
Min  
Typ  
Max  
Unit  
DIFFERENTIAL INPUT VOLTAGE  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 30 MHz (Use Nyquist 1 Settings)  
fIN = 70 MHz (Use Nyquist 1 Settings)  
25°C  
2.0  
2.5  
V p-p  
25°C  
25°C  
Full  
74.0  
73.6  
75.4  
75.0  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
74.0  
73.3  
fIN = 70 MHz (Use Nyquist 1 Settings, with Dither Enabled)  
fIN = 170 MHz (Use Nyquist 2 Settings)  
fIN = 170 MHz (Use Nyquist 2 Settings, with Dither Enabled)  
fIN = 305 MHz (Use Nyquist 2 Settings)  
25°C  
25°C  
25°C  
25°C  
25°C  
73.1  
72.1  
71.2  
70.1  
67.9  
74.3  
73.7  
72.0  
70.7  
68.0  
fIN = 400 MHz (Use Nyquist 3 Settings)  
SIGNAL-TO-NOISE AND DISTORTION (SINAD)  
fIN = 30 MHz (Use Nyquist 1 Settings)  
fIN = 70 MHz (Use Nyquist 1 Settings)  
25°C  
25°C  
Full  
72.8  
73.5  
74.2  
74.6  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
73.8  
73.2  
fIN = 70 MHz (Use Nyquist 1 Settings, with Dither Enabled)  
fIN = 170 MHz (Use Nyquist 2 Settings)  
fIN = 170 MHz (Use Nyquist 2 Settings, with Dither Enabled)  
fIN = 305 MHz (Use Nyquist 2 Settings)  
25°C  
25°C  
25°C  
25°C  
25°C  
73.0  
72.0  
71.1  
74.0  
72.6  
71.7  
68.5  
65.8  
fIN = 400 MHz (Use Nyquist 3 Settings)  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 30 MHz (Use Nyquist 1 Settings)  
fIN = 70 MHz (Use Nyquist 1 Settings)  
25°C  
25°C  
Full  
11.8  
12  
12.0  
12.1  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
12.0  
11.9  
fIN = 70 MHz (Use Nyquist 1 Settings, with Dither Enabled)  
fIN = 170 MHz (Use Nyquist 2 Settings)  
fIN = 170 MHz (Use Nyquist 2 Settings, with Dither Enabled)  
fIN = 305 MHz (Use Nyquist 2 Settings)  
25°C  
25°C  
25°C  
25°C  
25°C  
11.8  
11.7  
11.5  
12.0  
11.8  
11.6  
11.1  
10.6  
fIN = 400 MHz (Use Nyquist 3 Settings)  
WORST SECOND OR THIRD HARMONIC  
fIN = 30 MHz (Use Nyquist 1 Settings)  
fIN = 70 MHz (Use Nyquist 1 Settings)  
25°C  
25°C  
Full  
−96  
−90  
−94  
−87  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
−83  
−83  
fIN = 70 MHz (Use Nyquist 1 Settings, with Dither Enabled)  
fIN = 170 MHz (Use Nyquist 2 Settings)  
25°C  
25°C  
25°C  
25°C  
25°C  
−92  
−87  
−87  
−89  
−80  
−89  
−85  
−85  
−86  
−77  
fIN = 170 MHz (Use Nyquist 2 Settings, with Dither Enabled)  
fIN = 305 MHz (Use Nyquist 2 Settings)  
fIN = 400 MHz (Use Nyquist 3 Settings)  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 30 MHz (Use Nyquist 1 Settings)  
fIN = 70 MHz (Use Nyquist 1 Settings)  
25°C  
25°C  
Full  
96  
90  
94  
87  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
83  
83  
fIN = 70 MHz (Use Nyquist 1 Settings. with Dither Enabled)  
fIN = 170 MHz (Use Nyquist 2 Settings)  
25°C  
25°C  
25°C  
25°C  
25°C  
92  
84  
87  
89  
80  
89  
85  
85  
86  
77  
fIN = 170 MHz (Use Nyquist 2 Settings, with Dither Enabled)  
fIN = 305 MHz (Use Nyquist 2 Settings)  
fIN = 400 MHz (Use Nyquist 3 Settings)  
Rev. B | Page 4 of 36  
 
Data Sheet  
AD9652  
VREF = 1 V  
Typ  
VREF = 1.25 V, Default  
Parameter1  
Temperature  
Min  
Max  
Min  
Typ  
Max  
Unit  
WORST OTHER (NOT INCLUDING 2nd or 3rd HARMONIC)  
fIN = 30 MHz (Use Nyquist 1 Settings)  
fIN = 70 MHz (Use Nyquist 1 Settings)  
25°C  
25°C  
Full  
−101  
−99  
−102  
−98  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
−90  
−86  
fIN = 70 MHz (Use Nyquist 1 Settings, with Dither Enabled)  
fIN = 170 MHz (Use Nyquist 2 Settings)  
fIN = 170 MHz (Use Nyquist 2 Settings, with Dither Enabled)  
fIN = 305 MHz (Use Nyquist 2 Settings)  
fIN = 400 MHz (Use Nyquist 3 Settings)  
TWO-TONE SFDR  
25°C  
25°C  
25°C  
25°C  
25°C  
−100  
−91  
−90  
−98  
−92  
−100  
−90  
−95  
−97  
−91  
fIN = 70.1 MHz (−7 dBFS ), 72.1 MHz (−7 dBFS )  
fIN = 184.12 MHz (−7 dBFS ), 187.12 MHz (−7 dBFS )  
CROSSTALK2  
25°C  
25°C  
Full  
93  
83  
dBc  
dBc  
dB  
90  
90  
FULL POWER BANDWIDTH3  
NOISE BANDWIDTH4  
25°C  
25°C  
485  
650  
485  
650  
MHz  
MHz  
1 See the AN-835 Application Note, UnderstandingHighSpeed ADC Testing and Evaluation, for a complete set of definitions.  
2 Crosstalk is measured at 100 MHz with −1.0dBFS on one channel and no input on the alternate channel.  
3 Full power bandwidth is the bandwidth of operation in which proper ADC performance can be achieved.  
4 Noise bandwidth is the −3 dB bandwidth for the ADC inputs across which noise can enter the ADC and is not attenuated internally.  
DIGITAL SPECIFICATIONS  
AVD D 3 = 3.3 V, AVDD = AVDD_CLK = 1.8 V, SPIVDD = DRVDD = 1.8 V, sample rate = 310 MSPS (clock input = 1240 MHz, AD9652  
divided by 4), VIN = −1.0 dBFS differential input, 2.5 V p-p full-scale input range, DCS enabled, dither disabled, unless otherwise noted.  
Table 3.  
Parameter  
Test Conditions/Comments Temperature Min  
Typ Max  
Unit  
DIFFERENTIAL CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
Differential Input Voltage  
CMOS/LVDS/LVPECL  
3.6  
Full  
0.3  
V p-  
p
Input Voltage Range  
Internal Common-Mode Bias  
Input Common-Mode Range  
High Level Input Current  
Low Level Input Current  
Input Capacitance1  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
AGND  
AVDD_CLK  
V
V
V
µA  
µA  
pF  
kΩ  
0.9  
0.9  
+10  
−155  
1.4  
+145  
−15  
5
10  
Input Resistance1  
SYNC INPUT  
Logic Compliance  
Internal Bias  
CMOS/LVDS  
0.9  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
V
V
Input Voltage Range  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
AGND  
1.2  
AGND  
−15  
AVDD_CLK  
AVDD_CLK  
0.6  
+110  
V
V
µA  
µA  
pF  
kΩ  
−105  
+15  
1.5  
16  
Input Resistance  
Rev. B | Page 5 of 36  
 
AD9652  
Data Sheet  
Parameter  
Test Conditions/Comments Temperature Min  
Typ Max  
Unit  
LOGIC INPUT (CSB)2  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
SPIVDD  
0.6  
V
V
−65  
−135  
+65  
0
µA  
µA  
kΩ  
pF  
26  
2
Input Capacitance  
LOGIC INPUT (SCLK)3  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
SPIVDD  
0.6  
V
V
0
−60  
110  
+50  
µA  
µA  
kΩ  
pF  
26  
2
Input Capacitance  
LOGIC INPUTS (SDIO)2  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
SPIVDD  
0.6  
V
V
−65  
−135  
+70  
0
µA  
µA  
kΩ  
pF  
26  
5
Input Capacitance  
LOGIC INPUTS (PDWN)3  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
−80  
−145  
DRVDD  
0.6  
+190  
+130  
V
V
µA  
µA  
kΩ  
pF  
26  
5
Input Capacitance  
DIGITAL OUTPUTS  
LVDS Data and OR Outputs  
Assumes nominal 100 Ω  
differential termination  
ANSI Mode  
Differential Output Voltage (VOD)  
Output Offset Voltage (VOS)  
Reduced Swing Mode  
Differential Output Voltage (VOD)  
Output Offset Voltage (VOS)  
Maximum setting, default  
Minimum setting  
Full  
Full  
310  
350 450  
1.22 1.35  
mV  
V
1.15  
Full  
Full  
150  
200 280  
1.22 1.35  
mV  
V
1.15  
1 Input capacitance/resistance refers to the effective capacitance/resistance between one differential input pin and AGND.  
2 Internal weak pull-up.  
3 Internal weak pull-down.  
Rev. B | Page 6 of 36  
 
Data Sheet  
AD9652  
SWITCHING SPECIFICATIONS  
Table 4.  
Parameter  
Test Conditions/Comments  
Temperature  
Min Typ  
Max  
Unit  
CLOCK INPUT PARAMETERS (CLK )  
Input Clock Rate  
Conversion Rate1  
Full  
Full  
Full  
80  
80  
3.2  
1240 MHz  
310  
MSPS  
ns  
Period—Divide by 1 Mode (tCLK  
)
Pulse Width High (tCH), Minimum  
Divide by 1 Mode  
DCS enabled  
DCS disabled  
Full  
Full  
Full  
Full  
Full  
0.8  
1.3  
0.8  
1.0  
0.1  
ns  
ns  
ns  
ns  
Divide by 2 Mode Through Divide by 8 Mode  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter, tJ)  
DATA OUTPUT PARAMETERS  
LVDS Mode  
ps rms  
Data Propagation Delay (tPD)  
DCO Propagation Delay (tDCO  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
290  
290  
ps  
ps  
)
DCO to Data Skew (tSKEW  
Pipeline Delay (Latency)  
Wake-Up Time  
)
−80 −280 −480 ps2  
26  
100  
1
Cycles  
μs  
sec  
Cycles  
From standby  
From power-down  
Out of Range Recovery Time  
3
1 Conversion rate is the clock rate after the divider.  
2 Data transitions prior to DCO edge transition.  
TIMING SPECIFICATIONS  
Table 5.  
Parameter  
Test Conditions/Comments  
SYNC to the rising edge of CLK+ setup time  
Min Typ Max Unit  
SYNC TIMING REQUIREMENTS  
tSSYNC  
tHSYNC  
0.1  
0.1  
ns  
ns  
SYNC to the rising edge of CLK+ hold time  
SPI TIMING REQUIREMENTS  
tDS  
tDH  
tCLK  
tS  
tH  
tHIGH  
tLOW  
tEN_SDIO  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the SCLK  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
Minimum period that SCLK is in a logic high state  
Minimum period that SCLK is in a logic low state  
Time required for the SDIO pin to switch from an input to an output relative  
to the SCLK falling edge (not shown in Timing Diagrams)  
2
2
40  
2
2
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDIS_SDIO  
tSPI_RST  
Time required for the SDIO pin to switch from an output to an input relative  
to the SCLK rising edge (not shown in Timing Diagrams)  
Time required after power-up, hard or soft reset until SPI access is available  
(not shown in Timing Diagrams)  
10  
ns  
μs  
500  
Rev. B | Page 7 of 36  
 
 
AD9652  
Data Sheet  
TimingDiagrams  
tA  
N – 1  
N + 4  
N + 5  
N
N + 3  
VIN±x  
N + 1  
N + 2  
tCH  
tCLK  
CLK+  
CLK–  
tDCO  
DCO–  
DCO+  
tSKEW  
tPD  
PARALLEL  
INTERLEAVED  
CH A CH B CH A CH B CH A CH B CH A CH B CH A  
N – 26 N – 26 N – 25 N – 25 N – 24 N – 24 N – 23 N – 23 N – 22  
D0± (LSB)  
CHANNEL A  
AND  
CHANNEL B  
CH A CH B CH A CH B CH A CH B CH A CH B CH A  
N – 26 N – 26 N – 25 N – 25 N – 24 N – 24 N – 23 N – 23 N – 22  
D15± (MSB)  
Figure 2. LVDS Data Output Timing  
CLK±  
SYNC  
tSSYNC  
tHSYNC  
Figure 3. SYNC Timing Inputs  
tHIGH  
tDS  
tCLK  
tH  
tS  
tDH  
tLOW  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 4. Serial Port Interface Timing Diagram  
Rev. B | Page 8 of 36  
 
 
 
Data Sheet  
AD9652  
ABSOLUTE MAXIMUM RATINGS  
THERMAL CHARACTERISTICS  
Table 6.  
Parameter  
Rating  
Typical θJA is specified for both a 4-layer printed circuit board  
(PCB) with a solid ground plane from the JEDEC 51-2 and an  
8-layer PCB. The 8-layer PCB has 2 oz copper layers (M1 and  
M8), 1 oz copper inner layers, and vias connecting to layers M2,  
M5, and M7.  
Electrical  
AVDD3 to AGND  
AVDD_CLK to AGND  
AVDD to AGND  
DRVDD to AGND  
SPIVDD to AGND  
−0.3 V to +3.6 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +3.6 V  
As shown in Table 7, airflow increases heat dissipation, which  
reduces θJA. In addition, metal in direct contact with the  
package leads from metal traces, through holes, ground, and  
power planes, reduces the θJA.  
VIN+A/VIN+B, VIN−A/VIN−Bto AGND 1.2 V to 3.0 V  
CLK+, CLK− to AGND  
−0.3 V to AVDD_CLK +  
0.2 V  
SYNC to AGND  
−0.3 V to AVDD_CLK +  
0.2 V  
Table 7. Thermal Resistance  
Airflow  
VCM to AGND  
CSB to AGND  
SCLK to AGND  
−0.3 V to AVDD + 0.2 V  
−0.3 V to SPIVDD + 0.3 V  
−0.3 V to SPIVDD + 0.3 V  
−0.3 V to SPIVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
Velocity  
(m/sec)  
2
Package Type  
Board Type  
8-layer PCB  
8-layer PCB  
JEDEC1  
θJA  
Unit  
144-Ball CSP_BGA  
10 mm × 10 mm  
(BC-144-6)  
0
15.8 °C/W  
13.9 °C/W  
21.7 °C/W  
19.2 °C/W  
SDIO to AGND  
1.0  
0
PDWN to AGND  
OR+/OR− to AGND  
D0 Through D15 to AGND  
DCO to AGND  
1.0  
JEDEC1  
1 Per JEDEC JESD51-7, plus JEDEC 25-5 2S2P test board.  
2 Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).  
Environmental  
Operating Temperature Range  
(Ambient)  
Maximum Junction Temperature  
Under Bias  
−40°C to +85°C  
125°C  
ESD CAUTION  
Storage Temperature Range  
(Ambient)  
−65°C to +150°C  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. B | Page 9 of 36  
 
 
 
AD9652  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AD9652  
TOP VIEW  
(Not to Scale)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
A
B
C
D
E
F
RBIAS  
AGND  
AGND  
CLK–  
CLK+  
TEST  
SYNC  
PDWN  
D0–  
VCM  
AVDD3  
AVDD3  
AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
DRGND  
DRVDD  
D4+  
VIN+B  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DRGND  
DRVDD  
D5+  
VIN–B  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DRGND  
SPIVDD  
D6+  
AVDD3  
AVDD3  
AVDD3  
AVDD3  
VIN–A  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DC0+  
DC0–  
D9+  
VIN+A  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DRGND  
DRVDD  
D10+  
AVDD3  
AVDD3  
AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
DRGND  
DRVDD  
D11+  
SENSE  
AVDD3  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
D15+  
VREF  
AGND  
AGND  
CSB  
AVDD3  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
D0+  
AVDD_  
CLK  
AVDD_  
CLK  
AVDD_  
CLK  
AVDD_  
CLK  
AVDD_  
CLK  
AVDD_  
CLK  
SDIO  
SCLK  
OR+  
AVDD_  
CLK  
AVDD_  
CLK  
G
H
J
AVDD  
AVDD  
DRGND  
DRVDD  
D7+  
AVDD  
AVDD  
DRGND  
DRVDD  
D8+  
OR–  
D15–  
D14–  
D13+  
D13–  
D1–  
D1+  
D14+  
K
L
D2+  
D3+  
D12+  
D2–  
D3–  
D4–  
D5–  
D6–  
D7–  
D8–  
D9–  
D10–  
D11–  
D12–  
M
Figure 5. Pin Configuration  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic  
Type  
Description  
ADC Power Supplies  
K5  
SPIVDD  
DRVDD  
AVDD3  
Supply  
Supply  
Supply  
Serial Interface Logic Voltage Supply (1.8 V Typical, 3.3 V Optional)  
Digital Output Driver Supply (1.8 V Nominal).  
K3, K4, K6, K7, K9, K10  
A3, A6, A7, A10, B2, B3, B6, B7,  
B10, B11  
3.3 V Analog Power Supply (3.3 V Nominal).  
C6, C7, D6, D7, E6, E7, F6, F7  
AVDD_CLK  
AVDD  
Supply  
Supply  
1.8 V Analog Power Supply for Clock Circuitry (1.8 V Nominal).  
1.8 V Analog Power Supply (1.8 V Nominal).  
C3, C10, D3, D10, E3, E10, F3,  
F10, G3, G6, G7, G10, H3, H6,  
H7, H10  
B1, B4, B5, B8, B9, B12, C1, C2,  
C4, C5, C8, C9, C11, C12, D2,  
D4, D5, D8, D9, D11, E2, E4,  
E5, E8, E9, E11, F2, F4, F5, F8,  
F9, F11, G2, G4, G5, G8, G9,  
G11, H2, H4, H5, H8, H9, H11  
AGND  
Analog  
Ground  
Analog Ground Reference for AVDD3, AVDD_CLK, and AVDD.  
J3  
J4  
J5  
DRGND  
DRGND  
DRGND  
Digital Ground Digital and Output Driver Ground Reference.  
Digital Ground Digital and Output Driver Ground Reference.  
Digital Ground Digital and Output Driver Ground Reference.  
Rev. B | Page 10 of 36  
 
Data Sheet  
AD9652  
Pin No.  
Mnemonic  
DRGND  
DRGND  
DRGND  
DRGND  
Type  
Description  
J6  
Digital Ground Digital and Output Driver Ground Reference.  
Digital Ground Digital and Output Driver Ground Reference.  
Digital Ground Digital and Output Driver Ground Reference.  
Digital Ground Digital and Output Driver Ground Reference.  
J7  
J9  
J10  
ADC Analog  
A9  
A8  
A4  
A5  
A2  
VIN+A  
VIN−A  
VIN+B  
VIN−B  
VCM  
Input  
Input  
Input  
Input  
Output  
Differential Analog Input Pin (+) for Channel A.  
Differential Analog Input Pin (−) for Channel A.  
Differential Analog Input Pin (+) for Channel B.  
Differential Analog Input Pin (−) for Channel B.  
Common-Mode Level Bias Output for Analog Inputs. Decouple  
this pin to ground using a 0.1 μF capacitor.  
A1  
RBIAS  
Output  
External Bias Resister Connection. A 10 kΩ resister must be  
connected between this pin and analog ground (AGND).  
A12  
A11  
E1  
VREF  
Input/Output  
Input  
Input  
Voltage Reference Input/Output.  
Reference Mode Selection(See Table 12).  
ADC Clock Input (True ).  
SENSE  
CLK+  
CLK−  
D1  
Input  
ADC Clock Input (Complement).  
Digital Inputs  
F1  
TEST  
Input  
Pull-Down. Unused digital input, pull to ground through a 50 Ω  
resistor.  
G1  
H1  
SYNC  
Input  
Input  
Digital Input Clock Synchronization Pin. Tie low if unused.  
PDWN  
Power-Down Input (Active High). The operation of this pin  
depends on the SPI mode and can be configured as power-down  
or standby (see Register 0x08 in Table 17).  
Digital Outputs  
J2  
J1  
K2  
D0+  
D0−  
D1+  
D1−  
D2+  
D2−  
D3+  
D3−  
D4+  
D4−  
D5+  
D5−  
D6+  
D6−  
D7+  
D7−  
D8+  
D8−  
D9+  
D9−  
D10+  
D10−  
D11+  
D11−  
D12+  
D12−  
D13+  
D13−  
D14+  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Channel A/Channel B LVDS Output Data 0 (True , LSB).  
Channel A/Channel B LVDS Output Data 0 (Complement, LSB).  
Channel A/Channel B LVDS Output Data 1 (True ).  
K1  
L1  
M1  
L2  
M2  
L3  
Channel A/Channel B LVDS Output Data 1 (Complement).  
Channel A/Channel B LVDS Output Data 2 (True).  
Channel A/Channel B LVDS Output Data 2 (Complement).  
Channel A/Channel B LVDS Output Data 3 (True ).  
Channel A/Channel B LVDS Output Data 3 (Complement).  
Channel A/Channel B LVDS Output Data 4 (True ).  
M3  
L4  
M4  
L5  
Channel A/Channel B LVDS Output Data 4 (Complement).  
Channel A/Channel B LVDS Output Data 5 (True ).  
Channel A/Channel B LVDS Output Data 5 (Complement).  
Channel A/Channel B LVDS Output Data 6 (True ).  
M5  
L6  
M6  
L7  
M7  
L8  
Channel A/Channel B LVDS Output Data 6 (Complement).  
Channel A/Channel B LVDS Output Data 7 (True ).  
Channel A/Channel B LVDS Output Data 7 (Complement).  
Channel A/Channel B LVDS Output Data 8 (True ).  
Channel A/Channel B LVDS Output Data 8 (Complement).  
Channel A/Channel B LVDS Output Data 9 (True ).  
M8  
L9  
Channel A/Channel B LVDS Output Data 9 (Complement).  
Channel A/Channel B LVDS Output Data 10 (True ).  
Channel A/Channel B LVDS Output Data 10 (Complement).  
Channel A/Channel B LVDS Output Data 11 (True ).  
Channel A/Channel B LVDS Output Data 11 (Complement).  
Channel A/Channel B LVDS Output Data 12 (True ).  
Channel A/Channel B LVDS Output Data 12 (Complement).  
Channel A/Channel B LVDS Output Data 13 (True).  
Channel A/Channel B LVDS Output Data 13 (Complement).  
Channel A/Channel B LVDS Output Data 14 (True ).  
M9  
L10  
M10  
L11  
M11  
L12  
M12  
K11  
Rev. B | Page 11 of 36  
AD9652  
Data Sheet  
Pin No.  
K12  
J11  
Mnemonic  
D14−  
D15+  
D15−  
OR+  
OR−  
DCO+  
DCO−  
Type  
Description  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Channel A/Channel B LVDS Output Data 14 (Complement).  
Channel A/Channel B LVDS Output Data 15 (True , MSB).  
Channel A/Channel B LVDS Output Data 15 (Complement, MSB).  
Channel A/Channel B LVDS Overrange (True ).  
Channel A/Channel B LVDS Overrange (Complement).  
Channel A/Channel B LVDS Data Clock Output (True ).  
Channel A/Channel B LVDS Data Clock Output (Complement).  
J12  
G12  
H12  
J8  
K8  
SPI Control  
F12  
E12  
SCLK  
SDIO  
CSB  
Input  
Input/Output  
Input  
SPI Serial Clock.  
SPI Serial Data Input/Output.  
D12  
SPI Chip Select (Active Low). This pinmust be pulledhigh at  
power-up.  
Rev. B | Page 12 of 36  
Data Sheet  
AD9652  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVD D 3 = 3.3 V, AVDD = AVDD_CLK = 1.8 V, SPIVDD = DRVDD = 1.8 V, sample rate = 310 MSPS (clock input = 1240 MHz, AD9652  
divide by 4), VIN = −1.0 dBFS differential, VREF = 1.25 V, DCS enabled, dither disabled, unless otherwise noted.  
0
–20  
0
A
= –1dBFS  
A
= –1dBFS  
IN  
IN  
SNRFS = 75.0dB  
SFDR = 89dBc  
SNRFS = 74.4dB  
SFDR = 90dBc  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
20  
40  
60  
80  
100  
120  
140  
0
20  
40  
60  
80  
100  
120  
140  
fIN (MHz)  
fIN (MHz)  
Figure 6. Single Tone Fast Fourier Transform (FFT) with fIN = 70.1 MHz  
(NSD = −156.7 dBFS/Hz)  
Figure 9. Single Tone FFT with fIN = 70.1 MHz with Dither  
(NSD = −156.3 dBFS/Hz)  
0
0
A
= –7dBFS  
A
= –7dBFS  
IN  
IN  
SNRFS = 75.7dB  
SFDR = 91.9dBc  
SNRFS = 75.2dB  
SFDR = 94.4dBc  
–20  
–40  
–20  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
20  
40  
60  
80  
100  
120  
140  
0
20  
40  
60  
80  
100  
120  
140  
fIN (MHz)  
fIN (MHz)  
Figure 10. Single Tone FFT with fIN = 70.1 MHz at −7 dBFS with Dither  
(NSD = −157.1 dBFS/Hz)  
Figure 7. Single Tone FFT with fIN = 70.1 MHz at −7 dBFS  
(NSD = −157.6 dBFS/Hz)  
0
0
A
= –1dBFS  
IN  
A
= –1dBFS  
IN  
SNRFS = 72.9dB  
SFDR = 88dBc  
SNRFS = 73.2dB  
SFDR = 88dBc  
–20  
–40  
–20  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
20  
40  
60  
80  
100  
120  
140  
0
20  
40  
60  
80  
100  
120  
140  
fIN (MHz)  
fIN (MHz)  
Figure 8. Single Tone FFT with fIN = 185 MHz. at −1 dBFS  
(NSD = −155.2 dBFS/Hz), Register 0x22A = 0x01  
Figure 11. Single Tone FFT with fIN = 185 MHz at −1 dBFS with Dither  
(NSD = −154.9 dBFS/Hz), Register 0x22A = 0x01  
Rev. B | Page 13 of 36  
 
AD9652  
Data Sheet  
0
0
–20  
A
= –7dBFS  
A
= –7dBFS  
IN  
IN  
SNRFS = 75dB  
SFDR = 92dBc  
SNRFS = 74.5dB  
SFDR = 93dBc  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
20  
40  
60  
80  
100  
120  
140  
0
20  
40  
60  
80  
100  
120  
140  
fIN (MHz)  
fIN (MHz)  
Figure 12. Single Tone FFT with fIN = 185 MHz at −7 dBFS  
(NSD = −156.9 dBFS/Hz), Register 0x22A = 0x01  
Figure 15. Single Tone FFT with fIN = 185 MHz at −7dBFS with Dither  
(NSD = −156.4 dBFS/Hz), Register 0x22A = 0x01  
0
0
A
= –1dBFS  
A
= –1dBFS  
IN  
IN  
SNRFS = 69.7dB  
SNRFS = 69.5dB  
SFDR = 86.9dBc  
SFDR = 91.6dBc  
–20  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
50  
100  
150  
0
50  
100  
150  
fIN (MHz)  
fIN (MHz)  
Figure 13. FFT fIN = 305 MHz, AIN = −1 dBFS, Dither Off, Register 0x22A = 0x01  
Figure 16. FFT fIN = 305 MHz, AIN = −1 dBFS, Dither On, Register 0x22A = 0x01  
0
0
A
= –7dBFS  
A
= –7dBFS  
IN  
IN  
SNRFS = 72.7dB  
SNRFS = 72.8dB  
SFDR = 90.7dBc  
SFDR = 90.7dBc  
–20  
–40  
–20  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
50  
100  
150  
0
50  
100  
150  
fIN (MHz)  
fIN (MHz)  
Figure 14. FFT fIN = 305 MHz, AIN = −7 dBFS, Dither Off, Register 0x22A = 0x01  
Figure 17. FFT fIN = 305 MHz, AIN = −7 dBFS, Dither On, Register 0x22A = 0x01  
Rev. B | Page 14 of 36  
Data Sheet  
AD9652  
0
0
–20  
A
= –1dBFS  
A
= –1dBFS  
IN  
IN  
SNRFS = 68.0dB  
SFDR = 75.7dBc  
SNRFS = 68.0dB  
SFDR = 75.0dBc  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
–140  
–140  
0
50  
100  
150  
0
50  
100  
150  
fIN (MHz)  
fIN (MHz)  
Figure 18. FFT fIN = 400 MHz, AIN = −1 dBFS, Dither Off, Register 0x22A = 0x02  
Figure 21. FFT fIN = 400 MHz, AIN = −1 dBFS, Dither On, Register 0x22A = 0x02  
0
0
A
= –7dBFS  
A
= –7dBFS  
IN  
IN  
SNRFS = 71.7dB  
SNRFS = 71.9dB  
SFDR = 81.3dBc  
SFDR = 80.2dBc  
–20  
–40  
–20  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
50  
100  
150  
0
50  
100  
150  
fIN (MHz)  
fIN (MHz)  
Figure 19. FFT fIN = 400 MHz, AIN = −7 dBFS, Dither Off, Register 0x22A = 0x02  
Figure 22. FFT fIN = 400 MHz, AIN = −7 dBFS, Dither On, Register 0x22A = 0x02  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
140  
120  
100  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
140  
120  
100  
80  
SNRFS (dB), –40°C  
SNRFS (dB), +25°C  
SNRFS (dB), +85°C  
SFDR (dBFS), –40°C  
SFDR (dBFS), +25°C  
SFDR (dBFS), +85°C  
SFDR (dBc), –40°C  
SFDR (dBc), +25°C  
SFDR (dBc), +85°C  
SNRFS (dB), –40°C  
SNRFS (dB), +25°C  
SNRFS (dB), +85°C  
SFDR (dBFS), –40°C  
SFDR (dBFS), +25°C  
SFDR (dBFS), +85°C  
SFDR (dBc), –40°C  
SFDR (dBc), +25°C  
SFDR (dBc), +85°C  
60  
60  
40  
40  
20  
20  
–80  
–60  
–40  
–20  
0
–80  
–60  
–40  
–20  
0
A
(–dBFS)  
A
(–dBFS)  
IN  
IN  
Figure 20. Single Tone SNR/SFDR vs. Input Amplitude (AIN) with  
fIN = 90.1 MHz, VREF = 1.25 V, Over Temperature, Dither Off  
Figure 23. Single Tone SNR/SFDR vs. Input Amplitude (AIN) with  
fIN = 90.1 MHz, VREF = 1.25 V, Over Temperature, Dither On  
Rev. B | Page 15 of 36  
AD9652  
Data Sheet  
78  
76  
74  
72  
70  
68  
66  
64  
62  
140  
120  
100  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
140  
120  
100  
80  
SNRFS (dB), –40°C  
SNRFS (dB), +25°C  
SNRFS (dB), +85°C  
SFDR (dBFS), –40°C  
SFDR (dBFS), +25°C  
SFDR (dBFS), +85°C  
SFDR (dBc), –40°C  
SFDR (dBc), +25°C  
SFDR (dBc), +85°C  
SNRFS (dB), –40°C  
SNRFS (dB), +25°C  
SNRFS (dB), +85°C  
SFDR (dBFS), –40°C  
SFDR (dBFS), +25°C  
SFDR (dBFS), +85°C  
SFDR (dBc), –40°C  
SFDR (dBc), +25°C  
SFDR (dBc), +85°C  
60  
60  
40  
40  
60  
–80  
20  
20  
0
–60  
–40  
–20  
0
–80  
–60  
–40  
–20  
A
(–dBFS)  
A
(–dBFS)  
IN  
IN  
Figure 24. Single Tone SNR/SFDR vs. Input Amplitude (AIN) with  
fIN = 90.1 MHz, VREF = 1.0 V, Over Temperature, Dither Off  
Figure 27. Single Tone SNR/SFDR vs. Input Amplitude (AIN) with fIN =  
90.1 MHz, VREF = 1.0 V, Over Temperature, Dither On  
76  
74  
72  
70  
68  
66  
64  
62  
60  
58  
56  
110  
76  
74  
72  
70  
68  
66  
64  
62  
60  
58  
56  
110  
106  
102  
98  
SNRFS  
SNRFS  
(NYQUIST SETTING 1)  
(NYQUIST SETTING 1)  
106  
102  
98  
94  
90  
86  
82  
78  
74  
70  
SNRFS  
(NYQUIST SETTING 2)  
SNRFS  
(NYQUIST SETTING 3)  
SNRFS  
(NYQUIST SETTING 2)  
SNRFS  
(NYQUIST SETTING 3)  
94  
90  
86  
82  
SFDR  
SFDR  
78  
(NYQUIST SETTING 1)  
(NYQUIST SETTING 1)  
SFDR  
(NYQUIST SETTING 2)  
SFDR  
(NYQUIST SETTING 3)  
SFDR  
(NYQUIST SETTING 2)  
SFDR  
(NYQUIST SETTING 3)  
74  
70  
0
50 100 150 200 250 300 350 400 450 500 550  
0
50 100 150 200 250 300 350 400 450 500 550  
fIN (MHz)  
fIN (MHz)  
Figure 25. Single Tone SNR/SFDR vs. Input Frequency (fIN),  
Amplitude = −1 dBFS, VREF = 1.25 V  
Figure 28. Single Tone SNR/SFDR vs. Input Frequency (fIN),  
Amplitude =−1 dBFS, VREF = 1.0 V  
76  
74  
72  
70  
68  
66  
64  
62  
60  
58  
56  
110  
106  
102  
98  
76  
74  
72  
70  
68  
66  
64  
62  
60  
58  
56  
110  
106  
102  
98  
SNRFS  
SNRFS  
(NYQUIST SETTING 1)  
(NYQUIST SETTING 1)  
SNRFS  
(NYQUIST SETTING 2)  
SNRFS  
(NYQUIST SETTING 3)  
SNRFS  
(NYQUIST SETTING 2)  
SNRFS  
(NYQUIST SETTING 3)  
94  
94  
90  
90  
86  
86  
82  
82  
SFDR  
(NYQUIST SETTING 1)  
SFDR  
(NYQUIST SETTING 2)  
SFDR  
(NYQUIST SETTING 3)  
SFDR  
(NYQUIST SETTING 1)  
SFDR  
(NYQUIST SETTING 2)  
SFDR  
(NYQUIST SETTING 3)  
78  
78  
74  
74  
70  
70  
0
50 100 150 200 250 300 350 400 450 500 550  
0
50 100 150 200 250 300 350 400 450 500 550  
fIN (MHz)  
fIN (MHz)  
Figure 26. Single Tone SNR/SFDR vs. Input Frequency (fIN),  
Amplitude = −7 dBFS, VREF = 1.25 V  
Figure 29. Single Tone SNR/SFDR vs. Input Frequency (fIN),  
Amplitude = −7 dBFS, VREF = 1.0 V  
Rev. B | Page 16 of 36  
Data Sheet  
AD9652  
0
–20  
–40  
–60  
105  
100  
95  
0
–20  
105  
100  
95  
–40  
90  
–60  
90  
SFDR (dBFS)  
SFDR (dBFS)  
IMD2 (dBc)  
IMD3 (dBc)  
IMD2 (dBFS)  
IMD3 (dBFS)  
IMD2 (dBc)  
IMD3 (dBc)  
IMD2 (dBFS)  
IMD3 (dBFS)  
–80  
–100  
–120  
85  
–80  
85  
80  
–100  
–120  
80  
75  
75  
0
–80  
–60  
–40  
INPUT AMPLITUDE (dBFS)  
–20  
0
–80  
–60  
–40  
INPUT AMPLITUDE (dBFS)  
–20  
Figure 30. Two Tone SFDR/Intermodulation Distortion (IMD) vs. Input  
Amplitude, for fIN = 70.1 MHz and 72.1 MHz, Dither Disabled  
Figure 33. Two Tone SFDR/IMD vs. Input Amplitude, for fIN = 70.1 MHz and  
72.1 MHz, Dither Enabled  
0
105  
100  
95  
0
105  
100  
95  
–20  
–20  
–40  
–40  
–60  
90  
–60  
90  
SFDR (dBFS)  
IMD2 (dBc)  
IMD3 (dBc)  
IMD2 (dBFS)  
IMD3 (dBFS)  
SFDR (dBFS)  
IMD2 (dBc)  
IMD3 (dBc)  
IMD2 (dBFS)  
IMD3 (dBFS)  
–80  
85  
–80  
85  
–100  
–120  
80  
–100  
–120  
80  
75  
75  
–80  
–60  
–40  
INPUT AMPLITUDE (dBFS)  
–20  
0
–80  
–60  
–40  
INPUT AMPLITUDE (dBFS)  
–20  
0
Figure 31. Two Tone SFDR/IMD vs. Input Amplitude, for fIN = 184 MHz and  
187 MHz, Dither Disabled, Register 0x22A = 0x01  
Figure 34. Two Tone SFDR/IMD vs. Input Amplitude, for fIN = 184 MHz and  
187 MHz, Dither Enabled, Register 0x22A = 0x01  
70000  
60000  
50000  
40000  
30000  
20000  
10000  
0
0
A
1 = A 2 = –7dBFS  
IN  
IN  
SFDR = 87dBc (94dBFS)  
IMD2 = –92dBc (–99dBFS)  
IMD3 = –87dBc (–94dBFS)  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
0
25  
50  
75  
100  
125  
150  
fIN (MHz)  
CODES  
Figure 35. Grounded Input Histogram  
Figure 32. Two Tone FFT with fIN = 89.1 MHz and 92.1 MHz, VREF = 1.25 V  
Rev. B | Page 17 of 36  
AD9652  
Data Sheet  
100  
95  
90  
85  
80  
75  
100  
95  
90  
85  
80  
75  
70  
SFDR (V  
= 1V)  
REF  
SFDR (V  
= 1V)  
REF  
SFDR (V  
= 1.25V)  
REF  
SFDR (V  
= 1.25V)  
REF  
SNRFS (V  
= 1.25V)  
= 1V)  
REF  
SNRFS (V  
= 1.25V)  
= 1V)  
REF  
SNRFS (V  
SNRFS (V  
REF  
REF  
70  
80  
120  
160  
200  
240  
280  
320  
80  
120  
160  
200  
240  
280  
320  
ENCODE RATE (MHz)  
ENCODE RATE (MHz)  
Figure 36. Encode Rate Sweep, fIN = 90.1 MHz at −7 dBFS,  
VREF = 1.25 V and 1.0 V  
Figure 39. Encode Rate Sweep, fIN = 90.1 MHz at −1 dBFS,  
VREF = 1.25 V and 1.0 V  
1.0  
6
0.8  
0.6  
3
0
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–3  
–6  
0
10000  
20000  
30000  
CODES  
40000  
50000  
60000  
0
10000  
20000  
30000  
CODES  
40000  
50000  
60000  
Figure 37. DNL with Dither Off, fIN = 30 MHz  
Figure 40. INL with Dither Off, fIN = 30 MHz  
1.0  
0.8  
6
3
0.6  
0.4  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–3  
–6  
0
10000  
20000  
30000  
CODES  
40000  
50000  
60000  
0
10000  
20000  
30000  
CODES  
40000  
50000  
60000  
Figure 41. INL with Dither On, fIN = 30 MHz  
Figure 38. DNL with Dither On, fIN = 30 MHz  
Rev. B | Page 18 of 36  
Data Sheet  
AD9652  
EQUIVALENT CIRCUITS  
SPIVDD  
AVDD3  
350  
SCLK  
VIN±x  
26kꢀ  
27k  
Figure 42. Equivalent Analog Input Circuit  
Figure 47. Equivalent SCLK Input Circuit  
AVDD_CLK  
SPIVDD  
AVDD  
AVDD  
26k  
0.9V  
350ꢀ  
10k  
10kꢀ  
CSB  
CLK+  
CLK–  
Figure 48. Equivalent CSB Input Circuit  
Figure 43. Equivalent Clock Circuit  
DRVDD  
AVDD_CLK  
AVDD_CLK  
V+  
V–  
DATAOUT–  
V–  
DATAOUT+  
V+  
SYNC  
0.9V  
16kꢀ  
0.9V  
Figure 49. Equivalent SYNC Input Circuit  
Figure 44. Equivalent LVDS Output Circuit (DCO± ± Oꢀ± ± and D0± to D15± )  
AVDD  
SPIVDD  
26kꢀ  
350ꢀ  
SENSE  
350ꢀ  
SDIO  
Figure 50. Equivalent SENSE Circuit  
Figure 45. Equivalent SDIO Circuit  
AVDD  
350  
VREF  
PDWN  
6k  
26kꢀ  
Figure 46. Equivalent PDWN Input Circuit  
Figure 51. Equivalent VꢀEF Circuit  
Rev. B | Page 19 of 36  
 
AD9652  
Data Sheet  
THEORY OF OPERATION  
The AD9652 is a dual, 16-bit ADC with sampling speeds of up  
to 310 MSPS. The AD9652 is designed to support communications  
and instrumentation applications where high performance and  
wide bandwidth are desired.  
ANALOG INPUT CONSIDERATIONS  
The analog inputs to the AD9652 are high performance  
differential buffers that are designed for optimum performance  
while processing a differential input signal. The input buffer  
provides a consistent input impedance to ease interface of the  
analog input.  
The dual ADC design can be used for diversity receivers, where  
the ADCs operate identically on the same carrier but from two  
separate antennae. The ADCs can also be operated with  
independent analog inputs. The user can sample frequencies  
from dc to 310 MHz using appropriate low-pass or band-pass  
filtering at the ADC inputs with little loss in ADC performance.  
A typical operation of 485 MHz at the analog input is permitted  
but occurs at the expense of increased ADC noise and distortion.  
The differential analog input impedance is approximately 54 kΩ  
in parallel with a 5.8 pF capacitor. A passive network of discrete  
components can create a low-pass filter at the ADC input; the  
precise values are dependent on the application.  
In intermediate frequency (IF) undersampling applications,  
reduce the shunt capacitors. In combination with the driving  
source impedance, the shunt capacitors limit the input bandwidth.  
Refer to the Analog Dialogue article, Transformer-Coupled  
Front-End for Wideband A/D Converters,for more information  
on this subject.  
Synchronization capability is provided to allow synchronized  
timing between multiple devices.  
Programming and control of the AD9652 are accomplished  
using a 3-wire, SPI-compatible serial interface.  
The AD9652 uses internal optimized settings for the various  
input signal frequencies. Register 0x22A configures the ADC  
for the desired frequency band.  
ADC ARCHITECTURE  
The AD9652 consists of a dual, buffered front-end sample-and-  
hold circuit, followed by a pipelined switched-capacitor ADC.  
The AD9652 uses a unique architecture that utilizes the benefits  
of pipelined converters, as well as a novel input circuit to  
maximize performance of the first stage.  
Table 9. Register 0x22A Settings  
Register 0x22A Setting  
Input Frequency Range  
0 (Default)  
1
2
0 to 155 MHz (1st Nyquist)  
155 to 310 MHz (2nd Nyquist)  
310 MHz and above (3rd Nyquist)  
The quantized outputs from each stage are combined to produce a  
16-bit result in the digital correction logic. The pipelined  
architecture permits the first stage to operate on a new input  
sample, and the remaining stages to operate on the preceding  
samples. Sampling occurs on the rising edge of the clock.  
For best dynamic performance, the source impedances driving  
each of the differential inputs, match VIN x, and differentially  
balance the inputs.  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched-capacitor digital-  
to-analog converter (DAC) and an interstage residual multiplying  
DAC (MDAC). The MDAC magnifies the difference between  
the reconstructed DAC output and the flash input for the next  
stage in the pipeline. One bit of redundancy is used in each  
stage to facilitate digital correction of flash errors. The last stage  
consists of a flash ADC.  
Input Common Mode  
The analog inputs of the AD9652 are not internally dc biased.  
In ac-coupled applications, the user must provide this bias  
externally. Setting the device so that the common-mode voltage  
equals 2.0 V is recommended for optimum performance. An  
on-board common-mode voltage reference is included in the  
design and is available from the VCM pin. Using the VCM  
output to set the input common mode is recommended. The  
VCM pin must be decoupled to ground with a 0.1 μF capacitor,  
as described in the Applications Information section. Place this  
decoupling capacitor close to the pin to minimize the series  
resistance and inductance between the device and this capacitor.  
The AD9652 uses internal digital processing to continually  
track internal errors that occur at each of the pipeline stages and  
corrects for them to ensure continuous performance over  
various operating conditions. This requires additional start-up  
time due to the resetting and collection of correction data.  
Common-Mode Voltage Servo  
The input stage of each channel contains a differential sampling  
circuit that can be ac- or dc-coupled in differential or single-  
ended modes. The output staging block aligns the data, corrects  
errors, and passes the data to the output buffers. The output  
buffers are powered from a separate supply, allowing digital  
output noise to be separated from the analog core. During power-  
down, the output buffers enter a high impedance state.  
In applications where there may be a voltage loss between the VCM  
output of the AD9652 and the analog inputs, the common-mode  
voltage servo can be enabled. When the inputs are ac-coupled and a  
resistance of >100 Ω is placed between the VCM output and the  
analog inputs, a significant voltage drop can occur; enable the  
common-mode voltage servo. Setting Bit 0 in Register 0x0F to a  
logic high enables the VCM servo mode.  
Rev. B | Page 20 of 36  
 
 
Data Sheet  
AD9652  
In this mode, the AD9652 monitors the common-mode input  
level at the analog inputs and adjusts the VCM output level to  
keep the common-mode input voltage at an optimal level. If  
both channels are operational, Channel A is monitored.  
However, if Channel A is in power-down or standby mode, then  
Channel B input is monitored.  
Large Signal Fast Fourier Transform  
In most cases, dithering does not improve SFDR for large signal  
inputs close to full scale, for example, with a −1 dBFS input. For  
large signal inputs, the SFDR is typically limited by front-end  
sampling distortion, which dithering cannot improve. However,  
even for such large signal inputs, dithering can be useful for  
certain applications because it makes the noise floor whiter. As  
is common in pipeline ADCs, the AD9652 contains small DNL  
errors caused by random component mismatches that produce  
spurs or tones that make the noise floor somewhat randomly  
colored device-to-device. Although these tones are typically at  
very low levels and do not limit SFDR when the ADC is  
quantizing large signal inputs, dithering converts these tones to  
noise and produces a whiter noise floor.  
Dither  
The AD9652 has an optional internal dither circuitry that can  
improve SFDR, particularly for small signals. Dithering is the act  
of injecting a known but random amount of white noise into the  
input of the AD9652. Dithering has the effect of improving the  
local linearity within the ADC transfer function. The AD9652  
allows dither to be added to either ADC input independently.  
The full scale of the dither DAC is small enough that enabling  
dither does not limit the external input signal amplitude.  
Small Signal FFT  
As shown in Figure 52, the dither that is added to the input of  
the ADC through the dither DAC is precisely subtracted out  
digitally to minimize SNR degradation. When dithering is  
enabled, the dither DAC is driven by a pseudorandom number  
generator (PN gen). In the AD9652, the dither DAC is precisely  
calibrated to result in only a very small degradation in SNR and  
SINAD when dither is enabled.  
For small signal inputs, the front-end sampling circuit typically  
contributes very little distortion, and the SFDR is likely to be  
limited by tones caused by DNL errors due to random component  
mismatches. Therefore, for small signal inputs (typically, those  
below −6 dBFS), dithering can significantly improve SFDR by  
converting these DNL tones to white noise.  
Static Linearity  
AD9652  
Dithering also removes sharp local discontinuities in the INL  
transfer function of the ADC and reduces the overall peak-to-  
peak INL.  
VIN±x  
DOUT  
ADC CORE  
Utilizing dither randomizes local small signal DNL errors that  
produce the discontinuities in the INL transfer function and  
therefore improve the peak-to-peak INL performance.  
DITHER  
DAC  
PN GEN  
DITHER ENABLE  
Differential Input Configurations  
Optimum performance is achieved by driving the AD9652 in a  
differential input configuration. For baseband applications, the  
ADL5566, AD8138, ADA4937-2, ADA4938-2, and ADA4930-2  
differential drivers provide excellent performance and a flexible  
interface to the ADC.  
Figure 52. Dither Block Diagram  
The SFDR improvement comes at the expense of SNR  
degradation, but because the dither is internal and can be  
correlated, the impact on SNR is typically limited to less than  
0.5 dB in the first Nyquist zone. Enabling internal dither does  
not impact full-scale dynamic range. The magnitude of dither is  
controllable, which allows the user to select the desired trade-  
off between SFDR improvement vs. SNR degradation.  
The output common-mode voltage of the ADA4930-2 is easily  
set with the VCM pin of the AD9652 (see Figure 53), and the  
driver can be configured in a Sallen-Key filter topology to  
provide band limiting of the input signal.  
15pF  
To enable dither, set Bit 4 of Register 0x30. To modify the dither  
gain, use Register 0x212[7:4].  
200  
33Ω  
5pF  
15Ω  
Table 10. Dither Gain  
90Ω  
VIN–x  
ADC  
VCM  
VIN±x  
76.8Ω  
Register 0x212[7:4] Setting  
0b0000 (default)  
0b0001  
0b0010  
0b0011  
0b0100  
0b0101  
0b0110  
0b0111  
Gain Ratio  
Gain (%)  
100  
ADA4930-2  
Maximum dither  
255/256 × max  
254/256 × max  
252/256 × max  
248/256 × max  
240/256 × max  
224/256 × max  
192/256 × max  
Minimum dither  
0.1µF  
33Ω  
15Ω  
99.6  
99.2  
98.4  
96.8  
93.75  
87.5  
75  
VIN+x  
120Ω  
15pF  
200Ω  
33Ω  
0.1µF  
Figure 53. Differential Input Configuration Using the ADA4930-2  
0b1000  
50  
Rev. B | Page 21 of 36  
 
 
AD9652  
Data Sheet  
For baseband applications where SNR is a key parameter,  
differential transformer coupling is the recommended input  
configuration. An example is shown in Figure 54. To bias the  
analog input, the VCM voltage can be connected to the center  
tap of the secondary winding of the transformer.  
input frequency ranges. However, these values are dependent on  
the input signal; use the bandwidth only as a starting guide.  
Note that the values given in Table 11 are for each R1, R2, C1,  
C2, and R3 component shown in Figure 54 and Figure 56.  
Table 11. Example RC Network  
C2  
Frequency  
Range  
(MHz)  
R1  
C1  
R2  
C2  
R3  
R3  
Series Differential Series Shunt Shunt  
(Ω)  
33  
R2  
VIN+x  
(pF)  
(Ω)  
0
15  
(pF)  
15  
2.7  
(Ω)  
49.9  
0
R1  
0 to 100  
100 to 300  
Open  
Open  
2V p-p  
49.9  
C1  
R1  
ADC  
15  
R2  
VCM  
VIN–x  
An alternative to using a transformer-coupled input at  
0.1µF  
33Ω  
0.1µF  
R3  
frequencies in the second Nyquist zone is to use an amplifier  
with variable gain. The AD8375 or AD8376 digital variable gain  
amplifier (DVGA) provides good performance for driving the  
AD9652. Figure 55 shows an example of the AD8376 driving  
the AD9652 through a band-pass antialiasing filter.  
C2  
Figure 54. Differential Transformer-Coupled Configuration  
The signal characteristics must be considered when selecting a  
transformer. Most RF transformers saturate at frequencies  
below a few megahertz. Excessive signal power can also cause  
core saturation, which leads to distortion.  
1000pF 180nH 220nH  
1µH  
1µH  
165  
165Ω  
15pF  
VPOS  
1nF  
AD9652  
At input frequencies in the second Nyquist zone and above, the  
noise performance of most amplifiers is not adequate to achieve  
the true SNR performance of the AD9652. For applications  
where SNR is a key parameter, differential double balun coupling is  
the recommended input configuration (see Figure 56). In this  
configuration, the input is ac-coupled and the VCM voltage is  
provided to each input through a 33 Ω resistor. These resistors  
compensate for losses in the input baluns to provide a 50 Ω  
impedance to the driver.  
AD8376  
5.1pF  
3.9pF  
VCM  
1nF  
54kΩ║2.9pF  
301Ω  
68nH  
180nH 220nH  
®
1000pF  
NOTES  
1. ALL INDUCTORS ARE COILCRAFT 0603CS COMPONENTS WITH THE  
EXCEPTION OF THE 1µH CHOKE INDUCTORS (COIL CRAFT 0603LS).  
2. FILTER VALUES SHOWN ARE FOR A 20MHz BANDWIDTH FILTER  
CENTERED AT 140MHz.  
Figure 55. Differential Input Configuration Using the AD8376  
In the double balun and transformer configurations, the value  
of the input capacitors and resistors is dependent on the input  
frequency and source impedance. Based on these parameters,  
the value of the input resistors and capacitors may need to be  
adjusted, or some components may need to be removed. Table 11  
displays recommended values to set the RC network for different  
C2  
R3  
0.1µF  
0.1µF  
R1  
R2  
R2  
VIN+x  
2V p-p  
33  
33Ω  
P
A
S
S
P
C1  
R1  
ADC  
0.1µF  
0.1µF  
VCM  
VIN–x  
R3  
33Ω  
0.1µF  
C2  
Figure 56. Differential Double Balun Input Configuration  
Table 12. VREF Configuration Options  
Selected Mode  
SENSE Voltage  
Resulting ADC Reference Voltage (V)  
Resulting Input Span (Differential V p-p)  
External Reference  
Internal Fixed Reference  
AVDD  
GND  
N/A1  
2 × external reference  
2
2
VREF  
2 × VREF  
1 N/A means not applicable.  
2 VREF is set via Register 0x18. The default VREF is 1.25 V.  
Rev. B | Page 22 of 36  
 
 
 
 
 
Data Sheet  
AD9652  
0
–1  
–2  
–3  
–4  
VOLTAGE REFERENCE  
V
= 1.25V  
REF  
A stable and accurate voltage reference is built into the AD9652.  
The full-scale input range can be adjusted by varying the reference  
voltage via the SPI. The input span of the ADC linearly tracks  
reference voltage changes.  
Internal Reference Connection  
A stable and accurate programmable reference is built into  
the AD9652, allowing a voltage reference from 1.0 V to 1.25 V  
to provide up to a 2.5 V p-p differential full-scale input. By  
default the VREF voltage is set 1.25 V, but can be modified using  
Register 0x18[2:0], VREF select.  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
To configure the AD9652 for an internal reference, the SENSE  
pin must be tied low. When SENSE is tied low, the ADC uses  
LOAD CURRENT (mA)  
Figure 58. Reference Voltage Error vs. Load Current  
VREF directly and provides a differential input voltage of two  
times the VREF value.  
External Reference Operation  
The use of an external reference can be necessary to enhance  
the gain accuracy of the ADC or improve thermal drift charac-  
teristics.  
To achieve optimal noise performance when using the internal  
reference, it is recommended that the VREF pin be decoupled  
by 1.0 μF and 0.1 μF capacitors close to the pin. Figure 57 shows  
the configuration for the internal reference connection resulting  
in a input voltage set by VREF, that is, a 2.5 V p-p differential  
full-scale input.  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference that is  
applied to the VREF pin. An internal reference buffer loads the  
external reference with an equivalent 6 kΩ load. The internal  
buffer generates the positive and negative full-scale references  
for the ADC core. Therefore, the external reference must be  
limited to a maximum of 1.25 V to maintain an input voltage of  
2.5 V p-p differential full-scale input or less.  
VIN+A/VIN+B  
VIN–A/VIN–B  
ADC  
CORE  
CLOCK INPUT CONSIDERATIONS  
VREF  
For optimum performance, clock the AD9652 sample clock  
inputs, CLK+ and CLK−, with a differential signal with a high  
slew rate. The signal is typically ac-coupled into the CLK+ and  
CLK− pins via a transformer or via capacitors. These pins are  
biased internally (see Figure 59) and require no external bias. If  
the inputs are floated, the CLK− pin is intentionally biased  
slightly lower than CLK+ to prevent spurious clocking (this is  
not shown in Figure 59).  
1.0µF  
0.1µF  
SELECT  
LOGIC  
SENSE  
V
SELECT  
AD9652  
Figure 57. Internal Reference Configuration  
AVDD_CLK  
If the internal reference of the AD9652 drives multiple  
converters to improve gain matching, the loading of the reference  
by the other converters must be considered. Figure 58 shows how  
the internal reference voltage is affected by loading.  
0.9V  
CLK+  
CLK–  
5pF  
5pF  
Figure 59. Simplified Equivalent Clock Input Circuit  
Rev. B | Page 23 of 36  
 
 
 
 
 
AD9652  
Data Sheet  
Clock Input Options  
A third option is to ac couple a differential LVDS signal to the  
sample clock input pins, as shown in Figure 63. The AD9510,  
AD9511, AD9512, AD9513, AD9514, AD9515, AD9516-5,  
AD9517-1, AD9518-1, AD9520-5, AD9522-1, AD9523, and  
AD9524 clock drivers offer excellent jitter performance.  
The AD9652 has a very flexible clock input structure. The clock  
input can be a CMOS, LVDS, LVPECL, or sine wave signal.  
Regardless of the type of signal being used, clock source jitter is  
of the most concern, as described in the Jitter Considerations  
section.  
Figure 60 and Figure 61 show two preferable methods for  
clocking the AD9652 (at clock rates of up to 1240 MHz). A low  
jitter clock source is converted from a single-ended signal to a  
differential signal using an RF balun or RF transformer.  
ADC  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
AD95xx  
LVDS DRIVER  
100  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
50kΩ  
50kΩ  
The RF balun configuration is recommended for clock  
frequencies between 125 MHz and 1240 MHz, and the RF  
transformer is recommended for clock frequencies from  
80 MHz to 200 MHz. The back-to-back Schottky diodes are  
used across the transformer secondary or the balun balanced  
side to limit clock amplitude excursions into the AD9652 to  
approximately 0.8 V p-p differential. This limit helps prevent  
large voltage swings of the clock from feeding through to other  
portions of the AD9652, while preserving fast rise and fall times  
of the clock, which are critical to low jitter performance.  
Figure 63. Differential LVDS Sample Clock (Up to 625 MHz)  
Input Clock Divider  
The AD9652 contains an input clock divider with the ability to  
divide the input clock by integer values of 1, 2, 4 or 8. In these  
cases, the DCS is enabled by default on power-up. The clock  
divide ratio is set in Register 0x0B.  
The AD9652 clock divider can be synchronized using the  
external SYNC input. Bit 1 and Bit 2 of Register 0x100 allow the  
clock divider to be resynchronized on every SYNC signal or  
only on the first SYNC signal after the register is written. A  
valid SYNC causes the clock divider to reset to its initial state.  
This synchronization feature allows multiple devices to have  
their clock dividers aligned to guarantee simultaneous input  
sampling. With the divider enabled and the SYNC option used,  
the ADC clock divider output phase can be adjusted after  
synchronization in increments of input clock cycles using  
Register 0x16.  
®
Mini-Circuits  
ADT1-1WT, 1:1Z  
ADC  
390pF  
390pF  
390pF  
XFMR  
CLOCK  
INPUT  
CLK+  
CLK–  
100Ω  
50Ω  
SCHOTTKY  
DIODES:  
HSMS2822  
Figure 60. Transformer-Coupled Differential Clock (Up to 200 MHz)  
Drive the SYNC input using a single-ended CMOS type signal.  
If not used, connect the SYNC pin to ground.  
25  
ADC  
390pF  
1nF  
390pF  
390pF  
CLOCK  
INPUT  
CLK+  
Clock Duty Cycle  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals and, as a result, may be  
sensitive to clock duty cycle. Commonly, a 5% tolerance is  
required on the clock duty cycle to maintain dynamic  
performance characteristics.  
CLK–  
SCHOTTKY  
DIODES:  
25Ω  
HSMS2822  
Figure 61. Balun-Coupled Differential Clock (Up to 1240 MHz)  
If a low jitter clock source is not available, another option is to  
ac couple a differential PECL signal to the sample clock input  
pins as shown in Figure 62. The AD9510, AD9511, AD9512,  
AD9513, AD9514, AD9515, AD9516-5, AD9517-1, AD9518-1,  
AD9520-5, AD9522-1, AD9523, AD9524, and ADCLK905/  
ADCLK907/ADCLK925 clock drivers offer excellent jitter  
performance.  
The AD9652 contains a clock DCS that retimes the nonsampling  
(falling) edge, providing an internal clock signal with a nominal  
50% duty cycle. This allows the user to provide a wide range of  
clock input duty cycles without affecting the performance of the  
AD9652.  
Jitter on the rising edge of the input clock is still of paramount  
concern and is not reduced by the duty cycle stabilizer. The  
DCS control loop does not function for clock rates less than  
80 MHz nominally. The loop has a time constant associated  
with it that must be considered when the clock rate changes  
dynamically. A wait time of 1.5 μs to 5 μs is required after a  
dynamic clock frequency increase or decrease before the DCS  
loop is relocked to the input clock. During that time period, the  
loop is not locked, the DCS loop is bypassed, and internal  
ADC  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
AD95xx  
PECL DRIVER  
100Ω  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
240Ω  
240Ω  
50kΩ  
50kΩ  
Figure 62. Differential PECL Sample Clock (Up to 1240 MHz)  
Rev. B | Page 24 of 36  
 
 
 
 
Data Sheet  
AD9652  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2.5  
device timing is dependent on the duty cycle of the input clock  
signal. In some cases, it may be appropriate to disable the duty  
cycle stabilizer, for example, if a high quality RF clock is  
available to drive the AD9652 clock input and does not need  
adjustment in duty cycle correction. In most other applications,  
enabling the DCS circuit is recommended to maximize ac  
performance.  
AVDD3  
AVDD_CLK  
DRVDD/SPIVDD  
AVDD  
2.0  
1.5  
1.0  
0.5  
0
POWER  
Jitter Considerations  
High speed, high resolution ADCs are sensitive to the quality  
of the clock input. The degradation in SNR at a given input  
frequency (fIN) due to jitter (tJ) can be calculated by  
SNRHF = −10 log[(2π × fIN × tJRMS)2 + 10 (SNR /10)  
]
LF  
80  
130  
180  
230  
280  
SAMPLE RATE (MSPS)  
In the equation, the rms aperture jitter represents the root-  
mean-square of all jitter sources, which includes the clock  
input, the analog input signal, and the ADC aperture jitter  
specification. IF undersampling applications are particularly  
sensitive to jitter, as shown in Figure 64.  
Figure 65. Power and Current vs. Sample Rate  
By asserting power-down (either through setting Register 0x08  
or by asserting the PDWN pin high), the AD9652 is placed in  
power-down mode. In this state, the ADC typically dissipates  
less than 1 mW. During power-down, the output drivers are  
placed in a high impedance state. Deasserting the PDWN pin  
(forcing it low) returns the AD9652 to its normal operating  
mode. Note that the level on PDWN is referenced to the digital  
output driver supply (DRVDD) and cannot exceed that supply  
voltage.  
80  
78  
76  
74  
72  
70  
68  
Low power dissipation in power-down mode is achieved by  
shutting down the reference, reference buffer, biasing networks,  
and clock. Internal capacitors are discharged when entering  
power-down mode and then must be recharged when returning  
to normal operation. As a result, wake-up time is related to the  
time spent in power-down mode, and shorter power-down  
cycles result in proportionally shorter wake-up times.  
66  
MEASURED  
0.8ps  
0.2ps  
64  
0.1ps  
0.05ps  
62  
0.05ps  
60  
5
50  
500  
fIN (MHz)  
When using the SPI port interface, the user can place the ADC  
in power-down mode or standby mode. Standby mode allows  
the user to keep the internal reference circuitry powered when  
faster wake-up times are required. See the AN-877 Application  
Note, Interfacing to High Speed ADCs via SPI, for additional  
details.  
Figure 64. SNRFS vs. Input Frequency and Jitter  
Treat the clock input as an analog signal in cases where aperture  
jitter may affect the dynamic range of the AD9652.  
Drive external clock sources and buffers from a clean ADC  
output driver supply to avoid modulating the ADC clock with  
noise. Low jitter, crystal controlled oscillators make the best  
clock sources. If the clock is generated from another type of  
source (by gating, dividing, or another method), retime it by the  
original clock at the last step.  
INTERNAL BACKGROUND CALIBRATION  
The AD9652 uses a background calibration to continually correct  
errors between internal analog circuits to maintain the high  
level of noise performance over varying conditions. The calibration  
correction digitally monitors the errors in the various analog  
blocks, calculates the error, and applies corrections. The back-  
ground correction is calculated every 3 × 233 samples; therefore,  
when running at 310 MSPS, the update rate is about 83 seconds.  
Each calibration cycle is independent from previous calibrations to  
improve tracking. There are no requirements on the input signal  
for the background calibration.  
Refer to the AN-501 Application Note, Aperture Uncertainty  
and ADC System Performance, and the AN-756 Application  
Note, Sampled Systems and the Effects of Clock Phase Noise and  
Jitter, for more information about jitter performance as it relates  
to ADCs.  
POWER DISSIPATION AND STANDBY MODE  
As shown in Figure 65, the power dissipated by the AD9652 is  
proportional to its sample rate. The data in Figure 65 was taken  
using the same operating conditions as those used for the  
Typical Performance Characteristics section.  
The calibration occurs independently for each ADC path. The  
background calibration continually operates but does not  
update if the input signal is significantly out of range (beyond  
the OTR) because this can cause errors in the calibration  
calculation.  
Rev. B | Page 25 of 36  
 
 
 
 
AD9652  
Data Sheet  
Although this is not recommended, in some instances such as  
when all the environmental, clocking, and input signals are very  
stable, the calibration can be paused. Pausing the background  
calibration causes a slight degradation in performance, but can  
be accomplished by writing 0x1 to Register 0x4FB, Bit 0 . To re-  
enable the background calibration, write 0x0 to Register 0x4FB,  
Bit 0. Note: Register 0x4FB has reserved bits that must be  
preserved when accessing that and similar registers.  
The calibration engine monitors any errors and resets the  
calibration cycle if the input signal exceeds the input range for  
1000 samples within a single calibration cycle.  
At startup, when the AD9652 is first powered and a valid clock  
is applied, a fast start-up background calibration is performed  
and converges 64 times faster than the normal calibration cycle.  
At 310 MSPS, the fast start-up calibration updatesafter 1.3 seconds.  
The fast start-up calibration allows the AD9652 to be used  
sooner than waiting for a full calibration cycle and typically  
degrades SNR performance by less than 0.5 dB. This degradation  
lasts until a full calibration cycle completes.  
DIGITAL OUTPUTS  
The AD9652 output drivers are for standard ANSI LVDS, but  
optionally the drive current can be reduced using Register 0x15.  
The reduced drive current for the LVDS outputs potentially  
reduce the digitally induced noise.  
In cases where configuration of the AD9652 changesand a  
recalibration is needed, a fast start-up calibration can be  
initiated by an SPI register write or by asserting and  
deasserting the PDWN pin.  
As detailed in the AN-877 Application Note, Interfacing to High  
Speed ADCs via SPI, the data format can be selected for offset  
binary, twos complement, or gray code when using the SPI  
control.  
To initiate using the SPI register, use Register 0x08[1:0]. To start  
a new fast calibration, put either or both ADC channels in  
standby and then return them to normal operation mode by  
writing 0x2 and then 0x0 to Register 0x08[1:0]. After returning  
to normal operation mode, the fast calibration is initiated one  
time followed by the normal, full calibration cycle. In addition  
to standby, this is also the case for power-down. Writing a 0x1  
followed by a 0x0 initiates a fast calibration. Alternatively, a fast  
start-up calibration can be initiated by writing 0x0C and then  
0x08 to Register 0x4FB.  
The AD9652 has a flexible three-state ability for the digital  
output pins. The three-state mode is enabled when the device is  
set for power-down mode.  
Timing  
The AD9652 provides latched data with a pipeline delay of  
26 input sample clock cycles. Data outputs are available one  
propagation delay (tPD) after the rising edge of the clock signal.  
Minimize the length of the output data lines and the corresponding  
loads to reduce transients within the AD9652. These transients  
can degrade converter dynamic performance.  
The PDWN pin can be configured to put the device in power-  
down or standby mode based on the setting in Register0x08[1:0].  
Transitioning from either power-down or standby into normal  
mode causes a fast calibration to be initiated. Configuration  
changes that require a new calibration include, but are not  
limited to, changes of setting for VREF, dither enable/disable,  
clock input changes, and DCS state changes.  
The lowest typical conversion rate of the AD9652 is 80 MSPS.  
At clock rates below 80 MSPS, dynamic performance may  
degrade.  
Data Clock Output  
There are various advanced configuration options associated  
with the background calibration for applications that require  
special treatment. The options include an optional recovery  
mode for standby and a pausing background calibration.  
The AD9652 also provides a data clock output (DCO) intended  
for capturing the data in an external register. Figure 2 shows a  
timing diagram of the AD9652 output modes. The DCOrelative to  
the data output can be adjusted using Register 0x17. There are 32  
delay settings with approximately 81 ps per step. Data is output  
in a DDR format and is aligned to the rising and falling edges of  
the clock derived from DCO .  
If standby is used in an application, by default, the AD9652  
keeps the current corrections, but initiates a new fast calibration  
when returning to normal operation mode. For standby, if  
conditions have not significantly changed, the AD9652 can be  
configured to retain the last correction coefficients by writing  
0x00 to Register 0x4FA before entering the standby mode. This  
returns the device to the same operation as when it entered  
standby, retaining previous calibration values in standby mode  
and continuing the normal calibration cycle when returned to  
normal operation mode.  
ADC OVERRANGE  
The ADC overrange (OR) indicator is asserted when an  
overrange is detected on the input of the ADC. The overrange  
condition is determined at the output of the ADC pipeline and,  
therefore, is subject to a latency of 26 ADC clocks. An  
overrange at the input is indicated by this bit, 26 clock cycles  
after it occurs.  
Rev. B | Page 26 of 36  
 
 
Data Sheet  
AD9652  
Table 13. Output Data Format  
Differential Input Voltage (V):  
(VIN+x) – (VIN–x)  
Input Span = 2.5 V p-p (V)  
Offset Binary Output Mode  
00 0000 0000 0000  
00 0000 0000 0000  
10 0000 0000 0000  
11 1111 1111 1111  
11 1111 1111 1111  
Twos Complement Mode (Default)  
10 0000 0000 0000  
OR Pin Logic Level  
<–1.25  
–1.25  
0
+1.25  
>+1.25  
1
0
0
0
1
10 0000 0000 0000  
00 0000 0000 0000  
01 1111 1111 1111  
01 1111 1111 1111  
Rev. B | Page 27 of 36  
AD9652  
Data Sheet  
FAST THRESHOLD DETECTION (FDA/FDB)  
In receiver applications, it is desirable to have a mechanism to  
reliably determine when the converter is about to be clipped. The  
standard overflow indicator on the OR pins provide delayed  
information, which is synchronized with the output data. The  
delayed indicator is of limited value in preventing clipping in this  
case. Therefore, it is helpful to have a programmable threshold  
below full scale that allows time to reduce external gain before the  
clip occurs. In addition, because input signals can have significant  
slew rates, latency of this function is of concern.  
The selected threshold register is compared with the signal  
magnitude at the output of the ADC. The fast upper threshold  
detection has a latency of seven clock cycles. The approximate  
upper threshold is a 4-bit value defined by  
Upper Threshold (% Full Scale) =  
((Register 0x47 value)/8) × 100%  
The FD indicators are not cleared until the signal drops below  
the lower threshold for the programmed dwell time. The lower  
threshold is programmed in the fast detect lower threshold  
registers, Register 0x49 and Register 0x4A. The fast detect lower  
threshold register is a 15-bit register that is compared with the  
signal magnitude at the output of the ADC. This comparison is  
subject to the ADC pipeline latency but is accurate in terms of  
converter resolution. The lower threshold is defined by  
Using the SPI port, the user can provide a threshold above  
which the fast detect (FD) output is active. Bit 0 of Register 0x45  
enables the FD feature. Register 0x47 to Register 0x4C allow the  
user to set the threshold levels and timing. As long as the signal  
is below the selected threshold, the FD output remains low. In  
this mode, the magnitude of the data is considered in the calcu-  
lation of the condition, but the sign of the data (either positive  
or negative) is not considered. The threshold detection responds  
identically to positive and negative signals outside the desired  
range (magnitude).  
Lower Threshold (% Full Scale) =  
((Register 0x49/Register 0x4A value)/32767) × 100%  
For example, to set an upper threshold of 50% full scale, write  
0x04 to Register 0x47, and to set a lower threshold of 40% full  
scale, write 0x3333 to Register 0x49 and Register 0x4A.  
The fast detect indicators, FDA for Channel A and FDB for  
Channel B, are asserted when the input magnitude exceeds the  
value programmed in the fast detect upper threshold register,  
Register 0x47.  
The dwell time can be programmed from 1 sample clock cycle  
to 65,535 sample clock cycles by placing the desired value in the  
fast detect dwell time registers, Register 0x4B and Register 0x4C  
(see Figure 66).  
UPPER THRESHOLD  
DWELL TIME  
TIMER RESET BY  
RISE ABOVE  
LOWER  
THRESHOLD  
LOWER THRESHOLD  
TIMER COMPLETES BEFORE  
SIGNAL RISES ABOVE  
LOWER THRESHOLD  
DWELL TIME  
FDA OR FDB  
Figure 66. Threshold Settings for FDA and FDB Signals  
Rev. B | Page 28 of 36  
 
 
Data Sheet  
AD9652  
SERIAL PORT INTERFACE  
The AD9652 serial port interface (SPI) allows the user to  
configure the converter for specific functions or operations  
through a structured register space provided inside the ADC.  
The SPI gives the user added flexibility and customization,  
depending on the application. Addresses are accessed via the  
serial port and can be written to or read from via the port.  
Memory is organized into bytes that can be further divided into  
fields. These fields are documented in the Memory Map  
section. For detailed operational information, see the AN-877  
Application Note, Interfacing to High Speed ADCs via SPI.  
In addition to word length, the instruction phase determines  
whether the serial frame is a read or write operation, allowing  
the serial port to be used both to program the chip and to read  
the contentsof the on-chip memory. If the instruction is a readback  
operation, performing a readback causes the serial data input/  
output (SDIO/DCS) pin to change direction from an input to an  
output at the appropriate point in the serial frame.  
Data can be sent in MSB first mode or in LSB first mode. MSB  
first is the default on power-up and can be changed via the SPI  
port configuration register. For more information about this  
and other features, see the AN-877 Application Note.  
CONFIGURATION USING THE SPI  
Three pins define the SPI of this ADC: the SCLK pin, the SDIO  
pin, and the CSB pin (see Table 14). The SCLK (serial clock) pin  
synchronizesthe read and write datapresented from/to the ADC.  
The SDIO (serial data input/output) pin is a dual-purpose pin  
that allows data to be sent and read from the internal ADC  
memory map registers. The CSB (chip select bar) pin is an  
active low control that enables or disables the read and write cycles.  
HARDWARE INTERFACE  
The pins described in Table 14 comprise the physical interface  
between the user programming device and the serial port of the  
AD9652. The SCLK pin and the CSB pin function as inputs  
when using the SPI interface. The SDIO pin is bidirectional,  
functioning as an input during write phases and as an output  
during readback.  
Table 14. Serial Port Interface Pins  
The SPI interface is flexible enough to be controlled by either  
field-programmable grid arrays (FPGAs) or microcontrollers.  
One method for SPI configuration is described in detail in the  
AN-812 Application Note, Microcontroller-Based Serial Port  
Interface (SPI) Boot Circuit.  
Pin  
Function  
SCLK Serial clock. Theserial shift clockinput, which synchronizes  
serial interface reads and writes.  
SDIO Serial data input/output. A dual-purpose pin that  
typically serves as an input or an output, depending on  
the instruction being sent and the relative position in the  
timingframe.  
The SPI port must not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK signal, the CSB signal, and the SDIO signal are typically  
asynchronous to the ADC clock, noise from these signals can  
degrade converter performance. If the on-board SPI bus is used  
for other devices, itmaybe necessary toprovide buffers between  
this bus and the AD9652 to prevent these signals from transi-  
tioning at the converter inputs during critical sampling periods.  
Chip select bar. An active low control that gates the read  
and write cycles. Must be pulledto logic high during  
power up.  
CSB  
The falling edge of CSB, in conjunction with the rising edge of  
SCLK, determines the start of the framing. An example of the  
serial timing and its definitions can be found in Table 5 and  
Figure 4.  
CONFIGURATION WITHOUT THE SPI  
In applications that do not interface to the SPI control registers,  
the SDIO pin and the SCLK pin serve as standalone CMOS-  
compatible control pins. When the device is powered up, it is  
assumed that the user intends to use the pins as static control  
lines for the DCS and output data format feature control. In this  
mode, connect CSB to AVDD, which disables the serial port  
interface.  
Other modes involving the CSB pin are available. The CSB pin  
can be held low indefinitely, which permanently enables the  
device; this is called streaming. The CSB pin can stall high  
between bytes to allow for additional external timing. When  
CSB is tied high, SPI functions are placed in a high impedance  
mode.  
During an instruction phase, a 16-bit instruction is transmitted.  
Data follows the instruction phase, and its length is determined  
by the W0 and the W1 bits.  
Table 15. Mode Selection  
Pin  
External Voltage  
AVDD (default)  
AGND  
Configuration  
SDIO  
DCSenabled  
All data is composed of 8-bit words. The first bit of each  
individual byte of serial data indicates whether a read or write  
command is issued. This allows the serial data input/output  
(SDIO) pin to change direction from an input to an output.  
DCS disabled  
SCLK  
AVDD  
AGND (default)  
Twos complementenabled  
Offset binary enabled  
Rev. B | Page 29 of 36  
 
 
 
 
 
AD9652  
Data Sheet  
SPI ACCESSIBLE FEATURES  
Table 16 provides a brief description of the general features that  
are accessible via the SPI. These features are described in detail  
in the AN-877 Application Note.  
Table 16. Features AccessibleUsing the SPI  
Feature Name  
Power Modes  
Clock  
Description  
Allows the user toset eitherpower-down mode or standby mode  
Allows the user to access the DCS via the SPI  
Allows the user to digitally adjust the converter offset  
Allows the user to set test modes to have known data on output bits  
Allows the user to set up outputs  
Allows the user to set theoutputclock polarity  
Allows the user to vary the delay of the clock derived from DCO  
Allows the user to set the reference voltage  
Offset  
Te st I/O  
Output Mode  
Output Phase  
Output Delay  
VREF  
Rev. B | Page 30 of 36  
 
 
Data Sheet  
AD9652  
MEMORY MAP  
LogicLevels  
READING THE MEMORY MAP REGISTER TABLE  
An explanation of logic level terminology follows:  
Each row in the memory map register table has eight bit  
locations. The memory map is roughly divided into three  
sections: the chip configuration registers (Address 0x00 to  
Address 0x02); the channel index and transfer registers  
(Address 0x05 and Address 0xFF); and the ADC functions  
registers, including setup, control, and test (Address 0x08 to  
Address 0x4FB).  
“Bit is set” is synonymous with “bit is set to Logic 1” or  
“writing Logic 1 for the bit.”  
Clear a bit” is synonymous with “bit is set to Logic 0” or  
“writing Logic 0 for the bit.”  
Transfer Register Map  
The 0x08, 0x09, 0x0B, 0x0D, 0x0F, 0x10, 0x14, 0x16, 0x17, and  
0x30 registers are shadowed. Writes to these addresses do not  
affect device operation until a transfer command is issued by  
writing 0x01 toAddress0xFF, setting the transfer bit. This allows  
these registers to be updated internally and simultaneously when  
the transfer bit is set. The internal update occurs when the  
transfer bit is set, and then the bit autoclears.  
The memory map register table (see Table 17) documents the  
default hexadecimal value for each hexadecimal address shown.  
The column with the heading Bit 7 (MSB) is the start of the  
default hexadecimal value given. For example, Address 0x09,  
the global clock register, has a hexadecimal default value of  
0x01. This means thatthe LSB or Bit 0 = 1, and the remaining  
bits are 0s. This setting is the default output format value, which  
is twos complement. For more information on the functions  
controlled by Register 0x00 to Register 0x17, see the AN-877  
Application Note. This application note also details the  
functions controlled by all remaining registers.  
Channel SpecificRegisters  
Some channel setup functions, such as the signal monitor  
thresholds, can be programmed to a different value for each  
channel. In these cases, channel address locations are internally  
duplicated for each channel. These registers and bits are designated  
in Table 17 as local. These local registers and bits can be accessed  
by setting the appropriate Channel A or Channel B bits in  
Register 0x05. If both bits are set, the subsequent write affects  
the registers of both channels. In a read cycle, only Channel A  
or Channel B are set to read one of the two registers. If both bits  
are set during an SPI read cycle, the device returns the value for  
Channel A. Registers and bits designated as global in Table 17  
affect the entire device and the channel features for which  
independentsettings are notallowed. The settings in Register 0x05  
do not affectthe globalregisters and bits.  
Open and Reserved Locations  
All address and bit locations that are not included in Table 17  
are not currently supported for this device. Unused bits of a  
valid address location must be written with 0s, unless otherwise  
noted. Writing to these locations is required only when part of  
an address location is open (for example, Address 0x18). If the  
entire address location is open/unused/undocumented (for  
example, Address 0x13), this address location must not be written.  
Default Values  
After the AD9652 is reset, critical registersare loaded with  
default values. The default values for the registers are given in  
the memory map register table, Table 17.  
Rev. B | Page 31 of 36  
 
 
AD9652  
Data Sheet  
MEMORY MAP REGISTER TABLE  
All address and bit locations that are not included in Table 17 are not currently supported for this device.  
Table 17. Memory Map Registers  
Default  
Default  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Notes/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Chip Configuration Registers  
0x00  
SPI port  
0
LSB first  
Soft reset  
1
1
Soft reset  
LSB first  
0
0x18  
The nibbles  
are mirrored  
so that LSB  
first mode  
or MSB first  
mode  
config-  
uration  
(global)1  
registers  
correctly,  
regardless  
of shift  
mode  
0x01  
0x02  
Chip ID  
(global)  
8-Bit Chip ID[7:0], (AD9652 = 0xC1) (default)  
0xC1  
0x00  
Read only  
Chip grade  
(global)  
Speed grade ID,  
0x00: default  
Speed  
grade ID  
differ-  
entiates  
devices;  
read only  
Channel Index and Transfer Registers  
0x05  
Channel  
index  
Channel B Channel A 0x03  
(default) (default)  
Bits are  
set to  
(global)  
determine  
which  
device on  
the chip  
receives  
the next  
write  
command;  
applies to  
local  
registers  
only  
0xFF  
Transfer  
(global)  
Transfer  
0x00  
Synchro-  
nously  
transfers  
data from  
the master  
shift register  
to the slave  
ADC Functions  
0x08 Power  
Reserved,  
set to 1  
External  
power-  
down pin  
function  
(local)  
0 =  
Internal power-down  
mode (local)  
00 = normal operation  
01 = full power-down  
10 = standby  
0x80  
Controls  
power-  
down  
modes  
(local)  
options  
11 = reserved  
power-  
down  
1 =  
standby  
0x09  
Global clock  
(global)  
Enable  
DCS  
0x01  
(default)  
Rev. B | Page 32 of 36  
 
 
Data Sheet  
AD9652  
Default  
Value  
(Hex)  
Default  
Notes/  
Comments  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0x0B  
Clock divide  
(global)  
Clock divide ratio  
000 = divide by 1  
001 = divide by 2  
0x00  
010 = reserved, do not use  
011 = divide by 4  
100 = divide by 8  
0x0D  
Test mode  
(local)  
Reset PN23 Reset  
Output test mode  
0000 = off (default)  
0001 = midscale short  
0010 = positive FS  
0011 = negative FS  
0x00  
When this  
long gen  
PN23:  
PN9  
short gen  
PN9:  
register is  
set, the test  
data is  
placed on  
the output  
pins (D0  
1 +x17  
x22  
+
1 + x3 + x8  
0100 = alternating checkerboard  
0101 = PN23 long sequence  
0110 = PN9 short sequence  
0111 = one/zero word toggle  
to D15 ) in  
place of  
normal data  
0x0F  
Common-  
Enable  
0x00  
mode servo  
(global)  
common-  
mode  
servo  
0x10  
0x14  
Offset adjust  
(local)  
Offset adjust in LSBs from +127 (0111 1111) to −128 (1000 0000)  
(twos complement format)  
0x00  
0x00  
Output  
Output format  
Configures  
mode (local)  
00 = offset binary  
(default)  
the outputs  
and the  
01 = twos complement  
10 = gray code  
format of  
the data  
11 = reserved  
0x15  
Output  
LVDS  
control  
LVDS output drive current adjust  
000 = 3.72 mA (ANSI-LVDS,  
default)  
0x00  
(global)  
001 = 3.50 mA  
010 = 3.30 mA  
011 = 2.96 mA  
100 = 2.82 mA  
101 = 2.57 mA  
110 = 2.27 mA  
111 = 2.00 mA (reduced swing  
LVDS)  
0x16  
Clock phase  
adjust  
Input clock divider phase adjust  
000 = no delay  
0x00  
(global)  
001 = 1 input clock cycle  
010 = 2 input clock cycle  
011 = 3 input clock cycle  
100 = 4 input clock cycle  
101 = 5 input clock cycle  
110 = 6 input clock cycle  
111 = 7 input clock cycle  
0x17  
DCO  
DCO clock delay  
0x00  
(Delay = (2500 ps × register value/31))  
output delay  
(global)  
00000 = 0 ps  
00001 = 81 ps  
00010 = 161 ps  
11110 = 2419 ps  
11111 = 2500 ps  
0x18  
0x30  
Input span  
select  
(global)  
Reserved, Reserved,  
set to 1 set to 1  
VREF select  
000 = 1.25 V (2.5 V p-p input), default  
001 = 1.125 V (2.25 V p-p input)  
0xC0  
0x00  
010 = 1.20 V (2.4 V p-p input)  
011 = 1.25 V (2.5 V p-p input)  
100 = do not use  
101 = 1.0 V (2.0 V p-p input)  
Dither (local)  
Dither  
enable  
Rev. B | Page 33 of 36  
AD9652  
Data Sheet  
Default  
Default  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Notes/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0x45  
Fast detect  
(FD) control  
Enable  
fast  
detect  
output  
0x00  
0x08  
0x47  
FD upper  
threshold  
Fast Detect Upper Threshold[3:0]  
Valid programming range = 0x1 to 0x8  
Threshold = midscale (register value) × (1/8) ×  
(full scale)  
0x49  
0x4A  
0x4B  
0x4C  
0x100  
FD lower  
threshold  
Fast Detect Lower Threshold[7:0]  
Fast Detect Lower Threshold[14:8]  
Fast Detect Dwell Time[7:0]  
0x00  
0x02  
0x00  
0x08  
0x00  
FD lower  
threshold  
FD dwell  
time  
FD dwell  
time  
Fast Detect Dwell Time[15:8]  
SYNC  
control  
(global)  
Clock  
divider  
next SYNC  
only  
Clock  
divider  
SYNC  
enable  
Master  
SYNC  
buffer  
enable  
0x212  
Dither gain  
(global)  
0b0000: 100% dither applied  
0b0001: 99.6% dither applied  
0b0010: 99.2% dither applied  
0b0011: 98.4% dither applied  
0b0100: 96.8% dither applied  
0b0101: 93.75% dither applied  
0b0110: 87.5% dither applied  
0b0111: 75% dither applied  
0b1000: 50% dither applied  
Reserved, Reserved,  
set to 0 set to 0  
Reserved, Reserved,  
set to 0 set to 0  
0x08  
0x22A Input  
frequency  
0: fIN in 1st Nyquist  
0x00  
0x03  
1: fIN in 2nd Nyquist  
2: fIN in 3rd Nyquist or  
higher  
settings  
(global)  
0x4FA  
Calibration  
power-  
down  
Reserved, Reserved,  
set to 0 set to 0  
Reserved,  
set to 0  
Reserved, Reserved, Reserved,  
set to 0 set to 0 set to 0  
Power down/standby  
initial calibration  
action:  
config-  
uration  
(global)  
0b00: use previous  
calibration correction  
0b11: initiate a fast  
calibration  
0x4FB  
Calibration  
power-down  
configura-  
Reserved, Reserved,  
set to 0 set to 0  
Reserved,  
set to 0  
Reserved, Reserved, Reset  
Reserved,  
set to 0  
Pause  
back-  
ground  
0x08  
set to 0  
set to 1  
back-  
ground  
tion (global)  
calibration  
calibration,  
set high  
then low  
1 Set the channel index register at Address 0x05to 0x03 (default)whenwriting to Address 0x00.  
Rev. B | Page 34 of 36  
Data Sheet  
AD9652  
APPLICATIONS INFORMATION  
VCM  
DESIGN GUIDELINES  
The VCM pin must be decoupled to ground with a 0.1 μF  
capacitor, as shown in Figure 54. For optimalchannel-to-channel  
isolation, a 33 Ω resistor must be included between the AD9652  
VCM pin and the Channel A analog input network connection,  
as well as between the AD9652 VCM pin and the Channel B  
analog input network connection.  
Before starting system level design and layout of the AD9652, it  
is recommended that the designer become familiar with these  
guidelines, which describes the special circuit connections and  
layout requirements needed for certain pins.  
Powerand Ground Recommendations  
When connecting power to the AD9652, it is recommended that  
three separate power supplies be used. AVDD3 requires a 3.3 V  
supply, AVDD_CLK and AVDD require a 1.8 V supply, and  
DRVDD requiresa 1.8 V supply. SPIVDD is typically connected  
to the same supply as DRVDD, but can be connected to a separate  
supply between 1.8 V and 3.3 V to ease the interface to the logic  
device that connects to the SPI pins (CLK, SDIO, and CSB).  
RBIAS  
The AD9652 requires that a 10 kΩ resistor be placed between  
the RBIAS pin and ground. This resistor sets the master current  
reference of the ADC core and must have at leasta 1%tolerance.  
ReferenceDecoupling  
Decouple the VREF pin externally to ground with a low ESR,  
1.0 μF capacitor in parallel with a low ESR, 0.1 μF ceramic  
capacitor.  
The AVDD3 supply must be supplied from a clean 3.3 V power  
source. Decoupling must be a combination of PCB plane  
capacitance and decoupling capacitors to cover both high and low  
frequency noise sources. Typical capacitors of 0.1 μF and 1 μF  
near the AD9652 AVDD3 pins are advised.  
SPI Port  
The SPI port must not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK, CSB, and SDIO signals are typically asynchronous to the  
ADC clock, noise from these signals can degrade converter  
performance. If the on-board SPI bus is used for other devices,  
it may be necessary to provide buffers between this bus and the  
AD9652 to keep these signals from transitioning at the converter  
input pins during critical sampling periods.  
The AVDD and AVDD_CLK supply connection must be  
powered up simultaneously to achieve proper on-chip biasing;  
therefore, it is recommended to connect the two supply voltages  
to a single source. Similar to the AVDD3 supply, decoupling must  
be a combination of PCB plane capacitance and decoupling  
capacitors to cover both high and low frequency noise sources.  
Typical capacitorsof 0.1 μF and 1 μF near the AD9652 AVD D  
and AVDD_CLK pins is advised.  
The DRVDD and SPIVDD supply connection must also have  
decoupling but these can be placed slightly further away from  
the AD9652. DRVDD and SPIVDD can be tied together for  
applications that can use a 1.8 V SPI interface logic. Optionally,  
SPIVDD can be driven with a supply of up to 3.3 V to support  
higher voltage logic interfaces.  
Multiple large area PCB ground planes are recommended and  
provide many benefits. Low impedance power and ground  
planes are needed to maintain performance. Stacking power and  
ground planes in the PCB provides high frequency decoupling.  
Ground planes and thermal vias help dissipate heat generated  
by the device. With proper decoupling and smart partitioning  
of the PCB analog, digital, and clock sections, optimum  
performance is easily achieved.  
Rev. B | Page 35 of 36  
 
 
AD9652  
Data Sheet  
OUTLINE DIMENSIONS  
10.10  
10.00 SQ  
9.90  
A1 BALL  
CORNER  
A1 BALL  
CORNER  
12 11 10  
9
7 4 1  
8 6 5 3  
2
A
B
C
D
E
F
8.80  
BSC SQ  
G
H
J
0.80  
BSC  
K
L
M
BOTTOM VIEW  
DETAIL A  
TOP VIEW  
0.60 REF  
1.11  
1.01  
0.91  
DETAIL A  
1.40  
1.34  
1.19  
0.33 NOM  
0.28 MIN  
*
0.50  
0.45  
0.40  
COPLANARITY  
0.12  
SEATING  
PLANE  
BALL DIAMETER  
*
COMPLIANT WITH JEDEC STANDARDS MO-275-EEAA-1  
WITH THE EXCEPTION TO BALL DIAMETER.  
Figure 67. 144-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-144-6)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
BC-144-6  
BC-144-6  
AD9652BBCZ-310  
AD9652BBCZRL7-310  
AD9652-310EBZ  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
144-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
144-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
Evaluation Board with AD9652  
1 Z = RoHS Compliant Part.  
©2014–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12169-0-1/17(B)  
Rev. B | Page 36 of 36  
 
 

相关型号:

AD9652BBCZ-310

Analog-to-Digital Converter (ADC)
ADI

AD9652BBCZRL7-310

Analog-to-Digital Converter (ADC)
ADI

AD9652_17

Analog-to-Digital Converter (ADC)
ADI

AD9653

Quad, 16-Bit, 125 MSPS, Serial LVDS 1.8 V
ADI

AD9653-125EBZ

Quad, 16-Bit, 125 MSPS, Serial LVDS 1.8 V
ADI

AD9653BCPZ-125

Quad, 16-Bit, 125 MSPS, Serial LVDS 1.8 V
ADI

AD9653BCPZRL7-125

Quad, 16-Bit, 125 MSPS, Serial LVDS 1.8 V
ADI

AD9655

Dual, 16-Bit, 125 MSPS Serial LVDS, 1.8 V Analog-to-Digital Converter
ADI

AD9655-125EBZ

Dual, 16-Bit, 125 MSPS Serial LVDS, 1.8 V Analog-to-Digital Converter
ADI

AD9655BCPZ-125

Dual, 16-Bit, 125 MSPS Serial LVDS, 1.8 V Analog-to-Digital Converter
ADI

AD9655BCPZRL7-125

Dual, 16-Bit, 125 MSPS Serial LVDS, 1.8 V Analog-to-Digital Converter
ADI

AD9655_17

Dual, 16-Bit, 125 MSPS Serial LVDS, 1.8 V Analog-to-Digital Converter
ADI