AD9653BCPZ-125 [ADI]

Quad, 16-Bit, 125 MSPS, Serial LVDS 1.8 V; 四通道,16位, 125 MSPS ,串行LVDS 1.8 V
AD9653BCPZ-125
型号: AD9653BCPZ-125
厂家: ADI    ADI
描述:

Quad, 16-Bit, 125 MSPS, Serial LVDS 1.8 V
四通道,16位, 125 MSPS ,串行LVDS 1.8 V

文件: 总40页 (文件大小:1218K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad, 16-Bit, 125 MSPS, Serial LVDS 1.8 V  
Analog-to-Digital Converter  
Data Sheet  
AD9653  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
PDWN  
DRVDD  
1.8 V supply operation  
Low power: 164 mW per channel at 125 MSPS  
SNR = 76.5 dBFS at 70 MHz (2.0 V p-p input span)  
SNR = 77.5 dBFS at 70 MHz (2.6 V p-p input span)  
SFDR = 90 dBc (to Nyquist, 2.0 V p-p input span)  
DNL = 0.7 LSB; INL = 3.5 LSB (2.0 V p-p input span)  
Serial LVDS (ANSI-644, default) and low power, reduced  
range option (similar to IEEE 1596.3)  
650 MHz full power analog bandwidth  
2 V p-p input voltage range (supports up to 2.6 V p-p)  
Serial port control  
D0+A  
D0–A  
SERIAL  
LVDS  
16  
VIN+A  
VIN–A  
DIGITAL  
PIPELINE  
ADC  
SERIALIZER  
D1+A  
D1–A  
SERIAL  
LVDS  
16  
VIN+B  
DIGITAL  
SERIALIZER  
PIPELINE  
ADC  
D0+B  
D0–B  
SERIAL  
LVDS  
VIN–B  
RBIAS  
VREF  
SERIAL  
LVDS  
D1+B  
D1–B  
SENSE  
FCO+  
FCO–  
D0+C  
D0–C  
D1+C  
D1–C  
1V  
AD9653  
REF  
SELECT  
SERIAL  
LVDS  
AGND  
16  
16  
VIN+C  
VIN–C  
DIGITAL  
SERIALIZER  
PIPELINE  
ADC  
SERIAL  
LVDS  
D0+D  
D0–D  
SERIAL  
LVDS  
Full chip and individual channel power-down modes  
Flexible bit orientation  
Built-in and custom digital test pattern generation  
Multichip sync and clock divider  
VIN+D  
VIN–D  
DIGITAL  
SERIALIZER  
PIPELINE  
ADC  
D1+D  
D1–D  
DCO+  
DCO–  
SERIAL  
LVDS  
SERIAL PORT  
INTERFACE  
CLOCK  
MANAGEMENT  
VCM  
Programmable output clock and data alignment  
Standby mode  
APPLICATIONS  
Medical ultrasound and MRI  
High speed imaging  
Figure 1.  
Quadrature radio receivers  
Diversity radio receivers  
Test equipment  
as programmable output clock and data alignment and digital  
test pattern generation. The available digital test patterns  
include built-in deterministic and pseudorandom patterns, along  
with custom user-defined test patterns entered via the serial port  
interface (SPI).  
GENERAL DESCRIPTION  
The AD9653 is a quad, 16-bit, 125 MSPS analog-to-digital con-  
verter (ADC) with an on-chip sample-and-hold circuit  
designed for low cost, low power, small size, and ease of use.  
The product operates at a conversion rate of up to 125 MSPS  
and is optimized for outstanding dynamic performance and low  
power in applications where a small package size is critical.  
The AD9653 is available in a RoHS-compliant, 48-lead LFCSP.  
It is specified over the industrial temperature range of −40°C to  
+85°C. This product is protected by a U.S. patent.  
PRODUCT HIGHLIGHTS  
1. Small Footprint.  
The ADC requires a single 1.8 V power supply and LVPECL-/  
CMOS-/LVDS-compatible sample rate clock for full performance  
operation. No external reference or driver components are  
required for many applications.  
Four ADCs are contained in a small, space-saving package.  
2. Low power of 164 mW/channel at 125 MSPS with scalable  
power options.  
3. Pin compatible to the AD9253 14-bit quad and the AD9633  
12-bit quad ADC.  
4. Ease of Use.  
A data clock output (DCO) operates at frequencies of up to  
500 MHz and supports double data rate (DDR) operation.  
5. User Flexibility.  
The ADC automatically multiplies the sample rate clock for the  
appropriate LVDS serial data rate. A data clock output (DCO) for  
capturing data on the output and a frame clock output (FCO)  
for signaling a new output byte are provided. Individual-channel  
power-down is supported and typically consumes less than 2 mW  
when all channels are disabled. The ADC contains several features  
designed to maximize flexibility and minimize system cost, such  
The SPI control offers a wide range of flexible features to  
meet specific system requirements.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
AD9653  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Clock Input Considerations...................................................... 25  
Power Dissipation and Power-Down Mode ........................... 27  
Digital Outputs and Timing ..................................................... 27  
Output Test Modes..................................................................... 30  
Serial Port Interface (SPI).............................................................. 31  
Configuration Using the SPI..................................................... 31  
Hardware Interface..................................................................... 32  
Configuration Without the SPI ................................................ 32  
SPI Accessible Features.............................................................. 32  
Memory Map .................................................................................. 33  
Reading the Memory Map Register Table............................... 33  
Memory Map Register Table..................................................... 34  
Memory Map Register Descriptions........................................ 37  
Applications Information .............................................................. 39  
Design Guidelines ...................................................................... 39  
Power and Ground Recommendations ................................... 39  
Exposed Pad Thermal Heat Slug Recommendations............ 39  
VCM............................................................................................. 39  
Reference Decoupling................................................................ 39  
SPI Port ........................................................................................ 39  
Crosstalk Performance .............................................................. 39  
Outline Dimensions ....................................................................... 40  
Ordering Guide .......................................................................... 40  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
DC Specifications ......................................................................... 3  
AC Specifications.......................................................................... 5  
Digital Specifications ................................................................... 7  
Switching Specifications .............................................................. 8  
Timing Specifications .................................................................. 9  
Absolute Maximum Ratings.......................................................... 11  
Thermal Resistance .................................................................... 11  
ESD Caution................................................................................ 11  
Pin Configuration and Function Descriptions........................... 12  
Typical Performance Characteristics ........................................... 14  
VREF = 1.0 V ................................................................................. 14  
VREF = 1.3 V ................................................................................. 17  
Equivalent Circuits ......................................................................... 21  
Theory of Operation ...................................................................... 22  
Analog Input Considerations.................................................... 22  
Voltage Reference ....................................................................... 23  
REVISION HISTORY  
5/12—Revision 0: Initial Version  
Rev. 0 | Page 2 of 40  
 
Data Sheet  
AD9653  
SPECIFICATIONS  
DC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2.0 V p-p full-scale differential input at −1.0 dBFS; VREF = 1.0 V, DCS off, unless otherwise noted.  
Table 1.  
Parameter1  
Temperature Min  
Typ  
Max Unit  
RESOLUTION  
16  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Offset Matching  
Gain Error  
Gain Matching  
Differential Nonlinearity (DNL)  
Full  
Guaranteed  
Full  
Full  
Full  
Full  
Full  
25°C  
Full  
25°C  
−0.49 −0.3  
−0.14 +0.2  
−12.3 −5  
0.17 % FSR  
0.39 % FSR  
2.37 % FSR  
1.0  
0.77  
1.1  
0.7  
3.5  
3.5  
5.8  
% FSR  
0.95 LSB  
LSB  
8.18 LSB  
LSB  
Integral Nonlinearity (INL)  
7.26  
TEMPERATURE DRIFT  
Offset Error  
Full  
ppm/°C  
INTERNAL VOLTAGE REFERENCE  
Output Voltage (1.0 V Mode)  
Load Regulation at 1.0 mA (VREF = 1.0 V)  
Input Resistance  
Full  
Full  
25°C  
0.98  
1.0  
2
7.5  
1.01  
V
mV  
kΩ  
INPUT-REFERRED NOISE  
VREF = 1.0 V  
25°C  
2.7  
LSB rms  
ANALOG INPUTS  
Differential Input Voltage (VREF = 1.0 V)  
Common-Mode Voltage  
Common-Mode Range  
Differential Input Resistance  
Differential Input Capacitance  
POWER SUPPLY  
Full  
Full  
25°C  
25°C  
25°C  
2
0.9  
V p-p  
V
V
kΩ  
pF  
0.5  
1.3  
2.6  
7
AVDD  
Full  
Full  
Full  
Full  
25°C  
1.7  
1.7  
1.8  
1.8  
305  
60  
1.9  
1.9  
330  
64  
V
V
mA  
mA  
mA  
DRVDD  
2
IAVDD  
IDRVDD (ANSI-644 Mode)2  
IDRVDD (Reduced Range Mode)2  
45  
TOTAL POWER CONSUMPTION  
DC Input  
Full  
Full  
25°C  
25°C  
Full  
607  
657  
630  
2
649  
708  
mW  
mW  
mW  
mW  
mW  
Sine Wave Input (Four Channels Including Output Drivers, ANSI-644 Mode)  
Sine Wave Input (Four Channels Including Output Drivers, Reduced Range Mode)  
Power-Down  
Standby3  
356  
392  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Measured with a low input frequency, full-scale sine wave on all four channels.  
3 Can be controlled via the SPI.  
Rev. 0 | Page 3 of 40  
 
 
AD9653  
Data Sheet  
AVDD = 1.8 V, DRVDD = 1.8 V, 2.6 V p-p full-scale differential input at −1.0 dBFS; VREF = 1.3 V; 0°C to 85°C, DCS off, unless otherwise noted.  
Table 2.  
Parameter1  
Temperature Min  
Typ  
Max Unit  
RESOLUTION  
16  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Offset Matching  
Gain Error  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
Guaranteed  
−0.3  
+0.2  
−5  
1.1  
0.8  
% FSR  
% FSR  
% FSR  
% FSR  
LSB  
Gain Matching  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
TEMPERATURE DRIFT  
Offset Error  
5.0  
LSB  
25°C  
3.5  
ppm/°C  
INTERNAL VOLTAGE REFERENCE  
Output Voltage (1.3 V Programmable Mode)  
Load Regulation at 1.0 mA (VREF = 1.3 V)  
Input Resistance  
25°C  
25°C  
25°C  
1.3  
6.5  
7.5  
V
mV  
kΩ  
INPUT-REFERRED NOISE  
VREF = 1.3 V  
25°C  
2.1  
LSB rms  
ANALOG INPUTS  
Differential Input Voltage (VREF = 1.3 V)  
Common-Mode Voltage  
Common-Mode Range  
Differential Input Resistance  
Differential Input Capacitance  
POWER SUPPLY  
25°C  
25°C  
25°C  
25°C  
25°C  
2.6  
0.9  
V p-p  
V
V
kΩ  
pF  
0.6  
1.3  
2.6  
7
AVDD  
25°C  
25°C  
25°C  
25°C  
25°C  
1.8  
1.8  
314  
60  
V
V
mA  
mA  
mA  
DRVDD  
2
IAVDD  
IDRVDD (ANSI-644 Mode)2  
IDRVDD (Reduced Range Mode)2  
45  
TOTAL POWER CONSUMPTION  
DC Input  
25°C  
25°C  
25°C  
25°C  
25°C  
614  
673  
646  
2
mW  
mW  
mW  
mW  
mW  
Sine Wave Input (Four Channels Including Output Drivers, ANSI-644 Mode)  
Sine Wave Input (Four Channels Including Output Drivers, Reduced Range Mode)  
Power-Down  
Standby3  
371  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Measured with a low input frequency, full-scale sine wave on all four channels.  
3 Can be controlled via the SPI.  
Rev. 0 | Page 4 of 40  
 
 
 
Data Sheet  
AD9653  
AC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2.0 V p-p full-scale differential input at −1.0 dBFS; VREF = 1.0 V, DCS off, unless otherwise noted.  
Table 3.  
Parameter1  
Temperature  
Min  
Typ  
Max Unit  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 9.7 MHz  
fIN = 15 MHz  
fIN = 70 MHz  
fIN = 128 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
78  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
77.8  
76.5  
73.9  
71.5  
75.5  
fIN = 200 MHz  
SIGNAL-TO-NOISE-AND-DISTORTION RATIO (SINAD)  
fIN = 9.7 MHz  
fIN = 15 MHz  
fIN = 70 MHz  
fIN = 128 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
78  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
77.7  
76.1  
73.6  
70.3  
74.6  
12.1  
78  
fIN = 200 MHz  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 9.7 MHz  
fIN = 15 MHz  
fIN = 70 MHz  
fIN = 128 MHz  
fIN = 200 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
12.7  
12.6  
12.4  
11.9  
11.4  
Bits  
Bits  
Bits  
Bits  
Bits  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 9.7 MHz  
fIN = 15 MHz  
fIN = 70 MHz  
fIN = 128 MHz  
fIN = 200 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
96  
93  
89  
87  
77  
dBc  
dBc  
dBc  
dBc  
dBc  
WORST HARMONIC (SECOND OR THIRD)  
fIN = 9.7 MHz  
fIN = 15 MHz  
fIN = 70 MHz  
fIN = 128 MHz  
fIN = 200 MHz  
WORST OTHER HARMONIC OR SPUR  
25°C  
25°C  
Full  
25°C  
25°C  
−98  
−93  
−89  
−87  
−77  
dBc  
dBc  
dBc  
dBc  
dBc  
−78  
−85  
fIN = 9.7 MHz  
fIN = 15 MHz  
fIN = 70 MHz  
fIN = 128 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
−96  
−98  
−94  
−89  
−83  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 200 MHz  
TWO-TONE INTERMODULATION DISTORTION (IMD)—AIN1 AND AIN2 = −7.0 dBFS  
fIN1 = 70.5 MHz, fIN2 = 72.5 MHz  
CROSSTALK2  
CROSSTALK (OVERRANGE CONDITION)3  
POWER SUPPLY REJECTION RATIO (PSRR)4  
AVDD  
25°C  
25°C  
25°C  
−90  
91  
dBc  
dB  
87  
dB  
25°C  
25°C  
25°C  
31  
79  
dB  
dB  
DRVDD  
ANALOG INPUT BANDWIDTH, FULL POWER  
650  
MHz  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Crosstalk is measured at 70 MHz with −1.0 dBFS analog input on one channel and no input on the adjacent channel.  
3 Overrange condition is defined as the input being 3 dB above full scale.  
4 PSRR is measured by injecting a sinusoidal signal at 10 MHz to the power supply pin and measuring the output spur on the FFT. PSRR is calculated as the ratio of the  
amplitudes of the spur voltage over the pin voltage, expressed in decibels.  
Rev. 0 | Page 5 of 40  
 
AD9653  
Data Sheet  
AVDD = 1.8 V, DRVDD = 1.8 V, 2.6 V p-p full-scale differential input at −1.0 dBFS; VREF = 1.3 V; 0°C to 85°C, DCS off, unless otherwise  
noted.  
Table 4.  
Parameter1  
Temperature  
Min  
Typ  
Max  
Unit  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 9.7 MHz  
fIN = 15 MHz  
fIN = 70 MHz  
fIN = 128 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
80  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
79.4  
77.5  
74.4  
71.7  
fIN = 200 MHz  
SIGNAL-TO-NOISE-AND-DISTORTION RATIO (SINAD)  
fIN = 9.7 MHz  
fIN = 15 MHz  
fIN = 70 MHz  
fIN = 128 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
79.8  
79.2  
76.1  
74  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
fIN = 200 MHz  
69.9  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 9.7 MHz  
fIN = 15 MHz  
fIN = 70 MHz  
fIN = 128 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
13  
Bits  
Bits  
Bits  
Bits  
Bits  
12.9  
12.3  
12  
fIN = 200 MHz  
11.3  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 9.7 MHz  
fIN = 15 MHz  
fIN = 70 MHz  
fIN = 128 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
94  
94  
82  
86  
75  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 200 MHz  
WORST HARMONIC (SECOND OR THIRD)  
fIN = 9.7 MHz  
fIN = 15 MHz  
fIN = 70 MHz  
fIN = 128 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
−94  
−94  
−82  
−87  
−75  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 200 MHz  
WORST OTHER HARMONIC OR SPUR  
fIN = 9.7 MHz  
fIN = 15 MHz  
fIN = 70 MHz  
fIN = 128 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
−100  
−99  
−96  
−86  
−84  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 200 MHz  
TWO-TONE INTERMODULATION DISTORTION (IMD)—AIN1 AND AIN2 = −7.0 dBFS  
fIN1 = 70.5 MHz, fIN2 = 72.5 MHz  
CROSSTALK2  
CROSSTALK (OVERRANGE CONDITION)3  
POWER SUPPLY REJECTION RATIO (PSRR)4  
AVDD  
25°C  
25°C  
25°C  
−90  
91  
dBc  
dB  
87  
dB  
25°C  
25°C  
25°C  
31  
79  
dB  
dB  
DRVDD  
ANALOG INPUT BANDWIDTH, FULL POWER  
650  
MHz  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Crosstalk is measured at 70 MHz with −1.0 dBFS analog input on one channel and no input on the adjacent channel.  
3 Overrange condition is defined as the input being 3 dB above full scale.  
4 PSRR is measured by injecting a sinusoidal signal at 10 MHz to the power supply pin and measuring the output spur on the FFT. PSRR is calculated as the ratio of the  
amplitudes of the spur voltage over the pin voltage, expressed in decibels.  
Rev. 0 | Page 6 of 40  
 
 
 
 
 
 
 
Data Sheet  
AD9653  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, unless otherwise noted.  
Table 5.  
Parameter1  
Temp  
Min  
Typ  
Max  
Unit  
CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
CMOS/LVDS/LVPECL  
Differential Input Voltage2  
Input Voltage Range  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance  
Full  
Full  
Full  
25°C  
25°C  
0.2  
AGND − 0.2  
3.6  
AVDD + 0.2  
V p-p  
V
V
kΩ  
pF  
0.9  
15  
4
LOGIC INPUTS (PDWN, SYNC, SCLK)  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
1.2  
0
AVDD + 0.2  
0.8  
V
V
Input Resistance  
Input Capacitance  
25°C  
25°C  
30  
2
kΩ  
pF  
LOGIC INPUT (CSB)  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
1.2  
0
AVDD + 0.2  
0.8  
V
V
Input Resistance  
Input Capacitance  
25°C  
25°C  
26  
2
kΩ  
pF  
LOGIC INPUT (SDIO)  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
1.2  
0
AVDD + 0.2  
0.8  
V
V
Input Resistance  
Input Capacitance  
25°C  
25°C  
26  
5
kΩ  
pF  
LOGIC OUTPUT (SDIO)3  
Logic 1 Voltage (IOH = 800 μA)  
Logic 0 Voltage (IOL = 50 μA)  
DIGITAL OUTPUTS (D0 x, D1 x), ANSI-644  
Logic Compliance  
Full  
Full  
1.79  
V
V
0.05  
LVDS  
Differential Output Voltage (VOD)  
Output Offset Voltage (VOS)  
Output Coding (Default)  
Full  
Full  
290  
1.15  
345  
1.25  
400  
1.35  
mV  
V
Twos complement  
DIGITAL OUTPUTS (D0 x, D1 x), LOW POWER,  
REDUCED SIGNAL OPTION  
Logic Compliance  
LVDS  
Differential Output Voltage (VOD)  
Output Offset Voltage (VOS)  
Output Coding (Default)  
Full  
Full  
160  
1.15  
200  
1.25  
230  
1.35  
mV  
V
Twos complement  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 This is specified for LVDS and LVPECL only.  
3 This is specified for 13 SDIO/OLM pins sharing the same connection.  
Rev. 0 | Page 7 of 40  
 
AD9653  
Data Sheet  
SWITCHING SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, unless otherwise noted.  
Table 6.  
Parameter1, 2  
Temp  
Min  
Typ  
Max  
Unit  
CLOCK3  
Input Clock Rate  
Conversion Rate  
Full  
Full  
Full  
Full  
20  
20  
1000  
125  
MHz  
MSPS  
ns  
Clock Pulse Width High (tEH)  
Clock Pulse Width Low (tEL)  
OUTPUT PARAMETERS3  
Propagation Delay (tPD)  
Rise Time (tR) (20% to 80%)  
Fall Time (tF) (20% to 80%)  
FCO Propagation Delay (tFCO  
DCO Propagation Delay (tCPD  
DCO to Data Delay (tDATA  
DCO to FCO Delay (tFRAME  
Lane Delay (tLD)  
4.00  
4.00  
ns  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
2.3  
300  
300  
2.3  
ns  
ps  
ps  
ns  
ns  
ps  
ps  
ps  
)
)
1.5  
3.1  
4
tFCO + (tSAMPLE/16)  
(tSAMPLE/16)  
(tSAMPLE/16)  
90  
4
)
(tSAMPLE/16) − 300  
(tSAMPLE/16) − 300  
(tSAMPLE/16) + 300  
(tSAMPLE/16) + 300  
4
)
Data to Data Skew (tDATA-MAX − tDATA-MIN  
Wake-Up Time (Standby)  
Wake-Up Time (Power-Down)5  
Pipeline Latency  
)
Full  
50  
200  
ps  
ns  
μs  
25°C  
25°C  
Full  
250  
375  
16  
Clock cycles  
APERTURE  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter, tJ)  
Out-of-Range Recovery Time  
25°C  
25°C  
25°C  
1
135  
1
ns  
fs rms  
Clock cycles  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Measured on standard FR-4 material.  
3 Can be adjusted via the SPI. The conversion rate is the clock rate after the divider.  
4 tSAMPLE/16 is based on the number of bits in two LVDS data lanes. tSAMPLE = 1/fS.  
5 Wake-up time is defined as the time required to return to normal operation from power-down mode.  
Rev. 0 | Page 8 of 40  
 
 
 
 
 
Data Sheet  
AD9653  
TIMING SPECIFICATIONS  
Table 7.  
Unit  
Parameter  
Description  
Limit  
SYNC TIMING REQUIREMENTS  
tSSYNC  
tHSYNC  
SYNC to rising edge of CLK+ setup time  
SYNC to rising edge of CLK+ hold time  
See Figure 75  
0.24  
0.40  
ns typ  
ns typ  
SPI TIMING REQUIREMENTS  
tDS  
tDH  
tCLK  
tS  
tH  
tHIGH  
tLOW  
tEN_SDIO  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the SCLK  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
SCLK pulse width high  
SCLK pulse width low  
Time required for the SDIO pin to switch from an input to an output relative to the  
SCLK falling edge (not shown in Figure 75)  
2
2
40  
2
2
10  
10  
10  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
tDIS_SDIO  
Time required for the SDIO pin to switch from an output to an input relative to the  
SCLK rising edge (not shown in Figure 75)  
10  
ns min  
Timing Diagrams  
Refer to the Memory Map Register Descriptions section and Table 23 for SPI register settings.  
N – 1  
VIN±x  
N
N + 1  
tA  
tEH  
tEL  
CLK–  
CLK+  
DCO–  
tCPD  
DDR  
SDR  
DCO+  
DCO  
tFCO  
tFRAME  
FCO–  
FCO+  
D0–A  
tPD  
tDATA  
BITWISE  
MODE  
D14  
D12  
D10  
D08  
D06  
D04  
D02  
LSB  
D14  
D12  
D10  
D08  
D06  
D04  
D02  
LSB  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D0+A  
D1–A  
tLD  
MSB  
D13  
D11  
D09  
D07  
D05  
D03  
D01  
MSB  
D13  
D11  
D09  
D07  
D05  
D03  
D01  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D1+A  
FCO–  
FCO+  
D0–A  
BYTEWISE  
MODE  
D07  
D06  
D05  
D04  
D03  
D02  
D01  
LSB  
D07  
D06  
D05  
D04  
D03  
D02  
D01  
LSB  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D0+A  
D1–A  
MSB  
D14  
D13  
D12  
D11  
D10  
D09  
D08  
MSB  
D14  
D13  
D12  
D11  
D10  
D09  
D08  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D1+A  
Figure 2. 16-Bit DDR/SDR, Two-Lane, 1× Frame Mode (Default)  
Rev. 0 | Page 9 of 40  
 
 
 
 
AD9653  
Data Sheet  
N – 1  
VIN±x  
N
N + 1  
tA  
tEH  
tEL  
CLK–  
CLK+  
DCO–  
tCPD  
DDR  
SDR  
DCO+  
DCO  
tFCO  
tFRAME  
FCO–  
FCO+  
D0–A  
tPD  
tDATA  
BITWISE  
MODE  
D14  
D12  
D10  
D08  
D06  
D04  
D02  
LSB  
D14  
D12  
D10  
D08  
D06  
D04  
D02  
LSB  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D0+A  
D1–A  
tLD  
MSB  
D13  
D11  
D09  
D07  
D05  
D03  
D01  
MSB  
D13  
D11  
D09  
D07  
D05  
D03  
D01  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D1+A  
FCO–  
FCO+  
D0–A  
BYTEWISE  
MODE  
D07  
D06  
D05  
D04  
D03  
D02  
D01  
LSB  
D07  
D06  
D05  
D04  
D03  
D02  
D01  
LSB  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D0+A  
D1–A  
MSB  
D14  
D13  
D12  
D11  
D10  
D09  
D08  
MSB  
D14  
D13  
D12  
D11  
D10  
D09  
D08  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D1+A  
Figure 3. 16-Bit DDR/SDR, Two-Lane, 2× Frame Mode  
N – 1  
VIN±x  
tA  
N
tEH  
tEL  
CLK–  
CLK+  
tCPD  
DCO–  
DCO+  
tFCO  
tFRAME  
FCO–  
FCO+  
tDATA  
tPD  
D0–x  
D0+x  
MSB  
N – 17  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LSB  
MSB  
D14  
D13  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16  
Figure 4. Wordwise DDR, One-Lane, 1× Frame, 16-Bit Output Mode  
CLK+  
tSSYNC  
tHSYNC  
SYNC  
Figure 5. SYNC Input Timing Requirements  
Rev. 0 | Page 10 of 40  
 
 
Data Sheet  
AD9653  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 8.  
Parameter  
Rating  
Table 9. Thermal Resistance  
Electrical  
Air Flow  
Velocity  
(m/sec)  
AVDD to AGND  
DRVDD to AGND  
Digital Outputs  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
1
Package Type  
θJA  
θJB  
θJC  
7.1  
Unit  
48-Lead LFCSP  
0.0  
23.7  
20.0  
18.7  
7.8  
N/A  
N/A  
°C/W  
(D0 x, D1 x, DCO+, DCO−, FCO+,  
7 mm × 7 mm 1.0  
(CP-48-13) 2.5  
N/A °C/W  
N/A °C/W  
FCO−) to AGND  
CLK+, CLK− to AGND  
VIN+x, VIN−x to AGND  
SCLK/DTP, SDIO/OLM, CSB to AGND  
SYNC, PDWN to AGND  
RBIAS to AGND  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
1 θJA for a 4-layer PCB with solid ground plane (simulated). Exposed pad  
soldered to PCB.  
ESD CAUTION  
VREF, SENSE to AGND  
Environmental  
Operating Temperature  
Range (Ambient, VREF = 1.0 V)  
Operating Temperature  
Range (Ambient, VREF = 1.3 V)  
Maximum Junction  
Temperature  
−40°C to +85°C  
0°C to 85°C  
150°C  
Lead Temperature  
(Soldering, 10 sec)  
300°C  
Storage Temperature  
Range (Ambient)  
−65°C to +150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 11 of 40  
 
 
 
 
 
 
AD9653  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
9
36 VIN+A  
VIN–A  
34 AVDD  
33 PDWN  
32  
CSB  
31 SDIO/OLM  
30 SCLK/DTP  
VIN+D  
VIN–D  
AVDD  
AVDD  
CLK–  
CLK+  
AVDD  
DRVDD  
D1–D  
35  
AD9653  
TOP VIEW  
(Not to Scale)  
29  
DRVDD  
28 D0+A  
27 D0–A  
10  
11  
12  
D1+D  
D0–D  
D0+D  
26  
D1+A  
25 D1–A  
NOTES  
1. THE EXPOSED THERMAL PAD ON THE BOTTOM OF THE  
PACKAGE PROVIDES THE ANALOG GROUND FOR THE PART.  
THIS EXPOSED PAD MUST BE CONNECTED TO GROUND FOR  
PROPER OPERATION.  
Figure 6. 48-Lead LFCSP Pin Configuration, Top View  
Table 10. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
0
AGND,  
Exposed Pad  
Analog Ground, Exposed Pad. The exposed thermal pad on the bottom of the package provides the  
analog ground for the part. This exposed pad must be connected to ground for proper operation.  
1
2
VIN+D  
VIN−D  
ADC D Analog Input True.  
ADC D Analog Input Complement.  
1.8 V Analog Supply Pins.  
3, 4, 7, 34, 39, 45, 46 AVDD  
5, 6  
CLK−, CLK+  
DRVDD  
Differential Encode Clock. PECL, LVDS, or 1.8 V CMOS inputs.  
Digital Output Driver Supply.  
Channel D Digital Outputs.  
Channel D Digital Outputs.  
Channel C Digital Outputs.  
Channel C Digital Outputs.  
Data Clock Outputs.  
Frame Clock Outputs.  
Channel B Digital Outputs.  
Channel B Digital Outputs.  
Channel A Digital Outputs.  
Channel A Digital Outputs.  
SPI Clock Input/Digital Test Pattern.  
SPI Data Input and Output Bidirectional SPI Data/Output Lane Mode.  
SPI Chip Select Bar. Active low enable; 30 kΩ internal pull-up.  
8, 29  
9, 10  
11, 12  
13, 14  
15, 16  
17, 18  
19, 20  
21, 22  
23, 24  
25, 26  
27, 28  
30  
D1−D, D1+D  
D0−D, D0+D  
D1−C, D1+C  
D0−C, D0+C  
DCO−, DCO+  
FCO−, FCO+  
D1−B, D1+B  
D0−B, D0+B  
D1−A, D1+A  
D0−A, D0+A  
SCLK/DTP  
31  
32  
SDIO/OLM  
CSB  
33  
PDWN  
Digital Input, 30 kΩ Internal Pull-Down.  
PDWN high = power-down device.  
PDWN low = run device, normal operation.  
35  
36  
37  
38  
40  
41  
42  
43  
VIN−A  
VIN+A  
VIN+B  
VIN−B  
RBIAS  
SENSE  
VREF  
ADC A Analog Input Complement.  
ADC A Analog Input True.  
ADC B Analog Input True.  
ADC B Analog Input Complement.  
Sets Analog Current Bias. Connect to 10 kΩ (1% tolerance) resistor to ground.  
Reference Mode Selection.  
Voltage Reference Input and Output.  
Analog Input Common-Mode Voltage.  
VCM  
Rev. 0 | Page 12 of 40  
 
 
Data Sheet  
AD9653  
Pin No.  
44  
47  
Mnemonic  
SYNC  
VIN−C  
Description  
Digital Input. SYNC input to clock divider.  
ADC C Analog Input Complement.  
ADC C Analog Input True.  
48  
VIN+C  
Rev. 0 | Page 13 of 40  
 
 
 
 
 
AD9653  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
VREF = 1.0 V  
0
0
–15  
125MSPS  
9.7MHz AT –1dBFS  
125MSPS  
–15  
70MHz AT –1dBFS  
SNR = 75.6dB (76.6dBFS)  
SFDR = 85.5dBc  
SNR = 77.1dB (78.1dBFS)  
SFDR = 96.8dBc  
–30  
–30  
–45  
–60  
–75  
–45  
–60  
–75  
2
3
–90  
–90  
+
5
+
6
4
4
6
2
3
–105  
–120  
–135  
–105  
–120  
–135  
5
0
6
12  
18  
24  
30  
36  
42  
48  
54  
60  
0
6
12  
18  
24  
30  
36  
42  
48  
54  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 7. Single-Tone 16k FFT with fIN = 9.7 MHz,  
Figure 10. Single-Tone 16k FFT with fIN = 70 MHz,  
f
SAMPLE = 125 MSPS, VREF = 1.0 V  
f
SAMPLE = 125 MSPS, VREF = 1.0 V  
0
–15  
0
–15  
125MSPS  
15MHZ AT –1dBFS  
SNR = 76.8dB (77.8dBFS)  
SFDR = 95.2dBc  
125MSPS  
128MHz AT –1dBFS  
SNR = 73.2dB (74.2dBFS)  
SFDR = 86.6dBc  
–30  
–30  
–45  
–45  
–60  
–60  
–75  
–75  
+
2
–90  
–90  
2
4
4
6
5
+
3
6
3
–105  
–120  
–135  
–105  
–120  
–135  
5
0
6
12  
18  
24  
30  
36  
42  
48  
54  
60  
0
6
12  
18  
24  
30  
36  
42  
48  
54  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 11. Single-Tone 16k FFT with fIN = 128 MHz,  
Figure 8. Single-Tone 16k FFT with fIN = 15 MHZ,  
f
SAMPLE = 125 MSPS, VREF = 1.0 V  
f
SAMPLE = 125 MSPS, VREF = 1.0 V  
0
–15  
0
125MSPS  
125MSPS  
64MHz AT –1dBFS  
SNR = 75.7dB (76.7dBFS)  
SFDR = 87.2dBc  
–15  
–30  
200.5MHz AT –1dBFS  
SNR = 70.7dB (71.7dBFS)  
SFDR = 76.6dBc  
–30  
–45  
–45  
–60  
–60  
3
–75  
–75  
+
2
3
2
–90  
–90  
5
5
+
6
4
4
6
–105  
–120  
–135  
–105  
–120  
–135  
0
6
12  
18  
24  
30  
36  
42  
48  
54  
60  
0
6
12  
18  
24  
30  
36  
42  
48  
54  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 12. Single-Tone 16k FFT with fIN = 200.5 MHz at fSAMPLE = 125 MSPS,  
REF = 1.0 V  
Figure 9. Single-Tone 16k FFT with fIN = 64 MHz, fSAMPLE = 125 MSPS,  
REF = 1.0 V  
V
V
Rev. 0 | Page 14 of 40  
 
 
Data Sheet  
AD9653  
120  
120  
100  
80  
60  
40  
20  
0
SFDRFS  
100  
80  
60  
40  
20  
0
SFDR (dBc)  
SNRFS  
SFDR  
SNR (dBFS)  
SNR  
–20  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
0
20  
40  
60  
80  
100 120 140 160 180 200  
INPUT AMPLITUDE (dBFS)  
INPUT FREQUENCY (MHz)  
Figure 13. SNR/SFDR vs. Input Amplitude (AIN), fIN = 9.7 MHz,  
Figure 16. SNR/SFDR vs. fIN, fSAMPLE = 125 MSPS, Clock Divider = 8, VREF = 1.0 V  
f
SAMPLE = 125 MSPS, VREF = 1.0 V  
0
–15  
100  
95  
–30  
SFDR (dBc)  
–45  
90  
–60  
85  
80  
–75  
2F1 + F2  
2F2 + F1  
–90  
F2 – F1  
2F1 – F2  
+
F2 – F1  
F1 + F2  
–105  
–120  
–135  
SNR (dBFS)  
75  
70  
–40  
–20  
0
20  
40  
60  
80  
0
6
12  
18  
24  
30  
36  
42  
48  
54  
60  
FREQUENCY (MHz)  
TEMPERATURE (C)  
Figure 14. Two-Tone 16k FFT with fIN1 = 70.5 MHz and fIN2 = 72.5 MHz,  
SAMPLE = 125 MSPS, VREF = 1.0 V  
Figure 17. SNR/SFDR vs. Temperature, fIN = 9.7 MHz,  
f
f
SAMPLE = 125 MSPS, VREF = 1.0 V  
0
–20  
4.5  
3.0  
–40  
1.5  
SFDR (dBc)  
IMD3 (dBc)  
0
–60  
–1.5  
–3.0  
–4.5  
–80  
SFDR (dBFS)  
–100  
–120  
IMD3 (dBFS)  
–90  
–70  
–50  
–30  
–10  
INPUT AMPLITUDE (dBFS)  
OUTPUT CODE  
Figure 15. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with  
IN1 = 70.5 MHz and fIN2 = 72.5 MHz, fSAMPLE = 125 MSPS, VREF = 1.0 V  
Figure 18. INL, fIN = 9.7 MHz, fSAMPLE = 125 MSPS, VREF = 1.0 V  
f
Rev. 0 | Page 15 of 40  
AD9653  
Data Sheet  
100  
80  
60  
40  
20  
0
0.8  
0.6  
SFDR (dBc)  
SNR (dBFS)  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
20  
40  
60  
80  
100  
120  
SAMPLE RATE (MSPS)  
OUTPUT CODE  
Figure 19. DNL, fIN = 9.7 MHz, fSAMPLE = 125 MSPS, VREF = 1.0 V  
Figure 22. SNR/SFDR vs. Sample Rate, fIN = 9.7 MHz, VREF = 1.0 V  
160000  
100  
2.7 LSB RMS  
SFDR (dBc)  
140000  
120000  
100000  
80000  
60000  
40000  
20000  
0
80  
SNR (dBFS)  
60  
40  
20  
0
20  
40  
60  
80  
100  
120  
SAMPLE RATE (MSPS)  
CODE  
Figure 23. SNR/SFDR vs. Sample Rate, fIN = 64 MHz, Clock Divider = 4, VREF  
1.0 V  
=
Figure 20. Input-Referred Noise Histogram, fSAMPLE = 125 MSPS, VREF = 1.0 V  
100  
90  
DRVDD  
80  
70  
60  
50  
40  
AVDD  
30  
20  
10  
0
1
10  
70  
FREQUENCY (MHz)  
Figure 21. PSRR vs. Frequency, fSAMPLE = 125 MSPS, VREF = 1.0 V  
Rev. 0 | Page 16 of 40  
Data Sheet  
AD9653  
VREF = 1.3 V  
0
0
–15  
125MSPS  
125MSPS  
–15  
–30  
9.7MHz AT –1dBFS  
SNR = 79.1dB (80.1dBFS)  
SFDR = 93.5dBc  
70MHz AT –1dBFS  
SNR = 76.7dB (77.7dBFS)  
SFDR = 82.1dBc  
–30  
–45  
–45  
–60  
–60  
–75  
–75  
3
2
–90  
–90  
3
2
+
+
6
5
6
4
5
4
–105  
–120  
–135  
–105  
–120  
–135  
0
6
12  
18  
24  
30  
36  
42  
48  
54  
60  
0
6
12  
18  
24  
30  
36  
42  
48  
54  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 24. Single-Tone 16k FFT with fIN = 9.7 MHz,  
Figure 27. Single-Tone 16k FFT with fIN = 70 MHz,  
SAMPLE = 125 MSPS, VREF = 1.3 V  
f
SAMPLE = 125 MSPS, VREF = 1.3 V  
f
0
–15  
0
–15  
125MSPS  
125MSPS  
15MHz AT –1dBFS  
SNR = 78.3dB (79.3dBFS)  
SFDR = 94.5dBc  
128MHz AT –1dBFS  
SNR = 73.5dB (74.5dBFS)  
SFDR = 86.7dBc  
–30  
–30  
–45  
–45  
–60  
–60  
–75  
–75  
+
2
–90  
–90  
3
3
5
6
+
4
4
6
2
5
–105  
–120  
–135  
–105  
–120  
–135  
0
6
12  
18  
24  
30  
36  
42  
48  
54  
60  
0
6
12  
18  
24  
30  
36  
42  
48  
54  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 28. Single-Tone 16k FFT with fIN = 128 MHz,  
SAMPLE = 125 MSPS, VREF = 1.3 V  
Figure 25. Single-Tone 16k FFT with fIN = 15 MHZ,  
SAMPLE = 125 MSPS, VREF = 1.3 V  
f
f
0
–15  
0
125MSPS  
125MSPS  
–15  
–30  
200.5MHz AT –1dBFS  
SNR = 71.1dB (72.1dBFS)  
SFDR = 73.7dBc  
64MHz AT –1dBFS  
SNR = 76.9dB (77.9dBFS)  
SFDR = 82.6dBc  
–30  
–45  
–45  
–60  
–60  
–75  
–75  
3
3
2
+
2
–90  
–90  
6
4
6
+
5
5
4
–105  
–120  
–135  
–105  
–120  
–135  
0
6
12  
18  
24  
30  
36  
42  
48  
54  
60  
0
6
12  
18  
24  
30  
36  
42  
48  
54  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 29. Single-Tone 16k FFT with fIN = 200.5 MHz,  
SAMPLE = 125 MSPS, VREF = 1.3 V  
Figure 26. Single-Tone 16k FFT with fIN = 64 MHz,  
SAMPLE = 125 MSPS, VREF = 1.3 V  
f
f
Rev. 0 | Page 17 of 40  
 
AD9653  
Data Sheet  
0
0
–15  
80MSPS  
–15  
15MHz AT –1dBFS  
SNR = 79.0dB (80.0dBFS)  
SFDR = 90.5dBc  
–30  
–30  
–45  
–45  
–60  
–60  
–75  
–75  
2F1 + F2  
2F2 + F1  
–90  
3
–90  
F2 – F1  
F1 + F2  
2F2 – F1  
2F1 – F2  
+
+
2
4
–105  
–120  
–105  
–120  
–135  
5
6
–135  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
0
6
12  
18  
24  
30  
36  
42  
48  
54  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 30. Single-Tone 16k FFT with fIN = 15 MHz,  
Figure 33. Two-Tone 16k FFT with fIN1 = 70.5 MHz and fIN2 = 72.5 MHz,  
f
SAMPLE = 80 MSPS, VREF = 1.3 V  
f
SAMPLE = 125 MSPS, VREF = 1.3 V  
0
–15  
0
–20  
80MSPS  
15MHz AT –1dBFS  
SNR = 76.7dB (77.7dBFS)  
SFDR = 82.1dBc  
–30  
–40  
–45  
SFDR (dBc)  
IMD3 (dBc)  
–60  
–60  
–75  
3
–80  
–90  
+
2
SFDR (dBFS)  
IMD3 (dBFS)  
5
6
–105  
–120  
4
–100  
–120  
–135  
0
–90  
–70  
–50  
–30  
–10  
4
8
12  
16  
20  
24  
28  
32  
36  
40  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 31. Single-Tone 16k FFT with fIN = 64.5 MHz,  
SAMPLE = 80 MSPS, VREF = 1.3 V  
Figure 34. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with  
IN1 = 70.5 MHz and fIN2 = 72.5 MHz, fSAMPLE = 125 MSPS, VREF = 1.3 V  
f
f
100  
120  
100  
80  
SFDRFS  
SFDR (dBc)  
90  
80  
SNRFS  
70  
60  
50  
40  
30  
20  
10  
0
SNR (dBFS)  
60  
SFDR  
SNR  
40  
20  
0
–20  
0
20  
40  
60  
80  
100 120 140 160 180 200  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
INPUT FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 32. SNR/SFDR vs. Input Amplitude (AIN), fIN = 9.7 MHz,  
SAMPLE = 125 MSPS, VREF = 1.3 V  
Figure 35. SNR/SFDR vs. fIN, fSAMPLE = 125 MSPS, Clock Divider = 8, VREF = 1.3 V  
f
Rev. 0 | Page 18 of 40  
Data Sheet  
AD9653  
200000  
180000  
160000  
140000  
120000  
100000  
80000  
60000  
40000  
20000  
0
94  
92  
90  
88  
86  
84  
82  
80  
2.1 LSB RMS  
SFDR (dBc)  
SNR (dBFS)  
78  
0
20  
40  
TEMPERATURE (°C)  
60  
80  
CODE  
Figure 36. SNR/SFDR vs. Temperature, fIN = 9.7 MHz,  
Figure 39. Input-Referred Noise Histogram, fSAMPLE = 125 MSPS, VREF = 1.3 V  
f
SAMPLE = 125 MSPS, VREF = 1.3 V  
100  
90  
4.5  
3.0  
DRVDD  
80  
70  
60  
50  
1.5  
0
–1.5  
–3.0  
–4.5  
40  
AVDD  
30  
20  
10  
0
1
10  
70  
FREQUENCY (MHz)  
OUTPUT CODE  
Figure 37. INL, fIN = 9.7 MHz, fSAMPLE = 125 MSPS, VREF = 1.3 V  
Figure 40. PSRR vs. Frequency, fSAMPLE = 125 MSPS, VREF = 1.3 V  
100  
0.8  
SFDR (dBc)  
0.6  
0.4  
80  
SNR (dBFS)  
0.2  
60  
40  
20  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
20  
40  
60  
80  
100  
120  
SAMPLE RATE (MSPS)  
OUTPUT CODE  
Figure 41. SNR/SFDR vs. Sample Rate, fIN = 9.7 MHz, VREF = 1.3 V  
Figure 38. DNL, fIN = 9.7 MHz, fSAMPLE = 125 MSPS, VREF = 1.3 V  
Rev. 0 | Page 19 of 40  
AD9653  
Data Sheet  
100  
80  
60  
40  
20  
SFDR (dBc)  
SNR (dBFS)  
0
20  
40  
60  
80  
100  
120  
SAMPLE RATE (MSPS)  
Figure 42. SNR/SFDR vs. Sample Rate, fIN = 64 MHz, Clock Divider = 4, VREF = 1.3 V  
Rev. 0 | Page 20 of 40  
Data Sheet  
AD9653  
EQUIVALENT CIRCUITS  
AVDD  
AVDD  
350Ω  
SCLK/DTP, SYNC,  
AND PDWN  
VIN±x  
30kΩ  
Figure 43. Equivalent Analog Input Circuit  
Figure 47. Equivalent SCLK/DTP, SYNC, and PDWN Input Circuit  
AVDD  
10Ω  
CLK+  
AVDD  
15kΩ  
15kΩ  
0.9V  
AVDD  
375Ω  
RBIAS  
AND VCM  
10Ω  
CLK–  
Figure 44. Equivalent Clock Input Circuit  
Figure 48. Equivalent RBIAS and VCM Circuit  
AVDD  
AVDD  
400Ω  
SDIO/OLM  
30kΩ  
350Ω  
31kΩ  
CSB  
Figure 45. Equivalent SDIO/OLM Input Circuit  
CS  
Figure 49. Equivalent Input Circuit  
DRVDD  
AVDD  
V
V
D0–x, D1–x  
D0+x, D1+x  
V
V
375Ω  
VREF  
7.5kΩ  
Figure 46. Equivalent Digital Output Circuit  
Figure 50. Equivalent VREF Circuit  
Rev. 0 | Page 21 of 40  
 
 
 
AD9653  
Data Sheet  
THEORY OF OPERATION  
the output stage of the driving source. In addition, low Q inductors  
or ferrite beads can be placed on each leg of the input to reduce  
high differential capacitance at the analog inputs and therefore  
achieve the maximum bandwidth of the ADC. Such use of low  
Q inductors or ferrite beads is required when driving the converter  
front end at high IF frequencies. Either a differential capacitor or  
two single-ended capacitors can be placed on the inputs to  
provide a matching passive network. This ultimately creates a  
low-pass filter at the input to limit unwanted broadband noise.  
See the AN-742 Application Note, the AN-827 Application Note,  
and the Analog Dialogue article Transformer-Coupled Front-  
End for Wideband A/D Converters(Volume 39, April 2005) for  
more information. In general, the precise values depend on the  
application.  
The AD9653 is a multistage, pipelined ADC. Each stage  
provides sufficient overlap to correct for flash errors in the  
preceding stage. The quantized outputs from each stage are  
combined into a final 16-bit result in the digital correction  
logic. The serializer transmits this converted data in a 16-bit  
output. The pipelined architecture permits the first stage to  
operate with a new input sample while the remaining stages  
operate with preceding samples. Sampling occurs on the rising  
edge of the clock.  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched-capacitor DAC  
and an interstage residue amplifier (for example, a multiplying  
digital-to-analog converter (MDAC)). The residue amplifier  
magnifies the difference between the reconstructed DAC output  
and the flash input for the next stage in the pipeline. One bit of  
redundancy is used in each stage to facilitate digital correction  
of flash errors. The last stage simply consists of a flash ADC.  
Input Common Mode  
The analog inputs of the AD9653 are not internally dc-biased.  
Therefore, in ac-coupled applications, the user must provide  
this bias externally. Setting the device so that VCM = AVDD/2 is  
recommended for optimum performance, but the device can  
function over a wider range with reasonable performance, as  
shown in Figure 52 and Figure 53.  
The output staging block aligns the data, corrects errors, and  
passes the data to the output buffers. The data is then serialized  
and aligned to the frame and data clocks.  
ANALOG INPUT CONSIDERATIONS  
An on-chip, common-mode voltage reference is included in the  
design and is available from the VCM pin. The VCM pin must  
be bypassed to ground by a 0.1 µF capacitor, as described in the  
Applications Information section.  
The analog input to the AD9653 is a differential switched-  
capacitor circuit designed for processing differential input  
signals. This circuit can support a wide common-mode range  
while maintaining excellent performance. By using an input  
common-mode voltage of midsupply, users can minimize  
signal-dependent errors and achieve optimum performance.  
Maximum SNR performance is achieved by setting the ADC to  
the largest span in a differential configuration. In the case of the  
AD9653, the input span is dependent on the reference voltage  
(see Table 11).  
110  
H
SFDR (dBc)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
CPAR  
H
VIN+x  
CSAMPLE  
SNRFS (dBFS)  
S
S
S
S
CSAMPLE  
VIN–x  
H
CPAR  
H
Figure 51. Switched-Capacitor Input Circuit  
The clock signal alternately switches the input circuit between  
sample mode and hold mode (see Figure 51). When the input  
circuit is switched to sample mode, the signal source must be  
capable of charging the sample capacitors and settling within  
one-half of a clock cycle. A small resistor in series with each  
input can help reduce the peak transient current injected from  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
COMMON-MODE VOLTAGE (V)  
Figure 52. SNR/SFDR vs. Common-Mode Voltage,  
IN = 9.7 MHz, fSAMPLE = 125 MSPS, VREF = 1.0 V  
f
Rev. 0 | Page 22 of 40  
 
 
 
 
Data Sheet  
AD9653  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
Internal Reference Connection  
SFDR (dBc)  
A comparator within the AD9653 detects the potential at the  
SENSE pin and configures the reference into one of three  
possible modes, which are summarized in Table 11. If SENSE is  
grounded, the reference amplifier switch is connected to the  
internal resistor divider (see Figure 54), setting the voltage at the  
VREF pin, VREF, to 1.0 V. If SENSE is connected to an external  
resistor divider (see Figure 55), VREF is defined as  
SNRFS (dBFS)  
R2  
R1  
VREF = 0.5× 1+  
where:  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
7 kΩ ≤ (R1 + R2) ≤ 10 kΩ  
COMMON-MODE VOLTAGE (V)  
VIN+A  
VIN–A  
Figure 53. SNR/SFDR vs. Common-Mode Voltage,  
IN = 9.7 MHz, fSAMPLE = 125 MSPS, VREF = 1.3 V  
f
Differential Input Configurations  
ADC  
CORE  
There are several ways to drive the AD9653 either actively or  
passively. However, optimum performance is achieved by driving  
the analog inputs differentially. Using a differential double balun  
configuration to drive the AD9653 provides excellent performance  
and a flexible interface to the ADC (see Figure 56) for baseband  
applications.  
VREF  
1.0µF  
0.1µF  
SELECT  
LOGIC  
SENSE  
For applications where SNR is a key parameter, differential trans-  
former coupling is the recommended input configuration (see  
Figure 57), because the noise performance of most amplifiers is  
not adequate to achieve the true performance of the AD9653.  
0.5V  
AD9653  
Figure 54. 1.0 V Internal Reference Configuration  
Regardless of the configuration, the value of the shunt capacitor,  
C, is dependent on the input frequency and may need to be  
reduced or removed.  
VIN+A  
VIN–A  
It is not recommended to drive the AD9653 inputs single-ended.  
ADC  
CORE  
VOLTAGE REFERENCE  
A stable and accurate voltage reference is built into the AD9653.  
VREF can be configured using either the internal 1.0 V refer-  
ence, an externally applied 1.0 V to 1.3 V reference voltage, or  
using an external resistor divider applied to the internal refer-  
ence to produce a reference voltage of the users choice. The  
various reference modes are summarized in the Internal Reference  
Connection section and the External Reference Operation  
section. The VREF pin should be externally bypassed to ground  
with a low ESR, 1.0 μF capacitor in parallel with a low ESR,  
0.1 μF ceramic capacitor.  
VREF  
+
1.0µF  
0.1µF  
R2  
R1  
SELECT  
LOGIC  
SENSE  
0.5V  
AD9653  
Figure 55. Programmable Internal Reference Configuration  
Table 11. Reference Configuration Summary  
Resulting Differential Span  
Selected Mode  
SENSE Voltage (V)  
Resulting VREF (V)  
(V p-p)  
Fixed Internal Reference  
Programmable Internal Reference  
AGND to 0.2  
Tie to external R-divider  
(see Figure 55)  
1.0 internal  
2.0  
2 × VREF  
0.5 × (1 + R2/R1), example: R1 = 3.5 kΩ,  
R2 = 5.6 kΩ for VREF = 1.3 V1  
Fixed External Reference  
AVDD  
1.0 to 1.3 applied to external VREF pin1  
2.0 to 2.6  
1 Normal operation for VREF = 1.3 V is supported over the 0°C to 85°C temperature range.  
Rev. 0 | Page 23 of 40  
 
 
 
 
 
 
 
AD9653  
Data Sheet  
0.1µF  
C
R
*C1  
5pF  
0.1µF  
VIN+x  
33Ω  
33Ω  
33Ω  
2V p-p  
C
ADC  
0.1µF  
C
R
VCM  
VIN–x  
33Ω  
ET1-1-I3  
*C1  
R
200Ω  
*C1 IS OPTIONAL  
0.1µF  
C
0.1µF  
Figure 56. Differential Double Balun Input Configuration for Baseband Applications  
ADT1-1WT  
1:1 Z RATIO  
*C1  
R
VIN+x  
VIN–x  
33Ω  
2Vp-p  
49.9Ω  
ADC  
C
5pF  
*C1  
R
VCM  
33Ω  
200Ω  
0.1µF  
0.1μF  
*C1 IS OPTIONAL  
Figure 57. Differential Transformer-Coupled Configuration  
for Baseband Applications  
0
If the internal reference of the AD9653 is used to drive multiple  
converters to improve gain matching, the loading of the reference  
by the other converters must be considered. Figure 58 and  
Figure 59 show how the internal reference voltage is affected by  
loading.  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
INTERNAL V  
= 1.3V  
REF  
0
–0.5  
–1.0  
INTERNAL V  
= 1.0V  
REF  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
LOAD CURRENT (mA)  
Figure 59. VREF =1.3 V Error vs. Load Current  
External Reference Operation  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or improve thermal drift charac-  
teristics. Figure 60 and Figure 61 show the typical drift characteris-  
tics of the internal reference in 1.0 V mode and programmable  
1.3 V mode, respectively.  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
LOAD CURRENT (mA)  
Figure 58. VREF = 1.0 V Error vs. Load Current  
Rev. 0 | Page 24 of 40  
 
 
 
 
 
Data Sheet  
AD9653  
4
The RF balun configuration is recommended for clock frequencies  
between 125 MHz and 1 GHz, and the RF transformer is recom-  
mended for clock frequencies from 20 MHz to 200 MHz. The  
back-to-back Schottky diodes across the transformer/balun  
secondary winding limit clock excursions into the AD9653 to  
approximately 0.8 V p-p differential.  
2
0
–2  
–4  
–6  
This limit helps prevent the large voltage swings of the clock  
from feeding through to other portions of the AD9653 while  
preserving the fast rise and fall times of the signal that are critical  
to achieving low jitter performance. However, the diode capaci-  
tance comes into play at frequencies above 500 MHz. Care must be  
taken in choosing the appropriate signal limiting diode.  
–8  
–40  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
®
Mini-Circuits  
ADT1-1WT, 1:1 Z  
Figure 60. Typical VREF = 1.0 V Drift  
0.1µF  
0.1µF  
XFMR  
CLOCK  
INPUT  
10  
5
CLK+  
100Ω  
50Ω  
ADC  
0.1µF  
CLK–  
SCHOTTKY  
DIODES:  
0.1µF  
HSMS2822  
0
Figure 62. Transformer-Coupled Differential Clock (Up to 200 MHz)  
–5  
–10  
–15  
0.1µF  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
50Ω  
ADC  
0.1µF  
CLK–  
SCHOTTKY  
DIODES:  
HSMS2822  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 63. Balun-Coupled Differential Clock (Up to 1 GHz)  
Figure 61. Typical VREF = 1.3 V Drift  
If a low jitter clock source is not available, another option is to  
ac couple a differential PECL signal to the sample clock input  
pins, as shown in Figure 64. The AD9510/AD9511/AD9512/  
AD9513/AD9514/AD9515/AD9516/AD9517 clock drivers offer  
excellent jitter performance.  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. An internal  
reference buffer loads the external reference with an equivalent  
7.5 kΩ load (see Figure 50). The internal buffer generates the  
positive and negative full-scale references for the ADC core.  
A third option is to ac couple a differential LVDS signal to the  
sample clock input pins, as shown in Figure 65. The AD9510/  
AD9511/AD9512/AD9513/AD9514/AD9515/AD9516/AD9517  
clock drivers offer excellent jitter performance.  
It is not recommended to leave the SENSE pin floating.  
CLOCK INPUT CONSIDERATIONS  
For optimum performance, clock the AD9653 sample clock  
inputs, CLK+ and CLK−, with a differential signal. The signal  
is typically ac-coupled into the CLK+ and CLK− pins via a  
transformer or capacitors. These pins are biased internally  
(see Figure 44) and require no external bias.  
In some applications, it may be acceptable to drive the sample  
clock inputs with a single-ended 1.8 V CMOS signal. In such  
applications, drive the CLK+ pin directly from a CMOS gate, and  
bypass the CLK− pin to ground with a 0.1 μF capacitor (see  
Figure 66).  
Clock Input Options  
The AD9653 has a flexible clock input structure. The clock input  
can be a CMOS, LVDS, LVPECL, or sine wave signal. Regard-  
less of the type of signal being used, clock source jitter is of the  
most concern, as described in the Jitter Considerations section.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
AD951x  
PECL DRIVER  
100Ω  
ADC  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
Figure 62 and Figure 63 show two preferred methods for clock-  
ing the AD9653 (at clock rates up to 1 GHz prior to internal clock  
divider). A low jitter clock source is converted from a single-  
ended signal to a differential signal using either an RF transformer  
or an RF balun.  
240Ω  
240Ω  
50kΩ  
50kΩ  
Figure 64. Differential PECL Sample Clock (Up to 1 GHz)  
Rev. 0 | Page 25 of 40  
 
 
 
 
 
 
AD9653  
Data Sheet  
84  
82  
80  
78  
76  
74  
72  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
AD951x  
LVDS DRIVER  
100Ω  
ADC  
0.1µF  
0.1µF  
SNRFS (DCS ON)  
SNRFS (DCS OFF)  
CLOCK  
INPUT  
50kΩ  
CLK–  
50kΩ  
Figure 65. Differential LVDS Sample Clock (Up to 1 GHz)  
V
CC  
OPTIONAL  
0.1µF  
1
0.1µF  
1kΩ  
1kΩ  
AD951x  
CMOS DRIVER  
100Ω  
CLOCK  
INPUT  
CLK+  
50Ω  
70  
40  
ADC  
45  
50  
55  
60  
CLK–  
DUTY CYCLE (%)  
0.1µF  
Figure 67. SNR vs. DCS On/Off, VREF = 1.0 V  
1
84  
82  
80  
78  
76  
74  
72  
50Ω RESISTOR IS OPTIONAL.  
Figure 66. Single-Ended 1.8 V CMOS Input Clock (Up to 200 MHz)  
Input Clock Divider  
SNRFS (DCS ON)  
SNRFS (DCS OFF)  
The AD9653 contains an input clock divider with the ability  
to divide the input clock by integer values between 1 and 8.  
The AD9653 clock divider can be synchronized using the  
external SYNC input. Bit 0 and Bit 1 of Register 0x109 allow the  
clock divider to be resynchronized on every SYNC signal or  
only on the first SYNC signal after the register is written. A  
valid SYNC causes the clock divider to reset to its initial state.  
This synchronization feature allows multiple parts to have their  
clock dividers aligned to guarantee simultaneous input sampling.  
70  
40  
45  
50  
55  
60  
DUTY CYCLE (%)  
Clock Duty Cycle  
Figure 68. SNR vs. DCS On/Off, VREF = 1.3 V  
Typical high speed ADCs use both clock edges to generate a vari-  
ety of internal timing signals and, as a result, may be sensitive to  
clock duty cycle. Commonly, a 5% tolerance is required on the  
clock duty cycle to maintain dynamic performance characteristics.  
Jitter in the rising edge of the input is still of concern and is not  
easily reduced by the internal stabilization circuit. The duty  
cycle control loop does not function for clock rates less than  
20 MHz, nominally. The loop has a time constant associated  
with it that must be considered in applications in which the  
clock rate can change dynamically. A wait time of 1.5 µs to 5 µs  
is required after a dynamic clock frequency increase or decrease  
before the DCS loop is relocked to the input signal.  
The AD9653 contains a duty cycle stabilizer (DCS) that retimes  
the nonsampling (falling) edge, providing an internal clock  
signal with a nominal 50% duty cycle. This feature minimizes  
performance degradation in cases where the clock input duty  
cycle deviates from 50% greater than the specified 5%. Noise and  
distortion performance are nearly flat for a wider range of duty  
cycles with the DCS on, as shown in Figure 67 and Figure 68.  
Jitter Considerations  
High speed, high resolution ADCs are sensitive to the quality of the  
clock input. The degradation in SNR at a given input frequency  
(fA) due only to aperture jitter (tJ) can be calculated by  
1
SNR Degradation = 20 log10  
2π × fA ×tJ  
In this equation, the rms aperture jitter represents the root mean  
square of all jitter sources, including the clock input, analog input  
signal, and ADC aperture jitter specifications. IF undersampling  
applications are particularly sensitive to jitter (see Figure 69).  
The clock input should be treated as an analog signal in cases  
where aperture jitter may affect the dynamic range of the AD9653.  
Power supplies for clock drivers should be separated from the  
Rev. 0 | Page 26 of 40  
 
 
 
 
 
 
Data Sheet  
AD9653  
ADC output driver supplies to avoid modulating the clock signal  
with digital noise. Low jitter, crystal-controlled oscillators make  
the best clock sources. If the clock is generated from another  
type of source (by gating, dividing, or other methods), it should  
be retimed by the original clock at the last step.  
Low power dissipation in power-down mode is achieved by  
shutting down the reference, reference buffer, biasing networks,  
and clock. Internal capacitors are discharged when entering  
power-down mode and then must be recharged when returning  
to normal operation. As a result, wake-up time is related to the  
time spent in power-down mode, and shorter power-down  
cycles result in proportionally shorter wake-up times. When  
using the SPI port interface, the user can place the ADC in  
power-down mode or standby mode. Standby mode allows the  
user to keep the internal reference circuitry powered when  
faster wake-up times are required. See the Memory Map section  
for more details on using these features.  
Refer to the AN-501 Application Note and the AN-756  
Application Note for more in-depth information about jitter  
performance as it relates to ADCs.  
130  
RMS CLOCK JITTER REQUIREMENT  
120  
110  
16 BITS  
100  
90  
80  
70  
60  
50  
40  
30  
DIGITAL OUTPUTS AND TIMING  
14 BITS  
12 BITS  
The AD9653 differential outputs conform to the ANSI-644 LVDS  
standard on default power-up. This can be changed to a low power,  
reduced signal option (similar to the IEEE 1596.3 standard) via the  
SPI. The LVDS driver current is derived on chip and sets the  
output current at each output equal to a nominal 3.5 mA. A 100 Ω  
differential termination resistor placed at the LVDS receiver  
inputs results in a nominal 350 mV swing (or 700 mV p-p  
differential) at the receiver.  
10 BITS  
8 BITS  
0.125ps  
0.25ps  
0.5ps  
1.0ps  
2.0ps  
1
10  
100  
1000  
ANALOG INPUT FREQUENCY (MHz)  
When operating in reduced range mode, the output current is  
reduced to 2 mA. This results in a 200 mV swing (or 400 mV p-p  
differential) across a 100 Ω termination at the receiver.  
Figure 69. Ideal SNR vs. Input Frequency and Jitter  
POWER DISSIPATION AND POWER-DOWN MODE  
The AD9653 LVDS outputs facilitate interfacing with LVDS  
receivers in custom ASICs and FPGAs for superior switching  
performance in noisy environments. Single point-to-point net  
topologies are recommended with a 100 Ω termination resistor  
placed as close to the receiver as possible. If there is no far-end  
receiver termination or there is poor differential trace routing,  
timing errors may result. To avoid such timing errors, it is  
recommended that the trace length be less than 24 inches and  
that the differential output traces be close together and at equal  
lengths. An example of the FCO and data stream with proper  
trace length and position is shown in Figure 71. Figure 72 shows  
the LVDS output timing example in reduced range mode.  
As shown in Figure 70, the power dissipated by the AD9653 is  
proportional to its sample rate. The digital power dissipation  
does not vary significantly because it is determined primarily by  
the DRVDD supply and bias current of the LVDS output drivers.  
0.60  
0.55  
0.50  
0.45  
V
= 1.3V  
REF  
V
= 1.0V  
REF  
0.40  
0.35  
0.30  
0.25  
0.20  
20  
40  
60  
80  
100  
120  
SAMPLE RATE (MSPS)  
Figure 70. Analog Core Power vs. fSAMPLE for fIN = 9.7 MHz, Four Channels  
The AD9653 is placed in power-down mode either by the SPI  
port or by asserting the PDWN pin high. In this state, the ADC  
typically dissipates 2 mW. During power-down, the output  
drivers are placed in a high impedance state. Asserting the  
PDWN pin low returns the AD9653 to its normal operating  
mode. Note that PDWN is referenced to the digital output  
driver supply (DRVDD) and should not exceed that supply  
voltage.  
D0 500mV/DIV  
D1 500mV/DIV  
DCO 500mV/DIV  
FCO 500mV/DIV  
4ns/DIV  
Figure 71. LVDS Output Timing Example in ANSI-644 Mode (Default)  
Rev. 0 | Page 27 of 40  
 
 
 
 
 
AD9653  
Data Sheet  
500  
400  
EYE: ALL BITS  
ULS: 8000/414024  
300  
200  
100  
0
–100  
–200  
–300  
–400  
–500  
–0.8ns  
–0.4ns  
0ns  
0.4ns  
–0.8ns  
D0 400mV/DIV  
4ns/DIV  
D1 400mV/DIV  
DCO 400mV/DIV  
FCO 400mV/DIV  
12k  
10k  
8k  
Figure 72. LVDS Output Timing Example in Reduced Range Mode  
An example of the LVDS output using the ANSI-644 standard  
(default) data eye and a time interval error (TIE) jitter histo-  
gram with trace lengths less than 24 inches on standard FR-4  
material is shown in Figure 73.  
6k  
500  
EYE: ALL BITS  
ULS: 7000/400354  
400  
300  
4k  
200  
2k  
100  
0
0k  
–800ps –600ps –400ps –200ps  
0ps  
200ps  
400ps 600ps  
–100  
–200  
–300  
–400  
–500  
Figure 74. Data Eye for LVDS Outputs in ANSI-644 Mode with Trace Lengths  
Greater than 24 Inches on Standard FR-4 Material, External 100 Ω Far-End  
Termination Only  
Figure 74 shows an example of trace lengths exceeding 24 inches  
on standard FR-4 material. Notice that the TIE jitter histogram  
reflects the decrease of the data eye opening as the edge deviates  
from the ideal position.  
–0.8ns  
–0.4ns  
0ns  
0.4ns  
0.8ns  
7k  
6k  
5k  
4k  
3k  
2k  
1k  
0
It is the users responsibility to determine if the waveforms  
meet the timing budget of the design when the trace lengths  
exceed 24 inches. Additional SPI options allow the user to further  
increase the internal termination (increasing the current) of all  
four outputs to drive longer trace lengths. This can be achieved  
by programming Register 0x15. Even though this produces  
sharper rise and fall times on the data edges and is less prone to  
bit errors, the power dissipation of the DRVDD supply increases  
when this option is used.  
The format of the output data is twos complement by default.  
An example of the output coding format can be found in Table 12.  
To change the output data format to offset binary, see the  
Memory Map section.  
200ps  
250ps  
300ps  
350ps  
400ps  
450ps  
500ps  
Figure 73. Data Eye for LVDS Outputs in ANSI-644 Mode with Trace Lengths  
Less than 24 Inches on Standard FR-4 Material, External 100 Ω Far-End  
Termination Only  
Data from each ADC is serialized and provided on a separate  
channel in two lanes in DDR mode. The data rate for each serial  
stream is equal to 16 bits times the sample clock rate, with a  
maximum of 500 Mbps/lane [(16 bits × 125 MSPS)/(2 × 2) =  
500 Mbps/lane]. The lowest typical conversion rate is 20 MSPS.  
See the Memory Map section for details on enabling this feature.  
Rev. 0 | Page 28 of 40  
 
 
 
Data Sheet  
AD9653  
Two output clocks are provided to assist in capturing data from  
the AD9653. The DCO is used to clock the output data and is  
equal to four times the sample clock (CLK) rate for the default  
mode of operation. Data is clocked out of the AD9653 and must  
be captured on the rising and falling edges of the DCO that  
supports double data rate (DDR) capturing. The FCO is used to  
signal the start of a new output byte and is equal to the sample  
clock rate in 1× frame mode. See the Timing Diagrams section  
for more information.  
In default mode, as shown in Figure 2, the MSB is first in the  
data output serial stream. This can be inverted so that the LSB  
is first in the data output serial stream by using the SPI.  
There are 12 digital output test pattern options available that  
can be initiated through the SPI. This is a useful feature when  
validating receiver capture and timing. Refer to Table 13 for the  
output bit sequencing options available. Some test patterns have  
two serial sequential words and can be alternated in various  
ways, depending on the test pattern chosen. Note that some  
patterns do not adhere to the data format select option. In  
addition, custom user-defined test patterns can be assigned in  
the 0x19, 0x1A, 0x1B, and 0x1C register addresses.  
When the SPI is used, the DCO phase can be adjusted in 60°  
increments relative to the data edge. This enables the user to  
refine system timing margins if required. The default DCO+  
and DCO− timing, as shown in Figure 2, is 90° relative to the  
output data edge.  
Table 12. Digital Output Coding  
Input (V)  
Condition (V)  
<−VREF − 0.5 LSB  
−VREF  
Offset Binary Output Mode  
Twos Complement Mode  
1000 0000 0000 0000  
1000 0000 0000 0000  
0000 0000 0000 0000  
0111 1111 1111 1111  
0111 1111 1111 1111  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
0000 0000 0000 0000  
0000 0000 0000 0000  
1000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1111  
0 V  
+VREF − 1.0 LSB  
>+VREF − 0.5 LSB  
Table 13. Flexible Output Test Modes  
Output Test  
Mode Bit  
Sequence  
Subject to  
Data Format  
Select  
Pattern Name  
Off (default)  
Midscale short  
Digital Output Word 1  
Digital Output Word 2  
Notes  
0000  
0001  
N/A  
N/A  
N/A  
N/A  
Yes  
1000 0000 0000 0000 (16-bit)  
Offset binary  
code shown  
0010  
0011  
+Full-scale short  
−Full-scale short  
0000 0000 0000 0000 (16-bit)  
0000 0000 0000 0000 (16-bit)  
N/A  
N/A  
Yes  
Yes  
Offset binary  
code shown  
Offset binary  
code shown  
0100  
0101  
Checkerboard  
PN sequence long  
1010 1010 1010 1010 (16-bit)  
N/A  
0101 0101 0101 0100 (16-bit)  
N/A  
No  
Yes  
PN23  
ITU 0.150  
X23 + X18 + 1  
PN9  
0110  
PN sequence short  
N/A  
N/A  
Yes  
No  
ITU 0.150  
X9 + X5 + 1  
0111  
One-/zero-word  
toggle  
111 1111 1111 1100 (16-bit)  
0000 0000 0000 0000 (16-bit)  
1000  
1001  
1010  
1011  
User input  
1-/0-bit toggle  
1× sync  
Register 0x19 to Register 0x1A Register 0x1B to Register 0x1C No  
1010 1010 1010 1000 (16-bit)  
0000 0001 1111 1100 (16-bit)  
1000 0000 0000 0000 (16-bit)  
N/A  
N/A  
N/A  
No  
No  
No  
One bit high  
Pattern  
associated with  
the external pin  
1100  
Mixed frequency  
1010 0001 1001 1100 (16-bit)  
N/A  
No  
Rev. 0 | Page 29 of 40  
 
 
 
AD9653  
Data Sheet  
The PN sequence short pattern produces a pseudorandom bit  
sequence that repeats itself every 29 − 1 or 511 bits. A descrip-  
tion of the PN sequence and how it is generated can be found in  
Section 5.1 of the ITU-T 0.150 (05/96) standard. The seed value  
is all 1s (see Table 14 for the initial values). The output is a  
parallel representation of the serial PN9 sequence in MSB-first  
format. The first output word is the first 14 bits of the PN9  
sequence in MSB aligned form.  
SCLK/DTP Pin  
The SCLK/DTP pin is used to select the digital test pattern  
(DTP) for applications that do not require SPI mode operation.  
This pin can enable a single digital test pattern if it and the CSB  
pin are held high during device power-up. When SCLK/DTP is  
tied to AVDD, the ADC channel outputs shift out the following  
pattern: 1000 0000 0000 0000. The FCO and DCO function  
normally while all channels shift out the repeatable test pattern.  
This pattern allows the user to perform timing alignment  
adjustments among the FCO, DCO, and output data. This pin has  
an internal 10 kΩ resistor to GND. It can be left unconnected.  
The PN sequence long pattern produces a pseudorandom bit  
sequence that repeats itself every 223 − 1 or 8,388,607 bits. A  
description of the PN sequence and how it is generated can be  
found in Section 5.6 of the ITU-T 0.150 (05/96) standard. The  
seed value is all 1s (see Table 14 for the initial values) and the  
AD9653 inverts the bit stream with relation to the ITU standard.  
The output is a parallel representation of the serial PN23 sequence  
in MSB-first format. The first output word is the first 14 bits of the  
PN23 sequence in MSB aligned form  
Table 16. Digital Test Pattern Pin Settings  
Resulting  
D0 x and D1 x  
Selected DTP  
Normal Operation  
DTP  
DTP Voltage  
10 kΩ to AGND  
AVDD  
Normal operation  
1000 0000 0000 0000  
Additional and custom test patterns can also be observed when  
commanded from the SPI port. Consult the Memory Map  
section for information about the options available.  
Table 14. PN Sequence  
Initial  
Value  
First Three Output Samples  
(MSB First) Twos Complement  
Sequence  
CSB Pin  
PN Sequence Short  
PN Sequence Long  
0x1FE0  
0x1FFF  
0x1DF1, 0x3CC8, 0x294E  
0x1FE0, 0x2001, 0x1C00  
The CSB pin should be tied to AVDD for applications that do  
not require SPI mode operation. By tying CSB high, all SCLK  
and SDIO information is ignored.  
Consult the Memory Map section for information on how to  
change these additional digital output timing features through  
the SPI.  
Note that, when the CSB pin is tied to AVDD, the AD9653 DCS  
is on by default and remains on unless the part is placed in SPI  
mode and controlled via the SPI. Refer to the Clock Duty Cycle  
section for more information on the DCS.  
SDIO/OLM Pin  
For applications that do not require SPI mode operation, the  
CSB pin is tied to AVDD, and the SDIO/OLM pin controls the  
output lane mode according to Table 15.  
RBIAS Pin  
To set the internal core bias current of the ADC, place a  
10.0 kΩ, 1% tolerance resistor to ground at the RBIAS pin.  
Note that, when the CSB pin is tied to AVDD, the AD9653 DCS  
is on by default and remains on unless the part is placed in SPI  
mode and controlled via the SPI. Refer to the Clock Duty Cycle  
section for more information on the DCS.  
OUTPUT TEST MODES  
The output test options are described in Table 13 and controlled by  
the output test mode bits at Address 0x0D. When an output test  
mode is enabled, the analog section of the ADC is disconnected  
from the digital back-end blocks and the test pattern is run  
through the output formatting block. Some of the test patterns  
are subject to output formatting, and some are not. The PN  
generators from the PN sequence tests can be reset by setting  
Bit 4 or Bit 5 of Register 0x0D. These tests can be performed  
with or without an analog signal (if present, the analog signal is  
ignored), but they do require an encode clock. For more  
information, see the AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI.  
For applications where the SDIO/OLM pin is not used, CSB  
should be tied to AVDD. When using the one-lane mode, the  
conversion rate should be ≤62.5 MSPS to meet the maximum  
output rate of 1 Gbps.  
Table 15. Output Lane Mode Pin Settings  
OLM Pin  
Voltage  
Output Mode  
AVDD (Default)  
GND  
Two-lane. 1× frame, 16-bit serial output  
One-lane. 1× frame, 16-bit serial output  
Rev. 0 | Page 30 of 40  
 
 
 
 
Data Sheet  
AD9653  
SERIAL PORT INTERFACE (SPI)  
The falling edge of the CSB, in conjunction with the rising edge  
of the SCLK, determines the start of the framing. An example of  
the serial timing and its definitions can be found in Figure 75  
and Table 7.  
The AD9653 serial port interface (SPI) allows the user to configure  
the converter for specific functions or operations through a  
structured register space provided inside the ADC. The SPI  
offers the user added flexibility and customization, depending on  
the application. Addresses are accessed via the serial port and  
can be written to or read from via the port. Memory is organized  
into bytes that can be further divided into fields, which are docu-  
mented in the Memory Map section. For detailed operational  
information, see the AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI.  
Other modes involving the CSB are available. The CSB can be  
held low indefinitely, which permanently enables the device;  
this is called streaming. The CSB can stall high between bytes to  
allow for additional external timing. When CSB is tied high, SPI  
functions are placed in high impedance mode. This mode turns  
on any SPI pin secondary functions.  
During an instruction phase, a 16-bit instruction is transmitted.  
Data follows the instruction phase, and its length is determined  
by the W0 and W1 bits.  
CONFIGURATION USING THE SPI  
Three pins define the SPI of this ADC: the SCLK pin, the SDIO  
pin, and the CSB pin (see Table 17). The SCLK (a serial clock) is  
used to synchronize the read and write data presented from and  
to the ADC. The SDIO (serial data input/output) is a dual-  
purpose pin that allows data to be sent to and read from the  
internal ADC memory map registers. The CSB (chip select bar)  
is an active low control that enables or disables the read and  
write cycles.  
In addition to word length, the instruction phase determines  
whether the serial frame is a read or write operation, allowing  
the serial port to be used both to program the chip and to read  
the contents of the on-chip memory. The first bit of the first byte in  
a multibyte serial data transfer frame indicates whether a read  
command or a write command is issued. If the instruction is a  
readback operation, performing a readback causes the serial  
data input/output (SDIO) pin to change direction from an input to  
an output at the appropriate point in the serial frame.  
Table 17. Serial Port Interface Pins  
Pin  
Function  
SCLK Serial clock. The serial shift clock input, which is used to  
synchronize serial interface reads and writes.  
SDIO Serial data input/output. A dual-purpose pin that  
typically serves as an input or an output, depending on  
the instruction being sent and the relative position in the  
timing frame.  
All data is composed of 8-bit words. Data can be sent in MSB-  
first mode or in LSB-first mode. MSB-first mode is the default  
on power-up and can be changed via the SPI port configuration  
register. For more information about this and other features,  
see the AN-877 Application Note, Interfacing to High Speed  
ADCs via SPI.  
CSB  
Chip select bar. An active low control that gates the read  
and write cycles.  
tHIGH  
tDS  
tCLK  
tH  
tS  
tDH  
tLOW  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 75. Serial Port Interface Timing Diagram  
Rev. 0 | Page 31 of 40  
 
 
 
 
AD9653  
Data Sheet  
pattern, and power-down feature control. In this mode, CSB  
should be connected to AVDD, which disables the serial port  
interface.  
HARDWARE INTERFACE  
The pins described in Table 17 comprise the physical interface  
between the user programming device and the serial port of the  
AD9653. The SCLK pin and the CSB pin function as inputs  
when using the SPI interface. The SDIO pin is bidirectional,  
functioning as an input during write phases and as an output  
during readback.  
Note that, when the CSB pin is tied to AVDD, the AD9653 DCS  
is on by default and remains on unless the part is placed in SPI  
mode and controlled via the SPI. Refer to the Clock Duty Cycle  
section for more information on the DCS.  
When the device is in SPI mode, the PDWN pin (if enabled)  
remains active. For SPI control of power-down, the PDWN pin  
should be set to its default state.  
The SPI interface is flexible enough to be controlled by either  
FPGAs or microcontrollers. One method for SPI configuration  
is described in detail in the AN-812 Application Note, Micro-  
controller-Based Serial Port Interface (SPI) Boot Circuit.  
SPI ACCESSIBLE FEATURES  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK signal, the CSB signal, and the SDIO signal are typically  
asynchronous to the ADC clock, noise from these signals can  
degrade converter performance. If the on-board SPI bus is used for  
other devices, it may be necessary to provide buffers between  
this bus and the AD9653 to prevent these signals from transi-  
tioning at the converter inputs during critical sampling periods.  
Table 18 provides a brief description of the general features that  
are accessible via the SPI. These features are described in detail  
in the AN-877 Application Note, Interfacing to High Speed ADCs  
via SPI. The AD9653 part-specific features are described in detail  
following Table 19, the external memory map register table.  
Table 18. Features Accessible Using the SPI  
Feature Name  
Description  
Power Mode  
Allows the user to set either power-down mode  
or standby mode  
Some pins serve a dual function when the SPI interface is not  
being used. When the pins are strapped to DRVDD or ground  
during device power-on, they are associated with a specific  
function. Table 15 and Table 16 describe the strappable  
functions supported on the AD9653.  
Clock  
Allows the user to set the clock divider, set the  
clock divider phase, and enable the sync  
Offset  
Test I/O  
Allows the user to digitally adjust the  
converter offset  
Allows the user to set test modes to have  
known data on output bits  
CONFIGURATION WITHOUT THE SPI  
In applications that do not interface to the SPI control registers,  
the SDIO/OLM pin, the SCLK/DTP pin, and the PDWN pin  
serve as standalone CMOS-compatible control pins. When the  
device is powered up, it is assumed that the user intends to use the  
pins as static control lines for the output lane mode, digital test  
Output Mode  
Output Phase  
Allows the user to set the output mode  
Allows the user to set the output clock polarity  
Rev. 0 | Page 32 of 40  
 
 
 
 
Data Sheet  
AD9653  
MEMORY MAP  
Default Values  
READING THE MEMORY MAP REGISTER TABLE  
After the AD9653 is reset, critical registers are loaded with  
default values. The default values for the registers are given in  
the memory map register table, Table 19.  
Each row in the memory map register table has eight bit locations.  
The memory map is roughly divided into three sections: the chip  
configuration registers (Address 0x00 to Address 0x02); the device  
index and transfer registers (Address 0x05 and Address 0xFF);  
and the global ADC functions registers, including setup, control,  
and test (Address 0x08 to Address 0x109).  
Logic Levels  
An explanation of logic level terminology follows:  
“Bit is set” is synonymous with “bit is set to Logic 1” or  
“writing Logic 1 for the bit.”  
The memory map register table (see Table 19) lists the default  
hexadecimal value for each hexadecimal address shown. The  
column with the heading Bit 7 (MSB) is the start of the default  
hexadecimal value given. For example, Address 0x05, the device  
index register, has a hexadecimal default value of 0x3F. This  
means that in Address 0x05, Bits[7:6] = 0, and the remaining  
Bits[5:0] = 1. This setting is the default channel index setting.  
The default value results in both ADC channels receiving the  
next write command. For more information on this function  
and others, see the AN-877 Application Note, Interfacing to High  
Speed ADCs via SPI. This application note details the functions  
controlled by Register 0x00 to Register 0xFF. The remaining  
registers are documented in the Memory Map Register  
Descriptions section.  
“Clear a bit” is synonymous with “bit is set to Logic 0” or  
“writing Logic 0 for the bit.”  
Channel-Specific Registers  
Some channel setup functions, such as the signal monitor  
thresholds, can be programmed differently for each channel. In  
these cases, channel address locations are internally duplicated  
for each channel. These registers and bits are designated in  
Table 19 as local. These local registers and bits can be accessed  
by setting the appropriate data channel bits (A, B, C, or D) and  
the clock channel DCO bit (Bit 5) and FCO bit (Bit 4) in  
Register 0x05. If all the bits are set, the subsequent write affects  
the registers of all channels and the DCO/FCO clock channels.  
In a read cycle, only one of the channels (A, B, C, or D) should  
be set to read one of the four registers. If all the bits are set  
during a SPI read cycle, the part returns the value for Channel A.  
Registers and bits designated as global in Table 19 affect the  
entire part or the channel features for which independent  
settings are not allowed between channels. The settings in  
Register 0x05 do not affect the global registers and bits.  
Open Locations  
All address and bit locations that are not included in Table 19  
are not currently supported for this device. Unused bits of a  
valid address location should be written with 0s. Writing to these  
locations is required only when part of an address location is  
open (for example, Address 0x05). If the entire address location  
is open or not listed in Table 19 (for example, Address 0x13), this  
address location should not be written.  
Rev. 0 | Page 33 of 40  
 
 
AD9653  
Data Sheet  
MEMORY MAP REGISTER TABLE  
The AD9653 uses a 3-wire interface and 16-bit addressing and,  
therefore, Bit 0 and Bit 7 in Register 0x00 are set to 0, and Bit 3  
and Bit 4 are set to 1. When Bit 5 in Register 0x00 is set high,  
the SPI enters a soft reset, where all of the user registers revert  
to their default values and Bit 2 is automatically cleared.  
Table 19.  
Default  
ADDR  
(Hex)  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Parameter Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Comments  
Chip Configuration Registers  
0x00  
SPI port  
configuration  
0 =  
SDO  
active  
LSB first  
Soft  
reset  
1 =  
16-bit  
address  
1 =  
16-bit  
address  
Soft  
reset  
LSB first  
0 = SDO 0x18  
active  
The nibbles  
are mirrored  
so that LSB-  
first or MSB-  
first mode  
registers  
correctly. The  
default for  
ADCs is 16-bit  
mode.  
0x01  
0x02  
Chip ID (global)  
8-bit chip ID, Bits[7:0]  
AD9653 0xB5 = quad, 16-bit, 125 MSPS serial LVDS  
0xB5  
Unique chip  
ID used to  
differentiate  
devices; read  
only.  
Chip grade  
(global)  
Open  
Speed grade ID[6:4]  
110 = 125 MSPS  
Open  
Open  
Open  
Open  
Unique  
speed grade  
ID used to  
differentiate  
graded  
devices; read  
only.  
Device Index and Transfer Registers  
Data  
Channel  
B
Data  
Channel  
A
0x3F  
Bits are set to  
determine  
which device  
on chip  
0x05  
Device index  
Open  
Open  
Clock  
Clock  
Channel Channel  
Data  
Channel  
D
Data  
Channel  
C
DCO  
FCO  
receives the  
next write  
command.  
The default is  
all devices on  
chip.  
0xFF  
Transfer  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Initiate  
override  
0x00  
0x00  
Set sample  
rate override.  
Global ADC Function Registers  
0x08  
Power modes  
(global)  
External  
power-  
down  
Power mode  
Determines  
various  
generic  
modes of chip  
operation.  
00 = chip run  
01 = full power-  
down  
10 = standby  
11 = reset  
pin  
function  
0 = full  
power-  
down  
1 =  
standby  
0x09  
Clock (global)  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Duty  
cycle  
stabilize  
0 = on  
1 = off  
0x01  
Turns duty  
cycle stabilizer  
on or off.  
Rev. 0 | Page 34 of 40  
 
 
Data Sheet  
AD9653  
Default  
Value  
(Hex)  
ADDR  
(Hex)  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Parameter Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Comments  
0x0B  
Clock divide  
(global)  
Open  
Open  
Open  
Open  
Open  
Clock divide ratio[2:0]  
000 = divide by 1  
001 = divide by 2  
010 = divide by 3  
011 = divide by 4  
100 = divide by 5  
101 = divide by 6  
110 = divide by 7  
111 = divide by 8  
0x00  
0x0C  
0x0D  
Enhancement  
control  
Open  
Open  
Open  
Open  
Open  
Chop  
Open  
Open  
0x00  
0x00  
Enables/  
disables chop  
mode.  
mode  
0 = off  
1 = on  
Test mode (local  
except for PN  
sequence resets)  
User input test mode  
00 = single  
Reset  
PN long  
gen  
Reset PN  
short  
gen  
Output test mode[3:0] (local)  
0000 = off (default)  
When set, the  
test data is  
placed on the  
output pins in  
place of  
0001 = midscale short  
0010 = positive FS  
0011 = negative FS  
01 = alternate  
10 = single once  
11 = alternate once  
(affects user input test  
mode only,  
0100 = alternating checkerboard  
0101 = PN 23 sequence  
0110 = PN 9 sequence  
0111 = one/zero word toggle  
1000 = user input  
normal data.  
Bits[3:0] = 1000)  
1001 = 1-/0-bit toggle  
1010 = 1× sync  
1011 = one bit high  
1100 = mixed bit frequency  
0x10  
0x14  
Offset adjust  
(local)  
8-bit device offset adjustment [7:0] (local)  
Offset adjust in LSBs from +127 to −128 (twos complement format)  
0x00  
0x01  
Device offset  
trim.  
Output mode  
Open  
LVDS-ANSI/  
LVDS-IEEE  
option  
0 = LVDS-  
ANSI  
Open  
Open  
Open  
Output  
invert  
(local)  
Open  
Output  
format  
0 =  
offset  
binary  
1 =  
Configures  
the outputs  
and the  
format of the  
data.  
1 = LVDS-  
IEEE  
twos  
reduced  
range link  
(global)  
see  
comple-  
ment  
(global)  
Table 20  
0x15  
0x16  
Output adjust  
Output phase  
Open  
Open  
Open  
Output driver  
termination[1:0]  
00 = none  
01 = 200 Ω  
10 = 100 Ω  
Open  
Open  
Open  
Output  
drive  
0 = 1×  
drive  
1 = 2×  
drive  
0x00  
0x03  
Determines  
LVDS or other  
output  
properties.  
11 = 100 Ω  
Input clock phase adjust[6:4]  
(value is number of input clock  
cycles of phase delay)  
see Table 21  
Output clock phase adjust[3:0]  
(0000 through 1011)  
see Table 22  
On devices  
that use  
global clock  
divide,  
determines  
which phase  
of the divider  
output is used  
to supply the  
output clock.  
Internal  
latching is  
unaffected.  
Rev. 0 | Page 35 of 40  
AD9653  
Data Sheet  
Default  
ADDR  
(Hex)  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Parameter Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Comments  
0x18  
VREF  
Open  
Open  
Open  
Open  
Open  
VREF adjustment  
0x04  
Selects  
internal VREF  
.
digital scheme[2:0]  
Values shown  
are for VREF  
000 = 1.0 V p-p (1.3 V p-p)  
001 = 1.14 V p-p (1.48 V p-p)  
010 = 1.33 V p-p (1.73 V p-p)  
011 = 1.6 V p-p (2.08 V p-p)  
100 = 2.0 V p-p (2.6 V p-p)  
=
1.0 V (1.3 V).  
0x19  
0x1A  
0x1B  
0x1C  
0x21  
USER_PATT1_LSB  
(global)  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B1  
B9  
B0  
B8  
B0  
B8  
0x00  
0x00  
0x00  
0x00  
0x30  
User Defined  
Pattern 1 LSB.  
USER_PATT1_MSB  
(global)  
B15  
B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
User Defined  
Pattern 1 MSB.  
USER_PATT2_LSB  
(global)  
User Defined  
Pattern 2 LSB.  
USER_PATT2_MSB  
(global)  
B15  
B14  
B13  
B12  
B11  
Open  
B10  
User Defined  
Pattern 2 MSB.  
Serial output data  
control (global)  
LVDS  
output  
LSB  
SDR/DDR one-lane/two-lane,  
bitwise/bytewise[6:4]  
Select  
2×  
frame  
Serial output  
number of bits  
00 = 16 bits  
Serial stream  
control.  
Default causes  
MSB first and  
the native bit  
stream.  
000 = SDR two-lane, bitwise  
001 = SDR two-lane, bytewise  
010 = DDR two-lane, bitwise  
011 = DDR two-lane, bytewise  
100 = DDR one-lane, wordwise  
first  
0x22  
Serial channel  
status (local)  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Channel  
output  
reset  
Channel 0x00  
power-  
down  
Used to  
power down  
individual  
sections of a  
converter.  
0x100  
Sample rate  
override  
Sample  
rate  
override  
0
0
Sample rate  
000 = 20 MSPS  
001 = 40 MSPS  
010 = 50 MSPS  
011 = 65 MSPS  
100 = 80 MSPS  
101 = 105 MSPS  
110 = 125 MSPS  
0x00  
Sample rate  
override  
(requires  
transfer  
register, 0xFF).  
enable  
0x101  
0x102  
0x109  
User I/O Control 2  
User I/O Control 3  
Sync  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
SDIO  
pull-  
down  
0x00  
0x00  
0x00  
Disables SDIO  
pull-down.  
VCM  
power-  
down  
Open  
Open  
VCM control.  
Open  
Sync  
next  
only  
Enable  
sync  
Rev. 0 | Page 36 of 40  
Data Sheet  
AD9653  
For applications that are sensitive to offset voltages and other  
MEMORY MAP REGISTER DESCRIPTIONS  
low frequency noise, such as homodyne or direct conversion  
receivers, chopping in the first stage of the AD9653 is a feature  
that can be enabled by setting Bit 2. In the frequency domain,  
chopping translates offsets and other low frequency noise to  
For additional information about functions controlled in  
Register 0x00 to Register 0xFF, see the AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI.  
Device Index (Register 0x05)  
fCLK/2 where it can be filtered.  
There are certain features in the map that can be set inde-  
pendently for each channel, whereas other features apply  
globally to all channels (depending on context) regardless of  
which are selected. The first four bits in Register 0x05 can be  
used to select which individual data channels are affected. The  
output clock channels can be selected in Register 0x05 as well.  
A smaller subset of the independent feature list can be applied  
to those devices.  
Bits[1:0]—Open  
Output Mode (Register 0x14)  
Bit 7—Open  
Bit 6—LVDS-ANSI/LVDS-IEEE Option  
Setting this bit chooses LVDS-IEEE (reduced range) option.  
The default setting is LVDS-ANSI. As described in Table 20,  
when LVDS-ANSI or LVDS-IEEE reduced range link is selected,  
the user can select the driver termination. The driver current  
is automatically selected to give the proper output swing.  
Transfer (Register 0xFF)  
All registers except Register 0x100 are updated the moment  
they are written. Setting Bit 0 of this transfer register high  
initializes the settings in the sample rate override register  
(Address 0x100).  
Table 20. LVDS-ANSI/LVDS-IEEE Options  
Output  
Mode,  
Bit 6  
Output  
Driver  
Termination  
Output  
Mode  
Output Driver  
Current  
Power Modes (Register 0x08)  
Bits[7:6]—Open  
0
LVDS-ANSI  
User  
selectable  
Automatically  
selected to give  
proper swing  
Bit 5—External Power-Down Pin Function  
1
LVDS-IEEE  
reduced  
range link  
User  
selectable  
Automatically  
selected to give  
proper swing  
If set, the external PDWN pin initiates standby mode. If cleared,  
the external PDWN pin initiates power-down mode.  
Bits[4:2]—Open  
Bits[5:3]—Open  
Bits[1:0]—Power Mode  
Bit 2—Output Invert  
In normal operation (Bits[1:0] = 00), all ADC channels are  
active.  
Setting this bit inverts the output bit stream.  
Bit 1—Open  
In power-down mode (Bits[1:0] = 01), the digital datapath clocks  
are disabled while the digital datapath is reset. Outputs are  
disabled.  
Bit 0—Output Format  
By default, this bit is set to send the data output in twos  
complement format. Resetting this bit changes the output mode  
to offset binary.  
In standby mode (Bits[1:0] = 10), the digital datapath clocks  
and the outputs are disabled.  
Output Adjust (Register 0x15)  
Bits[7:6]—Open  
During a digital reset (Bits[1:0] = 11), all the digital datapath  
clocks and the outputs (where applicable) on the chip are reset,  
except the SPI port. Note that the SPI is always left under  
control of the user; that is, it is never automatically disabled or  
in reset (except by power-on reset).  
Bits[5:4]—Output Driver Termination  
These bits allow the user to select the internal termination  
resistor.  
Clock (Register 0x09)  
Bits[7:1]—Open  
Bits[3:1]—Open  
Bit 0—Output Drive  
Bit 0—Duty Cycle Stabilize.  
Bit 0 of the output adjust register controls the drive strength on  
the LVDS driver of the FCO and DCO outputs only. The default  
values set the drive to 1× while the drive can be increased to 2×  
by setting the appropriate channel bit in Register 0x05 and then  
setting Bit 0. These features cannot be used with the output  
driver termination select. The termination selection takes  
precedence over the 2× driver strength on FCO and DCO when  
both the output driver termination and output drive are selected.  
The default state is Bit 0 = 1, duty cycle stabilizer off.  
Note that, when the part is not in SPI mode, the duty cycle  
stabilizer is on. Refer to the Configuration Without the SPI  
section for more information.  
Enhancement Control (Register 0x0C)  
Bits[7:3]—Open  
Bit 2—Chop Mode  
Rev. 0 | Page 37 of 40  
 
 
AD9653  
Data Sheet  
Output Phase (Register 0x16)  
Bit 7—Open  
Serial Output Data Control (Register 0x21)  
The serial output data control register is used to program the  
AD9653 in various output data modes depending upon the data  
capture solution. Table 23 describes the various serialization  
options available in the AD9653.  
Bits[6:4]—Input Clock Phase Adjust  
Table 21. Input Clock Phase Adjust Options  
Input Clock Phase  
Adjust, Bits[6:4]  
Number of Input Clock Cycles of  
Phase Delay  
Sample Rate Override (Register 0x100)  
This register is designed to allow the user to downgrade the sample  
rate. Settings in this register are not initialized until Bit 0 of the  
transfer register (Register 0xFF) is written high.  
000 (Default)  
001  
010  
011  
100  
101  
110  
111  
0
1
2
3
4
5
6
7
User I/O Control 2 (Register 0x101)  
Bits[7:1]—Open  
Bit 0—SDIO Pull-Down  
Bit 0 can be set to disable the internal 30 kΩ pull-down on the  
SDIO pin, which can be used to limit the loading when many  
devices are connected to the SPI bus.  
Bits[3:0]—Output Clock Phase Adjust  
Table 22. Output Clock Phase Adjust Options  
User I/O Control 3 (Register 0x102)  
Bits[7:4]—Open  
Output Clock (DCO),  
DCO Phase Adjustment (Degrees  
Relative to D0 x/D1 x Edge)  
Phase Adjust, Bits[3:0]  
Bit 3—VCM Power-Down  
0000  
0
0001  
0010  
0011 (Default)  
0100  
0101  
0110  
0111  
1000  
1001  
60  
Bit 3 can be set high to power down the internal VCM  
generator. This feature is used when applying an external  
reference.  
120  
180  
240  
300  
360  
420  
480  
540  
600  
660  
Bits[2:0]—Open  
1010  
1011  
Table 23. SPI Register Options  
Serialization Options Selected  
Register 0x21  
Contents  
Serial Output Number  
of Bits (SONB)  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
Frame Mode  
Serial Data Mode  
DCO Multiplier  
4 × fS  
4 × fS  
8 × fS  
8 × fS  
4 × fS  
4 × fS  
8 × fS  
8 × fS  
Timing Diagram  
Figure 2 (default setting)  
Figure 2  
Figure 2  
Figure 2  
Figure 3  
Figure 3  
Figure 3  
Figure 3  
0x30  
0x20  
0x10  
0x00  
0x34  
0x24  
0x14  
0x04  
0x40  
1×  
1×  
1×  
1×  
2×  
2×  
2×  
2×  
1×  
DDR two-lane, bytewise  
DDR two-lane, bitwise  
SDR two-lane, bytewise  
SDR two-lane, bitwise  
DDR two-lane, bytewise  
DDR two-lane, bitwise  
SDR two-lane, bytewise  
SDR two-lane, bitwise  
DDR one-lane, wordwise  
16-bit  
16-bit  
8 × fS  
Figure 4  
Rev. 0 | Page 38 of 40  
 
 
 
Data Sheet  
AD9653  
APPLICATIONS INFORMATION  
DESIGN GUIDELINES  
VCM  
The VCM pin should be bypassed to ground with a 0.1 μF  
capacitor.  
Before starting design and layout of the AD9653 as a system,  
it is recommended that the designer become familiar with these  
guidelines, which describes the special circuit connections and  
layout requirements that are needed for certain pins.  
REFERENCE DECOUPLING  
The VREF pin should be externally bypassed to ground with a  
low ESR, 1.0 μF capacitor in parallel with a low ESR, 0.1 μF  
ceramic capacitor.  
POWER AND GROUND RECOMMENDATIONS  
When connecting power to the AD9653, it is recommended  
that two separate 1.8 V supplies be used. Use one supply for  
analog (AVDD); use a separate supply for the digital outputs  
(DRVDD). For both AVDD and DRVDD, several different  
decoupling capacitors should be used to cover both high and  
low frequencies. Place these capacitors close to the point of  
entry at the PCB level and close to the pins of the part, with  
minimal trace length.  
SPI PORT  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK, CSB, and SDIO signals are typically asynchronous to the  
ADC clock, noise from these signals can degrade converter  
performance. If the on-board SPI bus is used for other devices,  
it may be necessary to provide buffers between this bus and the  
AD9653 to keep these signals from transitioning at the con-  
verter inputs during critical sampling periods.  
A single PCB ground plane should be sufficient when using the  
AD9653. With proper decoupling and smart partitioning of the  
PCB analog, digital, and clock sections, optimum performance  
is easily achieved.  
CROSSTALK PERFORMANCE  
The AD9653 is available in a 48-lead LFCSP package with the  
input pairs on either corner of the chip. See Figure 6 for the pin  
configuration. To maximize the crosstalk performance on the  
board, add grounded filled vias in between the adjacent  
channels as shown in Figure 77.  
EXPOSED PAD THERMAL HEAT SLUG  
RECOMMENDATIONS  
It is required that the exposed pad on the underside of the ADC  
be connected to analog ground (AGND) to achieve the best  
electrical and thermal performance of the AD9653. An exposed  
continuous copper plane on the PCB should mate to the  
AD9653 exposed pad, Pin 0. The copper plane should have  
several vias to achieve the lowest possible resistive thermal path  
for heat dissipation to flow through the bottom of the PCB.  
These vias should be solder-filled or plugged.  
To maximize the coverage and adhesion between the ADC and  
PCB, partition the continuous copper plane by overlaying a  
silkscreen on the PCB into several uniform sections. This provides  
several tie points between the ADC and PCB during the reflow  
process, whereas using one continuous plane with no partitions  
only guarantees one tie point. See Figure 76 for a PCB layout  
example. For detailed information on packaging and the PCB  
layout of chip scale packages, see the AN-772 Application Note,  
A Design and Manufacturing Guide for the Lead Frame Chip  
Scale Package (LFCSP), at www.analog.com.  
VIN  
CHANNEL A  
GROUNDED  
FILLED VIAS  
VIN  
FOR ADDED  
CHANNEL D  
CROSSTALK  
ISOLATION  
PIN 1  
VIN  
CHANNEL B  
VIN  
CHANNEL C  
Figure 77. Layout Technique to Maximize Crosstalk Performance  
SILKSCREEN PARTITION  
PIN 1 INDICATOR  
Figure 76. Typical PCB Layout  
Rev. 0 | Page 39 of 40  
 
 
 
 
 
 
 
 
 
 
AD9653  
Data Sheet  
OUTLINE DIMENSIONS  
7.10  
7.00 SQ  
6.90  
0.30  
0.23  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
37  
36  
48  
1
0.50  
BSC  
EXPOSED  
PAD  
5.65  
5.60 SQ  
5.55  
24  
13  
0.45  
0.40  
0.35  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WKKD.  
Figure 78. 48-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
7 mm × 7 mm Body, Very Very Thin Quad  
(CP-48-13)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
CP-48-13  
CP-48-13  
AD9653BCPZ-125  
AD9653BCPZRL7-125  
AD9653-125EBZ  
48-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
48-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10538-0-5/12(0)  
Rev. 0 | Page 40 of 40  
 
 
 

相关型号:

AD9653BCPZRL7-125

Quad, 16-Bit, 125 MSPS, Serial LVDS 1.8 V
ADI

AD9655

Dual, 16-Bit, 125 MSPS Serial LVDS, 1.8 V Analog-to-Digital Converter
ADI

AD9655-125EBZ

Dual, 16-Bit, 125 MSPS Serial LVDS, 1.8 V Analog-to-Digital Converter
ADI

AD9655BCPZ-125

Dual, 16-Bit, 125 MSPS Serial LVDS, 1.8 V Analog-to-Digital Converter
ADI

AD9655BCPZRL7-125

Dual, 16-Bit, 125 MSPS Serial LVDS, 1.8 V Analog-to-Digital Converter
ADI

AD9655_17

Dual, 16-Bit, 125 MSPS Serial LVDS, 1.8 V Analog-to-Digital Converter
ADI

AD9656

Quad, 16-Bit, 125 MSPS 1.8 V Analog-to-Digital Converter
ADI

AD9656BCPZ-125

Quad, 16-Bit, 125 MSPS 1.8 V Analog-to-Digital Converter
ADI

AD9656BCPZRL7-125

Quad, 16-Bit, 125 MSPS 1.8 V Analog-to-Digital Converter
ADI

AD9656EBZ

Quad, 16-Bit, 125 MSPS 1.8 V Analog-to-Digital Converter
ADI

AD9660

200 MHz Laser Diode Driver with Light Power Control
ADI

AD96606

200 MHz Laser Diode Driver with Light Power Control
ADI