AD9656EBZ [ADI]

Quad, 16-Bit, 125 MSPS 1.8 V Analog-to-Digital Converter;
AD9656EBZ
型号: AD9656EBZ
厂家: ADI    ADI
描述:

Quad, 16-Bit, 125 MSPS 1.8 V Analog-to-Digital Converter

文件: 总47页 (文件大小:1206K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad, 16-Bit, 125 MSPS, JESD204B  
1.8 V Analog-to-Digital Converter  
Data Sheet  
AD9656  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
PDWN  
DVDD DRVDD  
SNR = 79.9 dBFS at 16 MHz (VREF = 1.4 V)  
SNR = 78.1 dBFS at 64 MHz (VREF = 1.4 V)  
SFDR = 86 dBc to Nyquist (VREF = 1.4 V)  
JESD204B Subclass 1 coded serial digital outputs  
Flexible analog input range: 2.0 V p-p to 2.8 V p-p  
1.8 V supply operation  
Low power: 197 mW per channel at 125 MSPS (two lanes)  
DNL = 0.6 LSB (VREF = 1.4 V)  
INL = 4.5 LSB (VREF = 1.4 V)  
16  
VINA+  
VINA–  
SERDOUT0+  
SERDOUT0–  
PIPELINE  
ADC  
JESD204B  
INTERFACE  
SERDOUT1+  
SERDOUT1–  
16  
VINB+  
CML TX  
OUTPUTS  
PIPELINE  
ADC  
VINB–  
RBIAS  
VREF  
SERDOUT2+  
SERDOUT2–  
SERDOUT3+  
SERDOUT3–  
HIGH  
SPEED  
SERIALIZERS  
SENSE  
1V  
TO  
REF  
SELECT  
1.4V  
SYNCINB+  
SYNCINB–  
AGND  
16  
650 MHz analog input bandwidth, full power  
Serial port control  
VINC+  
VINC–  
PIPELINE  
ADC  
CONTROL  
Full chip and individual channel power-down modes  
Built-in and custom digital test pattern generation  
Multichip sync and clock divider  
16  
VIND+  
VIND–  
REGISTERS  
PIPELINE  
ADC  
SERIAL PORT  
INTERFACE  
CLOCK  
MANAGEMENT  
AD9656  
Standby mode  
VCM  
APPLICATIONS  
Medical ultrasound and MRI  
High speed imaging  
Quadrature radio receivers  
Diversity radio receivers  
Portable test equipment  
Figure 1.  
The AD9656 is available in an RoHS compliant, nonmagnetic,  
56-lead LFCSP. It is specified over the −40°C to +85°C  
industrial temperature range.  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
The AD9656 is a quad, 16-bit, 125 MSPS analog-to-digital  
converter (ADC) with an on-chip sample and hold circuit  
designed for low cost, low power, small size, and ease of use.  
The device operates at a conversion rate of up to 125 MSPS and  
is optimized for outstanding dynamic performance and low  
power in applications where a small package size is critical.  
1. It has a small footprint. Four ADCs are contained in a small,  
8 mm × 8 mm package.  
2. An on-chip phase-locked loop (PLL) allows users to provide  
a single ADC sampling clock; the PLL multiplies the ADC  
sampling clock to produce the corresponding JESD204B  
data rate clock.  
3. The configurable JESD204B output block supports up to  
8.0 Gbps per lane.  
4. JESD204B output block supports one, two, and four lane  
configurations.  
The ADC requires a single 1.8 V power supply and LVPECL-/  
CMOS-/LVDS-compatible sample rate clock for full performance  
operation. An external reference or driver components are not  
required for many applications.  
Individual channel power-down is supported and typically  
consumes less than 14 mW when all channels are disabled. The  
ADC contains several features designed to maximize flexibility  
and minimize system cost, such as a programmable output clock,  
data alignment, and digital test pattern generation. The available  
digital test patterns include built-in deterministic and pseudo-  
random patterns, along with custom user-defined test patterns  
entered via the serial port interface (SPI).  
5. Low power of 198 mW per channel at 125 MSPS, two lanes.  
6. The SPI control offers a wide range of flexible features to  
meet specific system requirements.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2013–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
AD9656* PRODUCT PAGE QUICK LINKS  
Last Content Update: 03/25/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
AD9656 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
EVALUATION KITS  
AD9656 Evaluation Board  
DOCUMENTATION  
Data Sheet  
DISCUSSIONS  
View all AD9656 EngineerZone Discussions.  
AD9656: Quad, 16-Bit, 125 MSPS, JESD204B 1.8 V Analog-  
to-Digital Converter Data Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
TOOLS AND SIMULATIONS  
AD9656 Input Impedance  
Visual Analog  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
AD9656 AMI Model  
REFERENCE MATERIALS  
Informational  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
JESD204 Serial Interface  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD9656  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Analog Input Considerations ................................................... 21  
Voltage Reference ....................................................................... 23  
Clock Input Considerations...................................................... 24  
Power Dissipation and Power-Down Mode ........................... 26  
Digital Outputs ........................................................................... 26  
Serial Port Interface (SPI).............................................................. 35  
Configuration Using the SPI..................................................... 35  
Hardware Interface..................................................................... 35  
SPI Accessible Features.............................................................. 35  
Memory Map .................................................................................. 37  
Reading the Memory Map Register Table............................... 37  
Memory Map Register Table..................................................... 38  
Memory Map Register Descriptions........................................ 42  
Applications Information.............................................................. 44  
Design Guidelines ...................................................................... 44  
Power and Ground Recommendations................................... 44  
Clock Stability Considerations ................................................. 44  
Exposed Pad Thermal Heat Slug Recommendations............ 44  
Reference Decoupling................................................................ 44  
SPI Port........................................................................................ 44  
Outline Dimensions....................................................................... 45  
Ordering Guide .......................................................................... 45  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
DC Specifications, VREF = 1.4 V.................................................. 3  
DC Specifications, VREF = 1.0 V.................................................. 4  
AC Specifications, VREF = 1.4 V .................................................. 5  
AC Specifications, VREF = 1.0 V .................................................. 6  
Digital Specifications ................................................................... 7  
Switching Specifications .............................................................. 8  
Timing Specifications .................................................................. 9  
Absolute Maximum Ratings.......................................................... 11  
Thermal Resistance .................................................................... 11  
ESD Caution................................................................................ 11  
Pin Configuration and Function Descriptions........................... 12  
Typical Performance Characteristics ........................................... 14  
VREF = 1.4 V ................................................................................. 14  
VREF = 1.0 V ................................................................................. 17  
Equivalent Circuits......................................................................... 20  
Theory of Operation ...................................................................... 21  
REVISION HISTORY  
3/2017—Rev. 0 to Rev. A  
Changes to Input Clock Divider Section..................................... 25  
Changes to Power Dissipation and Power-Down Mode Section...26  
Change to JESD204B Transmit Top Level Description Section .....26  
Added JESD204B Configurations Section Title, Initial JESD204B  
Link Startup Section, and Figure 65..................................................27  
Added Resynchronization Section and Figure 66.........................28  
Changes to CGS Phase Section and ILAS Phase Section............29  
Added Figure 67.......................................................................................29  
Change to Set Additional Digital Output Configuration  
Options Section........................................................................................31  
Changes to Figure 68 and Figure 68.....................................................32  
Changes to Digital Outputs and Timing Section and Figure 71.....33  
Changes to Hardware Interface Section ..............................................35  
Changes to Table 19.................................................................................39  
Change to Transfer (Register 0xFF) Section...................................42  
Changes to Resolution/Sample Rate Override (Register 0x100)....43  
Changes to Power and Ground Recommendations Section and  
Clock Stability Considerations Section............................................44  
Changed DSYNC to SYNCINB, to SYSREF, DSYNC to  
SYNCINB , and DSYSREF to SYSREF ....................Throughout  
Changes to Applications Section, General Description Section, and  
Product Highlights Section................................................................ 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 4  
Changes to AC Specifications, VREF = 1.4 V Section and Table 3 .... 5  
Change to AC Specifications, VREF = 1.0 V Section ..................... 6  
Changes to Worst Other Spur or Harmonic (Excluding Second  
or Third) Parameter, Table 4, Digital Specifications Section,  
and Table 5......................................................................................... 7  
Changes to Table 6............................................................................ 8  
Changes to Table 6 Endnotes .......................................................... 9  
Changes to Figure 2 Caption........................................................... 10  
Change to Table 8 ........................................................................... 11  
Changes to Table 10........................................................................ 12  
Changes to Figure 39, Figure 41, Figure 41 Caption,  
and Figure 44................................................................................... 20  
Added Figure 42, Renumbered Sequentially .............................. 20  
12/2013—Revision 0: Initial Version  
Rev. A | Page 2 of 46  
 
Data Sheet  
AD9656  
SPECIFICATIONS  
DC SPECIFICATIONS, VREF = 1.4 V  
AVDD = 1.8 V, DRVDD = 1.8 V, 2.8 V p-p full-scale differential input, 1.4 V reference, AIN = −1.0 dBFS, unless otherwise noted.  
Table 1.  
Parameter1  
Temperature  
Min  
Typ  
Max  
Unit  
RESOLUTION  
16  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Offset Matching  
Gain Error  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Guaranteed  
+0.14  
0.1  
+2.1  
1.4  
−0.1  
0
−2.0  
0
−0.95  
−10.0  
+0.5  
0.4  
+6.0  
5.0  
+2.54  
+10.0  
% FSR  
% FSR  
% FSR  
% FSR  
LSB  
Gain Matching  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
TEMPERATURE DRIFT  
Gain Error  
0.6  
4.5  
LSB  
Full  
Full  
12.3  
−2  
ppm/°C  
ppm/°C  
Offset Error  
INTERNAL VOLTAGE REFERENCE  
Output Voltage  
Load Regulation at 1.0 mA  
Input Resistance  
25°C  
25°C  
25°C  
1.37  
1.4  
4
7.5  
1.41  
V
mV  
kΩ  
INPUT REFERRED NOISE  
VREF = 1.4 V  
25°C  
2.1  
LSB rms  
ANALOG INPUTS  
Differential Input Voltage  
Common-Mode Voltage  
Common-Mode Range  
Differential Input Resistance  
Differential Input Capacitance  
POWER SUPPLY  
Full  
Full  
25°C  
25°C  
25°C  
2.8  
0.9  
V p-p  
V
V
kΩ  
pF  
0.7  
1.1  
2.6  
7
AVDD  
DVDD, DRVDD  
SVDD  
Full  
Full  
Full  
Full  
Full  
Full  
1.7  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
3.6  
306  
72  
V
V
V
mA  
mA  
mA  
IAVDD (125 MSPS, Two Lanes)2  
IDVDD (125 MSPS, Two Lanes)2  
IDRVDD (125 MSPS, Two Lanes)2  
TOTAL POWER CONSUMPTION  
DC Input (125 MSPS, Four Channels onto Two Lanes)  
Sine Wave Input (125 MSPS, Four Channels onto Two Lanes)2  
Power-Down Mode  
Standby Mode3  
288  
67  
83  
88  
25°C  
Full  
25°C  
25°C  
706  
788  
14  
mW  
mW  
mW  
mW  
839  
547  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Measured with a low input frequency, full-scale sine wave on all four channels.  
3 Standby can be controlled via the SPI.  
Rev. A | Page 3 of 46  
 
 
AD9656  
Data Sheet  
DC SPECIFICATIONS, VREF = 1.0 V  
AVDD = 1.8 V, DRVDD = 1.8 V, 2.0 V p-p full-scale differential input, 1.0 V reference, AIN = −1.0 dBFS, unless otherwise noted.  
Table 2.  
Parameter1  
Temperature  
Min  
Typ  
Max  
Unit  
RESOLUTION  
16  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Offset Matching  
Gain Error  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
Guaranteed  
0.2  
0.13  
1.8  
1.4  
0.6  
6.0  
% FSR  
% FSR  
% FSR  
% FSR  
LSB  
Gain Matching  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
TEMPERATURE DRIFT  
Gain Error  
LSB  
Full  
Full  
6.3  
−3  
ppm/°C  
ppm/°C  
Offset Error  
INTERNAL VOLTAGE REFERENCE  
Output Voltage  
Load Regulation at 1.0 mA  
Input Resistance  
25°C  
25°C  
25°C  
1.0  
2
7.5  
V
mV  
kΩ  
INPUT REFERRED NOISE  
VREF = 1.0 V  
25°C  
2.7  
LSB rms  
ANALOG INPUTS  
Differential Input Voltage  
Common-Mode Voltage  
Common-Mode Range  
Differential Input Resistance  
Differential Input Capacitance  
POWER SUPPLY  
Full  
Full  
25°C  
25°C  
25°C  
2.0  
0.9  
V p-p  
V
V
kΩ  
pF  
0.5  
1.3  
2.6  
7
AVDD  
DVDD, DRVDD  
SVDD  
Full  
Full  
Full  
1.7  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
3.6  
V
V
V
IAVDD (125 MSPS, Two Lanes)2  
IDVDD (125 MSPS, Two Lanes)2  
IDRVDD (125 MSPS, Two Lanes)2  
TOTAL POWER CONSUMPTION  
DC Input (125 MSPS, Four Channels onto Two Lanes)  
Sine Wave Input (125 MSPS, Four Channels onto Two Lanes)  
Power-Down Mode  
Standby Mode3  
25°C  
25°C  
25°C  
276  
69  
83  
mA  
mA  
mA  
25°C  
25°C  
25°C  
25°C  
688  
771  
14  
mW  
mW  
mW  
mW  
520  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Measured with a low input frequency, full-scale sine wave on all four channels.  
3 Standby can be controlled via the SPI.  
Rev. A | Page 4 of 46  
 
Data Sheet  
AD9656  
AC SPECIFICATIONS, VREF = 1.4 V  
AVDD = 1.8 V, DRVDD = 1.8 V, 2.8 V p-p full-scale differential input, 1.4 V reference, AIN = −1.0 dBFS, 125 MSPS, unless otherwise noted.  
Table 3.  
Parameter1  
Temperature  
Min  
Typ  
Max  
Unit  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 9.7 MHz  
fIN = 16 MHz  
fIN = 64 MHz  
fIN = 128 MHz  
fIN = 201 MHz  
fIN = 301 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
25°C  
80.1  
79.9  
78.1  
75  
72.7  
69.7  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
75.7  
SIGNAL-TO-NOISE-AND-DISTORTION (SINAD) RATIO  
fIN = 9.7 MHz  
fIN = 16 MHz  
fIN = 64 MHz  
fIN = 128 MHz  
fIN = 201 MHz  
fIN = 301 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
25°C  
79.6  
78.4  
77.3  
74.4  
71  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
74.8  
12.1  
78  
68.6  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 9.7 MHz  
fIN = 16 MHz  
fIN = 64 MHz  
fIN = 128 MHz  
fIN = 201 MHz  
fIN = 301 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
25°C  
12.9  
12.7  
12.5  
12.1  
11.5  
11.1  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 9.7 MHz  
fIN = 16 MHz  
fIN = 64 MHz  
fIN = 128 MHz  
fIN = 201 MHz  
fIN = 301 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
25°C  
89  
87  
86  
84  
76  
75  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
WORST HARMONIC (SECOND OR THIRD)  
fIN = 9.7 MHz  
fIN = 16 MHz  
fIN = 64 MHz  
fIN = 128 MHz  
fIN = 201 MHz  
fIN = 301 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
25°C  
−89  
−87  
−86  
−84  
−76  
−75  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
−78  
−87  
WORST OTHER SPUR OR HARMONIC (EXCLUDING SECOND OR THIRD)  
fIN = 9.7 MHz  
fIN = 16 MHz  
fIN = 64 MHz  
fIN = 128 MHz  
fIN = 201 MHz  
fIN = 301 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
25°C  
−96  
−92  
−90  
−89  
−93  
−90  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
Rev. A | Page 5 of 46  
 
AD9656  
Data Sheet  
Parameter1  
Temperature  
Min  
Typ  
Max  
Unit  
TWO-TONE INTERMODULATION DISTORTION (IMD)—INPUT AMPLITUDE = −7.0 dBFS  
fIN1 = 70.5 MHz, fIN2 = 72.5 MHz  
CROSSTALK2  
25°C  
25°C  
25°C  
25°C  
−84  
−93  
−89  
650  
dBc  
dB  
CROSSTALK (OVERRANGE CONDITION)3  
dB  
ANALOG INPUT BANDWIDTH, FULL POWER  
MHz  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Crosstalk is measured at 70 MHz with −1.0 dBFS analog input on one channel and no input on the adjacent channel.  
3 Overrange condition is defined as the input being 3 dB above full scale.  
AC SPECIFICATIONS, VREF = 1.0 V  
AVDD = 1.8 V, DRVDD = 1.8 V, 2.0 V p-p full-scale differential input, 1.0 V reference, AIN = −1.0 dBFS, 125 MSPS, unless otherwise noted.  
Table 4.  
Parameter1  
Temperature  
Min  
Typ  
Max  
Unit  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 9.7 MHz  
fIN = 16 MHz  
fIN = 64 MHz  
fIN = 128 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
78  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
77.9  
76.8  
74.3  
72.1  
69.3  
fIN = 201 MHz  
fIN = 301 MHz  
SIGNAL-TO-NOISE-AND-DISTORTION (SINAD) RATIO  
fIN = 9.7 MHz  
fIN = 16 MHz  
fIN = 64 MHz  
fIN = 128 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
78  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
77.7  
76.1  
74  
71.1  
68.6  
fIN = 201 MHz  
fIN = 301 MHz  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 9.7 MHz  
fIN = 16 MHz  
fIN = 64 MHz  
fIN = 128 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
12.7  
12.6  
12.3  
12.0  
11.5  
11.1  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
fIN = 201 MHz  
fIN = 301 MHz  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 9.7 MHz  
fIN = 16 MHz  
fIN = 64 MHz  
fIN = 128 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
99  
92  
89  
87  
78  
78  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 201 MHz  
fIN = 301 MHz  
WORST HARMONIC (SECOND OR THIRD)  
fIN = 9.7 MHz  
fIN = 16 MHz  
fIN = 64 MHz  
fIN = 128 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
−99  
−92  
−89  
−87  
−78  
−78  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 201 MHz  
fIN = 301 MHz  
Rev. A | Page 6 of 46  
 
Data Sheet  
AD9656  
Parameter1  
Temperature  
Min  
Typ  
Max  
Unit  
WORST OTHER SPUR OR HARMONIC (EXCLUDING SECOND OR THIRD)  
fIN = 9.7 MHz  
fIN = 16 MHz  
fIN = 64 MHz  
fIN = 128 MHz  
fIN = 201 MHz  
fIN = 301 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
−95  
−95  
−94  
−89  
−91  
−89  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
TWO-TONE INTERMODULATION DISTORTION (IMD)—INPUT AMPLITUDE = −7.0 dBFS  
fIN1 = 70.5 MHz, fIN2 = 72.5 MHz  
CROSSTALK2  
25°C  
25°C  
25°C  
25°C  
−89  
−94  
−89  
650  
dBc  
dB  
CROSSTALK (OVERRANGE CONDITION)3  
dB  
ANALOG INPUT BANDWIDTH, FULL POWER  
MHz  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Crosstalk is measured at 70 MHz with −1.0 dBFS analog input on one channel and no input on the adjacent channel.  
3 Overrange condition is defined as the input being 3 dB above full-scale.  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, SVDD = 1.8 V, 2.8 V p-p differential input, 1.4 V reference, AIN = −1.0 dBFS, unless otherwise noted.  
Table 5.  
Parameter1  
Temperature Min  
Typ  
Max  
Unit  
CLOCK INPUTS (CLK )  
Logic Compliance  
CMOS/LVDS/LVPECL  
Differential Input Voltage Range2  
Input Voltage Range  
Full  
Full  
0.2  
AGND − 0.2  
3.6  
AVDD + 0.2  
V p-p  
V
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance  
Full  
25°C  
25°C  
0.9  
15  
4
V
kΩ  
pF  
SYNCINB INPUT (SYNCINB )  
Logic Compliance  
Internal Common-Mode Bias  
Differential Input Voltage Range  
Input Voltage Range  
Input Common-Mode Voltage Range  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
LVDS  
0.9  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
V
0.3  
DGND  
0.9  
−5  
−5  
3.6  
DVDD  
1.4  
V p-p  
V
V
+5  
+5  
µA  
µA  
pF  
kΩ  
1
16  
Input Resistance  
12  
20  
SYSREF INPUT (SYSREF )  
Logic Compliance  
Internal Common-Mode Bias  
Differential Input Voltage Range  
Input Voltage Range  
Input Common-Mode Voltage Range  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
LVDS  
0.9  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
V
0.3  
AGND  
0.9  
−5  
−5  
3.6  
AVDD  
1.4  
V p-p  
V
V
+5  
+5  
µA  
µA  
pF  
kΩ  
4
10  
Input Resistance  
8
12  
LOGIC INPUT (SYNC)  
Logic 1 Voltage Range  
Logic 0 Voltage Range  
Input Resistance  
Full  
Full  
25°C  
25°C  
1.2  
0
AVDD + 0.2  
0.8  
V
V
kΩ  
pF  
30  
2
Input Capacitance  
Rev. A | Page 7 of 46  
 
 
AD9656  
Data Sheet  
Parameter1  
Temperature Min  
Typ  
Max  
Unit  
LOGIC INPUTS (CSB, PDWN, SCLK)  
Logic 1 Voltage Range  
Logic 0 Voltage Range  
Input Resistance  
Full  
Full  
25°C  
25°C  
1.2  
0
SVDD + 0.2  
0.8  
V
V
kΩ  
pF  
26  
2
Input Capacitance  
LOGIC INPUT (SDIO)  
Logic 1 Voltage Range  
Logic 0 Voltage Range  
Input Resistance  
Full  
Full  
25°C  
25°C  
1.2  
0
SVDD + 0.2  
0.8  
V
V
kΩ  
pF  
26  
5
Input Capacitance  
LOGIC OUTPUT (SDIO)3  
Logic 1 Voltage (IOH = 800 µA)  
Logic 0 Voltage (IOL = 50 µA)  
DIGITAL OUTPUTS (SERDOUTx )  
Logic Compliance  
Full  
Full  
1.79  
V
V
0.05  
Full  
Full  
Full  
CML  
Differential Output Voltage (VOD)  
Output Offset Voltage (VOS)  
400  
0.75  
600  
DRVDD/2  
750  
1.05  
mV  
V
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Specified for LVDS and LVPECL only.  
3 Specified for the SDIO pins on 13 individual AD9656 devices sharing the same connection.  
SWITCHING SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2.8 V p-p differential input, 1.4 V reference, AIN = −1.0 dBFS, unless otherwise noted.  
Table 6.  
Parameter1, 2  
Temperature  
Min  
Typ  
Max  
Unit  
CLOCK3  
Input Clock Rate  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
40  
40  
1000  
125  
MHz  
MSPS  
ns  
ns  
ns  
ns  
ps  
ps  
Conversion Rate4  
Clock Pulse Width High (tEH)  
Clock Pulse Width Low (tEL)  
SYNC Setup Time to Clock  
SYNC Hold Time to Clock  
SYSREF Setup Time to Clock (tREFS  
4.00  
4.00  
1.4  
−0.4  
600  
0
5
)
5
370  
−92  
SYSREF Hold Time to Clock (tREFH  
)
DATA OUTPUT PARAMETERS  
Data Output Period or Unit Interval (UI)  
Data Output Duty Cycle  
Full  
L/(20 × M × fS)  
Seconds  
%
UI  
µs  
25°C  
25°C  
25°C  
50  
0.81  
86  
Data Valid Time  
6
PLL Lock Time (tLOCK  
Wake-Up Time  
Standby  
ADC (Power-Down)7  
Output (Power-Down)8  
)
25°C  
25°C  
25°C  
Full  
Full  
Full  
250  
375  
86  
ns  
µs  
µs  
SYNCINB Falling Edge to First K.28 Characters  
CGS Phase K.28 Characters Duration  
Subclass 1: SYSREF Rising Edge to First Valid K.28 Characters9  
Pipeline Delay  
4
1
5
Multiframes  
Multiframe  
Multiframe  
6
JESD204B M4, L1 Mode (Latency)  
JESD204B M4, L2 Mode (Latency)  
JESD204B M4, L4 Mode (Latency)  
Data Rate per Lane  
Full  
Full  
Full  
Full  
23  
29  
44  
Cycles10  
Cycles10  
Cycles10  
Gbps  
8.0  
Rev. A | Page 8 of 46  
 
 
Data Sheet  
AD9656  
Parameter1, 2  
Temperature  
Min  
Typ  
Max  
Unit  
Deterministic Jitter (DJ)  
At 6.4 Gbps  
25°C  
8
ps  
Random Jitter (RJ)  
At 6.4 Gbps  
25°C  
25°C  
25°C  
1.25  
50  
100  
ps rms  
ps  
Output Rise Time/Fall Time  
Differential Termination Resistance  
APERTURE  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter, tJ)  
Out of Range Recovery Time  
25°C  
25°C  
25°C  
1
135  
1
ns  
fs rms  
Clock cycles  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Measured on standard FR-4 material.  
3 The clock divider can be adjusted via the SPI. The conversion rate is the clock rate after the divider.  
4 Maximum conversion rate is with the AD9656 not limited by the maximum allowable output data rate. See the Digital Outputs and Timing section for information on  
conditions when the conversion rate is limited by the maximum allowable output data rate.  
5 Refer to Figure 3 for timing diagram.  
6 Typical PLL lock time at 125 MSPS (24 μs + 7680 sample clock periods)  
7 Time required for the ADC to return to normal operation from power-down mode.  
8 Time required for the JESD204B output to return to normal operation from power-down mode at 125 MSPS (PLL lock time + 13 sample clock periods)  
9 Delay required for SYNCINB rising edge/Rx CGS start. See Figure 66.  
10 ADC conversion rate cycles.  
TIMING SPECIFICATIONS  
Table 7.  
Parameter  
Description  
Limit  
Unit  
SPI TIMING REQUIREMENTS  
See Figure 74  
tDS  
tDH  
tCLK  
tS  
tH  
tHIGH  
tLOW  
tEN_SDIO  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the SCLK  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
SCLK pulse width high  
SCLK pulse width low  
Time required for the SDIO pin to switch from an input to an output relative to the  
SCLK falling edge (not shown in Figure 74)  
2
2
40  
2
2
10  
10  
10  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
tDIS_SDIO  
Time required for the SDIO pin to switch from an output to an input relative to the  
SCLK rising edge (not shown in Figure 74)  
10  
ns min  
Rev. A | Page 9 of 46  
 
 
 
AD9656  
Data Sheet  
Timing Diagrams  
Refer to the Memory Map Register Table section for SPI register settings.  
SAMPLE N  
N – 23  
VINA+/  
N – 22  
VINA–  
N + 1  
N + 1  
N + 1  
N + 1  
N – 21  
N – 21  
N – 21  
N – 21  
N – 1  
N – 1  
N – 1  
N – 1  
N – 19  
N – 19  
N – 19  
N – 19  
N – 20  
N – 20  
N – 20  
N – 20  
SAMPLE N  
SAMPLE N  
SAMPLE N  
N – 23  
N – 23  
N – 23  
N – 22  
N – 22  
N – 22  
VINB+/  
VINB–  
VINC+/  
VINC–  
VIND+/  
VIND–  
CLK–  
CLK+  
CLK–  
CLK+  
SERDOUTx–  
SERDOUTx+  
VINA, SAMPLE N – 23,  
MSB FIRST, 8B/10B  
ENCODED DATA  
VINB, SAMPLE N – 23,  
MSB FIRST, 8B/10B  
ENCODED DATA  
VINC, SAMPLE N – 23,  
MSB FIRST, 8B/10B  
ENCODED DATA  
VIND, SAMPLE N – 23,  
MSB FIRST, 8B/10B  
ENCODED DATA  
Figure 2. Data Output Timing, M = 4, L = 1  
CLK+  
CLK–  
tREFH  
tREFS  
SYSREF–  
SYSREF+  
Figure 3. SYSREF Setup and Hold Timing (Clock Divider = 1)  
Rev. A | Page 10 of 46  
 
Data Sheet  
AD9656  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 8.  
θJA is for a 4-layer printed circuit board (PCB) with solid ground  
plane (simulated). The exposed pad is soldered to the PCB ground.  
Parameter  
Rating  
Electrical  
AVDD to AGND  
DRVDD to AGND  
DVDD to DVSS  
SVDD to AGND  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +3.9 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +3.9 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
Table 9. Thermal Resistance  
Air Flow  
Package Velocity θJA  
θJB  
θJC Top θJC Bottom  
Type  
(m/sec)  
(°C/W) (°C/W)1 (°C/W)1 (°C/W)1  
Digital Outputs to AGND  
CLK+, CLK− to AGND  
VINx+, VINx− to AGND  
SYSREF to AGND  
SYNCINB to AGND  
SCLK, SDIO, CSB, PDWN to AGND  
SYNC to AGND  
RBIAS to AGND  
VCM, VREF, SENSE to AGND  
Environmental  
56-Lead  
L F C S P,  
8 mm ×  
8 mm  
0
1
2.5  
22.4  
19.0  
17.6  
7.7  
N/A  
N/A  
7.42  
N/A  
N/A  
2.29  
N/A  
N/A  
1 N/A means not applicable.  
ESD CAUTION  
Operating Temperature Range (Ambient)  
Maximum Junction Temperature  
Lead Temperature (Soldering, 10 sec)  
Storage Temperature Range (Ambient)  
−40°C to +85°C  
150°C  
300°C  
−65°C to +150°C  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. A | Page 11 of 46  
 
 
 
AD9656  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AVDD  
VIND+  
VIND–  
AVDD  
1
2
3
4
5
6
7
8
9
42 AVDD  
41 VINA+  
40 VINA–  
39 AVDD  
38 PDWN  
37 CSB  
AVDD  
CLK–  
AD9656  
TOP VIEW  
36 SDIO  
35 SCLK  
34 DNC  
CLK+  
AVDD  
SYSREF+  
33 SVDD  
32 DVDD  
31 DVSS  
30 NIC  
SYSREF– 10  
AVDD 11  
DVDD 12  
DVSS 13  
NIC 14  
29 NIC  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED. CAN BE CONNECTED TO GROUND IF DESIRED.  
2. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN.  
3. THE EXPOSED THERMAL PAD ON THE BOTTOM OF THE PACKAGE PROVIDES  
THE ANALOG GROUND FOR THE PART. THIS EXPOSED PAD MUST BE  
CONNECTED TO GROUND FOR PROPER OPERATION.  
Figure 4. Pin Configuration, Top View  
Table 10. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
0
AGND,  
Exposed Pad  
Analog Ground, Exposed Pad. The exposed thermal pad on the bottom of the package provides the  
analog ground for the device. This exposed pad must be connected to ground for proper operation.  
1, 4, 5, 8, 11, 39, 42, AVDD  
43, 46, 52, 53, 56  
1.8 V Analog Supply Pins.  
2
VIND+  
ADC D Analog Input True.  
3
6, 7  
9
10  
VIND−  
ADC D Analog Input Complement.  
Differential Encode Clock. PECL, LVDS, or 1.8 V CMOS inputs.  
Active High JESD204B LVDS SYSREF Input True.  
Active High JESD204B LVDS SYSREF Input Complement.  
Digital Supply.  
CLK−, CLK+  
SYSREF+  
SYSREF−  
DVDD  
12, 32  
13, 31  
DVSS  
Digital Ground.  
14, 15, 29, 30  
16  
17  
18, 23, 28  
19  
20  
21  
22  
24  
25  
26  
27  
33  
NIC  
Not Internally Connected. Can be connected to ground if desired.  
Active Low JESD204B LVDS SYNC Input True.  
Active Low JESD204B LVDS SYNC Input Complement.  
Digital Output Driver Supply.  
Lane 3 Digital Output Complement.  
Lane 3 Digital Output True.  
SYNCINB+  
SYNCINB−  
DRVDD  
SERDOUT3−  
SERDOUT3+  
SERDOUT2+  
SERDOUT2−  
SERDOUT1−  
SERDOUT1+  
SERDOUT0+  
SERDOUT0−  
SVDD  
Lane 2 Digital Output True.  
Lane 2 Digital Output Complement.  
Lane 1 Digital Output Complement.  
Lane 1 Digital Output True.  
Lane 0 Digital Output True.  
Lane 0 Digital Output Complement.  
SPI Supply Pin.  
Rev. A | Page 12 of 46  
 
Data Sheet  
AD9656  
Pin No.  
34  
35  
Mnemonic  
DNC  
SCLK  
Description  
Do Not Connect. Do not connect to this pin.  
SPI Clock Input.  
36  
37  
SDIO  
CSB  
SPI Data Input and Output, Bidirectional.  
SPI Chip Select Bar. Active low enable; 30 kΩ internal pull-up resistor.  
38  
PDWN  
Digital Input. This pin has a 30 kΩ internal pull-down resistor. PDWN high = power-down device and  
PDWN low = run device (normal operation).  
40  
41  
44  
45  
47  
48  
49  
50  
51  
54  
55  
VINA−  
VINA+  
VINB+  
VINB−  
RBIAS  
SENSE  
VREF  
ADC A Analog Input Complement.  
ADC A Analog Input True.  
ADC B Analog Input True.  
ADC B Analog Input Complement.  
Sets Analog Current Bias. This pin connects a 10 kΩ (1% tolerance) resistor to ground.  
Reference Mode Selection.  
Voltage Reference Input and Output.  
Analog Input Common-Mode Voltage.  
Digital Input. Synchronous input to clock divider.  
ADC C Analog Input Complement.  
ADC C Analog Input True.  
VCM  
SYNC  
VINC−  
VINC+  
Rev. A | Page 13 of 46  
AD9656  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
VREF = 1.4 V  
0
0
–20  
A
IN  
= –1dBFS  
IN  
A
IN  
= –1dBFS  
IN  
f
= 9.7MHz  
f
= 128.1MHz  
SNR = 80.1dBFS  
SINAD = 78.7dBFS  
SFDR = 92dBc  
SNR = 75.3dBFS  
SINAD = 73.3dBFS  
SFDR = 81dBc  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
20  
40  
60  
0
20  
40  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 5. Single-Tone 32k FFT with fIN = 9.7 MHz,  
Figure 8. Single-Tone 32k FFT with fIN = 128.1 MHz,  
SAMPLE = 125 MSPS, VREF = 1.4 V  
f
SAMPLE = 125 MSPS, VREF = 1.4 V  
f
0
0
–20  
A
IN  
= –1dBFS  
= 16.3MHz  
A
f
= –1dBFS  
= 201MHz  
IN  
IN  
f
IN  
SNR = 79.9dBFS  
SINAD = 78.3dBFS  
SFDR = 89dBc  
SNR = 72.6dBFS  
SINAD = 70.2dBFS  
SFDR = 76dBc  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
20  
40  
60  
0
20  
40  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 9. Single-Tone 32k FFT with fIN = 201 MHz,  
Figure 6. Single-Tone 32k FFT with fIN = 16.3 MHz,  
SAMPLE = 125 MSPS, VREF = 1.4 V  
f
SAMPLE = 125 MSPS, VREF = 1.4 V  
f
0
–20  
0
–20  
A
= –1dBFS  
= 301MHz  
A
f
= –1dBFS  
= 64MHz  
IN  
IN  
f
IN  
IN  
SNR = 69.8dBFS  
SINAD = 67.5dBFS  
SFDR = 74dBc  
SNR = 78.5dBFS  
SINAD = 76.4dBFS  
SFDR = 83dBc  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
20  
40  
60  
0
20  
40  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 7. Single-Tone 32k FFT with fIN = 64 MHz,  
SAMPLE = 125 MSPS, VREF = 1.4 V  
Figure 10. Single-Tone 32k FFT with fIN = 301 MHz,  
SAMPLE = 125 MSPS, VREF = 1.4 V  
f
f
Rev. A | Page 14 of 46  
 
 
Data Sheet  
AD9656  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
SFDR (dBFS)  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBc)  
60  
SNR (dBFS)  
40  
SNR (dB)  
20  
0
–20  
–100  
–80  
–60  
–40  
–20  
0
0
50  
100 150 200 250 300 350 400 450 500  
INPUT FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 11. SNR/SFDR vs. Input Amplitude (AIN), fIN = 9.7 MHz,  
SAMPLE = 125 MSPS, VREF = 1.4 V  
Figure 14. SNR/SFDR vs. Input Frequency (fIN), fSAMPLE = 125 MSPS,  
REF = 1.4 V  
f
V
0
110  
100  
90  
A
f
= –7dBFS  
= 70.5MHz  
= 72.5MHz  
IN  
IN1  
IN2  
f
–20  
IMD2 = –98dBc  
IMD3 = –84dBc  
SFDR = 84dBc  
–40  
SFDR (dBc)  
–60  
2F1 – F2  
–80  
SNR (dBFS)  
80  
2F1 + F2  
F1 + 2F2  
2F2 – F1  
–100  
–120  
–140  
F2 – F1  
F1 + F2  
70  
60  
–40  
0
20  
40  
FREQUENCY (MHz)  
60  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 12. Two-Tone 32k FFT with fIN1 = 70.5 MHz and fIN2 = 72.5 MHz,  
Figure 15. SNR/SFDR vs. Temperature, fIN = 9.7 MHz,  
SAMPLE = 125 MSPS, VREF = 1.4 V  
f
SAMPLE = 125 MSPS, VREF = 1.4 V  
f
0
–20  
6
4
–SFDR (dBc)  
IMD3 (dBc)  
–40  
2
–60  
0
–80  
–2  
–4  
–6  
–SFDR (dBFS)  
IMD3 (dBFS)  
–100  
–120  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
10000  
20000  
30000  
40000  
50000  
60000  
INPUT AMPLITUDE (dBFS)  
OUTPUT CODE  
Figure 13. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with  
IN1 = 70.5 MHz and fIN2 = 72.5 MHz, fSAMPLE = 125 MSPS, VREF = 1.4 V  
Figure 16. Integral Nonlinearity (INL), fIN = 9.7 MHz, fSAMPLE = 125 MSPS,  
REF = 1.4 V  
f
V
Rev. A | Page 15 of 46  
AD9656  
Data Sheet  
120  
100  
80  
60  
40  
20  
0
0.6  
0.4  
0.2  
0
SFDR (dBc)  
SNR (dBFS)  
–0.2  
–0.4  
–0.6  
0
40  
60  
80  
100  
120  
10000  
20000  
30000  
40000  
50000  
60000  
SAMPLE RATE (MSPS)  
OUTPUT CODE  
Figure 19. SNR/SFDR vs. Sample Rate, fIN = 9.7 MHz, VREF = 1.4 V  
Figure 17. Differential Nonlinearity (DNL), fIN = 9.7 MHz, fSAMPLE = 125 MSPS,  
VREF = 1.4 V  
450000  
400000  
350000  
300000  
250000  
200000  
150000  
100000  
50000  
0
120  
2.0 LSB RMS  
100  
SFDR (dBc)  
80  
SNR (dBFS)  
60  
40  
20  
0
40  
50  
60  
70  
80  
90  
100  
110  
120  
SAMPLE RATE (MSPS)  
OUTPUT CODE  
Figure 18. Input Referred Noise Histogram, fSAMPLE = 125 MSPS, VREF = 1.4 V  
Figure 20. SNR/SFDR vs. Sample Rate, fIN = 64 MHz, VREF = 1.4 V  
Rev. A | Page 16 of 46  
Data Sheet  
AD9656  
VREF = 1.0 V  
0
0
–20  
A
f
= –1dBFS  
= 128.1MHz  
IN  
A
f
= –1dBFS  
= 9.7MHz  
IN  
IN  
IN  
SNR = 74.5dBFS  
SINAD = 73.0dBFS  
SFDR = 84dBc  
–20  
–40  
SNR = 78.0dBFS  
SINAD = 77.0dBFS  
SFDR = 99dBc  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
–140  
–140  
0
20  
40  
60  
0
20  
40  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 21. Single-Tone 32k FFT with fIN = 9.7 MHz,  
Figure 24. Single-Tone 32k FFT with fIN = 128.1 MHz,  
SAMPLE = 125 MSPS, VREF = 1.0 V  
f
SAMPLE = 125 MSPS, VREF = 1.0 V  
f
0
–20  
0
–20  
A
IN  
= –1dBFS  
= 16.3MHz  
A
f
= –1dBFS  
= 201MHz  
IN  
IN  
f
IN  
SNR = 78.0dBFS  
SINAD = 76.8dBFS  
SFDR = 94dBc  
SNR = 72.2dBFS  
SINAD = 70.2dBFS  
SFDR = 78dBc  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
20  
40  
60  
0
20  
40  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 22. Single-Tone 32k FFT with fIN = 16.3 MHz,  
fSAMPLE = 125 MSPS, VREF = 1.0 V  
Figure 25. Single-Tone 32k FFT with fIN = 201 MHz,  
SAMPLE = 125 MSPS, VREF = 1.0 V  
f
0
–20  
0
–20  
A
= –1dBFS  
A
f
= –1dBFS  
= 301MHz  
IN  
= 64MHz  
IN  
f
IN  
IN  
SNR = 76.9dBFS  
SINAD = 75.7dBFS  
SFDR = 90dBc  
SNR = 69.3dBFS  
SINAD = 67.6dBFS  
SFDR = 77dBc  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
20  
40  
60  
0
20  
40  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 23. Single-Tone 32k FFT with fIN = 64 MHz, fSAMPLE = 125 MSPS,  
REF = 1.0 V  
Figure 26. Single-Tone 32k FFT with fIN = 301 MHz, fSAMPLE = 125 MSPS,  
REF = 1.0 V  
V
V
Rev. A | Page 17 of 46  
 
AD9656  
Data Sheet  
120  
100  
80  
60  
40  
20  
0
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
SFDR (dBFS)  
SFDR (dBc)  
SNR (dBFS)  
SNR (dBFS)  
SFDR (dBc)  
SNR (dB)  
–20  
–90  
–70  
–50  
–30  
–10  
0
50  
100 150 200 250 300 350 400 450 500  
INPUT FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 27. SNR/SFDR vs. Input Amplitude (AIN), fIN = 9.7 MHz,  
SAMPLE = 125 MSPS, VREF = 1.0 V  
Figure 30. SNR/SFDR vs. Input Frequency (fIN), fSAMPLE = 125 MSPS, VREF = 1.0 V  
f
110  
0
A
f
= –7dBFS  
= 70.5MHz  
= 72.5MHz  
IN  
IN1  
f
–20  
IN2  
IMD2= –99dBc  
IMD3 = –89dBc  
SFDR = 89dBc  
100  
SFDR (dBc)  
–40  
90  
–60  
2F1 – F2  
–80  
80  
2F1 + F2  
SNR (dBFS)  
F1 + 2F2  
2F2 – F1  
–100  
–120  
–140  
F1 + F2  
F2 – F1  
70  
60  
0
20  
FREQUENCY (MHz)  
40  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 28. Two-Tone 32k FFT with fIN1 = 70.5 MHz and fIN2 = 72.5 MHz,  
Figure 31. SNR/SFDR vs. Temperature, fIN = 9.7 MHz,  
SAMPLE = 125 MSPS, VREF = 1.0 V  
f
SAMPLE = 125 MSPS, VREF = 1.0 V  
f
0
–20  
6
4
–SFDR (dBc)  
–40  
2
IMD3 (dBc)  
–60  
0
–80  
–2  
–4  
–6  
–SFDR (dBFS)  
IMD3 (dBFS)  
–100  
–120  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
10000  
20000  
30000  
40000  
50000  
60000  
INPUT AMPLITUDE (dBFS)  
OUTPUT CODE  
Figure 29. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with  
IN1 = 70.5 MHz and fIN2 = 72.5 MHz, fSAMPLE = 125 MSPS, VREF = 1.0 V  
Figure 32. Integral Nonlinearity (INL), fIN = 9.7 MHz, fSAMPLE = 125 MSPS,  
REF = 1.0 V  
f
V
Rev. A | Page 18 of 46  
Data Sheet  
AD9656  
0.6  
120  
100  
80  
60  
40  
20  
0
SFDR (dBc)  
SNR (dBFS)  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
0
10000  
20000  
30000  
40000  
50000  
60000  
40  
50  
60  
70  
80  
90  
100  
110  
120  
OUTPUT CODE  
SAMPLE RATE (MSPS)  
Figure 33. Differential Nonlinearity (DNL), fIN = 9.7 MHz, fSAMPLE = 125 MSPS,  
Figure 35. SNR/SFDR vs. Sample Rate, fIN = 9.7 MHz, VREF = 1.0 V  
VREF = 1.0 V  
350000  
300000  
250000  
200000  
150000  
100000  
50000  
0
120  
2.7 LSB RMS  
100  
80  
60  
40  
20  
0
SFDR (dBc)  
SNR (dBFS)  
40  
50  
60  
70  
80  
90  
100  
110  
120  
SAMPLE RATE (MSPS)  
OUTPUT CODE  
Figure 34. Input Referred Noise Histogram, fSAMPLE = 125 MSPS, VREF = 1.0 V  
Figure 36. SNR/SFDR vs. Sample Rate, fIN = 64 MHz, VREF = 1.0 V  
Rev. A | Page 19 of 46  
AD9656  
Data Sheet  
EQUIVALENT CIRCUITS  
AVDD  
DVDD  
SVDD  
375Ω  
VINx±  
SCLK,  
PDWN  
30kΩ  
Figure 37. Equivalent Analog Input Circuit  
Figure 42. Equivalent SCLK and PDWN Input Circuit  
AVDD  
10Ω  
CLK+  
AVDD  
15kΩ  
15kΩ  
0.9V  
AVDD  
375Ω  
RBIAS  
AND VCM  
10Ω  
CLK–  
Figure 38. Equivalent Clock Input Circuit  
Figure 43. Equivalent RBIAS and VCM Circuit  
SVDD  
DVDD  
SVDD  
DVDD  
400Ω  
SDIO  
30kΩ  
31kΩ  
350Ω  
CSB  
Figure 39. Equivalent SDIO Input Circuit  
Figure 44. Equivalent CSB Input Circuit  
DRVDD  
AVDD  
DRVDD  
DRVDD  
3mA  
3mA  
R
TERM  
350Ω  
VREF  
7.5Ω  
V
SERDOUTx+  
CM  
SERDOUTx–  
6mA  
Figure 40. Equivalent SERDOUTx Circuit  
Figure 45. Equivalent VREF Circuit  
AVDD  
350Ω  
SYNC  
30kΩ  
Figure 41. Equivalent SYNC Input Circuit  
Rev. A | Page 20 of 46  
 
Data Sheet  
AD9656  
THEORY OF OPERATION  
The AD9656 is a multistage, pipelined ADC. Each stage  
provides sufficient overlap to correct for flash errors in the  
preceding stage. The quantized outputs from each stage are  
combined into a final 16-bit result in the digital correction  
logic. The serializer transmits this converted data in a 16-bit  
output. The pipelined architecture permits the first stage to  
operate with a new input sample while the remaining stages  
operate with the preceding samples. Sampling occurs on the  
rising edge of the clock.  
or ferrite beads is required when driving the converter front end at  
high IF frequencies.  
Either a differential capacitor or two single-ended capacitors can  
be placed on the inputs to provide a matching passive network.  
This ultimately creates a low-pass filter at the input to limit  
unwanted broadband noise. See the AN-742 Application Note, the  
AN-827 Application Note, and the Analog Dialogue article  
Transformer-Coupled Front-End for Wideband A/D Converters”  
for more information. In general, the precise values depend on  
the application.  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched-capacitor DAC  
and an interstage residue amplifier (for example, a multiplying  
digital-to-analog converter [MDAC]). The residue amplifier  
magnifies the difference between the reconstructed DAC output  
and the flash input for the next stage in the pipeline. One bit of  
redundancy is used in each stage to facilitate digital correction  
of flash errors. The last stage simply consists of a flash ADC.  
Input Common-Mode Voltage  
The analog inputs of the AD9656 are not internally dc-biased.  
Therefore, in ac-coupled applications, the user must provide  
this bias externally. Setting the device so that VCM = AVDD/2 is  
recommended for optimum performance, but the device can  
function over a wider VCM range with reasonable performance,  
as shown in Figure 47 and Figure 48.  
The output staging block aligns the data, corrects errors, and  
passes the data to the output buffers. The data is then serialized  
and aligned to the frame and data clocks.  
110  
SFDR (dBc)  
100  
90  
ANALOG INPUT CONSIDERATIONS  
SNR (dBFS)  
80  
The analog input to the AD9656 is a differential switched-  
capacitor circuit designed for processing differential input  
signals. This circuit can support a wide common-mode range  
while maintaining excellent performance. By using an input  
common-mode voltage of midsupply, users can minimize  
signal-dependent errors and achieve optimum performance.  
70  
60  
50  
40  
30  
20  
H
0.5  
0.6  
0.7  
0.8  
0.9  
(V)  
1.0  
1.1  
1.2  
1.3  
V
CPAR  
CM  
H
VINx+  
Figure 47. SNR/SFDR vs. Common-Mode Voltage (VCM),  
fIN = 9.7 MHz, fSAMPLE = 125 MSPS, VREF = 1.0 V  
CSAMPLE  
S
S
S
S
110  
100  
90  
CSAMPLE  
SFDR (dBc)  
SNR (dBFS)  
VINx–  
H
CPAR  
H
80  
70  
Figure 46. Switched-Capacitor Input Circuit  
60  
The clock signal alternately switches the input circuit between  
sample mode and hold mode (see Figure 46). When the input  
circuit is switched to sample mode, the signal source must be  
capable of charging the sample capacitors and settling within  
one-half of a clock cycle. A small resistor in series with each input  
can help reduce the peak transient current injected from the  
output stage of the driving source. In addition, low Q inductors or  
ferrite beads can be placed on each leg of the input to reduce high  
differential capacitance at the analog inputs and therefore achieve  
the maximum bandwidth of the ADC. Such use of low Q inductors  
50  
40  
30  
20  
0.70  
0.75  
0.80  
0.85  
0.90  
(V)  
0.95  
1.00  
1.05  
1.10  
V
CM  
Figure 48. SNR/SFDR vs. Common-Mode Voltage (VCM),  
fIN = 9.7 MHz, fSAMPLE = 125 MSPS, VREF = 1.4 V  
Rev. A | Page 21 of 46  
 
 
 
 
 
AD9656  
Data Sheet  
An on-chip, common-mode voltage reference is included in the  
design and is available from the VCM pin. Bypass the VCM pin  
to ground with a 0.1 μF capacitor, as described in the  
Applications Information section.  
For applications where SNR is a key parameter, differential  
transformer coupling is the recommended input configuration  
(see Figure 50) because the noise performance of most amplifiers  
is not adequate to achieve the true performance of the AD9656.  
Maximum SNR performance is achieved by setting the ADC to  
the largest span in a differential configuration. In the case of the  
AD9656, the input span is dependent on the reference voltage  
(see Table 11).  
Regardless of the configuration, the value of the shunt capacitor, C,  
is dependent on the input frequency and may need to be reduced  
or removed.  
It is not recommended to drive the AD9656 inputs single-ended.  
Differential Input Configurations  
There are several ways to drive the AD9656 either actively or  
passively. However, optimum performance is achieved by  
driving the analog inputs differentially. Using a differential  
double balun configuration to drive the AD9656 provides excellent  
performance and a flexible interface to the ADC for baseband  
applications (see Figure 49).  
0.1µF  
R
*C1  
5pF  
0.1µF  
VINx+  
33  
33Ω  
33Ω  
C
2V p-p  
C
ADC  
0.1µF  
C
R
VCM  
VINx–  
33Ω  
ET1-1-I3  
*C1  
R
200Ω  
*C1 IS OPTIONAL.  
0.1µF  
C
0.1µF  
Figure 49. Differential Double Balun Input Configuration for Baseband Applications  
ADT1-1WT  
1:1 Z RATIO  
*C1  
R
VINx+  
VINx–  
33  
2Vp-p  
49.9ꢀ  
ADC  
C
5pF  
*C1  
R
VCM  
33ꢀ  
200ꢀ  
0.1µF  
0.1μF  
*C1 IS OPTIONAL  
Figure 50. Differential Transformer-Coupled Configuration for Baseband Applications  
Table 11. Reference Configuration Summary  
Resulting Differential  
Span (V p-p)  
Selected Mode  
SENSE Voltage (V)  
Resulting VREF (V)  
Fixed Internal Reference  
AGND to 0.2 V  
1.0 V to 1.4 V internal, SPI selectable with  
Register 0x18, Bits[7:6]  
2.0 to 2.8  
Programmable Internal Reference  
Fixed External Reference  
Tie SENSE pin to external R  
divider (see Figure 52)  
AVDD  
0.5 × (1 + R2/R1), for example: R1 = 3.2 kΩ, 2 × VREF  
R2 = 5.8 kΩ for VREF = 1.4 V  
1.0 V to 1.4 V applied to external VREF pin  
2.0 to 2.8  
Rev. A | Page 22 of 46  
 
 
 
Data Sheet  
AD9656  
VOLTAGE REFERENCE  
VINx+  
VINx–  
A stable and accurate voltage reference is built into the AD9656.  
VREF can be configured using the internal 1.0 V reference, using  
an externally applied 1.0 V to 1.4 V reference voltage, or using  
an external resistor divider applied to the internal reference to  
produce a user-selectable reference voltage. The reference modes  
are described in the Internal Reference Connection section and the  
External Reference Operation section. Externally bypass the  
VREF pin to ground with a low equivalent series resistance  
(ESR), 1.0 μF capacitor in parallel with a low ESR, 0.1 μF  
ceramic capacitor.  
ADC  
CORE  
VREF  
+
1.0µF  
0.1µF  
R2  
SELECT  
LOGIC  
SENSE  
R1  
0.5V  
Internal Reference Connection  
AD9656  
A comparator within the AD9656 detects the potential at the  
SENSE pin and configures the reference for one of three possible  
modes, which are summarized in Table 11. If SENSE is grounded,  
the reference amplifier switch is connected to the internal resistor  
divider (see Figure 51), setting the voltage at the VREF pin, VREF, to  
1.0 V. If SENSE is connected to an external resistor divider (see  
Figure 52), VREF is defined as  
Figure 52. Programmable Internal Reference Configuration  
If the internal reference of the AD9656 drives multiple converters  
to improve gain matching, the loading of the reference by the other  
converters must be considered. Figure 53 and Figure 54 show  
how the internal reference voltage is affected by loading.  
0
INTERNAL V  
= 1.0V  
REF  
R2  
R1  
VREF 0.51  
–1  
–2  
–3  
–4  
–5  
where:  
7 kΩ ≤ (R1 + R2) ≤ 10 kΩ  
VINx+  
VINx–  
ADC  
CORE  
0
0.5  
1.0  
1.5  
2.0  
2.5  
VREF  
LOAD CURRENT (mA)  
1.0µF  
0.1µF  
SELECT  
LOGIC  
Figure 53. VREF Error (Internal VREF = 1.0 V) vs. Load Current  
2
SENSE  
INTERNAL V  
= 1.4V  
REF  
0
–2  
0.5V  
AD9656  
Figure 51. 1.0 V Internal Reference Configuration  
–4  
–6  
–8  
–10  
–12  
0
0.5  
1.0  
1.5  
2.0  
2.5  
LOAD CURRENT (mA)  
Figure 54. VREF Error (Internal VREF = 1.4 V) vs. Load Current  
Rev. A | Page 23 of 46  
 
 
 
 
 
 
AD9656  
Data Sheet  
External Reference Operation  
Clock Input Options  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or to improve thermal drift  
characteristics. Figure 55 and Figure 56 show the typical drift  
characteristics of the internal reference in 1.0 V mode and  
1.4 V mode, respectively.  
The AD9656 has a flexible clock input structure. The clock input  
can be a CMOS, LVDS, LVPECL, or sine wave signal. Regardless of  
the type of signal used, clock source jitter is of the most  
concern, as described in the Jitter Considerations section.  
Figure 57 and Figure 58 show two preferred methods for clocking  
the AD9656 (at clock rates up to 1 GHz prior to internal clock  
divider). A low jitter clock source is converted from a single-ended  
signal to a differential signal using either a radio frequency (RF)  
transformer or an RF balun.  
3
INTERNAL V  
= 1.0V  
REF  
2
1
0
The RF balun configuration is recommended for clock frequencies  
between 125 MHz and 1 GHz, and the RF transformer  
configuration is recommended for clock frequencies from 40 MHz  
to 200 MHz. The Schottky diodes, across the transformer/balun  
secondary winding, limit clock excursions into the AD9656 to  
approximately 0.8 V p-p differential (see Figure 57 and Figure 58).  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
This limit helps prevent the large voltage swings of the clock from  
feeding through to other portions of the AD9656 while preserving  
the fast rise and fall times of the signal that are critical to achieving  
low jitter performance. However, the diode capacitance has an  
effect on frequencies above 500 MHz. Take care in choosing the  
appropriate signal limiting diode.  
–40  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
Figure 55. VREF Error vs. Temperature, Typical VREF = 1.0 V Drift  
3
INTERNAL VREF = 1.4V  
2
1
®
Mini-Circuits  
ADT1-1WT, 1:1 Z  
0
0.1µF  
0.1µF  
XFMR  
CLOCK  
INPUT  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
CLK+  
100  
50ꢀ  
ADC  
0.1µF  
CLK–  
SCHOTTKY  
DIODES:  
HSMS2822  
0.1µF  
Figure 57. Transformer-Coupled Differential Clock (Up to 200 MHz)  
–40  
–15  
10  
35  
60  
85  
0.1µF  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
TEMPERATURE (°C)  
50  
ADC  
Figure 56. VREF Error vs. Temperature, Typical VREF = 1.4 V Drift  
0.1µF  
CLK–  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. An internal  
reference buffer loads the external reference with an equivalent  
7.5 kΩ load. The internal buffer generates the positive and  
negative full-scale references for the ADC core.  
SCHOTTKY  
DIODES:  
HSMS2822  
Figure 58. Balun-Coupled Differential Clock (Up to 1 GHz)  
If a low jitter clock source is not available, another option is to  
ac-couple a differential PECL signal to the sample clock input  
pins, as shown in Figure 59. The AD9510/AD9511/AD9512/  
AD9513/AD9514/AD9515/AD9516/AD9517 clock drivers offer  
excellent jitter performance.  
It is not recommended to leave the SENSE pin floating.  
CLOCK INPUT CONSIDERATIONS  
For optimum performance, clock the AD9656 sample clock inputs,  
CLK+ and CLK−, with a differential signal. e signal is typically  
ac-coupled into the CLK+ and CLK− pins via a transformer or  
capacitors. These pins are biased internally and require no  
external bias.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
AD951x  
PECL DRIVER  
100  
ADC  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
240ꢀ  
240ꢀ  
50kꢀ  
50kꢀ  
Figure 59. Differential PECL Sample Clock (Up to 1 GHz)  
Rev. A | Page 24 of 46  
 
 
 
 
 
 
 
Data Sheet  
AD9656  
Another option is to ac-couple a differential LVDS signal to the  
sample clock input pins, as shown in Figure 60. The AD9510/  
AD9511/AD9512/AD9513/AD9514/AD9515/AD9516/AD9517  
clock drivers offer excellent jitter performance.  
Jitter in the rising edge of the input is still of concern and is not  
easily reduced by the internal stabilization circuit. The loop has  
a time constant associated with it that must be considered in  
applications in which the clock rate can change dynamically. A  
wait time of 1.5 µs to 5 µs is required after a dynamic clock  
frequency increase or decrease before the DCS loop is relocked  
to the input signal.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
AD951x  
LVDS DRIVER  
100Ω  
ADC  
Jitter Considerations  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
High speed, high resolution ADCs are sensitive to the quality of the  
clock input. The degradation in SNR at a given input frequency  
(fA) due only to aperture jitter (tJ) can be calculated by  
50kΩ  
50kΩ  
Figure 60. Differential LVDS Sample Clock (Up to 1 GHz)  
In some applications, it is acceptable to drive the sample  
clock inputs with a single-ended 1.8 V CMOS signal. In such  
applications, drive the CLK+ pin directly from a CMOS gate, and  
bypass the CLK− pin to ground with a 0.1 µF capacitor (see  
Figure 61).  
1
SNR Degradation = 20 log  
10   
2π× fA ×tJ  
In this equation, the rms aperture jitter represents the root sum  
square of all jitter sources, including the clock input, analog input  
signal, and ADC aperture jitter specifications. Intermediate  
frequency (IF) under-sampling applications are particularly  
sensitive to jitter (see Figure 62).  
V
CC  
OPTIONAL  
100Ω  
0.1µF  
1
0.1µF  
1kΩ  
1kΩ  
AD951x  
CMOS DRIVER  
CLOCK  
INPUT  
CLK+  
Treat the clock input as an analog signal in cases where aperture  
jitter can affect the dynamic range of the AD9656. Separate power  
supplies for clock drivers from the supplies for the ADC output  
driver to avoid modulating the clock signal with digital noise.  
Low jitter, crystal controlled oscillators make the best clock  
sources. If the clock is generated from another type of source  
(by gating, dividing, or other methods), retime it by the original  
clock at the last step.  
50Ω  
ADC  
CLK–  
0.1µF  
1
50Ω RESISTOR IS OPTIONAL.  
Figure 61. Single-Ended 1.8 V CMOS Input Clock (Up to 200 MHz)  
Input Clock Divider  
The AD9656 contains an input clock divider with the ability to  
divide the input clock by integer values from 1 to 8.  
Refer to the AN-501 Application Note and the AN-756  
Application Note for more in depth information about jitter  
performance as it relates to ADCs.  
The AD9656 clock divider can be synchronized using the  
external SYNC input. Bit 0 and Bit 1 of Register 0x109 allow the  
clock divider to resynchronize on every SYNC signal or only on  
the first SYNC signal after the register is written. A valid SYNC  
causes the clock divider to reset to the initial state. This synch-  
ronization feature allows multiple devices to have the clock  
dividers aligned to guarantee simultaneous input sampling.  
130  
RMS CLOCK JITTER REQUIREMENT  
120  
110  
16 BITS  
100  
90  
80  
70  
60  
50  
40  
30  
14 BITS  
12 BITS  
Alternatively, SYSREF can reset the clock divider by setting  
Register 0x109 Bit[7]. In this case SYNC is disabled.  
10 BITS  
8 BITS  
Clock Duty Cycle  
0.125ps  
0.25ps  
0.5ps  
1.0ps  
2.0ps  
Typical high speed ADCs use both clock edges to generate a variety  
of internal timing signals and, as a result, can be sensitive to the  
clock duty cycle. Commonly, a 5% tolerance is required on the  
clock duty cycle to maintain dynamic performance characteristics.  
1
10  
100  
1000  
ANALOG INPUT FREQUENCY (MHz)  
The AD9656 contains a duty cycle stabilizer (DCS) that retimes  
the nonsampling (falling) edge, providing an internal clock  
signal with a nominal 50% duty cycle. This feature minimizes  
performance degradation in cases where the clock input duty  
cycle deviates more than the specified 5% from the nominal 50%  
duty cycle. Enabling the DCS function can significantly improve  
noise and distortion performance for clock input duty cycles  
ranging from 30% to 45% and from 55% to 70%.  
Figure 62. Ideal SNR vs. Analog Input Frequency and Jitter  
Rev. A | Page 25 of 46  
 
 
 
 
AD9656  
Data Sheet  
POWER DISSIPATION AND POWER-DOWN MODE  
DIGITAL OUTPUTS  
JESD204B Transmit Top Level Description  
As shown in Figure 63 and Figure 64, the power dissipated by  
the AD9656 is proportional to the sample rate.  
The AD9656 digital output uses the JEDEC Standard No.  
JESD204B, Serial Interface for Data Converters. JESD204B is a  
protocol to link the AD9656 to a digital processing device over a  
serial interface with link speeds up to 8.0 Gbps. The benefits of  
the JESD204B interface include a reduction in the required  
board area for data interface routing and the enabling of smaller  
packages for converter and logic devices. The AD9656 supports  
single, dual, and four lane interfaces.  
The AD9656 is placed in power-down mode either by the SPI  
port or by asserting the PDWN pin high. In power-down mode,  
the ADC typically dissipates 14 mW. During power-down, the  
output drivers are placed in a high impedance state. When the  
PDWN pin is asserted low, the AD9656 returns to normal operating  
mode. Note that PDWN is referenced to SVDD and must not  
exceed that supply voltage.  
JESD204B Overview  
Low power dissipation in power-down mode is achieved by  
shutting down the reference, reference buffer, biasing networks,  
and clock. Internal capacitors are discharged when entering  
power-down mode and must then be recharged when returning  
to normal operation. As a result, wake-up time is related to the  
time spent in power-down mode; shorter power-down cycles  
result in proportionally shorter wake-up times. When using the  
SPI port interface, the user can place the ADC in power-down  
mode or standby mode. Standby mode allows the user to keep  
the internal reference circuitry powered when faster wake-up  
times are required. See the Memory Map section for more  
information about using these features.  
The JESD204B data transmit block, JTX, assembles the parallel  
data from the ADC into frames and uses 8b/10b encoding, as well  
as optional scrambling, to form serial output data. Lane  
synchronization is supported using special characters during the  
initial establishment of the link, and additional synchronization is  
embedded in the data stream thereafter. A matching external  
receiver is required to lock onto the serial data stream and recover  
the data and clock. For additional information about the  
JESD204B interface, refer to the JESD204B standard.  
The AD9656 JESD204B transmit block maps the output of the  
four ADCs over a link. A link can be configured to use either  
single, dual, or four serial differential outputs, which are called  
lanes. The JESD204B specification refers to a number of parameters  
to define the link, and these parameters must match between the  
JESD204B transmitter (AD9656 output) and receiver.  
0.80  
0.75  
0.70  
125MSPS  
SETTING  
0.65  
The JESD204B link is described according to the following  
parameters:  
0.60  
105MSPS  
SETTING  
0.55  
80MSPS  
S = samples transmitted/single converter/frame cycle  
(AD9656 value = 1)  
M = number of converters/converter device (AD9656  
value = 4)  
L = number of lanes/converter device (AD9656 value =  
1, 2, or 4)  
0.50  
0.45  
0.40  
0.35  
0.30  
SETTING  
65MSPS  
SETTING  
50MSPS  
SETTING  
40  
60  
80  
100  
120  
N = converter resolution (AD9656 value = 16)  
N’ = total number of bits per sample (AD9656 value = 16)  
CF = number of control words/frame clock cycle/converter  
device (AD9656 value = 0)  
CS = number of control bits/conversion sample (AD9656  
value = 0)  
K = number of frames per multiframe (configurable on  
the AD9656)  
HD = high density mode (AD9656 value = 0)  
F = octets/frame (AD9656 value = 2, 4, or 8, dependent  
upon L = 4, 2, or 1)  
SAMPLE RATE (MSPS)  
Figure 63. Total Power vs. fSAMPLE for fIN = 9.7 MHz, Four Channels (VREF = 1.4 V)  
0.80  
0.75  
0.70  
125MSPS  
SETTING  
0.65  
0.60  
105MSPS  
SETTING  
0.55  
0.50  
80MSPS  
SETTING  
0.45  
C = control bit (overrange, overflow, underflow;  
unavailable in the AD9656 default mode)  
T = tail bit (unavailable in the AD9656 default mode)  
SCR = scrambler enable/disable (configurable on the AD9656)  
FCHK = checksum for the JESD204B parameters  
(automatically calculated and stored in the register map)  
65MSPS  
0.40  
SETTING  
0.35  
50MSPS  
SETTING  
0.30  
40  
60  
80  
100  
120  
SAMPLE RATE (MSPS)  
Figure 64. Total Power vs. fSAMPLE for fIN = 9.7 MHz, Four Channels (VREF = 1.0 V)  
Rev. A | Page 26 of 46  
 
 
 
 
 
Data Sheet  
AD9656  
JESD204B Configurations  
If scrambling is disabled, the following applies. If the last scrambled  
octet of the last frame of the multiframe equals the last octet of  
the previous frame, the transmitter replaces the last octet with  
the control character /A/ = /K28.3/. On other frames within the  
multiframe, if the last octet in the frame equals the last octet of  
the previous frame, the transmitter replaces the last octet with  
the control character /F/= /K28.7/.  
Figure 68 shows a simplified conceptual block diagram of the  
AD9656 JESD204B link. By default, the AD9656 is configured  
to use four converters and one lane. The AD9656 allows for other  
configurations such as combining the outputs of two of the four  
converters onto a single lane resulting in the data from the four  
converters being output on two lanes. The mapping of the 0, 1,  
2, and 3 digital output paths can be changed. These modes are  
set up through a quick configuration register in the SPI register  
map, along with additional customizable options.  
If scrambling is enabled, the following applies. If the last octet of  
the last frame of the multiframe equals 0x7C, the transmitter  
replaces the last octet with the control character /A/ = /K28.3/.  
On other frames within the multiframe, if the last octet equals  
0xFC, the transmitter replaces the last octet with the control  
character /F/ = /K28.7/.  
By default in the AD9656, the 16-bit word from each converter  
is divided into two octets (8 bits of data each). Bit 0 (MSB)  
through Bit 7 are in the first octet and Bit 8 through Bit 15 (LSB)  
are the second octet.  
Refer to JEDEC Standard No. JESD204B (July 2011) for additional  
information about the JESD204B interface. Section 5.1 covers  
the transport layer and data format details, and Section 5.2 covers  
scrambling and descrambling.  
The two resulting octets can be scrambled. Scrambling is  
optional; however, it is available to avoid spectral peaks when  
transmitting similar digital data patterns. The scrambler uses a  
self synchronizing, polynomial-based algorithm defined by the  
equation 1 + x14 + x15. The descrambler in the receiver must be a  
self synchronizing version of the scrambler polynomial.  
Initial JESD204B Link Startup  
The power-on default JESD204B state of the AD9656 is M4L1.  
Once the ADC is configured and the appropriate clocks are  
provided, any JESD204B parameters different from the default  
configuration must be set prior to enabling the link. Figure 65  
depicts the start-up and synchronization timing of the AD9656  
JESD204B Tx in subclass 1 mode. It is recommended that the  
SYNCINB signal (defined as SYNC~, according to the JESD204B  
standard) is asserted at power-up and must not be deasserted  
until after SYSREF has been applied according to the timing  
illustrated in the figure. Once the PLL has settled the serial outputs  
on each lane, begin to toggle between 1s and 0’s. Shortly thereafter  
(13 frame clock cycles), K28.5 characters are sent across the link  
on each lane and the local multiframe clock (LMFC) is generated.  
At this time SYSREF can be applied.  
The two octets are then encoded with an 8b/10b encoder. The  
8b/10b encoder works by taking eight bits of data (an octet) and  
encoding them into a 10-bit symbol. Figure 69 shows how the  
16-bit data is output from the ADC, the two octets are scrambled,  
and how the octets are encoded into two 10-bit symbols. Figure 69  
illustrates the default data format.  
At the data link layer, in addition to the 8b/10b encoding,  
character replacement allows the receiver to monitor frame  
alignment. The character replacement process occurs on the frame  
and multiframe boundaries, and implementation depends on  
which boundary is occurring and if scrambling is enabled.  
POWER ON PLL LOCKED  
SYNCINB  
SYNCINB DEASSERT  
SYSREF  
0101..  
DATA OUT  
K28.5  
K28.5  
ILAS  
LMFC  
ADC  
DEASSERT SYNCINB  
ON SECOND LMFC  
AFTER SYSREF  
ILAS STARTS ON  
SECOND LMFC  
AFTER SYNCINB  
DEASSERT  
24µs + 7680  
SAMPLE CLOCKS  
120µs TOTAL AT 80MHz  
13 FRAMES  
< 2 LMFCs FOR  
STABLE LMFC  
AFTER SYSREF  
Figure 65. JESD204B Tx Start-Up and Synchronization Timing  
Rev. A | Page 27 of 46  
 
AD9656  
Data Sheet  
Once the new phase of LMFC is stable, SYNCINB must remain  
asserted for at least four LMFC cycles for the AD9656 to respond  
by sending the K28.5 characters. This commences the CGS portion  
of subclass 1 synchronization. Once the Tx deasserts the SYNCINB  
signal, the ILAS starts on the second LMFC boundary.  
Resynchronization  
Figure 66 depicts the resynchronization timing for the AD9656  
JESD204B interface. When the subclass 1 receiving logic device  
is ready to resynchronize, it asserts the SYNCINB signal and  
issues a SYSREF request. Note that once SYSREF is applied, the  
JESD204B internal clocks are reset and take up to 2 LMFC  
periods to fully settle.  
SYSREF REQUEST START OF  
(ASSERT SYNCINB) SYSREF  
SYNCINB  
DEASSERT  
START CGS  
SYNCINB  
SYSREF  
ADC DATA  
K28.5  
ILAS  
DATA OUT  
LMFC  
ADC  
< 2 LMFCs FOR  
STABLE LMFC  
AFTER SYSREF  
ILAS START ON SECOND LMFC  
AFTER SYNCINB DEASSERT  
UP TO 6 LMFCs AFTER SYREF  
RISING EDGE TO START CGS  
Figure 66. JESD204B Tx Resynchronization Timing  
Rev. A | Page 28 of 46  
 
Data Sheet  
AD9656  
JESD204B Synchronization Details  
ILAS Phase  
The AD9656 is a JESD204B Subclass 1 device and establishes  
synchronization of the link through two control signals (SYSREF  
and SYNCINB). At the system level, multiple converter devices are  
aligned using a common SYSREF signal and device clock (CLK).  
The ILAS phase begins on the second LMFC boundary after  
SYNCINB is deasserted; and the ILAS phase contents are as  
illustrated in Figure 67. The transmitter sends out the ILAS  
according to the JESD204B standard, and the receiver aligns  
all lanes of the link and verifies the parameters of the link.  
The synchronization process is accomplished over three phases:  
code group synchronization (CGS), initial lane alignment sequence  
(ILAS), and data transmission. If scrambling is enabled, the bits are  
not scrambled until the data transmission phase. The CGS phase  
and ILAS phase do not use scrambling.  
The ILAS phase lasts for four multiframes and includes the  
following:  
Multiframe 1: Begins with an /R/ character [K28.0] and  
ends with an /A/ character [K28.3].  
CGS Phase  
Multiframe 2: Begins with an /R/ character followed by a  
/Q/ [K28.4] character, followed by link configuration  
parameters over 14 configuration octets (see Table 12),  
and ends with an /A/ character.  
The assertion of the SYNCINB signal by the JESD204B Rx for  
more than 5 frames and 9 octets informs the JESD204B Tx to  
synchronize. To have the AD9656 to respond by initiating the  
CGS phase, the SYNCINB signal must be asserted for at least 4  
LMFC cycles if no SYSREF realignment is required. As illustrated  
in Figure 66, if SYSREF realignment is needed, the SYNCINB  
signal must be asserted for at least 6 LMFC cycles. In the CGS  
phase, the JESD204B transmit block transmits /K28.5/ characters.  
The receiver (external logic device) must find K28.5 characters  
in the input data stream using clock and data recovery (CDR)  
techniques.  
Multiframe 3: same as Multiframe 1.  
Multiframe 4: same as Multiframe 1.  
During the transmission of the ILAS, all data that is not a K28  
control character or a configuration parameter is a repeating ramp  
pattern from 0 to 255. In the default state (M = 4, L = 1, K = 32),  
there are 256 octets per multiframe, which allows the ramp to  
complete within Multiframe 1, 3, and 4. For configurations with  
less than 256 octets per multiframe, the ramp continues to rise into  
the next multiframe. Multiframe 2 has 14 configuration octets  
following a /Q/ character that is transmitted instead of ramp  
values. The ramp continues to advance internally while the 14  
configuration octets are transmitted and ramp values appear  
again after the 14 configuration octets end.  
When a certain number of consecutive K28.5 characters are  
detected on the link lanes, the receiver initiates a SYSREF edge  
so that the AD9656 transmit data establishes a LMFC internally.  
The SYSREF edge also resets any sampling edges within the  
ADC to align sampling instances to the LMFC. This is important  
to maintain synchronization across multiple devices.  
The receiver or logic device deasserts the SYNCINB signal applied  
to the SYNCINB pin according to the previously stated timing  
requirements.  
CGS  
ILAS  
USER DATA  
DATA  
LMFC  
K
K
K
R
0
1
2...253  
A
R
Q C...C 15...253  
A
R
0...253  
A
R
0...253  
A SAMPLE DATA...  
K = CGS CNTL. CHAR.  
R = START OF MULTIFRAME.  
A = END OF MULTIFRAME.  
Q = START OF LINK CFG DATA  
LINCFG DATA  
Figure 67. ILAS Data Sequence, M = 4, L = 1, K = 32  
Rev. A | Page 29 of 46  
 
AD9656  
Data Sheet  
Configure Detailed Options  
Table 12. 14 Configuration Octets of the ILAS Phase  
Bit 7  
No. (MSB)  
Bit 0  
Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 (LSB)  
Configure the tail bits and control bits.  
With N’ = 16 and N = 14 (nondefault configuration), two  
bits are available per sample for transmitting additional  
information over the JESD204B link. The options are tail  
bits or control bits. By default, tail bits of 0b00 value are used.  
Tail bits are dummy bits sent over the link to complete the  
two octets and do not convey any information about the input  
signal. Tail bits can be fixed zeros (default) or pseudo-  
random numbers (Register 0x5F, Bit 6).  
0
1
2
DID[7:0]  
BID[3:0]  
LID[4:0]  
3
SCR  
L[4:0]  
4
F[7:0]  
5
K[4:0]  
6
M[7:0]  
7
CS[1:0]  
N[4:0]  
N’[4:0]  
S[4:0]  
One or two control bits can be selected to replace the tail  
bits using Register 0x72, Bits[7:6]. The meaning of the  
control bits can be set using Register 0x14, Bits[7:5].  
8
SUBCLASS[2:0]  
JESDV[2:0]  
9
10  
11  
12  
13  
CF[4:0]  
Reserved, don’t care (RES1)  
Reserved, don’t care (RES2)  
FCHK[7:0]  
Set lane identification values.  
JESD204B allows parameters to identify the device and  
lane. These parameters are transmitted during the ILAS phase,  
and they are accessible in the internal registers.  
Data Transmission Phase  
In the data transmission phase, frame alignment is monitored  
with control characters. Character replacement is used at the  
end of frames. Character replacement in the transmitter occurs  
in the following instances:  
The three identification values are device identification  
(DID), bank identification (BID), and lane identification  
(LID). DID and BID are device specific; therefore, they can  
be used for link identification.  
If scrambling is disabled and the last octet of the frame or  
multiframe equals the octet value of the previous frame.  
If scrambling is enabled and the last octet of the  
multiframe is equal to 0x7C, or the last octet of a frame is  
equal to 0xFC.  
Set the number of frames per multiframe, K.  
Per the JESD204B specification, a multiframe is defined as a  
group of K successive frames, where K is from 1 to 32, and  
requires that the number of octets be from 17 to 1024. The  
K value is set to 32 by default in Register 0x70, Bits[4:0].  
Note that the K value is the register value plus 1.  
The K value can be changed; however, it must comply with  
a few conditions. The AD9656 uses a fixed value for octets  
per frame (F) based on the JESD204B quick configuration  
setting. K must also be a multiple of 4 and conform to the  
following equation:  
Link Setup Parameters  
The following demonstrates how to configure the AD9656  
JESD204B interface. The steps to configure the output include  
the following:  
1. Disable the lanes before changing configuration.  
2. Select one quick configuration option.  
3. Configure the detailed options.  
4. Check FCHK, checksum of JESD204B interface parameters.  
5. Set additional digital output configuration options.  
6. Reenable the lane(s).  
32 ≥ K Ceil (17/F)  
The JESD204B specification also specifies that the number  
of octets per multiframe (K × F) be from 17 to 1024. The F  
value is fixed through the quick configuration setting to  
ensure that this relationship is true.  
Disable Lanes Before Changing Configuration  
Before modifying the JESD204B link parameters, disable the link  
and hold it in reset. This is accomplished by writing Logic 1 to  
Register 0x5F, Bit 0.  
Table 13. JESD204B Configurable Identification Values  
DID Value  
LID (Lane 0)  
LID (Lane 1)  
DID  
Register, Bits  
0x66, [4:0]  
0x67, [4:0]  
0x64, [7:0]  
0x65, [3:0]  
Value Range  
0…31  
0…31  
0…255  
0…15  
Select Quick Configuration Option  
Write to Register 0x5E, the JESD204B quick configuration  
register to select the configuration options. See Table 15 for the  
configuration options and resulting JESD204B parameter values.  
BID  
Scramble, SCR.  
0x41 = four converters, one lane  
0x42 = four converters, two lanes  
0x44 = four converters, four lanes  
0x21 = two converters, one lane  
0x22 = two converters, two lanes  
0x11 = one converter, one lane  
Scrambling can be enabled or disabled by setting Register 0x6E,  
Bit 7. By default, scrambling is enabled. Per the JESD204B  
protocol, scrambling is functional only after the lane  
synchronization has completed.  
Select lane synchronization options.  
Rev. A | Page 30 of 46  
 
Data Sheet  
AD9656  
Most of the synchronization features of the JESD204B interface  
are enabled by default for typical applications. In some cases,  
these features can be disabled or modified as follows:  
The FCHK for the lane configuration for data exiting Lane 0  
can be read from Register 0x78. Similarly, the FCHK for the lane  
configuration for data exiting Lane 1 can be read from Register  
0x79, FCHK for Lane 2 can be read from Register 0x7A, and  
FCHK for Lane 3 can be read from Register 0x7B.  
ILAS enabling is controlled in Register 0x5F, Bits[3:2] and  
is enabled by default. Optionally, to support some unique  
instances of the interfaces (such as NMCDA-SL), the  
JESD204B interface can be programmed to either disable the  
ILAS sequence or continually repeat the ILAS sequence.  
Table 14. JESD204B Configuration Table Used in ILAS and  
CHKSUM Calculation  
Bit 7  
Bit 0  
No. (MSB) Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 (LSB)  
The AD9656 has fixed values for some JESD204B interface  
parameters, and they are as follows:  
0
1
2
3
4
5
6
7
8
9
10  
DID[7:0]  
BID[3:0]  
LID[4:0]  
[N’] = 16: number of bits per sample is 16, in Register 0x73,  
Bits[4:0]  
SCR  
L[4:0]  
[CF] = 0: number of control words/frame clock  
cycle/converter is 0, in Register 0x75, Bits[4:0]  
F[7:0]  
K[4:0]  
M[7:0]  
Verify read only values: lanes per link (L), octets per frame (F),  
number of converters (M), and samples per converter per frame  
(S). The AD9656 calculates values for some JESD204B parameters  
based on other settings, particularly the quick configuration  
register selection. The following read only values are available in  
the register map for verification:  
CS[1:0]  
N[4:0]  
N’[4:0]  
S[4:0]  
SUBCLASS[2:0]  
JESDV[2:0]  
CF[4:0]  
Set Additional Digital Output Configuration Options  
[L] = lanes per link can be 1, 2 or 4; read the values from  
Register 0x6E, Bits [4:0]  
[F] = octets per frame can be 2, 4, or 8; read the value from  
Register 0x6F, Bits[7:0]  
[HD] = high density mode is 0; read the value from  
Register 0x75, Bit 7  
[M] = number of converters per link; default is 4, but can  
be 1, 2, or 4. Read the value from Register 0x71, Bits[7:0]  
[S] = samples per converter per frame is 1; read the value  
from Register 0x74, Bits[4:0]  
Other data format controls include the following:  
Invert polarity of serial output data: Register 0x60, Bit 1  
ADC data format (offset binary or twos complement):  
Register 0x14, Bits[1:0]  
Options for interpreting signals on the SYSREF and  
SYNCINB pins: Register 0x3A, Bits[4:3]  
Option to remap converter (logical lane) and SERDOUTx  
(physical lane) assignments: Register 0x82 and Register 0x83.  
See Figure 68 for a simplified conceptual block diagram.  
Reenable Lanes After Configuration  
Check FCHK, Checksum of JESD204B Interface Parameters  
After modifying the JESD204B link parameters, enable the link so  
that the synchronization process can begin. This is accomplished  
by writing Logic 0 to Register 0x5F, Bit 0.  
The JESD204B parameters can be verified through the checksum  
value [FCHK] of the JESD204B interface parameters. Each lane has  
a FCHK value associated with it. The FCHK value is transmitted  
during the ILAS second multiframe and can be read from the  
internal registers.  
The checksum value is the modulo 256 sum of the parameters  
listed in the No. column of Table 14. The checksum is calculated  
by adding the parameter fields before they are packed into the  
octets shown in Table 14.  
Rev. A | Page 31 of 46  
 
AD9656  
Data Sheet  
VINA+/  
VINA–  
SERDOUT0±  
SERDOUT1±  
CONVERTER A  
CONVERTER B  
CONVERTER C  
CONVERTER D  
VINB+/  
VINB–  
CROSSPOINT  
SWITCH  
VINC+/  
VINC–  
SERDOUT2±  
SERDOUT3±  
SEE REGISTER  
0xF5  
DESCRIPTION  
LANE MUX  
VIND+/  
VIND–  
SYNCINB+/  
SYNCINB–  
JESD204B  
LANE CONTROL  
(M = 4, L = 1, 2, 4)  
SYSREF+/  
SYSREF–  
Figure 68. AD9656 Transmit Link Simplified Conceptual Block Diagram  
ADC  
TEST PATTERN  
16-BIT  
JESD204B  
TEST PATTERN  
8-BIT  
JESD204B  
TEST PATTERN  
10-BIT  
A0  
A1  
A2  
8B/10B  
A3  
A4  
A5  
A6  
OPTIONAL  
ENCODER/  
CHARACTER  
SCRAMBLER  
SERIALIZER  
SERDOUT±  
VINA+  
14  
15  
1 + x + x  
REPLACMENT  
ADC  
A7  
VINA–  
E0 E1 E2 E3 E4 E5 E6 E7 E8 E9  
E19  
. . .  
E10 E0  
E11 E1  
E12 E2  
E13 E3  
E14 E4  
E15 E5  
E16 E6  
E17 E7  
E18 E8  
E19 E9  
A8  
A9  
SYNCINB±  
t
S8 S0  
S9 S1  
S10 S2  
S11 S3  
S12 S4  
S13 S5  
S14 S6  
S15 S7  
A8 A0  
A10  
A11  
A12  
A13  
A14  
A15  
SYSREF±  
A9 A1  
A10 A2  
A11 A3  
A12 A4  
A13 A5  
A14 A6  
A15 A7  
A PATH  
Figure 69. AD9656 Digital Processing of JESD204B Lanes  
Table 15. AD9656 JESD204B Typical Configurations  
JESD204B Quick  
Configuration  
Setting,  
M (No. of  
Converters),  
Register 0x71,  
Bits[7:0]  
L (No. of Lanes),  
Register 0x6E,  
Bits[4:0]  
F (Octets/Frame),  
Register 0x6F,  
Bits[7:0], Read Only  
S (Samples/ADC/Frame),  
Register 0x74, Bits[4:0],  
Read Only  
HD (High Density Mode),  
Register 0x75, Bit[7],  
Read Only  
Register 0x5E  
0x41  
0x42  
0x44  
0x22  
0x21  
0x11  
4
4
4
2
2
1
1
2
4
2
1
1
8
4
2
2
4
2
1
1
1
1
1
1
0
0
0
0
0
0
DATA  
FROM  
ADC  
FRAME  
ASSEMBLER  
(ADD TAIL BITS)  
OPTIONAL  
8B/10B  
ENCODER  
TO  
RECEIVER  
SCRAMBLER  
14  
15  
1 + x + x  
Figure 70. AD9656 ADC Output Data Path  
Table 16. AD9656 JESD204B Frame Alignment Monitoring and Correction Replacement Characters  
Last Octet in  
Multiframe  
Scrambling Lane Synchronization  
Character to be Replaced  
Replacement Character  
Off  
Off  
Off  
On  
On  
On  
On  
On  
Off  
On  
On  
Off  
Last octet in frame repeated from previous frame  
Last octet in frame repeated from previous frame  
Last octet in frame repeated from previous frame  
Last octet in frame equals D28.7  
Last octet in frame equals D28.3  
Last octet in frame equals D28.7  
No  
Yes  
K28.7  
K28.3  
Not applicable K28.7  
No  
Yes  
K28.7  
K28.3  
Not applicable K28.7  
Rev. A | Page 32 of 46  
 
 
 
 
Data Sheet  
AD9656  
Frame and Lane Alignment Monitoring and Correction  
For receivers with input common mode voltage requirements  
matching the output common mode voltage (DRVDD/2) of the  
AD9656, a dc-coupled connection can be used. The common  
mode of the digital output automatically biases itself to half of  
DRVDD (0.9 V for DRVDD = 1.8 V) (see Figure 72).  
Frame alignment monitoring and correction is part of the JESD204B  
specification. The 16-bit word requires two octets to transmit all  
the data. The two octets (MSB and LSB), where F = 2, make up  
a frame. During normal operating conditions, frame alignment  
is monitored via alignment characters, which are inserted under  
certain conditions at the end of a frame. Table 16 summarizes the  
conditions for character insertion, along with the expected characters  
under the various operation modes. If lane synchronization is  
enabled, the replacement character value depends on whether  
the octet is at the end of a frame or at the end of a multiframe.  
100  
DIFFERENTIAL  
TRACE PAIR  
DRVDD  
SERDOUTx+  
RECEIVER  
100Ω  
SERDOUTx–  
OUTPUT SWING = 600mV p-p  
DIFFERENTIAL  
V
= DRVDD/2  
CM  
Based on the operating mode, the receiver can ensure that it is  
still synchronized to the frame boundary by correctly receiving  
the replacement characters.  
Figure 72. DC-Coupled Digital Output Termination Example  
If there is no far-end receiver termination, or if there is poor  
differential trace routing, timing errors can result. To avoid such  
timing errors, it is recommended that the trace length be less than  
six inches and the differential output traces be close together and of  
equal lengths.  
Digital Outputs and Timing  
The AD9656 has differential digital outputs that power up by  
default. The driver current is derived on chip and sets the output  
current at each output equal to a nominal 3 mA. Each output  
presents a 100 Ω dynamic internal termination to reduce  
unwanted reflections.  
Figure 73 shows an example of the digital output data eye and  
time interval error (TIE) jitter histogram and bathtub curve for  
an AD9656 lane running at 6.4 Gbps.  
The AD9656 digital outputs can interface with custom ASICs and  
FPGA receivers, providing superior switching performance in  
noisy environments. Single point to point network topologies are  
recommended with a single differential 100 Ω termination resistor  
placed as close to the receiver logic as possible.  
The maximum allowable data rate per lane is 8 Gbps. In some  
configurations, the AD9656 maximum conversion rate is limited  
by the maximum allowable data rate. The output data rate per  
lane is calculated as follows:  
For receiver inputs that are self biased, or with input common  
mode requirements not within the bounds of the AD9656  
DRVDD supply, use an ac-coupled connection as shown in  
Figure 71. Place a 0.1 μF series capacitor on each output pin and  
use a 100 Ω differential termination close to the receiver side. The  
100 Ω differential termination results in a nominal 600 mV p-p  
differential swing at the receiver. In the case where the receiver  
inputs are not self biased, single-ended 50 Ω terminations can be  
used. When single-ended terminations are used, the termination  
voltage (VRXCM) must be chosen to match the input requirements  
of the receiver.  
Data Rate (M N (10 / 8)Sample Rate) / L  
where M (number of converters), N (resolution), and  
L (Number of lanes) are defined in the JESD204B Overview  
section. For example, with M = 4, N = 16, and L = 1; the sample  
rate is limited to 100 Msps.  
Additional SPI options allow the user to further increase the  
output driver voltage swing of all four outputs to drive longer  
trace lengths (see Register 0x15 in Table 19). The power  
dissipation of the DRVDD supply increases when this option is  
used. See the Memory Map section for more information.  
DIFFERENTIAL  
TERMINATION  
SINGLE-ENDED  
TERMINATION  
The format of the output data is twos complement by default.  
To change the output data format to offset binary, see the  
Memory Map section and Register 0x14 in Table 19.  
OR  
V
RXCM  
100  
DIFFERENTIAL  
5050Ω  
DRVDD  
TRACE PAIR  
0.1µF  
0.1µF  
SERDOUTx+  
RECEIVER  
100Ω  
SERDOUTx–  
OUTPUT SWING = 600mV p-p  
DIFFERENTIAL  
V
= Rx V  
CM  
CM  
Figure 71. AC-Coupled Digital Output Termination Example  
Rev. A | Page 33 of 46  
 
 
 
Data Sheet  
AD9656  
TJ@BER1: BATHTUB  
HEIGHT1: EYE DIAGRAM  
PERIOD1: HISTOGRAM  
1
–2  
–4  
–6  
–8  
450  
400  
350  
300  
250  
200  
150  
100  
50  
400  
300  
200  
100  
0
3
1
2
1
1
1
1
–100  
–200  
–300  
–10  
–12  
–14  
–16  
1
1
1
1
0.81 UI  
EYE: ALL BITS OFFSET: –0.0108  
ULS: 6000; 57327 TOTAL: 6000.57327  
–400  
0
–0.5  
0
0.5  
–10  
–5  
0
5
10  
–150 –100 –50  
0
50 100 150  
TIME (ps)  
TIME (ps)  
UIs  
Figure 73. AD9656 Digital Outputs Data Eye, Histogram, and Bathtub, External 100 Ω Terminations at 6.4 Gbps  
Rev. A | Page 34 of 46  
 
Data Sheet  
AD9656  
SERIAL PORT INTERFACE (SPI)  
The AD9656 SPI allows the user to configure the converter for  
specific functions or operations through a structured register  
space provided inside the ADC. The SPI gives the user added  
flexibility and customization, depending on the application.  
Addresses are accessed via the serial port and can be written to  
or read from via the port. Memory is organized into bytes that can  
be further divided into fields. These fields are documented in the  
Memory Map section. For general operational information, see  
the AN-877 Application Note, Interfacing to High Speed ADCs  
via SPI.  
If the instruction is a readback operation, performing a readback  
causes the SDIO pin to change direction from an input to an  
output at the appropriate point in the serial frame.  
Input data is registered on the rising edge of SCLK and output data  
is transmitted on the falling edge. After the address information  
passes to the converter that is requesting a read, the SDIO line  
transitions from an input to an output within one-half of a clock  
cycle. This timing ensures that when the falling edge of the next  
clock cycle occurs, data can be safely placed on this serial line  
for the controller to read.  
CONFIGURATION USING THE SPI  
Data can be sent in MSB first mode or in LSB first mode. MSB  
first is the default on power-up and can be changed via the SPI  
port configuration register. For more information about this  
and other features, see the AN-877 Application Note, Interfacing  
to High Speed ADCs via SPI.  
Three pins define the SPI of this ADC: the SCLK pin, the SDIO  
pin, and the CSB pin (see Table 17). The SCLK pin synchronizes  
the read and write data presented from/to the ADC. The SDIO pin  
is a dual purpose pin that allows data to be sent and read from  
the internal ADC memory map registers. The CSB pin is an active  
low control that enables or disables the read and write cycles.  
HARDWARE INTERFACE  
The pins described in Table 17 make up the physical interface  
between the user programming device and the serial port of the  
AD9656. The SCLK pin and the CSB pin function as inputs when  
using the SPI interface. The SDIO pin is bidirectional, functioning  
as an input during write phases and as an output during readback.  
Table 17. Serial Port Interface Pins  
Pin  
Function  
Serial Clock. The serial shift clock input, which  
synchronizes serial interface reads and writes.  
Serial Data Input/Output. A dual purpose pin that  
typically serves as an input or an output, depending on  
the instruction being sent and the relative position in the  
timing frame.  
SCLK  
SDIO  
CSB  
The AD9656 has a separate supply pin for the SPI interface,  
SVDD. The SVDD pin can be set to any level between 1.8 V  
and 3.3 V to enable operation with a SPI bus at these voltages  
without requiring level translation. If the SPI port is not used,  
SVDD can be tied to the DRVDD voltage.  
Chip Select Bar. An active low control that gates the read  
and write cycles.  
The SPI interface is flexible enough to be controlled by either  
FPGAs or microcontrollers. One method for SPI configuration  
is described in detail in the AN-812 Application Note,  
The falling edge of CSB, in conjunction with the rising edge of  
SCLK, determines the start of the framing. An example and  
definition of the serial timing can be found in Figure 74 and  
Table 7.  
Microcontroller-Based Serial Port Interface (SPI) Boot Circuit.  
When the full dynamic performance of the converter is required,  
do not activate the SPI port. Because the SCLK signal, the CSB  
signal, and the SDIO signal are typically asynchronous to the  
ADC clock, noise from these signals can degrade converter  
performance. If the on-board SPI bus is used for other devices, it  
may be necessary to provide buffers between this bus and the  
AD9656 to prevent these signals from transitioning at the  
converter inputs during critical sampling periods.  
Other modes involving the CSB pin are available. The CSB pin  
can be held low indefinitely, which permanently enables the  
device; this is called streaming. The CSB pin can stall high  
between bytes to allow for additional external timing. When  
CSB is tied high, SPI functions are placed in a high impedance  
mode. This mode turns on any SPI pin secondary functions.  
During an instruction phase, a 16-bit instruction is transmitted.  
Data follows the instruction phase and the length is determined  
by the W0 and W1 bits.  
SPI ACCESSIBLE FEATURES  
Table 18 provides a brief description of the features that are  
accessible via the SPI. These features are described in general in  
the AN-877 Application Note, Interfacing to High Speed ADCs  
via SPI. The AD9656 device-specific features are described in  
the Memory Map Register Descriptions section. Information in  
the AD9656 data sheet takes precedence over information in  
AN-877 Application Note, where it relates to the AD9656.  
All data is composed of 8-bit words. The first bit of each individual  
byte of serial data indicates whether a read or write command is  
issued. This allows the SDIO pin to change direction from an  
input to an output.  
In addition to word length, the instruction phase determines  
whether the serial frame is a read or write operation, allowing  
the serial port to be used both to program the chip and to read  
the contents of the on-chip memory.  
Rev. A | Page 35 of 46  
 
 
 
 
 
Data Sheet  
AD9656  
Table 18. Features Accessible Using the SPI  
Feature Name  
Description  
Mode  
Clock  
Offset  
Allows the user to set either power-down mode or standby mode  
Allows the user to access the duty cycle stabilizer via the SPI  
Allows the user to digitally adjust the converter offset  
Test Input/Output  
Output Mode  
VREF  
Allows the user to set test modes to place known data on the output bits  
Allows the user to set up the outputs  
Allows the user to set the reference voltage  
tDS  
tHIGH  
tCLK  
tH  
tS  
tDH  
tLOW  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 74. Serial Port Interface Timing Diagram  
Rev. A | Page 36 of 46  
 
 
Data Sheet  
AD9656  
MEMORY MAP  
Default Values  
READING THE MEMORY MAP REGISTER TABLE  
After the AD9656 is reset, critical registers are loaded with  
default values. The default values for the registers are given in  
the memory map register table (see Table 19).  
Each row in the memory map register table has eight bit locations.  
The memory map is roughly divided into three sections: the chip  
configuration registers (Address 0x00 to Address 0x02); the  
channel index and transfer registers (Address 0x05 and  
Address 0xFF); and the ADC functions registers, including setup,  
control, and test (Address 0x08 to Address 0x10A).  
Logic Levels  
An explanation of logic level terminology follows:  
“Bit is set” is synonymous with “bit is set to Logic 1” or  
“writing Logic 1 for the bit.”  
The memory map register table (see Table 19) documents the  
default hexadecimal value for each hexadecimal address shown.  
The column with the heading Bit 7 (MSB) is the start of the  
default hexadecimal value given. For example, Address 0x14,  
the output mode register, has a hexadecimal default value of  
0x01. This means that Bit 0 = 1 and the remaining bits are 0s.  
This setting is the default output format value, which is twos  
complement. For general information on this function and  
others, see the AN-877 Application Note, Interfacing to High  
Speed ADCs via SPI. See Table 19 for SPI register information  
specific to the AD9656.  
“Clear a bit” is synonymous with “bit is set to Logic 0” or  
“writing Logic 0 for the bit.”  
Channel Specific Registers  
Some channel setup functions can be programmed to a different  
value for each channel. In these cases, channel address locations  
are internally duplicated for each channel. These registers and bits  
are designated in Table 19 as local. These local registers and bits  
can be accessed by setting the appropriate Channel 0, Channel 1,  
Channel 2, or Channel 3 bit in Register 0x05. If four bits are set,  
the subsequent write affects the registers of all four channels. In a  
read cycle, set only one of the channels to read one of the four  
registers. If all bits are set during an SPI read cycle, the device  
returns the value for Channel 0. Registers and bits designated as  
global in Table 19 affect the entire device and the channel features  
for which independent settings are not allowed between channels.  
The settings in Register 0x05 do not affect the global registers  
and bits.  
Open and Reserved Locations  
All address and bit locations that are not included in Table 19  
are not supported for this device. Write 0s to unused bits of a  
valid address location. Writing to these locations is required  
only when part of an address location is open (for example,  
Address 0x18). If the entire address location is open (for example,  
Address 0x13), do not write to this address location.  
Rev. A | Page 37 of 46  
 
 
AD9656  
Data Sheet  
MEMORY MAP REGISTER TABLE  
The AD9656 uses a 3-wire interface and 16-bit addressing. Bit 0 and Bit 7 in Register 0x00 are set to 0, and Bit 3 and Bit 4 are set to 1.  
When Bit 5 in Register 0x00 is set high, the SPI enters a soft reset, where all of the user registers revert to each default value and Bit 2 is  
automatically cleared.  
Table 19. Memory Map Registers (SPI Registers/Bits Not Labeled Local Are Global)  
Default  
Addr  
(Hex)  
Bit 7  
(MSB)  
Value  
(Hex)  
Notes/  
Comments  
Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Chip Configuration Registers  
0x00  
SPI port  
0
LSB first  
Soft reset  
1
1
Soft reset  
LSB first  
0
0x18  
configuration  
0x01  
0x02  
Chip ID  
8-bit chip ID[7:0]; AD9656 = 0xC0 (quad, 16-bit, 125 MSPS, JESD204B)  
0xC0  
0x62  
Read only.  
Read only.  
Chip grade  
Open  
Speed grade ID[6:4]; 110 = 125 MSPS  
Open  
Open  
Open  
Open  
Channel Index and Transfer Registers  
0x05  
Device index  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Data  
Channel 3  
Data  
Channel 2  
Data  
Channel 1  
Data  
Channel 0  
0x0F  
0x00  
0xFF  
Transfer  
Open  
Open  
Open  
Open  
Initiate  
Register  
0x100  
override  
(self  
clearing)  
ADC Functions  
0x08  
Power modes  
Open  
Open  
Open  
PDWN  
pin  
JTX  
standby  
mode:  
0 = ignore  
standby,  
1 = do not  
ignore  
Reserved  
Power mode:  
0x00  
0x00  
00 = normal operation,  
01 = full power-down,  
10 = standby,  
function:  
0 = full  
power-  
down,  
1 =  
11 = digital reset  
standby  
standby  
0x09  
0x0A  
Clock  
0
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Duty cycle  
stabilizer:  
0 = off,  
1 = on  
PLL_STATUS  
PLL  
Open  
Open  
Open  
JTX link  
status:  
0 = not  
ready,  
Read only.  
locked  
status bit:  
0 = PLL  
is not  
1 = ready  
locked,  
1 = PLL  
is locked  
0x0B  
Clock divider  
Open  
Open  
Open  
Open  
Open  
Clock divider ratio[2:0]:  
000 = divide by 1,  
001 = divide by 2,  
010 = divide by 3,  
011 = divide by 4,  
100 = divide by 5,  
101 = divide by 6,  
110 = divide by 7,  
111 = divide by 8  
0x00  
0x0C  
0x0D  
Enhancement  
control  
Open  
Open  
Open  
Open  
Open  
Chop mode:  
0 = off, 1 = on  
Open  
Open  
0x00  
0x00  
Test mode  
(local except  
for pseudo-  
random  
number  
(PN) sequence  
User input test mode:  
00 = single,  
Reset  
PN long  
generator  
Reset  
PN short  
generator  
Output test mode[3:0] (local):  
0000 = off (default),  
0001 = midscale short,  
0010 = positive full scale (FS),  
0011 = negative FS,  
0100 = alternating checkerboard,  
0101 = PN23 sequence,  
0110 = PN9 sequence,  
0111 = one/zero word toggle,  
1000 = user input,  
When set,  
the test  
data is  
placed  
on the  
output  
pins in  
place of  
normal  
data.  
01 = alternate,  
10 = single once,  
11 = alternate once,  
(affects user input  
test mode only,  
Bits[3:0] = 1000)  
resets)  
1001 = 1/0 bit toggle,  
1010 = 1× sync,  
1011 = one bit high,  
1100 = mixed bit frequency  
0x10  
Offset adjust  
(local)  
8-bit device offset adjustment [7:0] (local); offset adjusts in LSBs from +127 to −128 (twos complement format)  
0x00  
Device  
offset trim.  
Rev. A | Page 38 of 46  
 
 
Data Sheet  
AD9656  
Default  
Addr  
Bit 7  
Value  
Notes/  
(Hex)  
Register Name  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Output format:  
(Hex)  
Comments  
0x14  
Output mode  
JTX CS mode:  
ADC  
Open  
Open  
0x01  
Bits[7:5]  
000 = {overrange || underrange, valid flag},  
001 = {overrange, underrange},  
010 = {overrange || underrange, blank},  
011 = {blank, valid flag},  
output  
disable:  
0 =  
enabled,  
1 =  
00 = offset binary,  
01 = twos  
complement  
are not  
applicable  
when using  
the default  
16-bit  
100 = {blank, blank},  
Others = {overrange || underrange,  
disabled  
resolution.  
valid flag}  
(local)  
0x15  
Output adjust  
Open  
Open  
Open  
Open  
Open  
Typical CML differential output drive level:  
000 = 473 mV p-p,  
0x03  
001 = 524 mV p-p,  
010 = 574 mV p-p,  
011 = 621 mV p-p (default),  
100 = 667 mV p-p,  
101 = 716 mV p-p,  
110 = 763 mV p-p,  
111 = 811 mV p-p  
0x16  
0x18  
Clock phase  
control  
Open  
Input clock phase adjust[2:0]  
(value is number of input clock cycles of  
Open  
Open  
Open  
Open  
0x00  
0x04  
phase delay)  
Input span  
select  
Internal VREF  
Open  
Open  
Open  
Differential span adjustment:  
000 = 50% of normal,  
001 = 57% of normal,  
010 = 67% of normal,  
011 = 80% of normal,  
100 = normal  
adjustment[1:0]:  
00 = 1.0 V,  
01 = 1.2 V,  
10 = 1.3 V,  
11 = 1.4 V  
0x19  
0x1A  
0x1B  
0x1C  
0x21  
User Test  
Pattern 1 LSB  
User Test Pattern 1[7:0]  
User Test Pattern 1[15:8]  
User Test Pattern 2[7:0]  
User Test Pattern 2[15:8]  
0x00  
0x00  
0x00  
0x00  
0x00  
User Test  
Pattern 1 MSB  
User Test  
Pattern 2 LSB  
User Test  
Pattern 2 MSB  
FLEX_SERIAL_  
CONTROL  
Open  
Open  
Open  
Open  
PLL low  
rate  
Open  
Open  
Open  
mode:  
0 = lane  
rate ≥  
2 Gbps  
1 = lane  
rate <  
2 Gbps  
0x22  
0x3A  
FLEX_SERIAL_  
CH_STAT  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Channel  
power-  
down  
0x00  
0x00  
(local)  
SYSREF_CTRL  
Open  
Open  
Open  
0 = normal  
mode,  
1 = realign  
the lanes  
on every  
active  
0 =  
Open  
Open  
Open  
realign  
the lanes  
only  
when  
SYSREF  
causes a  
resync  
of the  
SYNCINB  
counters,  
1 =  
realign  
the lanes  
on every  
SYSREF  
0x3B  
0x5E  
REALIGN_  
PATTERN_CTRL  
This pattern is written into the FIFO when a lane is being aligned:  
00 = lane outputs constant zero, 55 = lane outputs toggling pattern  
0x55  
0x00  
JESD204B  
quick  
configuration  
0x41 = four converters, one lane; 0x42 = four converters, two lanes; 0x44 = four converters, four lanes; 0x22 = two converters,  
two lanes; 0x21 = two converters, one lane; 0x11 = one converter, one lane  
Self  
clearing,  
always  
reads  
0x00.  
Rev. A | Page 39 of 46  
AD9656  
Data Sheet  
Default  
Addr  
Bit 7  
Value  
Notes/  
(Hex)  
Register Name  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
(Hex)  
Comments  
0x5F  
JESD204B Link  
CTRL 1  
Open  
Tail bits  
mode:  
0 = fill  
with 0s,  
1 = fill with  
9-bit PN  
sequence  
JTX  
Multiframe  
alignment  
character  
insertion:  
0 =  
disabled,  
1 =  
ILAS mode:  
Frame  
0 = JTX  
link  
enabled,  
1 = JTX  
link  
0x14  
transport  
layer test:  
0 = not  
enabled,  
1 = long  
transport  
layer test  
enabled  
00 = ILAS disabled,  
01 = ILAS enabled  
(normal mode),  
alignment  
character  
insertion:  
0 =  
enabled,  
1 =  
11 = ILAS always on (test mode)  
disabled  
enabled  
disabled  
0x60  
0x61  
JESD204B Link  
CTRL 2  
Reserved  
SYNCINB  
pin  
invert:  
0 = not  
inverted,  
1 =  
SYNCINB  
pin input  
bias:  
0 =  
disabled,  
1 =  
Open  
Open  
JTX output  
invert:  
0 =  
normal,  
1 =  
Reserved  
0x10  
0x00  
inverted  
inverted  
enabled  
JESD204B Link  
CTRL 3  
Reserved  
Reserved  
Test data injection point:  
01 = 10-bit data injected  
at 8b/10b encoder output,  
10 = 8-bit data at  
JTX test mode patterns:  
0000 = normal operation (test mode disabled),  
0001 = alternating checkerboard,  
0010 = 1/0 word toggle,  
scrambler input  
0011 = PN sequence PN23,  
0100 = PN sequence PN9,  
0101= continuous/repeat user test mode,  
0110 = single user test mode,  
0111 = reserved,  
1000 = modified RPAT test sequence (8-bit data only),  
1100 = PN sequence PN7,  
1101 = PN sequence PN15,  
other setting are unused  
0x62  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6E  
JESD204B Link  
CTRL 4  
Reserved  
Device identification (DID) = C0  
Open JTX bank identification (BID) number  
0x00  
0xC0  
0x00  
0x00  
0x01  
0x02  
0x03  
0x80  
JESD204B DID  
configuration  
Read only.  
JESD204B BID  
configuration  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
JESD204B LID  
Configuration 0  
JTX lane identification (LID) number for Lane 0  
JTX lane identification (LID) number for Lane 1  
JTX lane identification (LID) number for Lane 2  
JTX lane identification (LID) number for Lane 3  
JESD204B LID  
Configuration 1  
JESD204B LID  
Configuration 2  
JESD204B LID  
Configuration 3  
JESD204B  
parameters,  
SCR/L  
JESD204B  
scrambling  
(SCR): 0 =  
disabled,  
1 =  
JESD204B serial lane control:  
0 = one lane per link (L = 1),  
1 = two lanes per link (L = 2),  
2 = unused,  
3 = four lanes per link (L = 4),  
enabled  
4 to 31 = unused  
0x6F  
0x70  
0x71  
0x72  
JESD204B  
parameters, F  
JESD204B number of octets per frame (F); calculated value, F = (2 × M)/L  
0x00  
0x1F  
0x03  
0x0F  
Read only.  
JESD204B  
parameters, K  
Open  
Open  
Open  
JESD204B number of frames per multiframe (K); K = register contents + 1,  
but also must be a multiple of four octets  
JESD204B number of converters (M): 0 = one converter (M = 1), 1 = two converters (M = 2), 3 = four converters (M = 4, default)  
JESD204B  
parameters, M  
JESD204B  
parameters,  
CS/N  
00 = number of  
control bits  
sent per sample (CS = 0)  
Open  
JTX converter resolution (N):  
0x0F = 16-bit,  
0x0D = 14-bit,  
0x0B = 12-bit,  
0x09 = 10-bit  
0x73  
JESD204B  
parameters,  
JESD204B subclass;  
0x0 = Subclass 0;  
JESD204B number of bits per sample (N’); N’ = register contents + 1  
0x2F  
subclass/Np  
0x1 = Subclass 1 (default)  
0x74  
0x75  
JESD204B  
parameters, S  
Reserved  
JESD204B converter samples per frame (S); S = register contents + 1  
JESD204B control words per frame clock cycle per link (CF = 0, fixed)  
0x20  
0x00  
Read only.  
Read only.  
JESD204B  
parameters,  
HD and CF  
JESD204B  
HD  
value = 0  
Open  
Open  
0x76  
0x77  
0x78  
JESD204B  
RESV1  
JESD204B Serial Reserved Field No. 1 in link configuration, see Table 12 (RES1)  
0x00  
0x00  
JESD204B  
RESV2  
JESD204B Serial Reserved Field No. 2 in link configuration, see Table 12 (RES2)  
JESD204B serial checksum value in link configuration, see Table 12 for Lane 0 (FCHK)  
JESD204B  
CHKSUM0  
Read only.  
Rev. A | Page 40 of 46  
Data Sheet  
AD9656  
Default  
Addr  
Bit 7  
Value  
Notes/  
(Hex)  
Register Name  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
(Hex)  
Comments  
0x79  
JESD204B  
CHKSUM1  
JESD204B serial checksum value in link configuration, see Table 12 for Lane 1 (FCHK)  
JESD204B serial checksum value in link configuration, see Table 12 for Lane 2 (FCHK)  
JESD204B serial checksum value in link configuration, see Table 12 for Lane 3 (FCHK)  
Read only.  
Read only.  
Read only.  
0x7A  
0x7B  
0x80  
JESD204B  
CHKSUM2  
JESD204B  
CHKSUM3  
JTX physical  
lane disable  
Open  
Open  
Open  
Open  
Lane 3:  
0 =  
Lane 2:  
0 = enabled,  
Lane 1:  
0 =  
Lane 0:  
0 =  
enabled,  
1 =  
0x00  
Lane  
serialize  
and  
output  
driver  
powered  
down.  
enabled,  
1 =  
1 = disabled  
enabled,  
1 =  
disabled  
disabled  
disabled  
0x82  
0x83  
0x86  
JESD204B Lane  
Assign 1  
Open  
Open  
Physical Lane 1 assignment:  
000 = Logical Lane 0,  
001 = Logical Lane 1,  
010 = Logical Lane 2,  
011 = Logical Lane 3  
Open  
Open  
Physical Lane 0 assignment:  
000 = Logical Lane 0,  
001 = Logical Lane 1,  
010 = Logical Lane 2,  
011 = Logical Lane 3  
0x10  
0x32  
0x00  
JESD204B Lane  
Assign 2  
Physical Lane 3 assignment:  
000 = Logical Lane 0,  
001 = Logical Lane 1,  
010 = Logical Lane 2,  
011 = Logical Lane 3  
Physical Lane 2 assignment:  
000 = Logical Lane 0,  
001 = Logical Lane 1,  
010 = Logical Lane 2,  
011 = Logical Lane 3  
JESD204B lane  
inversion  
Open  
Open  
Open  
Open  
Open  
Open  
Lane 3:  
0 = no  
invert,  
Lane 2:  
Lane 1:  
0 = no  
Lane 0:  
0 = no  
invert,  
0 = no invert,  
1 = invert  
invert,  
1 = invert  
1 = invert  
1 = invert  
0x8B  
0xA0  
JESD204B  
LMFC offset  
Open  
Local multiframe clock (LMFC) phase offset value; reset value for LMFC phase  
counter when SYSREF is asserted; used for deterministic delay applications  
0x00  
0x00  
JTX User  
Pattern  
Octet 0, LSB  
User test pattern least significant byte, Octet 0  
User test pattern most significant byte, Octet 0  
User test pattern least significant byte, Octet 1  
User test pattern most significant byte, Octet 1  
User test pattern least significant byte, Octet 2  
User test pattern most significant byte, Octet 2  
User test pattern least significant byte, Octet 3  
User test pattern most significant byte, Octet 3  
0xA1  
0xA2  
0xA3  
0xA4  
0xA5  
0xA6  
0xA7  
0xF5  
JTX User  
Pattern  
Octet 0, MSB  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xE4  
JTX User  
Pattern  
Octet 1, LSB  
JTX User  
Pattern  
Octet 1, MSB  
JTX User  
Pattern  
Octet 2, LSB  
JTX User  
Pattern  
Octet 2, MSB  
JTX User  
Pattern  
Octet 3, LSB  
JTX User  
Pattern  
Octet 3, MSB  
JTX converter  
mapping  
JTX Converter 3:  
0 = ADCA,  
JTX Converter 2:  
JTX Converter 1:  
0 = ADCA,  
JTX Converter 0:  
0 = ADCA,  
0 = ADCA,  
1 = ADCB,  
2 = ADCC,  
3 = ADCD  
1 = ADCB,  
2 = ADCC,  
3 = ADCD  
1 = ADCB,  
2 = ADCC,  
3 = ADCD  
1 = ADCB,  
2 = ADCC,  
3 = ADCD  
0x100  
Resolution/  
sample rate  
override  
Open  
Override  
enable  
Resolution:  
0 = 16 bits,  
1 = 14 bits,  
2 = 12 bits,  
3 = 10 bits  
Open  
Open  
Sample rate:  
0x00  
Sample  
rate  
001 = 40 MSPS,  
010 = 50 MSPS,  
011 = 65 MSPS,  
100 = 80 MSPS,  
101 = 105 MSPS,  
110 = 125 MSPS  
override  
(requires  
transfer  
register,  
0xFF).  
0x101  
0x102  
User I/O  
Control 2  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
SDIO  
pull-down  
0x00  
0x00  
Disables  
SDIO  
pull-down.  
User I/O  
Open  
VCM  
Open  
Open  
VCM  
Control 3  
power-  
control.  
down  
Rev. A | Page 41 of 46  
AD9656  
Data Sheet  
Default  
Addr  
Bit 7  
Value  
Notes/  
(Hex)  
Register Name  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
(Hex)  
Comments  
0x109  
Clock divider  
sync control  
Clock  
divider  
sync  
mode:  
0 = use  
SYNC pin,  
1 = use  
SYSREF  
pins  
Reserved  
Reset  
clock  
divider  
sync  
received  
Sync clock  
divider  
enable:  
0 =  
disabled,  
1 =  
0x80  
enabled  
0x10A  
Clock divider  
sync received  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Clock  
divider  
sync  
0x00  
Read only.  
received  
Note that the SPI is always left under control of the user; that is,  
it is never automatically disabled or in reset (except by power-  
on reset). When the digital reset is deactivated, a foreground  
calibration sequence is initiated.  
MEMORY MAP REGISTER DESCRIPTIONS  
For additional general information about functions controlled  
in Register 0x00 to Register 0xFF, see the AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI.  
Enhancement Control (Register 0x0C)  
Device Index (Register 0x05)  
Bit 2—Chop Mode  
Certain features in the map that are designated as local can be set  
independently for each channel, whereas other features apply  
globally to all channels (depending on context), regardless of  
the channel is selected. Bits[3:0] of Register 0x05 can select  
which data channels are affected.  
For applications that are sensitive to offset voltages and other  
low frequency noise, such as homodyne or direct conversion  
receivers, chopping in the first stage of the AD9656 is a feature  
that can be enabled by setting Bit 2. In the frequency domain,  
chopping translates offsets and other low frequency noise to  
Transfer (Register 0xFF)  
fCLK/2 where it can be filtered.  
All registers except Register 0x100 are updated the moment  
they are written. Setting Bit 0 of the transfer register high  
invokes the settings in the resolution/sample rate override  
register (Address 0x100).  
Output Mode (Register 0x14)  
Bits[7:5]—JTX CS Mode  
Defines the meaning of the JTX control bits.  
Power Modes (Register 0x08)  
Bits[1:0]—Output Format  
Bit 5—PDWN Pin Function  
By default, this field is set to 1 for data output in twos  
complement format. Setting this field to 0 changes the output  
mode to offset binary.  
If set to 1, the PDWN pin initiates standby mode. If set to 0  
(cleared), the PDWN pin initiates full power-down mode.  
Bit 4—JTX Standby Mode  
Clock Phase Control (Register 0x16)  
Bits[6:4]—Input Clock Phase Adjust  
If set, the JTX block enters standby mode when chip standby is  
activated. Only the PLL is left running in standby mode. If  
cleared, the JTX block remains running when chip standby is  
activated.  
When the clock divider (Register 0x0B) is used, the applied  
clock is at a higher frequency than the internal sampling clock.  
Bits[6:4] determine at which phase the external clock sampling  
occurs. This is only applicable when the clock divider is used.  
Setting Bits[6:4] greater than Register 0x0B, Bits[2:0] is prohibited.  
Bits[1:0]—Power Mode  
In normal operation (Bits[1:0] = 00), all ADC channels and the  
JTX block are active.  
Table 20. Input Clock Phase Adjust Options  
Number of Input Clock  
Cycles of Phase Delay  
In full power-down mode (Bits[1:0] = 01), all ADC channels and  
the JTX block are powered down, and the digital datapath clocks  
are disabled, while the digital datapath is reset. The outputs are  
disabled.  
Input Clock Phase Adjust, Bits[6:4]  
000 (default)  
001  
010  
011  
100  
101  
110  
111  
0
1
2
3
4
5
6
7
In standby mode (Bits[1:0] = 10), all ADC channels are partially  
powered down, and the digital datapath clocks are disabled. If  
JTX standby mode is set, the outputs are also disabled.  
During a digital reset (Bits[1:0] = 11), all the digital datapath clocks  
and the outputs (where applicable) on the chip are reset, except  
for the SPI port.  
Rev. A | Page 42 of 46  
 
Data Sheet  
AD9656  
JTX User Pattern (Register 0xA0 to Register 0xA7)  
Bits[2:0] do not affect the sample rate; they affect the maximum  
sample rate capability of the ADC.  
The pattern in these registers is output on all active lanes when  
Register 0x61, Bits[3:0] are set to 5 or 6. A 32-bit pattern, the  
concatenation of Register 0xA0, Register 0xA2, Register 0xA4,  
and Register 0xA6 is inserted before the scrambler if Register 0x61,  
Bits[5:4] are set to 2. If Register 0x61, Bits[5:4] are set to 1 (a 40-bit  
pattern), the concatenation of Register 0xA1, Bits[1:0] and  
Register 0xA0, Bits[7:0]; Register 0xA3, Bits[1:0] and  
Writing to Register 0x100 reverts other registers to defaults. If  
nondefault configurations are desired, write to Register 0x100  
first, and then perform other desired SPI operations to preserve  
the desired configuration.  
User I/O Control 2 (Register 0x101)  
Bit 0—SDIO Pull-Down  
Register 0xA2, Bits[7:0]; Register 0xA5, Bits[1:0] and  
Bit 0 can be set to disable the internal 30 kΩ pull-down resistor  
on the SDIO pin. This setting can limit the loading when many  
devices are connected to the SPI bus.  
Register 0xA4, Bits[7:0]; Register 0xA7, Bits[1:0] and  
Register 0xA6, Bits[7:0] is inserted after the 8b/10b encoder.  
Resolution/Sample Rate Override (Register 0x100)  
User I/O Control 3 (Register 0x102)  
This register allows the user to downgrade the resolution and/or  
the maximum sample rate (for lower power) in applications that do  
not require full resolution and/or sample rate. Settings in this  
register are not initialized until Bit 0 of the transfer register  
(Register 0xFF) is written high.  
Bit 3—VCM Power-Down  
Bit 3 can be set high to power down the internal VCM generator.  
This feature is used when applying an external reference.  
Rev. A | Page 43 of 46  
AD9656  
Data Sheet  
APPLICATIONS INFORMATION  
DESIGN GUIDELINES  
EXPOSED PAD THERMAL HEAT SLUG  
RECOMMENDATIONS  
Before starting system level design and layout of the AD9656, it  
is recommended that the designer become familiar with these  
guidelines, which discuss the special circuit connections and  
layout requirements needed for certain pins.  
It is mandatory that the exposed pad on the underside of the ADC  
connect to analog ground (AGND) to achieve the best electrical  
and thermal performance. A continuous, exposed (no solder mask)  
copper plane on the PCB must mate to the AD9656 exposed  
pad, Pin 0.  
POWER AND GROUND RECOMMENDATIONS  
When connecting power to the AD9656, it is recommended to  
use separate 1.8 V supplies: one supply for analog (AVDD), a  
separate shared supply for the digital outputs (DRVDD), and the  
digital (DVDD). DRVDD must be kept at the same voltage as  
DVDD. SVDD can be shared with any of the other supplies if  
1.8 V SPI operation is desired. The designer can use several  
different decoupling capacitors to cover both high and low  
frequencies. Locate these capacitors close to the point of entry  
at the PCB level and close to the pins of the device with  
minimal trace length.  
The copper plane must have several vias to achieve the lowest  
possible resistive thermal path for heat dissipation to flow  
through the bottom of the PCB. Fill or plug these vias with  
nonconductive epoxy.  
To maximize the coverage and adhesion between the ADC and  
the PCB, overlay a silkscreen to partition the continuous plane  
on the PCB into several uniform sections. This partitioning  
prevents the solder from pooling and provides several tie points  
between the ADC and the PCB during the reflow process. Using  
one continuous plane with no partitions guarantees only one tie  
point between the ADC and the PCB. See the evaluation board  
for a PCB layout example. For detailed information about the  
packaging and PCB layout of chip scale packages, refer to the  
AN-772 Application Note, A Design and Manufacturing Guide  
for the Lead Frame Chip Scale Package (LFCSP).  
When using the AD9656, a single PCB ground plane is sufficient.  
With proper decoupling and smart partitioning of the PCB  
analog, digital, and clock sections, optimum performance is  
easily achieved.  
CLOCK STABILITY CONSIDERATIONS  
When powered on, the AD9656 enters an initialization phase  
during which an internal state machine sets up the biases and  
the registers for proper operation. During the initialization  
process, the AD9656 requires a stable clock. If the ADC clock  
source is not present or not stable during ADC power-up, it  
disrupts the state machine and causes the ADC to start up in an  
unknown state. To correct this, an initialization sequence must  
be reinvoked after the ADC clock is stable by issuing a digital  
reset via Register 0x08. In the default configuration (internal  
VCM  
Decouple the VCM pin to ground with a 0.1 µF capacitor.  
REFERENCE DECOUPLING  
Externally bypass the VREF pin to ground with a low ESR,  
1.0 µF capacitor in parallel with a low ESR, 0.1 µF ceramic  
capacitor.  
SPI PORT  
When the full dynamic performance of the converter is required,  
do not activate the SPI port. Because the SCLK, CSB, and SDIO  
signals are typically asynchronous to the ADC clock, noise from  
these signals can degrade converter performance. If the on-board  
SPI bus is used for other devices, it may be necessary to provide  
buffers between this bus and the AD9656 to keep these signals  
from transitioning at the converter input pins during critical  
sampling periods.  
V
REF, ac-coupled input) where VREF and VCM are supplied by the  
ADC itself, a stable clock during power-up is sufficient. In the  
case where VREF and/or VCM are supplied by an external source,  
these, too, must be stable at power-up; otherwise, a subsequent  
digital reset via Register 0x08 is needed. Interruption of the  
sample clock during operation and changes in sample rate also  
necessitate a digital reset. The pseudo code sequence for a  
digital reset is as follows:  
SPI_Write (0x08, 0x03);  
SPI_Write (0x08, 0x00);  
# Digital Reset  
# Normal Operation  
Rev. A | Page 44 of 46  
 
 
 
 
 
 
 
Data Sheet  
AD9656  
OUTLINE DIMENSIONS  
8.10  
8.00 SQ  
7.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
43  
56  
1
42  
0.50  
BSC  
EXPOSED  
PAD  
*
6.70  
6.60 SQ  
6.50  
29  
14  
28  
15  
0.45  
0.40  
0.35  
BOTTOM VIEW  
6.50 REF  
0.20 MIN  
TOP VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.203 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-WLLD-5  
WITH EXCEPTION TO EXPOSED PAD DIMENSION.  
Figure 75. 56-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
8 mm × 8 mm Body, Very Very Thin Quad  
(CP-56-9)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
AD9656BCPZ-125  
AD9656BCPZRL7-125  
AD9656EBZ  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
56-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
56-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
Evaluation Board  
CP-56-9  
CP-56-9  
1 Z = RoHS Compliant Part.  
Rev. A | Page 45 of 46  
 
 
AD9656  
NOTES  
Data Sheet  
©2013–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11868-0-3/17(A)  
Rev. A | Page 46 of 46  

相关型号:

AD9660

200 MHz Laser Diode Driver with Light Power Control
ADI

AD96606

200 MHz Laser Diode Driver with Light Power Control
ADI

AD9660KR

200 MHz Laser Diode Driver with Light Power Control
ADI

AD9660KR-REEL

200 MHz Laser Diode Driver with Light Power Control
ADI

AD9661A

Laser Diode Driver with Light Power Control
ADI

AD9661AKR

Laser Diode Driver with Light Power Control
ADI

AD9661AKR-REEL

Laser Diode Driver with Light Power Control
ADI

AD9662

3-Channel Laser Diode Driver with Oscillator
ADI

AD9662ARQZ

3-Channel Laser Diode Driver with Oscillator
ADI

AD9662ARQZ-REEL1

3-Channel Laser Diode Driver with Oscillator
ADI

AD9662ARQZ-REEL7

IC SPECIALTY INTERFACE CIRCUIT, PDSO16, LEAD FREE,MO-137AB,QSOP-16, Interface IC:Other
ADI

AD9662ARQZ-REEL71

3-Channel Laser Diode Driver with Oscillator
ADI