AD9706BCPZRL7 [ADI]

8-/10-/12-/14-Bit, 175 MSPS TxDAC D/A Converters; 8位/ 10位/ 12位/ 14位, 175 MSPS TxDAC系列D / A转换器
AD9706BCPZRL7
型号: AD9706BCPZRL7
厂家: ADI    ADI
描述:

8-/10-/12-/14-Bit, 175 MSPS TxDAC D/A Converters
8位/ 10位/ 12位/ 14位, 175 MSPS TxDAC系列D / A转换器

转换器
文件: 总52页 (文件大小:2134K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-/10-/12-/14-Bit, 175 MSPS  
TxDAC® D/A Converters  
AD9704/AD9705/AD9706/AD9707  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
1.7V TO 3.6V  
Pin-compatible family  
Low power member of pin-compatible  
TxDAC product family  
AVDD  
ACOM  
1.0V REF  
REFIO  
0.1µF  
AD9707  
CURRENT  
SOURCE  
ARRAY  
OTCM  
FS ADJ  
1.7V  
TO  
Power dissipation @ 3.3 V  
22 mW @ 10 MSPS  
25 mW @ 25 MSPS  
CLKVDD  
CLKCOM  
IOUTA  
IOUTB  
R
SET  
SEGMENTED  
SWITCHES  
LSB  
SWITCHES  
3.6V  
CLK+  
CLK–  
PIN/SPI/RESET  
MODE/SDIO  
LATCHES  
SPI  
1.7V TO  
3.6V  
30 mW @ 50 MSPS  
Sleep mode: 3.1 mW @ 3.3 V  
CMODE/SCLK  
DVDD  
DCOM  
SLEEP/CSB  
DIGITAL INPUTS (DB13 TO DB0)  
Supply voltage: 1.7 V to 3.6 V  
SFDR to Nyquist  
Figure 1. AD9707  
AD9707: 84 dBc @ 5 MHz output  
AD9707: 83 dBc @ 10 MHz output  
AD9707: 75 dBc @ 20 MHz output  
AD9707 NSD @ 10 MHz output, 125 MSPS: −147 dBc/Hz  
Differential current outputs: 1 mA to 5 mA  
Data format: twos complement or straight binary  
On-chip 1.0 V reference  
CMOS-compatible digital interface  
Edge-triggered latches  
Clock input: single-ended and differential  
Output common mode: adjustable 0 V to 1.2 V  
Power-down mode < 2 mW @ 3.3 V (SPI® controllable)  
Serial peripheral interface (SPI)  
Self-calibration  
32-lead LFCSP_VQ, Pb-free package  
PRODUCT HIGHLIGHTS  
5. CMOS Clock Input. High speed, single-ended, and  
differential CMOS clock input supports 175 MSPS  
conversion rate.  
1. Pin Compatible. The AD970x line of TxDACs is pin-  
compatible with the AD974x TxDAC line (LFCSP_VQ  
package).  
2. Low Power. Complete CMOS DAC operates on a single  
supply of 3.6 V down to 1.7 V, consuming 25 mW (3.3 V)  
and 10 mW (1.8 V). The DAC full-scale current can be  
reduced for lower power operation, and sleep and power-  
down modes are provided for low power idle periods.  
6. SPI Control. SPI control offers a higher level of  
programmability.  
7. Easy Interfacing to Other Components. Adjustable output  
common mode from 0 V to 1.2 V allows for easy interfacing  
to other components that accept common-mode levels  
greater than 0 V.  
3. Self-calibration. Self-calibration enables true 14-bit INL  
and DNL performance in the AD9707.  
8. On-Chip Voltage Reference. The AD970x includes a 1.0 V  
temperature-compensated band gap voltage reference.  
4. Twos Complement/Binary Data Coding Support. Data input  
supports twos complement or straight binary data coding.  
9. Industry-Standard 32-Lead LFCSP_VQ Package.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
AD9704/AD9705/AD9706/AD9707  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 29  
Serial Peripheral Interface......................................................... 29  
SPI Register Map ........................................................................ 31  
SPI Register Descriptions.......................................................... 32  
Reference Operation .................................................................. 34  
Reference Control Amplifier .................................................... 34  
DAC Transfer Function............................................................. 34  
Analog Outputs .......................................................................... 35  
Adjustable Output Common Mode......................................... 35  
Digital Inputs .............................................................................. 36  
Clock Input.................................................................................. 36  
DAC Timing................................................................................ 36  
Power Dissipation....................................................................... 36  
Self-Calibration........................................................................... 38  
Applications..................................................................................... 40  
Output Configurations.............................................................. 40  
Differential Coupling Using a Transformer ............................... 40  
Single-Ended Buffered Output Using an Op Amp................ 40  
Differential Buffered Output Using an Op Amp ................... 41  
Evaluation Board ............................................................................ 42  
General Description................................................................... 42  
Evaluation Board Schematics ................................................... 43  
Evaluation Board Layout........................................................... 48  
Outline Dimensions....................................................................... 51  
Ordering Guide .......................................................................... 51  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
General Description......................................................................... 3  
Specifications..................................................................................... 4  
DC Specifications (3.3 V)............................................................ 4  
Dynamic Specifications (3.3 V).................................................. 5  
Digital Specifications (3.3 V)...................................................... 6  
DC Specifications (1.8 V)............................................................ 7  
Dynamic Specifications (1.8 V).................................................. 8  
Digital Specifications (1.8 V)...................................................... 9  
Timing Diagram ........................................................................... 9  
Absolute Maximum Ratings.......................................................... 10  
Thermal Characteristics ............................................................ 10  
ESD Caution................................................................................ 10  
Pin Configurations and Function Descriptions ......................... 11  
AD9707........................................................................................ 11  
AD9706........................................................................................ 12  
AD9705........................................................................................ 13  
AD9704........................................................................................ 14  
Typical Performance Characteristics ........................................... 15  
AD9707........................................................................................ 15  
AD9704, AD9705, and AD9706............................................... 22  
Terminology .................................................................................... 28  
REVISION HISTORY  
7/06—Revision 0: Initial Version  
Rev. 0 | Page 2 of 52  
 
AD9704/AD9705/AD9706/AD9707  
GENERAL DESCRIPTION  
The AD9704/AD9705/AD9706/AD9707 are the fourth-  
generation family in the TxDAC series of high performance,  
CMOS digital-to-analog converters (DACs). This pin-compatible,  
8–/10–/12–/14–bit resolution family is optimized for low power  
operation, while maintaining excellent dynamic performance.  
The AD970x family is pin-compatible with the AD9748/AD9740/  
AD9742/AD9744 family of TxDAC converters and is specifically  
optimized for the transmit signal path of communication systems.  
All of the devices share the same interface, LFCSP_VQ package,  
and pinout, providing an upward or downward component  
selection path based on performance, resolution, and cost.  
The AD970x offers exceptional ac and dc performance, while  
supporting update rates up to 175 MSPS.  
Power dissipation of the AD970x can be reduced to 15 mW, with  
a small trade-off in performance, by lowering the full-scale  
current output. In addition, a power-down mode reduces the  
standby power dissipation to approximately 2.2 mW.  
The AD970x has an optional serial peripheral interface (SPI) that  
provides a higher level of programmability to enhance performance  
of the DAC. An adjustable output, common-mode feature allows  
for easy interfacing to other components that require common  
modes greater than 0 V.  
Edge-triggered input latches and a 1.0 V temperature-compensated  
band gap reference have been integrated to provide a complete,  
monolithic DAC solution. The digital inputs support 1.8 V and  
3.3 V CMOS logic families.  
The flexible power supply operating range of 1.7 V to 3.6 V and  
low power dissipation of the AD970x parts make them well-suited  
for portable and low power applications.  
Rev. 0 | Page 3 of 52  
 
AD9704/AD9705/AD9706/AD9707  
SPECIFICATIONS  
DC SPECIFICATIONS (3.3 V)  
TMIN to TMAX, AVDD = 3.3 V, DVDD = 3.3 V, CLKVDD = 3.3 V, IOUTFS = 2 mA, unless otherwise noted.  
Table 1.  
AD9707  
Typ  
AD9706  
Typ  
AD9705  
Typ  
AD9704  
Typ  
Parameter  
RESOLUTION  
DC ACCURACY1  
Min  
14  
Max Min  
Max Min  
Max Min  
Max Unit  
12  
10  
8
Bits  
Integral Nonlinearity (INL)  
Precalibration  
±1.4  
±0.9  
±1.2  
±0.4  
±±.0  
±4.4  
±0.41 ±1.48  
±0.30  
±0.10 ±0.3±  
±0.10  
±0.03 ±0.09 LSB  
Integral Nonlinearity (INL)  
Postcalibration  
LSB  
±0.02 ±0.08 LSB  
LSB  
Differential Nonlinearity (DNL)  
Precalibration  
±0.35 ±1.17  
±0.13  
±0.09 ±0.31  
±0.03  
Differential Nonlinearity (DNL)  
Postcalibration  
ANALOG OUTPUT  
Offset Error  
−0.03  
−2.7  
0
+0.03 −0.03  
0
+0.03 −0.03  
0
+0.03 −0.03  
0
+0.03 % of FSR  
Gain Error (With External  
Reference)  
−0.1  
+2.7  
−2.7  
−0.1  
+2.7  
−2.7  
−0.1  
+2.7  
−2.7  
−0.1  
+2.7  
% of FSR  
Gain Error (With Internal  
Reference)  
Full-Scale Output Current2  
Output Compliance Range  
(From OTCM to IOUTA/IOUTB)  
Output Resistance  
−2.7  
−0.1  
2
+2.7  
−2.7  
−0.1  
2
+2.7  
−2.7  
−0.1  
2
+2.7  
−2.7  
−0.1  
2
+2.7  
% of FSR  
1
5
1
5
1
5
1
5
mA  
V
−0.8  
+0.8  
−0.8  
+0.8  
−0.8  
+0.8  
−0.8  
+0.8  
200  
5
200  
5
200  
5
200  
5
MΩ  
pF  
Output Capacitance  
REFERENCE OUTPUT  
Reference Voltage  
0.98  
0.1  
1.025 1.08  
100  
0.98  
0.1  
1.025 1.08  
100  
0.98  
0.1  
1.025 1.08  
100  
0.98  
0.1  
1.025 1.08  
100  
V
Reference Output Current3  
nA  
REFERENCE INPUT  
Input Compliance Range  
1.25  
10  
1.25  
10  
1.25  
10  
1.25  
10  
V
Reference Input Resistance  
(Reference Powered Up)  
kΩ  
Reference Input Resistance  
(Reference Powered Down)  
1
1
1
1
MΩ  
Small Signal Bandwidth  
TEMPERATURE COEFFICIENTS  
Offset Drift  
0.5  
0.5  
0.5  
0.5  
MHz  
0
0
0
0
ppm of  
FSR/°C  
Gain Drift (Without Internal  
Reference)  
±29  
±40  
±25  
±29  
±40  
±25  
±29  
±40  
±25  
±29  
±40  
±25  
ppm of  
FSR/°C  
Gain Drift (With Internal  
Reference)  
ppm of  
FSR/°C  
Reference Voltage Drift  
POWER SUPPLY  
Supply Voltages  
AVDD  
ppm/°C  
3.3  
3.3  
3.±  
3.±  
3.±  
±.7  
±.±  
4.7  
57  
3.3  
3.3  
3.±  
3.±  
3.±  
±.7  
±.±  
4.7  
57  
3.3  
3.3  
3.±  
3.±  
3.±  
±.7  
±.±  
4.7  
57  
3.3  
3.3  
3.±  
3.±  
3.±  
±.7  
±.±  
4.7  
57  
V
DVDD  
V
CLKVDD  
3.3  
3.3  
3.3  
3.3  
V
Analog Supply Current (IAVDD  
)
5.2  
5.2  
5.1  
5.1  
mA  
mA  
mA  
mW  
mA  
4
Digital Supply Current (IDVDD  
)
5.9  
5.4  
5.0  
4.±  
4
Clock Supply Current (ICLKVDD  
Power Dissipation4  
)
4.1  
4.1  
4.1  
4.1  
50.2  
0.37  
48.5  
0.37  
4±.9  
0.37  
45.5  
0.37  
Supply Current Sleep Mode  
0.4  
0.4  
0.4  
0.4  
(IAVDD  
Supply Current Power-Down  
Mode (IAVDD  
)
0.7  
7.5  
0.7  
7.5  
0.7  
0.7  
7.5  
μA  
)
Rev. 0 | Page 4 of 52  
 
 
AD9704/AD9705/AD9706/AD9707  
AD9707  
Typ  
AD9706  
Typ  
AD9705  
Typ  
AD9704  
Typ Max Unit  
Parameter  
Min  
Max Min  
Max Min  
Max Min  
Supply Current Clock Power-  
0.±  
1
0.±  
1
0.±  
1
0.±  
1
mA  
5
Down Mode (IDVDD  
Supply Current Clock Power-  
Down Mode (ICLKVDD  
)
42.5  
58  
42.5  
58  
42.5  
58  
42.5  
58  
μA  
)
Power Supply Rejection Ratio  
(AVDD)±  
−0.2  
−40  
+0.03 +0.2  
+85  
−0.2  
−40  
+0.03 +0.2  
+85  
−0.2  
−40  
+0.03 +0.2  
+85  
−0.2  
−40  
+0.03 +0.2  
+85  
% of FSR/V  
°C  
OPERATING RANGE  
1 Measured at IOUTA, driving a virtual ground, at 25°C only.  
2 Nominal full-scale current, IOUTFS, is 32× the IREF current.  
3 An external buffer amplifier with input bias current < 100 nA should be used to drive any external load.  
4 Measured at fCLOCK = 175 MSPS and fOUT = 1.0 MHz, using differential clock.  
5 Measured at fCLOCK = 100 MSPS and fOUT = 1.0 MHz, using differential clock.  
± ±5% power supply variation.  
DYNAMIC SPECIFICATIONS (3.3 V)  
TMIN to TMAX, AVDD = 3.3 V, DVDD = 3.3 V, CLKVDD = 3.3 V, IOUTFS = 2 mA, differential transformer coupled output,  
453 Ω differentially terminated,1 unless otherwise noted.  
Table 2.  
AD9707  
Min Typ  
AD9706  
Max Min Typ  
AD9705  
Max Min Typ  
AD9704  
Max Min Typ  
Parameter  
Max Unit  
DYNAMIC PERFORMANCE  
Maximum Output Update Rate (fCLOCK  
)
175  
175  
175  
175  
MSPS  
ns  
Output Settling Time (tST) (to 0.1%)2  
11  
4
11  
4
11  
4
11  
4
Output Propagation Delay (tPD  
)
ns  
Glitch Impulse  
5
5
5
5
pV-s  
ns  
Output Rise Time (10% to 90%)2  
Output Fall Time (10% to 90%)2  
AC LINEARITY  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
ns  
Spurious-Free Dynamic Range  
to Nyquist  
fCLOCK = 10 MSPS; fOUT = 2.1 MHz  
fCLOCK = 25 MSPS; fOUT = 2.1 MHz  
fCLOCK = ±5 MSPS; fOUT = 5.1 MHz  
fCLOCK = ±5 MSPS; fOUT = 10.1 MHz  
fCLOCK = 80 MSPS; fOUT = 1.0 MHz  
fCLOCK = 125 MSPS; fOUT = 15.1 MHz  
fCLOCK = 125 MSPS; fOUT = 25.1 MHz  
fCLOCK = 175 MSPS; fOUT = 20.1 MHz  
fCLOCK = 175 MSPS; fOUT = 40.1 MHz  
Noise Spectral Density  
84  
84  
84  
83  
83  
78  
77  
75  
72  
84  
83  
84  
83  
82  
78  
77  
75  
71  
84  
84  
84  
83  
82  
78  
7±  
75  
71  
70  
±8  
70  
71  
70  
±8  
±9  
±9  
±7  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
74  
72  
72  
±±  
fCLOCK = 175 MSPS; fOUT = ±.0 MHz;  
IOUTFS = 2 mA  
−149  
−14±  
10.9  
−137  
9.5  
−127  
8.0  
dBc/  
Hz  
ENOB at IOUTFS = 2 mA  
11.3  
bits  
fCLOCK = 175 MSPS; fOUT = ±.0 MHz;  
IOUTFS = 5 mA  
−157  
dBc/  
Hz  
ENOB at IOUTFS = 5 mA  
12.5  
bits  
fCLOCK = 175 MSPS; fOUT = ±.0 MHz;  
IOUTFS = 1 mA  
−145  
dBc/  
Hz  
ENOB at IOUTFS = 1 mA  
10.±  
bits  
1 See Figure 71 for diagram.  
2 Measured single-ended into 500 Ω load.  
Rev. 0 | Page 5 of 52  
 
 
 
 
 
AD9704/AD9705/AD9706/AD9707  
DIGITAL SPECIFICATIONS (3.3 V)  
TMIN to TMAX, AVDD = 3.3 V, DVDD = 3.3 V, CLKVDD = 3.3 V, IOUTFS = 2 mA, unless otherwise noted.  
Table 3.  
AD9707  
Typ  
AD9706  
Typ  
AD9705  
Typ  
AD9704  
Typ  
Parameter  
Min  
2.1  
Max  
Min  
2.1  
Max  
Min  
2.1  
Max  
Min  
2.1  
Max  
Unit  
DIGITAL INPUTS1  
Logic 1 Voltage  
Logic 0 Voltage  
Logic 1 Current  
Logic 0 Current  
Input Capacitance  
Input Setup Time (tS)  
Input Hold Time (tH)  
Latch Pulsewidth (tLPW  
CLK INPUTS2  
3
0
3
0
3
0
3
0
V
V
0.9  
+10  
10  
0.9  
+10  
10  
0.9  
+10  
10  
0.9  
+10  
10  
−10  
−10  
−10  
−10  
ꢀA  
ꢀA  
pF  
ns  
ns  
ns  
5
5
5
5
1.3  
0.7  
2.8  
1.3  
0.7  
2.8  
1.3  
0.7  
2.8  
1.3  
0.7  
2.8  
)
Input Voltage Range  
Common-Mode Voltage  
Differential Voltage  
0
0.75  
0.5  
3
2.25  
0
0.75  
0.5  
3
2.25  
0
0.75  
0.5  
3
2.25  
0
0.75  
0.5  
3
2.25  
V
V
V
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1 Includes CLK+ pin in single-ended clock input mode.  
2 Applicable to CLK+ input and CLK– input when configured for differential clock input mode.  
Rev. 0 | Page ± of 52  
 
 
AD9704/AD9705/AD9706/AD9707  
DC SPECIFICATIONS (1.8 V)  
TMIN to TMAX, AVDD = 1.8 V, DVDD = 1.8 V, CLKVDD = 1.8 V, IOUTFS = 2 mA, unless otherwise noted.  
Table 4.  
AD9707  
Typ  
AD9706  
Typ  
AD9705  
Typ  
AD9704  
Typ  
Parameter  
RESOLUTION  
DC ACCURACY1  
Min  
14  
Max  
Min  
12  
Max  
Min  
10  
Max  
Min  
8
Max  
Unit  
Bits  
Integral Nonlinearity (INL)  
Precalibration  
±1.4  
±1.2  
±±.03  
±4.34  
±0.42  
±0.3±  
±1.50  
±1.17  
±0.10  
±0.09  
±0.3±  
±0.30  
±0.03  
±0.02  
±0.09  
±0.07  
LSB  
LSB  
Differential Nonlinearity (DNL)  
Precalibration  
ANALOG OUTPUT  
Offset Error  
−0.03  
−2.7  
0
+0.03  
+2.7  
−0.03  
−2.7  
0
+0.03  
+2.7  
−0.03  
−2.7  
0
+0.03  
+2.7  
−0.03  
−2.7  
0
+0.03  
+2.7  
% of FSR  
% of FSR  
Gain Error (With Internal  
Reference)  
−0.2  
−0.2  
−0.2  
−0.2  
Full-Scale Output Current2  
Output Compliance Range  
(With OTCM = AGND)  
Output Resistance  
1
2
5
1
2
5
1
2
5
1
2
5
mA  
V
−0.8  
+0.8  
−0.8  
+0.8  
−0.8  
+0.8  
−0.8  
+0.8  
200  
5
200  
5
200  
5
200  
5
MΩ  
pF  
Output Capacitance  
REFERENCE OUTPUT  
Reference Voltage  
0.98  
0.1  
1.025  
100  
1.08  
1.25  
0.98  
0.1  
1.025  
100  
1.08  
1.25  
0.98  
0.1  
1.025  
100  
1.08  
1.25  
0.98  
0.1  
1.025  
100  
1.08  
1.25  
V
Reference Output Current3  
nA  
REFERENCE INPUT  
Input Compliance Range  
V
Reference Input Resistance  
(Reference Powered Up)  
10  
1
10  
1
10  
1
10  
1
kΩ  
Reference Input Resistance  
(External Reference)  
MΩ  
Small Signal Bandwidth  
TEMPERATURE COEFFICIENTS  
Offset Drift  
0.5  
0.5  
0.5  
0.5  
MHz  
0
0
0
0
ppm of  
FSR/°C  
Gain Drift (Without Internal  
Reference)  
±30  
±±0  
±25  
±30  
±±0  
±25  
±30  
±±0  
±25  
±30  
±±0  
±25  
ppm of  
FSR/°C  
Gain Drift (With Internal  
Reference)  
ppm of  
FSR/°C  
Reference Voltage Drift  
POWER SUPPLY  
Supply Voltages  
AVDD  
ppm/°C  
1.7  
1.7  
1.7  
1.8  
1.8  
1.8  
3.8  
1.7  
1.7  
1.7  
1.8  
1.8  
1.8  
3.8  
1.7  
1.7  
1.7  
1.8  
1.8  
1.8  
3.8  
1.7  
1.7  
1.7  
1.8  
1.8  
1.8  
3.8  
V
DVDD  
V
CLKVDD  
V
Analog Supply Current  
4.8  
1.5  
1.5  
4.8  
1.5  
1.5  
4.8  
1.5  
1.5  
4.8  
1.5  
1.5  
mA  
(IAVDD  
)
Digital Supply Current  
1.3  
1.3  
1.2  
1.3  
1.1  
1.3  
1.0  
1.3  
mA  
mA  
4
(IDVDD  
)
Clock Supply Current  
4
(ICLKVDD  
)
Power Dissipation4  
11.5  
0.3  
13.2  
0.4  
11.3  
0.3  
13.2  
0.4  
11.1  
0.3  
13.2  
0.4  
11.0  
0.3  
13.2  
0.4  
mW  
mA  
Supply Current Sleep  
Mode (IAVDD  
Supply Current Power-  
Down Mode (IAVDD  
Supply Current Power-  
Down Mode (IAVDD  
)
5
±
5
±
5
±
5
±
μA  
)
0.2  
0.3  
0.2  
0.3  
0.2  
0.3  
0.2  
0.3  
mA  
)
Rev. 0 | Page 7 of 52  
 
AD9704/AD9705/AD9706/AD9707  
AD9707  
AD9706  
Typ  
AD9705  
Typ  
AD9704  
Typ  
Parameter  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Supply Current Clock  
Power-Down Mode (IDVDD  
0.22  
0.28  
0.22  
0.28  
0.22  
0.28  
0.22  
0.28  
mA  
4
)
Supply Current Clock  
Power-Down Mode (ICLKVDD  
9.5  
1±  
9.5  
1±  
9.5  
1±  
9.5  
1±  
μA  
4
)
Power Supply Rejection  
Ratio (AVDD)5  
−1  
−0.1  
+1  
−1  
−0.1  
+1  
−1  
−0.1  
+1  
−1  
−0.1  
+1  
% of  
FSR/V  
OPERATING RANGE  
−40  
+85  
−40  
+85  
−40  
+85  
−40  
+85  
°C  
1 Measured at IOUTA, driving a virtual ground, at 25°C only.  
2 Nominal full-scale current, IOUTFS, is 32× the IREF current.  
3 An external buffer amplifier with input bias current < 100 nA should be used to drive any external load.  
4 Measured at fCLOCK = 80 MSPS and fOUT = 1 MHz, using differential clock.  
5 ±5% power supply variation, IOUTFS = 1 mA, at 25°C only.  
DYNAMIC SPECIFICATIONS (1.8 V)  
TMIN to TMAX, AVDD = 1.8 V, DVDD = 1.8 V, CLKVDD = 1.8 V, IOUTFS = 1 mA, differential transformer coupled output,  
453 Ω differentially terminated,1 unless otherwise noted.  
Table 5.  
AD9707  
Typ  
AD9706  
Max Min Typ  
AD9705  
Typ  
AD9704  
Min Typ  
Min  
Max  
Min  
Max  
Max Unit  
Parameter  
DYNAMIC PERFORMANCE  
Maximum Output Update Rate  
80  
80  
80  
80  
MSPS  
(fCLOCK  
)
Output Settling Time (tST) (to 0.1%)2  
11  
5.±  
5
11  
5.±  
5
11  
5.±  
5
11  
5.±  
5
ns  
Output Propagation Delay (tPD  
)
ns  
Glitch Impulse  
pV-s  
ns  
Output Rise Time (10% to 90%)2  
Output Fall Time (10% to 90%)2  
AC LINEARITY  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
ns  
Spurious-Free Dynamic Range  
to Nyquist  
fCLOCK = 10 MSPS; fOUT = 2.1 MHz  
fCLOCK = 25 MSPS; fOUT = 2.1 MHz  
fCLOCK = 25 MSPS; fOUT = 5.1 MHz  
fCLOCK = ±5 MSPS; fOUT = 10.1 MHz  
fCLOCK = ±5 MSPS; fOUT = 15.1 MHz  
fCLOCK = 80 MSPS; fOUT = 1.0 MHz  
fCLOCK = 80 MSPS; fOUT = 15.1 MHz  
fCLOCK = 80 MSPS; fOUT = 30.1 MHz  
Noise Spectral Density  
8±  
87  
82  
82  
77  
82  
77  
±0  
8±  
8±  
82  
79  
7±  
82  
77  
59  
85  
84  
82  
78  
74  
82  
77  
59  
70  
±8  
±8  
70  
±9  
70  
±8  
±0  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
74  
72  
72  
±±  
fCLOCK = 80 MSPS; fOUT = 10 MHz;  
IOUTFS = 1 mA  
−141.0  
−139.4  
10.2  
−135.1  
9.5  
−12±.3  
8.0  
dBc/  
Hz  
ENOB at IOUTFS = 1 mA  
10.5  
bits  
fCLOCK = 80 MSPS; fOUT = 10 MHz;  
IOUTFS = 2 mA  
−145.7  
dBc/  
Hz  
ENOB at IOUTFS = 2 mA  
10.3  
Bits  
1 See Figure 71 for diagram.  
2 Measured single-ended into 500 Ω load.  
Rev. 0 | Page 8 of 52  
 
 
 
 
AD9704/AD9705/AD9706/AD9707  
DIGITAL SPECIFICATIONS (1.8 V)  
TMIN to TMAX, AVDD = 1.8 V, DVDD = 1.8 V, CLKVDD = 1.8 V, IOUTFS = 1 mA, unless otherwise noted.  
Table 6.  
AD9707  
Typ  
AD9706  
Typ  
AD9705  
Typ  
AD9704  
Typ  
Parameter  
Min  
1.2  
Max  
Min  
1.2  
Max  
Min  
1.2  
Max  
Min  
1.2  
Max  
Unit  
DIGITAL INPUTS1  
Logic 1 Voltage  
Logic 0 Voltage  
1.8  
0
1.8  
0
1.8  
0
1.8  
0
V
V
0.5  
0.5  
0.5  
0.5  
Logic 1 Current  
Logic 0 Current  
10  
+10  
+10  
10  
+10  
+10  
10  
+10  
+10  
10  
+10  
+10  
ꢀA  
ꢀA  
pF  
ns  
ns  
ns  
Input Capacitance  
Input Setup Time (tS)  
Input Hold Time (tH)  
Latch Pulsewidth (tLPW  
CLK INPUTS2  
5
5
5
5
2.4  
0.4  
±.2  
2.4  
0.4  
±.2  
2.4  
0.4  
±.2  
2.4  
0.4  
±.2  
)
Input Voltage Range  
Common-Mode Voltage  
Differential Voltage  
0
0.4  
0.5  
1.8  
1.3  
0
0.4  
0.5  
1.8  
1.3  
0
0.4  
0.5  
1.8  
1.3  
0
0.4  
0.5  
1.8  
1.3  
V
V
V
0.9  
1.5  
0.9  
1.5  
0.9  
1.5  
0.9  
1.5  
1 Includes CLK+ pin in single-ended clock input mode.  
2 Applicable to CLK+ input and CLK– input when configured for differential clock input mode.  
TIMING DIAGRAM  
DBO TO DB13  
tS  
tH  
CLOCK  
tLPW  
tST  
tPD  
IOUTA  
OR  
IOUTB  
0.1%  
0.1%  
Figure 2. Timing Diagram  
Rev. 0 | Page 9 of 52  
 
 
AD9704/AD9705/AD9706/AD9707  
ABSOLUTE MAXIMUM RATINGS  
Table 7.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
With  
Parameter  
AVDD  
Respect to Rating  
ACOM  
−0.3 V to +3.9 V  
DVDD  
DCOM  
−0.3 V to +3.9 V  
CLKVDD  
ACOM  
CLKCOM  
DCOM  
−0.3 V to +3.9 V  
−0.3 V to +0.3 V  
ACOM  
DCOM  
AVDD  
CLKCOM  
CLKCOM  
DVDD  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−3.9 V to +3.9 V  
THERMAL CHARACTERISTICS1  
Table 8. Thermal Resistance  
AVDD  
DVDD  
CLKVDD  
CLKVDD  
DCOM  
DCOM  
ACOM  
−3.9 V to +3.9 V  
−3.9 V to +3.9 V  
−0.3 V to DVDD + 0.3 V  
−0.3 V to DVDD + 0.3 V  
−1.0 V to AVDD + 0.3 V  
−0.3 V to AVDD + 0.3 V  
Package Type  
θJA  
Unit  
32-Lead LFCSP_VQ  
32.5  
°C/W  
CLOCK, SLEEP  
Digital Inputs, MODE  
IOUTA, IOUTB  
REFIO, REFLO, FS ADJ,  
OTCM  
1 Thermal impedance measurements were taken on a 4-layer board in still air,  
in accordance with EIA/JESD51-7.  
ACOM  
CLK+, CLK–, CMODE  
JunctionTemperature  
CLKCOM  
−0.3 V to CLKVDD + 0.3 V  
150°C  
Storage Temperature  
Range  
−±5°C to +150°C  
Lead Temperature  
(10 sec)  
300°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 10 of 52  
 
 
 
AD9704/AD9705/AD9706/AD9707  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
AD9707  
DB7  
DB6  
DVDD  
DB5  
DB4  
1
2
3
4
5
6
7
24 FS ADJ  
23 REFIO  
22 ACOM  
21 IOUTA  
20 IOUTB  
19 OTCM  
18 AVDD  
PIN 1  
INDICATOR  
AD9707  
TOP VIEW  
(Not to Scale)  
DB3  
DB2  
DB1  
8
17 PIN/SPI/RESET  
Figure 3. AD9707 Pin Configuration  
Table 9. AD9707 Pin Function Descriptions  
Pin No.  
Mnemonic  
DB13 (MSB)  
DB12 to DB1  
Description  
27  
28 to 32,  
Most Significant Data Bit (MSB).  
Data Bit 12 to Data Bit 1.  
1, 2, 4 to 8  
9
DB0 (LSB)  
Least Significant Data Bit (LSB).  
25  
SLEEP/CSB  
In pin mode, active high powers down chip.  
In SPI mode, this pin is the serial port chip select (active low).  
23  
REFIO  
Reference Input/Output. Serves as reference input when internal reference disabled. Serves as 1.0 V reference  
output when internal reference activated. Requires a 0.1 μF capacitor to ACOM when internal reference activated.  
24  
22  
20  
21  
18  
19  
17  
FS ADJ  
ACOM  
IOUTB  
IOUTA  
AVDD  
Full-Scale Current Output Adjust.  
Analog Common.  
Complementary DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Analog Supply Voltage (1.7 V to 3.± V).  
Adjustable Output Common Mode. Refer to the Theory of Operation section for details.  
Selects SPI mode or pin mode operation. Active high for pin mode operation. Active low for SPI mode  
operation. Pulse high to reset SPI registers to default values.  
OTCM  
PIN/SPI/RESET  
1±  
15  
MODE/SDIO  
In pin mode, this selects the input data format. Connect to DCOM for straight binary, DVDD for twos complement.  
In SPI mode, this pin acts as SPI data input/output.  
In pin mode, this pin selects the clock input type. Connect to CLKCOM for single-ended clock receiver  
(drive CLK+ and float CLK–). Connect to CLKVDD for differential receiver.  
In SPI mode, this pin is the serial data clock input.  
CMODE/SCLK  
14  
13  
12  
11  
10, 2±  
3
CLKCOM  
CLK−  
CLK+  
CLKVDD  
DCOM  
DVDD  
Clock Common.  
Differential Clock Input.  
Differential Clock Input.  
Clock Supply Voltage (1.7 V to 3.± V).  
Digital Common.  
Digital Supply Voltage (1.7 V to 3.± V).  
Rev. 0 | Page 11 of 52  
 
AD9704/AD9705/AD9706/AD9707  
AD9706  
DB5  
1
2
3
4
5
6
7
24 FS ADJ  
23 REFIO  
22 ACOM  
21 IOUTA  
20 IOUTB  
19 OTCM  
18 AVDD  
PIN 1  
INDICATOR  
DB4  
DVDD  
DB3  
DB2  
DB1  
AD9706  
TOP VIEW  
(Not to Scale)  
DB0 (LSB)  
NC  
8
17 PIN/SPI/RESET  
NC = NO CONNECT  
Figure 4. AD9706 Pin Configuration  
Table 10. AD9706 Pin Function Descriptions  
Pin No.  
Mnemonic  
DB11 (MSB)  
DB10 to DB1  
Description  
27  
28 to 32,  
Most Significant Data Bit (MSB).  
Data Bit 10 to Data Bit 1.  
1, 2, 4 to ±  
7
DB0 (LSB)  
Least Significant Data Bit (LSB).  
25  
SLEEP/CSB  
In pin mode, active high powers down chip.  
In SPI mode, this pin is the serial port chip select (active low).  
Full-Scale Current Output Adjust.  
Reference Input/Output. Serves as reference input when internal reference disabled. Serves as 1.0 V reference  
output when internal reference activated. Requires a 0.1 μF capacitor to ACOM when internal reference activated.  
24  
23  
FS ADJ  
REFIO  
22  
21  
20  
19  
18  
17  
ACOM  
IOUTA  
IOUTB  
OTCM  
AVDD  
PIN/SPI/RESET  
Analog Common.  
DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Complementary DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
Adjustable Output Common Mode. Refer to the Theory of Operation section for details.  
Analog Supply Voltage (1.7 V to 3.± V).  
Selects SPI mode or pin mode operation. Active high for pin mode operation. Active low for SPI mode operation.  
Pulse high to reset SPI registers to default values.  
1±  
15  
MODE/SDIO  
In pin mode, this selects the input data format. Connect to DCOM for straight binary, DVDD for twos complement.  
In SPI mode, this pin acts as SPI data input/output.  
CMODE/SCLK In pin mode, this pin selects the clock input type. Connect to CLKCOM for single-ended clock receiver  
(drive CLK+ and float CLK–). Connect to CLKVDD for differential receiver.  
In SPI mode, this pin is the serial data clock input.  
14  
13  
12  
11  
10, 2±  
8, 9  
3
CLKCOM  
CLK−  
CLK+  
CLKVDD  
DCOM  
NC  
Clock Common.  
Differential Clock Input.  
Differential Clock Input.  
Clock Supply Voltage (1.7 V to 3.± V).  
Digital Common.  
No Connect.  
Digital Supply Voltage (1.7 V to 3.± V).  
DVDD  
Rev. 0 | Page 12 of 52  
 
AD9704/AD9705/AD9706/AD9707  
AD9705  
DB3  
DB2  
DVDD  
1
2
3
4
5
6
7
24 FS ADJ  
23 REFIO  
22 ACOM  
21 IOUTA  
20 IOUTB  
19 OTCM  
18 AVDD  
PIN 1  
INDICATOR  
AD9705  
DB1  
DB0 (LSB)  
NC  
TOP VIEW  
(Not to Scale)  
NC  
NC  
8
17 PIN/SPI/RESET  
NC = NO CONNECT  
Figure 5. AD9705 Pin Configuration  
Table 11. AD9705 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
27  
DB9 (MSB)  
Most Significant Data Bit (MSB).  
Data Bit 8 to Data Bit 1.  
28 to 32, DB8 to DB1  
1, 2, 4  
5
DB0 (LSB)  
Least Significant Data Bit (LSB).  
25  
SLEEP/CSB  
In pin mode, active high powers down chip.  
In SPI mode, this pin is the serial port chip select (active low).  
24  
23  
FS ADJ  
REFIO  
Full-Scale Current Output Adjust.  
Reference Input/Output. Serves as reference input when internal reference disabled. Serves as 1.0 V reference  
output when internal reference activated. Requires a 0.1 μF capacitor to ACOM when internal reference activated.  
22  
21  
20  
19  
18  
17  
ACOM  
IOUTA  
IOUTB  
OTCM  
AVDD  
PIN/SPI/RESET  
Analog Common.  
DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Complementary DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
Adjustable Output Common Mode. Refer to the Theory of Operation section for details.  
Analog Supply Voltage (1.7 V to 3.± V).  
Selects SPI mode or pin mode operation. Active high for pin mode operation. Active low for SPI mode  
operation. Pulse high to reset SPI registers to default values.  
1±  
15  
MODE/SDIO  
In pin mode, this selects the input data format. Connect to DCOM for straight binary, DVDD for twos complement.  
In SPI mode, this pin acts as SPI data input/output.  
In pin mode, this pin selects the clock input type. Connect to CLKCOM for single-ended clock receiver  
(drive CLK+ and float CLK–). Connect to CLKVDD for differential receiver.  
In SPI mode, this pin is the serial data clock input.  
CMODE/SCLK  
14  
13  
12  
11  
10, 2±  
± to 9  
3
CLKCOM  
CLK−  
CLK+  
CLKVDD  
DCOM  
NC  
Clock Common.  
Differential Clock Input.  
Differential Clock Input.  
Clock Supply Voltage (1.7 V to 3.± V).  
Digital Common.  
No Connect.  
Digital Supply Voltage (1.7 V to 3.± V).  
DVDD  
Rev. 0 | Page 13 of 52  
 
AD9704/AD9705/AD9706/AD9707  
AD9704  
DB1  
1
2
3
4
5
6
7
24 FS ADJ  
23 REFIO  
22 ACOM  
21 IOUTA  
20 IOUTB  
19 OTCM  
18 AVDD  
PIN 1  
INDICATOR  
DB0 (LSB)  
DVDD  
NC  
AD9704  
NC  
NC  
NC  
TOP VIEW  
(Not to Scale)  
NC  
8
17 PIN/SPI/RESET  
NC = NO CONNECT  
Figure 6. AD9704 Pin Configuration  
Table 12. AD9704 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
27  
DB7 (MSB)  
Most Significant Data Bit (MSB).  
Data Bit ± to Data Bit 1.  
28 to 32, DB± to DB1  
1
2
DB0 (LSB)  
Least Significant Data Bit (LSB).  
25  
SLEEP/CSB  
In pin mode, active high powers down chip.  
In SPI mode, this pin is the serial port chip select (active low).  
24  
23  
FS ADJ  
REFIO  
Full-Scale Current Output Adjust.  
Reference Input/Output. Serves as reference input when internal reference disabled. Serves as 1.0 V reference  
output when internal reference activated. Requires a 0.1 μF capacitor to ACOM when internal reference activated.  
22  
21  
20  
19  
18  
17  
ACOM  
IOUTA  
IOUTB  
OTCM  
AVDD  
PIN/SPI/RESET  
Analog Common.  
DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Complementary DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
Adjustable Output Common Mode. Refer to the Theory of Operation section for details.  
Analog Supply Voltage (1.7 V to 3.± V).  
Selects SPI mode or pin mode operation. Active high for pin mode operation. Active low for SPI mode  
operation. Pulse high to reset SPI registers to default values.  
1±  
15  
MODE/SDIO  
In pin mode, this selects the input data format. Connect to DCOM for straight binary, DVDD for twos complement.  
In SPI mode, this pin acts as SPI data input/output.  
In pin mode, this pin selects the clock input type. Connect to CLKCOM for single-ended clock receiver  
(drive CLK+ and float CLK−). Connect to CLKVDD for differential receiver.  
In SPI mode, this pin is the serial data clock input.  
CMODE/SCLK  
14  
13  
12  
11  
10, 2±  
4 to 9  
3
CLKCOM  
CLK−  
CLK+  
CLKVDD  
DCOM  
NC  
Clock Common.  
Differential Clock Input.  
Differential Clock Input.  
Clock Supply Voltage (1.7 V to 3.± V).  
Digital Common.  
No Connect.  
Digital Supply Voltage (1.7 V to 3.± V).  
DVDD  
Rev. 0 | Page 14 of 52  
 
AD9704/AD9705/AD9706/AD9707  
TYPICAL PERFORMANCE CHARACTERISTICS  
AD9707  
VDD = 3.3 V, IOUTFS = 2 mA, unless otherwise noted.  
95  
95  
10MSPS  
90  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
65MSPS  
85  
80  
175MSPS  
75  
70  
65  
125MSPS  
60  
55  
50  
45  
1
10  
100  
0
0
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
fOUT (MHz)  
fOUT (MHz)  
Figure 7. SFDR vs. fOUT  
Figure 10. SFDR vs. fOUT @ 125 MSPS  
95  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
0
1
2
3
4
5
10  
20  
30  
40  
50  
60  
70  
80  
fOUT (MHz)  
fOUT (MHz)  
Figure 8. SFDR vs. fOUT @ 10 MSPS  
Figure 11. SFDR vs. fOUT @ 175 MSPS  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
5mA  
2mA  
1mA  
0
5
10  
15  
20  
25  
30  
35  
10  
20  
30  
40  
50  
60  
70  
80  
fOUT (MHz)  
fOUT (MHz)  
Figure 9. SFDR vs. fOUT @ 65 MSPS  
Figure 12. SFDR vs. fOUT and IOUTFS @ 175 MSPS  
Rev. 0 | Page 15 of 52  
 
AD9704/AD9705/AD9706/AD9707  
95  
90  
85  
80  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
OTCM = 0  
75  
1mA  
70  
OTCM = 0.3V  
2mA  
5mA  
65  
60  
55  
50  
45  
OTCM = 1.2V  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
fOUT (MHz)  
fOUT (MHz)  
Figure 13. SFDR vs. fOUT and OTCM @ 175 MSPS  
Figure 16. NSD vs. fOUT and IOUTFS @ 175 MSPS  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
65MSPS  
75MSPS  
125MSPS  
175MSPS  
175MSPS  
125MSPS  
–10  
–8  
–6  
A
–4  
(dBFS)  
–2  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
LOWER fOUT (MHz)  
OUT  
Figure 14. Single-Tone SFDR vs. AOUT @ fOUT = fCLOCK/5  
Figure 17. Dual-Tone IMD vs. fOUT @ 0 dBFS  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
25°C  
125MSPS  
85°C  
65MSPS  
175MSPS  
–40°C  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
fOUT (MHz)  
LOWER fOUT (MHz)  
Figure 15. NSD vs. fOUT and fCLOCK @ 0 dBFS  
Figure 18. Dual-Tone IMD vs. fOUT and Temperature @ 0 dBFS  
Rev. 0 | Page 1± of 52  
AD9704/AD9705/AD9706/AD9707  
0.6  
1.0  
0.5  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
–0.5  
–1.0  
–1.5  
–0.1  
–0.2  
0
5000  
10000  
15000  
0
5000  
10000  
16384  
CODE  
CODE  
Figure 19. Typical Uncalibrated INL  
Figure 22. Typical Calibrated DNL  
95  
0.6  
0.4  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
0.2  
25°C  
85°C  
0
–40°C  
–0.2  
–0.4  
–0.6  
–0.8  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
5000  
10000  
16384  
fOUT (MHz)  
CODE  
Figure 20. Typical Uncalibrated DNL  
Figure 23. SFDR vs. Temperature @ 175 MSPS  
0.6  
0.4  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
fCLOCK = 78MSPS  
fOUT = 15.0MHz  
SFDR = 79dBc  
0.2  
AMPLITUDE = 0dBFS  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
5000  
10000  
15000  
1
6
11  
16  
21  
26  
31  
36  
CODE  
FREQUENCY (MHz)  
Figure 21. Typical Calibrated INL  
Figure 24. Single-Tone SFDR  
Rev. 0 | Page 17 of 52  
AD9704/AD9705/AD9706/AD9707  
–10  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
fCLOCK = 78MSPS  
fCLOCK = 78MSPS  
fOUT1 = 15.0MHz  
fOUT2 = 15.4MHz  
fOUT3 = 15.8MHz  
fOUT4 = 16.2MHz  
SFDR = 69dBc  
–20  
fOUT1 = 15.0MHz  
fOUT2 = 15.4MHz  
SFDR = 74dBc  
AMPLITUDE = 0dBFS  
–30  
–40  
AMPLITUDE = 0dBFS  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
1
6
11  
16  
21  
26  
31  
36  
1
6
11  
16  
21  
26  
31  
36  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 25. Dual-Tone SFDR  
Figure 26. Four-Tone SFDR  
Rev. 0 | Page 18 of 52  
AD9704/AD9705/AD9706/AD9707  
VDD = 1.8 V, IOUTFS = 1 mA, unless otherwise noted.  
95  
95  
10MSPS  
90  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
65MSPS  
85  
80  
80MSPS  
75  
70  
65  
60  
55  
50  
45  
1
10  
100  
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
35  
40  
fOUT (MHz)  
fOUT (MHz)  
Figure 27. SFDR vs. fOUT  
Figure 30. SFDR vs. fOUT @ 80 MSPS  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
1mA  
2mA  
5
10  
15  
20  
25  
30  
0
1
2
3
4
5
fOUT (MHz)  
fOUT (MHz)  
Figure 31. SFDR vs. fOUT and IOUTFS @ 65 MSPS  
Figure 28. SFDR vs. fOUT @ 10 MSPS  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
1mA  
2mA  
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
fOUT (MHz)  
fOUT (MHz)  
Figure 32. SFDR vs. fOUT and IOUTFS @ 80 MSPS  
Figure 29. SFDR vs. fOUT @ 65 MSPS  
Rev. 0 | Page 19 of 52  
AD9704/AD9705/AD9706/AD9707  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
95  
90  
85  
80  
80MSPS  
65MSPS  
75  
70  
25MSPS  
65  
65MSPS  
60  
55  
50  
45  
80MSPS  
35  
0
5
10  
15  
20  
25  
30  
40  
–10  
–8  
–6  
A
–4  
(dBFS)  
–2  
0
LOWER fOUT (MHz)  
OUT  
Figure 33. Single-Tone SFDR vs. AOUT @ fOUT = fCLOCK/5  
Figure 36. Dual-Tone IMD vs. fOUT @ IOUTFS = 2 mA and 0 dBFS  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
95  
90  
85  
80  
–40°C  
80MSPS, 1mA  
65MSPS, 1mA  
75  
85°C  
70  
65  
25°C  
60  
55  
50  
45  
80MSPS, 2mA  
65MSPS, 2mA  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
LOWER fOUT (MHz)  
fOUT (dBFS)  
Figure 34. NSD vs. fOUT, fCLOCK, and IOUTFS @ 0 dBFS  
Figure 37. Dual-Tone IMD vs. fOUT and Temperature @ 80 MSPS,  
IOUTFS = 1 mA and 0 dBFS  
95  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
25°C  
–40°C  
65MSPS  
25MSPS  
80MSPS  
80°C  
35  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
40  
LOWER fOUT (MHz)  
LOWER fOUT (MHz)  
Figure 35. Dual-Tone IMD vs. fOUT @ IOUTFS = 1 mA and 0 dBFS  
Figure 38. Dual-Tone IMD vs. fOUT and Temperature @ 80 MSPS,  
OUTFS = 2 mA and 0 dBFS  
I
Rev. 0 | Page 20 of 52  
AD9704/AD9705/AD9706/AD9707  
1.0  
0.5  
–10  
fCLOCK = 78MSPS  
fOUT = 15.0MHz  
SFDR = 80dBc  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
AMPLITUDE = 0dBFS  
0.0  
–0.5  
–1.0  
–1.5  
1
6
11  
16  
21  
26  
31  
36  
0
5000  
10000  
16384  
FREQUENCY (MHz)  
CODE  
Figure 39. Typical Uncalibrated INL  
Figure 42. Single-Tone SFDR  
0.6  
0.4  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
fCLOCK = 78MSPS  
fOUT1 = 15.0MHz  
fOUT2 = 15.4MHz  
SFDR = 77dBc  
AMPLITUDE = 0dBFS  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
1
6
11  
16  
21  
26  
31  
36  
0
5000  
10000  
16384  
FREQUENCY (MHz)  
CODE  
Figure 40. Typical Uncalibrated DNL  
Figure 43. Dual-Tone SFDR  
95  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
fCLOCK = 78MSPS  
fOUT1 = 15.0MHz  
fOUT2 = 15.4MHz  
fOUT3 = 15.8MHz  
fOUT4 = 16.2MHz  
SFDR = 77dBc  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
–40°C  
AMPLITUDE = 0dBFS  
85°C  
25°C  
0
5
10  
15  
20  
25  
30  
35  
40  
1
6
11  
16  
21  
26  
31  
36  
fOUT (MHz)  
FREQUENCY (MHz)  
Figure 41. SFDR vs. Temperature @ 80 MSPS  
Figure 44. Four-Tone SFDR  
Rev. 0 | Page 21 of 52  
AD9704/AD9705/AD9706/AD9707  
AD9704, AD9705, AND AD9706  
VDD = 3.3 V, IOUTFS = 2 mA, unless otherwise noted.  
–115  
0.01  
AD9704  
–120  
–125  
–130  
AD9705  
–135  
0
–140  
–145  
AD9706  
–150  
AD9707  
–155  
–160  
–0.01  
0.01  
0
200  
400  
600  
800  
1024  
0
10  
20  
30  
40  
50  
60  
70  
80  
CODE  
fOUT (MHz)  
Figure 45. AD9704, AD9705, AD9706 NSD vs. fOUT @ 0 dBFS  
Figure 48. AD9705 Typical Uncalibrated INL  
0.03  
0.02  
0.01  
0
0
–0.01  
–0.02  
–0.01  
0
200  
400  
600  
800  
1024  
0
50  
100  
150  
200  
256  
CODE  
CODE  
Figure 46. AD9704 Typical Uncalibrated INL  
Figure 49. AD9705 Typical Uncalibrated DNL  
0.01  
0
0.3  
0.2  
0.1  
0
–0.01  
–0.02  
–0.03  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
50  
100  
150  
200  
256  
0
1000  
2000  
3000  
4096  
CODE  
CODE  
Figure 47. AD9704 Typical Uncalibrated DNL  
Figure 50. AD9706 Typical Uncalibrated INL  
Rev. 0 | Page 22 of 52  
 
AD9704/AD9705/AD9706/AD9707  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
0.01  
0
fCLOCK = 78MSPS  
fOUT = 15.0MHz  
SFDR = 75dBc  
AMPLITUDE = 0dBFS  
–0.01  
–0.02  
–0.03  
–0.04  
1
6
11  
16  
21  
26  
31  
36  
0
1000  
2000  
3000  
4096  
FREQUENCY (MHz)  
CODE  
Figure 54. AD9705 Single-Tone SFDR  
Figure 51. AD9706 Typical Uncalibrated DNL  
–10  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
fCLOCK = 78MSPS  
fOUT = 15.0MHz  
fCLOCK = 78MSPS  
fOUT1 = 15.0MHz  
fOUT2 = 15.4MHz  
SFDR = 73dBc  
–20  
–30  
SFDR = 67dBc  
AMPLITUDE = 0dBFS  
AMPLITUDE = 0dBFS  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
1
6
11  
16  
21  
26  
31  
36  
1
6
11  
16  
21  
26  
31  
36  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 52. AD9704 Single-Tone SFDR  
Figure 55. AD9705 Dual-Tone SFDR  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
fCLOCK = 78MSPS  
fOUT1 = 15.0MHz  
fOUT2 = 15.4MHz  
SFDR = 67dBc  
fCLOCK = 78MSPS  
fOUT1 = 15.0MHz  
SFDR = 77dBc  
AMPLITUDE = 0dBFS  
AMPLITUDE = 0dBFS  
1
6
11  
16  
21  
26  
31  
36  
1
6
11  
16  
21  
26  
31  
36  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 53. AD9704 Dual-Tone SFDR  
Figure 56. AD9706 Single-Tone SFDR  
Rev. 0 | Page 23 of 52  
AD9704/AD9705/AD9706/AD9707  
–10  
fCLOCK = 78MSPS  
–20  
fOUT1 = 15.0MHz  
fOUT2 = 15.4MHz  
SFDR = 77dBc  
–30  
AMPLITUDE = 0dBFS  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
1
6
11  
16  
21  
26  
31  
36  
FREQUENCY (MHz)  
Figure 57. AD9706 Dual-Tone SFDR  
Rev. 0 | Page 24 of 52  
AD9704/AD9705/AD9706/AD9707  
VDD = 1.8 V, IOUTFS = 1 mA, unless otherwise noted.  
–115  
0.08  
0.06  
0.04  
0.02  
0
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
AD9704  
AD9705  
AD9706  
–0.02  
–0.04  
–0.06  
–0.08  
AD9707  
0
5
10  
15  
20  
fOUT (MHz)  
25  
30  
35  
40  
0
0
0
200  
400  
600  
800  
1024  
1024  
4096  
CODE  
Figure 58. AD9704, AD9705, AD9706 NSD vs. fOUT @ 0 dBFS  
Figure 61. AD9705 Typical Uncalibrated INL  
0.04  
0.02  
0
0.03  
0.02  
0.01  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.12  
–0.01  
–0.02  
200  
400  
600  
800  
0
50  
100  
150  
200  
256  
CODE  
CODE  
Figure 59. AD9704 Typical Uncalibrated INL  
Figure 62. AD9705 Typical Uncalibrated DNL  
0.3  
0.2  
0.01  
0
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.01  
–0.02  
–0.03  
1000  
2000  
3000  
0
50  
100  
150  
200  
256  
CODE  
CODE  
Figure 63. AD9706 Typical Uncalibrated INL  
Figure 60. AD9704 Typical Uncalibrated DNL  
Rev. 0 | Page 25 of 52  
AD9704/AD9705/AD9706/AD9707  
0.1  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
fCLOCK = 78MSPS  
fOUT = 15.0MHz  
SFDR = 73dBc  
0
AMPLITUDE = 0dBFS  
–0.1  
–0.2  
–0.3  
–0.4  
0
1000  
2000  
3000  
4096  
1
1
1
6
11  
16  
21  
26  
31  
36  
CODE  
FREQUENCY (MHz)  
Figure 64. AD9706 Typical Uncalibrated DNL  
Figure 67. AD9705 Single-Tone SFDR  
–10  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
fCLOCK = 78MSPS  
fOUT = 15.0MHz  
fCLOCK = 78MSPS  
fOUT1 = 15.0MHz  
fOUT2 = 15.4MHz  
SFDR = 71dBc  
–20  
–30  
SFDR = 67dBc  
AMPLITUDE = 0dBFS  
AMPLITUDE = 0dBFS  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
1
6
11  
16  
21  
26  
31  
36  
6
11  
16  
21  
26  
31  
36  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 65. AD9704 Single-Tone SFDR  
Figure 68. AD9705 Dual-Tone SFDR  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
fCLOCK = 78MSPS  
fOUT1 = 15.0MHz  
fOUT2 = 15.4MHz  
SFDR = 67dBc  
fCLOCK = 78MSPS  
fOUT = 15.0MHz  
SFDR = 73dBc  
AMPLITUDE = 0dBFS  
AMPLITUDE = 0dBFS  
1
6
11  
16  
21  
26  
31  
36  
6
11  
16  
21  
26  
31  
36  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 66. AD9704 Dual-Tone SFDR  
Figure 69. AD9706 Single-Tone SFDR  
Rev. 0 | Page 2± of 52  
AD9704/AD9705/AD9706/AD9707  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
fCLOCK = 78MSPS  
fOUT1 = 15.0MHz  
fOUT2 = 15.4MHz  
SFDR = 73dBc  
AMPLITUDE = 0dBFS  
1
6
11  
16  
21  
26  
31  
36  
FREQUENCY (MHz)  
Figure 70. AD9706 Dual-Tone SFDR  
Rev. 0 | Page 27 of 52  
AD9704/AD9705/AD9706/AD9707  
TERMINOLOGY  
Linearity Error (Also Called Integral Nonlinearity or INL)  
INL is defined as the maximum deviation of the actual analog  
output from the ideal output, determined by a straight line  
drawn from zero to full scale.  
Power Supply Rejection  
Power supply rejection is the maximum change in the full-scale  
output as the supplies are varied from nominal to minimum  
and maximum specified voltages.  
Differential Nonlinearity (DNL)  
Settling Time  
DNL is the measure of the variation in analog value, normalized  
to full scale, associated with a 1 LSB change in digital input code.  
Settling time is the time required for the output to reach and  
remain within a specified error band about its final value,  
measured from the start of the output transition.  
Monotonicity  
A digital-to-analog converter is monotonic if the output either  
increases or remains constant as the digital input increases.  
Glitch Impulse  
Asymmetrical switching times in a DAC give rise to undesired  
output transients that are quantified by a glitch impulse. It is  
specified as the net area of the glitch in picovolt-seconds (pV-s).  
Offset Error  
The deviation of the output current from the ideal of zero is  
called the offset error. For IOUTA, 0 mA output is expected  
when the inputs are all 0s. For IOUTB, 0 mA output is expected  
when all inputs are set to 1.  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the difference, in decibels (dB), between the rms  
amplitude of the output signal and the peak spurious signal over  
the specified bandwidth.  
Gain Error  
Gain error is the difference between the actual and ideal output  
span. The actual span is determined by the output when all inputs  
are set to 1, minus the output when all inputs are set to 0. The  
ideal gain is calculated using the measured VREF. Therefore,  
the gain error does not include effects of the reference.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the first six harmonic  
components to the rms value of the measured input signal.  
It is expressed as a percentage or in decibels (dB).  
Multitone Power Ratio  
Output Compliance Range  
Multitone power ratio is the spurious-free dynamic range  
containing multiple carrier tones of equal amplitude. It is  
measured as the difference between the rms amplitude of  
a carrier tone to the peak spurious signal in the region of  
a removed tone.  
Output compliance range is the range of allowable voltage at the  
output of a current output DAC. Operation beyond the maximum  
compliance limits can cause either output stage saturation or  
breakdown, resulting in nonlinear performance.  
Temperature Drift  
Noise Spectral Density (NSD)  
Temperature drift is specified as the maximum change from the  
ambient (25°C) value to the value at either TMIN or TMAX. For offset  
and gain drift, the drift is reported in ppm of full-scale range (FSR)  
per °C. For reference drift, the drift is reported in ppm per °C.  
Noise spectral density is the average noise power normalized to  
a 1 Hz bandwidth, with the DAC converting and producing an  
output tone.  
1.7V TO 3.6V  
AVDD  
ACOM  
1.0V REF  
0.1µF  
AD9707  
REFIO  
CURRENT  
SOURCE  
ARRAY  
MINI-CIRCUITS  
OTCM  
ADT9-1T  
FS ADJ  
R
16k  
SET  
1.7V TO 3.6V  
SPECTRUM ANALYZER  
AGILENT OR  
RHODE AND SCHWARZ  
ADTL1-12  
IOUTA  
IOUTB  
CLKVDD  
CLKCOM  
0Ω  
SEGMENTED  
SWITCHES  
LSB  
SWITCHES  
10kΩ  
ADT1-1WT  
CLK+  
CLK–  
1.7V  
TO  
9:1  
453Ω  
50Ω  
LATCHES  
R
OTCM  
0Ω  
SPI  
DVDD  
DCOM  
3.6V  
10kΩ  
0.1µF  
SLEEP/CSB  
DIGITAL  
DATA  
CLOCK  
OUTPUT  
DIGITAL DATA SOURCE DPG,  
SONY/TEK OR ROHDE AND SCHWARZ  
LOW JITTER RF SOURCE  
AGILENT OR ROHDE AND SCHWARZ  
Figure 71. Basic AC Characterization Test Setup  
Rev. 0 | Page 28 of 52  
 
 
AD9704/AD9705/AD9706/AD9707  
THEORY OF OPERATION  
Figure 72 shows a simplified block diagram of one of the  
AD970x parts, the AD9707 The AD970x consists of a DAC,  
digital control logic, and full-scale output current control. The  
DAC contains a PMOS current source array capable of providing  
a nominal full-scale current (IOUTFS) of 2 mA and a maximum of  
5 mA. The array is divided into 31 equal currents that make up the  
five most significant bits (MSBs). The next four bits, or middle  
bits, consist of 15 equal current sources whose value is 1/16 of an  
MSB current source. The remaining LSBs are binary weighted frac-  
tions of the current sources of the middle bits. Implementing the  
middle and lower bits with current sources, instead of an R-2R  
ladder, enhances the AD970x dynamic performance for multitone  
or low amplitude signals and helps maintain the high output  
impedance of the DAC (that is, >200 Mꢀ).  
The external resistor, in combination with both the reference  
control amplifier and voltage reference, VREFIO, sets the reference  
current, IREF, which is replicated to the segmented current sources  
with the proper scaling factor. The full-scale current, IOUTFS, is  
32 × IREF  
.
The AD970x provides the option of setting the output common  
mode to a value other than ACOM via the output common mode  
(OTCM) pin. This facilitates interfacing the output of the AD970x  
directly to components that require common-mode levels greater  
than 0 V.  
SERIAL PERIPHERAL INTERFACE  
The AD970x serial port is a flexible, synchronous serial commu-  
nications port allowing easy interface to many industry-standard  
microcontrollers and microprocessors. The serial I/O is compatible  
with most synchronous transfer formats, including the Motorola  
SPI and Intel® SSR protocols. The interface allows read/write  
access to all registers that configure the AD970x. Single or multiple  
byte transfers are supported, as well as MSB first or LSB first  
transfer formats. The serial interface port of the AD970x is  
configured as a single pin I/O.  
All of these current sources are switched to one of the two  
output nodes (IOUTA or IOUTB) via PMOS differential current  
switches. The switches are based on the architecture pioneered  
in the AD9764 family, with further refinements made to reduce  
distortion contributed by the switching transient. This switch  
architecture also reduces various timing errors and provides  
matching complementary drive signals to the inputs of the  
differential current switches.  
General Operation of the Serial Interface  
The analog and digital sections of the AD970x have separate power  
supply inputs (AVDD and DVDD) that can operate independently  
over a 1.7 V to 3.6 V range. The digital section, which is capable  
of operating at a rate of up to 175 MSPS, consists of edge-triggered  
latches and segment decoding logic circuitry. The analog section  
includes the PMOS current sources, the associated differential  
switches, a 1.0 V band gap voltage reference, and a reference  
control amplifier.  
There are two phases to a communication cycle with the AD970x.  
Phase 1 is the instruction cycle, which is the writing of an instruc-  
tion byte into the AD970x, coincident with the first eight SCLK  
rising edges. The instruction byte provides the AD970x serial port  
controller with information regarding the data transfer cycle, which  
is Phase 2 of the communication cycle. The Phase 1 instruction  
byte defines whether the upcoming data transfer is read or write,  
the number of bytes in the data transfer, and the starting register  
address for the first byte of the data transfer. The first eight  
SCLK rising edges of each communication cycle are used to write  
the instruction byte into the AD970x.  
The DAC full-scale output current is regulated by the reference  
control amplifier and can be set from 1 mA to 5 mA via an external  
resistor, RSET, connected to the full-scale adjust (FS ADJ) pin.  
1.7V TO 3.6V  
AVDD  
ACOM  
1.0V REF  
REFIO  
0.1µF  
AD9707  
OTCM  
CURRENT  
SOURCE  
ARRAY  
FS ADJ  
1.7V  
TO  
CLKVDD  
CLKCOM  
IOUTA  
R
SET  
SEGMENTED  
SWITCHES  
LSB  
SWITCHES  
3.6V  
IOUTB  
SPI  
CLK+  
CLK–  
PIN/SPI/RESET  
MODE/SDIO  
LATCHES  
1.7V TO  
3.6V  
CMODE/SCLK  
DVDD  
DCOM  
SLEEP/CSB  
DIGITAL INPUTS (DB13 TO DB0)  
Figure 72. Simplified Block Diagram  
Rev. 0 | Page 29 of 52  
 
 
 
AD9704/AD9705/AD9706/AD9707  
A logic high on Pin 17 (PIN/SPI/RESET), followed by a logic  
low, resets the SPI port timing to the initial state of the  
instruction cycle. This is true regardless of the present state of  
the internal registers or the other signal levels present at the  
inputs to the SPI port. If the SPI port is in the midst of an  
instruction cycle or a data transfer cycle, none of the present  
data is written.  
CSB—Chip Select. Active low input starts and gates a communica-  
tion cycle. It allows more than one device to be used on the same  
serial communications lines. The SDIO pin goes to a high imped-  
ance state when this input is high. Chip select should stay low  
during the entire communication cycle.  
SDIO—Serial Data I/O. This pin is used as a bidirectional data  
line to transmit and receive data.  
The remaining SCLK edges are for Phase 2 of the communication  
cycle. Phase 2 is the actual data transfer between the AD970x  
and the system controller. Phase 2 of the communication cycle  
is a transfer of one, two, three, or four data bytes, as determined  
by the instruction byte. Using one multibyte transfer is the  
preferred method. Single byte data transfers are useful to reduce  
CPU overhead when register access requires one byte only.  
Registers change immediately upon writing to the last bit of  
each transfer byte.  
MSB/LSB Transfers  
The AD970x serial port can support both most significant bit  
(MSB) first or least significant bit (LSB) first data formats. This  
functionality is controlled by the DATADIR bit (Register 0x00,  
Bit 6). The default is MSB first (DATADIR = 0).  
When DATADIR = 0 (MSB first), the instruction and data bytes  
must be written from most significant bit to least significant bit.  
Multibyte data transfers in MSB first format start with an  
instruction byte that includes the register address of the most  
significant data byte. Subsequent data bytes should follow in  
order from high address to low address. In MSB first mode, the  
serial port internal byte address generator decrements for each  
data byte of the multibyte communication cycle.  
Instruction Byte  
The instruction byte contains the information shown in the  
following bit map:  
MSB  
7
LSB  
0
±
5
4
3
2
1
When DATADIR = 1 (LSB first), the instruction and data bytes  
must be written from least significant bit to most significant bit.  
Multibyte data transfers in LSB first format start with an instruction  
byte that includes the register address of the least significant data  
byte followed by multiple data bytes. The serial port internal byte  
address generator increments for each byte of the multibyte  
communication cycle.  
R/W  
N1  
N0  
A4  
A3  
A2  
A1  
A0  
W
R/ , Bit 7 of the instruction byte, determines whether a read or  
a write data transfer occurs after the instruction byte write. Logic 1  
indicates a read operation. Logic 0 indicates a write operation.  
N1 and N0, Bit 6 and Bit 5 of the instruction byte, determine the  
number of bytes to be transferred during the data transfer cycle.  
The bit decodes are shown in Table 13.  
The AD970x serial port controller data address decrements  
from the data address written toward 0x00 for multibyte I/O  
operations if the MSB first mode is active. The serial port  
controller address increments from the data address written  
toward 0x1F for multibyte I/O operations if the LSB first mode  
is active.  
A4, A3, A2, A1, and A0, which are Bit 4, Bit 3, Bit 2, Bit 1, and  
Bit 0 of the instruction byte, respectively, determine which register  
is accessed during the data transfer portion of the communication  
cycle. For multibyte transfers, this address is the starting byte  
address. The remaining register addresses are generated by the  
AD970x, based on the DATADIR bit (Register 0x00, Bit 6).  
Notes on Serial Port Operation  
Table 13. Byte Transfer Count  
The AD970x serial port configuration is controlled by  
Register 0x00, Bit 7. It is important to note that the configuration  
changes immediately upon writing to the last bit of the register.  
For multibyte transfers, writing to this register can occur during  
the middle of communication cycle. Care must be taken to  
compensate for this new configuration for the remaining bytes  
of the current communication cycle.  
N1  
N0  
Description  
0
0
1
1
0
1
0
1
Transfer 1 byte  
Transfer 2 bytes  
Transfer 3 bytes  
Transfer 4 bytes  
Serial Interface Port Pin Descriptions  
SCLK—Serial Clock. The serial clock pin is used to synchronize  
data to and from the AD970x and to run the internal state  
machines. The SCLK maximum frequency is 20 MHz. All data  
input to the AD970x is registered on the rising edge of SCLK.  
All data is driven out of the AD970x on the falling edge of SCLK.  
The same considerations apply to setting the software reset,  
SWRST (Register 0x00, Bit 5). All registers are set to their default  
values except Register 0x00, which remains unchanged.  
Use of single byte transfers is recommended when changing  
serial port configurations or initiating a software reset to  
prevent unexpected device behavior.  
Rev. 0 | Page 30 of 52  
 
AD9704/AD9705/AD9706/AD9707  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CSB  
SCLK  
SDIO  
SDO  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CSB  
SCLK  
SDIO  
A0 A1 A2 A3 A4 N0 N1 R/W  
D0  
D1 D2  
0
D4 D5 D6 D7  
N N N  
0
N
N
D1 D2  
D4 D5 D6 D7  
N N N  
0
0
R/W N1 N0 A4 A3 A2 A1 A0 D7 D6 D5  
D3 D2 D1 D0  
0 0 0 0  
N
N
N
D0  
Figure 73. Serial Register Interface Timing, MSB First Write  
Figure 76. Serial Register Interface Timing, LSB First Read  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
tDS  
tSCLK  
CSB  
SCLK  
SDIO  
SDO  
CSB  
tPWH  
tPWL  
R/W N1 N0 A4 A3 A2 A1 A0  
D7  
D6 D5  
D3 D2 D1 D0  
0 0 0  
N
N
0
0
SCLK  
tDS  
tDH  
INSTRUCTION BIT 7  
D6 D5  
D3 D2 D1 D0  
0 0 0  
N
N
INSTRUCTION BIT 6  
SDIO  
D7  
Figure 77. Timing Diagram for SPI Register Write  
Figure 74. Serial Register Interface Timing, MSB First Read  
CSB  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CSB  
SCLK  
SDIO  
SCLK  
t
DNV  
t
DV  
I1  
I0  
D7  
D6  
D5  
SDIO  
A0 A1 A2 A3 A4 N0 N1 R/W D00 D10 D20  
D4N D5N D6N D7N  
Figure 78. Timing Diagram for SPI Register Read  
Figure 75. Serial Register Interface Timing, LSB First Write  
SPI REGISTER MAP  
Table 14.  
Name  
Addr Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI CTL  
DATA  
0x00  
0x02  
0x0D  
0x0E  
SDIODIR  
DATADIR SWRST  
LNGINS  
DCLKPOL  
PDN  
SLEEP  
CLKOFF  
EXREF  
DATAFMT  
DESKEW  
VER[3]  
CLKDIFF  
VER[2]  
CALCLK  
VER[0]  
VERSION  
CALMEM  
VER[1]  
CALMEM[1]  
CALMEM[0]  
DIVSEL[2]  
SMEMRD  
DIVSEL[1]  
DIVSEL[0]  
UNCAL  
MEMRDWR 0x0F  
MEMADDR 0x10  
CALSTAT  
CALEN  
SMEMWR  
MEMADDR[5] MEMADDR[4] MEMADDR[3] MEMADDR[2] MEMADDR[1] MEMADDR[0]  
MEMDATA[5] MEMDATA[4] MEMDATA[3] MEMDATA[2] MEMDATA[1] MEMDATA[0]  
CALDACFS  
MEMDATA  
TRIM  
0x11  
0x14  
Rev. 0 | Page 31 of 52  
 
AD9704/AD9705/AD9706/AD9707  
SPI REGISTER DESCRIPTIONS  
Table 15. SPI CTL—Register 0x00  
Bit Name  
Bit  
Direction (I/O)  
Default Description  
SDIODIR  
7
I
1
0: SDIO pin configured for input only during data transfer (4-wire interface)  
1: SDIO pin configured for input or output during data transfer (3-wire interface)  
0: Serial data uses MSB first format  
DATADIR  
±
I
0
1: Serial data uses LSB first format  
SWRST  
5
4
I
I
0
0
1: Initiate a software reset; this bit is set to 0 upon reset completion  
0: Use 1 byte preamble (5 address bits)  
1: Use 2 byte preamble (13 address bits)  
1: All analog and digital circuitry off, except serial interface  
1: DAC output current off  
LNGINS  
PDN  
3
2
1
0
I
I
I
I
0
0
0
0
SLEEP  
CLKOFF  
EXREF  
1: Disables internal master clock.  
0: Internal bandgap reference  
1: External reference  
Table 16. DATA—Register 0x02  
Bit Name  
Bit  
Direction (I/O) Default Description  
DATAFMT  
7
I
I
I
0
0
0
0: Unsigned binary input data format  
1: Twos complement input data format  
0: Data latched on DATACLK rising edge always  
1: Data latched on DATACLK falling edge (only active in DESKEW mode)  
0: DESKEW mode disabled  
DCLKPOL  
DESKEW  
4
3
1: DESKEW mode enabled (adds a register in digital data path to remove  
skew in received data; one clock cycle of latency is introduced)  
0: Single-ended clock input  
CLKDIFF  
CALCLK  
2
0
I
I
0
0
1: Differential clock input  
0: Calibration clock disabled  
1: Calibration clock enabled  
Table 17. VERSION—Register 0x0D  
Bit Name  
Bit  
Direction (I/O) Default  
Description  
VER[3:0]  
[3:0]  
O
Hardware version identifier  
Table 18. CALMEM—Register 0x0E  
Bit Name Bit Direction (I/O) Default  
CALMEM[1:0] [5:4]  
Description  
O
00  
Calibration memory  
00: Uncalibrated  
01: Self-calibration  
10: Not Used  
11: User input  
DIVSEL[2:0]  
[2:0]  
I
000  
Calibration clock divide ratio from DAC clock rate  
000: /25±  
001: /128  
:
110: /4  
111: /2  
Rev. 0 | Page 32 of 52  
 
AD9704/AD9705/AD9706/AD9707  
Table 19. MEMRDWR—Register 0x0F  
Bit Name  
CALSTAT  
CALEN  
Bit  
7
Direction (I/O)  
Default  
Description  
O
I
0
0
0
0
0
1: Calibration cycle complete  
±
1: Initiate device self-calibration  
SMEMWR  
SMEMRD  
UNCAL  
3
I
1: Write to static memory (calibration coefficients)  
1: Read from static memory (calibration coefficients)  
1: Reset calibration coefficients to default (uncalibrated)  
2
I
0
I
Table 20. MEMADDR—Register 0x10  
Bit Name  
Bit  
Direction (I/O)  
Default  
Description  
MEMADDR[5:0]  
[5:0]  
I/O  
000000  
Address of static memory to be accessed  
Table 21. MEMDATA—Register 0x11  
Bit Name  
Bit  
Direction (I/O)  
Default  
Description  
MEMDATA[5:0]  
[5:0]  
I/O  
111111  
Data for static memory access  
Table 22. TRIM—Register 0x14  
Bit Name  
Bit  
Direction (I/O)  
Default  
Description  
CALDACFS  
4
I
0
0: Calibration DAC full-scale uses AVDD  
1: Calibration DAC full-scale uses AVDD/2  
Rev. 0 | Page 33 of 52  
AD9704/AD9705/AD9706/AD9707  
The control amplifier allows a 5:1 adjustment span of IOUTFS  
from 1 mA to 5 mA by setting IREF between 31.25 μA and  
156.25 μA (RSET between 6.4 kꢀ and 32 k). The wide adjustment  
span of IOUTFS provides several benefits. The first relates directly  
to the power dissipation of the AD970x, which is proportional  
to IOUTFS (see the Power Dissipation section). The second benefit  
relates to the ability to adjust the output over a 14 dB range, which  
is useful for controlling the transmitted power.  
REFERENCE OPERATION  
The AD970x contains an internal 1.0 V band gap reference.  
The internal reference can be disabled by writing a Logic 1 to  
Register 0x00, Bit 0 (EXREF) in the SPI.  
To use the internal reference, decouple the REFIO pin to ACOM  
with a 0.1 μF capacitor, enable the internal reference, and write  
a Logic 0 to Register 0x00, Bit 0 in the SPI. (Note that this is the  
default configuration.) The internal reference voltage is present  
at REFIO. If the voltage at REFIO is to be used anywhere else in  
the circuit, an external buffer amplifier with an input bias  
current of less than 100 nA should be used. An example of the  
use of the internal reference is shown in Figure 79.  
The small signal bandwidth of the reference control amplifier is  
approximately 500 kHz. This allows the device to be used for  
low frequency, small signal multiplying applications.  
DAC TRANSFER FUNCTION  
The AD970x provides complementary current outputs, IOUTA  
and IOUTB. IOUTA provides a near full-scale current output,  
IOUTFS, when all bits are high (that is, DAC CODE = 2N − 1,  
where N = 8, 10, 12, or 14 for the AD9704, AD9705, AD9706,  
and AD9707, respectively); while IOUTB, the complementary  
output, provides no current. The current output appearing at  
IOUTA and IOUTB is a function of both the input code and IOUTFS  
and can be expressed as  
AD9704/AD9705/  
AD9706/AD9707  
DAC  
V
BG  
1.0V  
REFIO  
FSADJ  
+
CURRENT  
SCALING  
x32  
0.1µF  
IOUTFS  
R
SET  
I
REF  
IOUTA = (DAC CODE/2N) × IOUTFS  
(1)  
(2)  
AVSS  
Figure 79. Internal Reference Configuration  
IOUTB = ((2N − 1) − DAC CODE)/2N × IOUTFS  
REFIO serves as either an input or an output, depending on  
whether the internal or an external reference is used. Table 23  
summarizes the reference operation.  
where DAC CODE = 0 to 2N − 1 (that is, decimal representation).  
IOUTFS is a function of the reference current, IREF, which is  
nominally set by a reference voltage, VREFIO, and an external  
resistor, RSET. It can be expressed as  
Table 23. Reference Operation  
Reference  
Mode  
REFIO Pin  
Register Setting  
IOUTFS = 32 × IREF  
where  
REF = VREFIO/RSET  
(3)  
Internal  
Connect 0.1 μF capacitor  
Register 0x00, Bit 0 = 0  
(default)  
External  
Apply external reference  
Register 0x00, Bit 0 = 1  
(for power saving)  
I
(4)  
An external reference can be used in applications requiring  
tighter gain tolerances or lower temperature drift. Also, a variable  
external voltage reference can be used to implement a method  
for gain control of the DAC output. The external reference is  
applied to the REFIO pin. Note that the 0.1 μF compensation  
capacitor is not required. The internal reference can be directly  
overdriven by the external reference, or the internal reference  
can be powered down. The input impedance of REFIO is 10 kꢀ  
when powered up and 1 Mꢀ when powered down.  
The two current outputs typically drive a resistive load directly  
or via a transformer. If dc coupling is required, IOUTA and  
IOUTB should be connected to matching resistive loads, RLOAD  
that are tied to analog common, ACOM. The single-ended  
,
voltage output appearing at the IOUTA and IOUTB nodes is  
V
V
IOUTA = IOUTA × RLOAD  
IOUTB = IOUTB × RLOAD  
(5)  
(6)  
Note: To achieve the maximum output compliance of 1 V at the  
nominal 2 mA output current, RLOAD must be set to 500 Ω.  
REFERENCE CONTROL AMPLIFIER  
The AD970x contains a control amplifier that regulates the full-  
scale output current, IOUTFS. The control amplifier is configured  
as a V-I converter, as shown in Figure 79. The output current,  
I
REF, is determined by the ratio of the VREFIO and an external  
resistor, RSET, as stated in Equation 4. IREF is mirrored to the  
segmented current sources with the proper scale factor to set  
IOUTFS, as stated in Equation 3.  
Rev. 0 | Page 34 of 52  
 
 
 
 
AD9704/AD9705/AD9706/AD9707  
Also note that the full-scale value of VIOUTA and VIOUTB should  
not exceed the specified output compliance range to maintain  
specified distortion and linearity performance.  
Performing a differential-to-single-ended conversion via a  
transformer also provides the ability to deliver twice the  
reconstructed signal power to the load (assuming no source  
termination). Because the output currents of IOUTA and  
IOUTB are complementary, they become additive when  
processed differentially.  
V
DIFF = (IOUTA IOUTB) × RLOAD  
(7)  
Substituting the values of IOUTA, IOUTB, IREF, and VDIFF can be  
expressed as  
When the AD970x is being used at its nominal operating point  
of 2 mA output current, and 0.5 V output swing is desired,  
V
DIFF = {(2 × DAC CODE – (2N − 1))/2N} ×  
(32 × VREFIO/RSET) × RLOAD  
(8)  
RLOAD must be set to 250 ꢀ. A properly selected transformer  
allows the AD970x to provide the required power and voltage  
levels to different loads.  
Equation 7 and Equation 8 highlight some of the advantages of  
operating the AD970x differentially. First, the differential operation  
helps cancel common-mode error sources associated with IOUTA  
and IOUTB, such as noise, distortion, and dc offsets. Second,  
the differential code dependent current and subsequent voltage,  
The output impedance of IOUTA and IOUTB is determined by  
the equivalent parallel combination of the PMOS switches  
associated with the current sources and is typically 200 MΩ in  
parallel with 5 pF. It is also slightly dependent on the output  
voltage (that is, VIOUTA and VIOUTB) due to the nature of a PMOS  
device. As a result, maintaining IOUTA and/or IOUTB at a  
virtual ground via an I-V op amp configuration results in the  
optimum dc linearity. Note that the INL/DNL specifications for  
the AD970x are measured with IOUTA maintained at a virtual  
ground via an op amp.  
VDIFF, is twice the value of the single-ended voltage output  
(that is, VIOUTA or VIOUTB), thus providing twice the signal power  
to the load.  
Note that the gain drift temperature performance for a single-  
ended output (VIOUTA and VIOUTB) or differential output (VDIFF  
of the AD970x can be enhanced by selecting temperature  
)
tracking resistors for RLOAD and RSET, because of their ratiometric  
relationship, as shown in Equation 8.  
IOUTA and IOUTB also have a negative and positive voltage  
compliance range that must be adhered to in order to achieve  
optimum performance. The absolute maximum negative output  
compliance range of −1 V is set by the breakdown limits of the  
CMOS process. Operation beyond this maximum limit can result  
in a breakdown of the output stage and affect the reliability of  
the AD970x.  
ANALOG OUTPUTS  
The complementary current outputs in each DAC, IOUTA, and  
IOUTB can be configured for single-ended or differential opera-  
tion. IOUTA and IOUTB can be converted into complementary  
single-ended voltage outputs, VIOUTA and VIOUTB, via a load  
resistor, RLOAD, as described in the DAC Transfer Function  
section by Equation 5 through Equation 8. The differential  
voltage, VDIFF, existing between VIOUTA and VIOUTB, can also be  
converted to a single-ended voltage via a transformer or a  
differential amplifier configuration. The ac performance of the  
AD970x is optimum and is specified using a differential  
transformer-coupled output in which the voltage swing at  
IOUTA and IOUTB is limited to 0.5 V.  
The positive output compliance range is slightly dependent on  
the full-scale output current, IOUTFS. It degrades slightly from its  
nominal 1.0 V for an IOUTFS = 2 mA to 0.8 V for an IOUTFS = 1 mA.  
The optimum distortion performance for a single-ended or  
differential output is achieved when the maximum full-scale  
signal at IOUTA and IOUTB does not exceed 0.5 V.  
ADJUSTABLE OUTPUT COMMON MODE  
The AD970x provides the ability to set the output common  
mode to a value other than ACOM via Pin 19 (OTCM). This  
extends the compliance range of the outputs and facilitates  
interfacing the output of the AD970x to components that  
require common-mode levels other than 0 V. The OTCM pin  
demands dynamically changing current and should be driven  
by a low source impedance to prevent a common-mode signal  
from appearing on the DAC outputs. For optimum performance,  
set the voltage on OTCM equal to the center of the output  
swing on IOUTA and IOUTB.  
The distortion and noise performance of the AD970x can be  
enhanced when it is configured for differential operation. The  
common-mode error sources of both IOUTA and IOUTB can  
be significantly reduced by the common-mode rejection of a  
transformer or differential amplifier. These common-mode  
error sources include even-order distortion products and noise.  
The enhancement in distortion performance becomes more  
significant as the frequency content of the reconstructed waveform  
increases and/or its amplitude increases. This is due to the first  
order cancellation of various dynamic common-mode distortion  
mechanisms, digital feedthrough, and noise.  
Rev. 0 | Page 35 of 52  
 
AD9704/AD9705/AD9706/AD9707  
Table 24. Clock Mode Selection  
Note that setting OTCM to a voltage greater than ACOM allows  
the peak of the output signal to be closer to the positive supply  
rail. To prevent distortion in the output signal due to limited  
available headroom, the common-mode level must be chosen  
such that the following expression is satisfied:  
SPI Disabled  
CMODE Pin  
SPI Enabled  
Register 0x02, Bit 2  
Clock Input Mode  
Single-ended  
Differential  
CLKCOM  
CLKVDD  
0
1
In differential input mode, the clock input functions as a high  
impedance differential pair. The common-mode level of the  
CLK+ and CLK− inputs can vary from 0.75 V to 2.25 V, and the  
differential voltage can be as low as 0.5 V p-p. This mode can be  
used to drive the clock with a differential sine wave because the  
high gain bandwidth of the differential inputs converts the sine  
wave into a single-ended square wave internally.  
AVDD VOTCM > 1.8 V  
(10)  
DIGITAL INPUTS  
The AD9707, AD9706, AD9705, and AD9704 have data inputs  
of 14, 12, 10, and 8 bits, respectively; and each has a clock input.  
The parallel data inputs can follow standard positive binary or  
twos complement coding. IOUTA produces a full-scale output  
current when all data bits are at Logic 1. IOUTB produces a  
complementary output with the full-scale current split between  
the two outputs as a function of the input code.  
DAC TIMING  
Input Clock and Data Timing Relationship  
Dynamic performance in a DAC is dependent on the relation-  
ship between the position of the clock edges and the time at  
which the input data changes. The AD970x is rising-edge  
triggered and so exhibits dynamic performance sensitivity when  
the data transition is close to this edge. In general, the goal  
when applying the AD970x is to make the data transition close  
to the falling clock edge. This becomes more important as the  
sample rate increases. Figure 81 shows the relationship of SFDR  
to clock placement with different sample rates.  
DVDD  
DIGITAL  
INPUT  
Figure 80. Equivalent Digital Input  
The digital interface is implemented using an edge-triggered  
master/slave latch. The DAC output updates on the rising edge  
of the clock and is designed to support a clock rate as high as  
175 MSPS. The clock can be operated at any duty cycle that meets  
the specified latch pulsewidth. The setup and hold times can  
also be varied within the clock cycle, as long as the specified  
minimum times are met, although the location of these transition  
edges may affect digital feedthrough and distortion performance.  
Best performance is typically achieved when the input data  
transitions on the falling edge of a 50% duty cycle clock.  
95  
90  
85  
80MSPS  
80  
75  
125MSPS  
70  
65  
60  
55  
CLOCK INPUT  
50  
45  
A configurable clock input allows the device to be operated in  
a single-ended or a differential clock mode. The mode selection  
can be controlled either by the CMODE pin, if the device is in pin  
mode; or through SPI Register 0x02, Bit 2 (CLKDIFF), if the SPI  
is enabled. Connecting CMODE to CLKCOM selects the single-  
ended clock input. In this mode, the CLK+ input is driven with  
rail-to-rail swings, and the CLK− input is left floating. If CMODE  
is connected to CLKVDD, the differential receiver mode is selected.  
In this mode, both inputs are high impedance. Table 24 gives a  
summary of clock mode control. There is no significant perform-  
ance difference between the clock input modes.  
–4  
–3  
–2  
–1  
0
1
DATA EDGE WITH RESPECT TO RISING CLOCK EDGE (ns)  
Figure 81. SFDR vs. Clock Placement  
POWER DISSIPATION  
The power dissipation, PD, of the AD970x is dependent on  
several factors that include  
The power supply voltages (AVDD, CLKVDD, and  
DVDD)  
The full-scale current output, IOUTFS  
The update rate, fCLOCK  
The reconstructed digital input waveform  
Rev. 0 | Page 3± of 52  
 
 
 
 
AD9704/AD9705/AD9706/AD9707  
10  
Power dissipation is directly proportional to the analog supply  
current, IAVDD, and the digital supply current, IDVDD. IAVDD is equal  
to a fixed current plus IOUTFS, as shown in Figure 82. IDVDD is  
proportional to fCLOCK and increases with increasing analog  
output frequencies. Figure 84 shows IDVDD as a function of full-  
scale sine wave output ratios (fOUT/fCLOCK) for various update rates  
with DVDD = 3.3 V. ICLKVDD is directly proportional to fCLOCK  
and is higher for differential clock operation than for single-  
ended operation, as shown in Figure 86. This difference in clock  
current is due primarily to the differential clock receiver, which is  
disabled in single-ended clock mode.  
9
8
175MSPS  
7
6
5
125MSPS  
75MSPS  
4
3
25MSPS  
10MSPS  
2
1
0
10  
0.01  
0.1  
/fCLOCK  
1
9
8
fOUT  
Figure 84. IDVDD vs. fOUT/fCLOCK Ratio @ DVDD = 3.3 V  
7
6
5
2.5  
2.0  
1.5  
1.0  
0.5  
0
80MSPS  
4
3
2
1
0
50MSPS  
1
2
3
4
5
I
(mA)  
OUTFS  
25MSPS  
10MSPS  
Figure 82. IAVDD vs. IOUTFS @ AVDD = 3.3 V  
6
5
4
3
2
1
0
0.01  
0.1  
1
fOUT/f  
CLOCK  
Figure 85. IDVDD vs. fOUT/fCLOCK Ratio @ DVDD = 1.8 V  
5
4
3
2
1
0
DIFF  
SE  
1.00  
1.25  
1.50  
(mA)  
1.75  
2.00  
I
OUTFS  
Figure 83. IAVDD vs. IOUTFS @ AVDD = 1.8 V  
0
50  
100  
150  
200  
fCLOCK (MSPS)  
Figure 86. ICLKVDD vs. fCLOCK @ CLKVDD = 3.3 V  
Rev. 0 | Page 37 of 52  
 
 
 
AD9704/AD9705/AD9706/AD9707  
1.4  
SELF-CALIBRATION  
1.2  
1.0  
0.8  
0.6  
The AD970x has a self-calibration feature that improves the  
DNL of the device. Performing a self-calibration on the device  
improves device performance in low frequency applications.  
The device performance in applications where the analog  
output frequencies are above 1 MHz are generally influenced  
more by dynamic device behavior than by DNL, and in these  
cases, self-calibration is unlikely to provide any benefits for  
single-tones, as shown in Figure 88. Figure 89 shows that self-  
calibration is helpful up to 20 MHz for two-tone IMD spaced  
10 kHz apart.  
0.4  
0.2  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
88  
f
(MSPS)  
CLOCK  
Figure 87. ICLKVDD vs. fCLOCK (Differential Clock Mode) @ CLKVDD = 1.8 V  
CALIBRATED  
86  
84  
82  
80  
78  
Sleep and Power-Down Operation (Pin Mode)  
The AD970x has a sleep mode that turns off the output current  
and reduces the total power consumed by the device. This mode  
is activated by applying a Logic 1 to the SLEEP/CSB pin. The  
SLEEP/CSB pin logic threshold is equal to 0.5 × AVDD. This  
digital input also contains an active pull-down circuit.  
The AD970x takes less than 50 ns to power down and approxi-  
mately 5 μs to power back up.  
UNCALIBRATED  
Sleep and Power-Down Operation (SPI Mode)  
0
0.2  
0.4  
0.6  
0.8  
The AD970x offers three power-down functions that can be  
controlled through the SPI. These power-down modes can be  
used to minimize the power dissipation of the device. The  
power-down functions are controlled through SPI Register 0x00,  
Bit 1 to Bit 3. Table 25 summarizes the power-down functions  
that can be controlled through the SPI. The power-down mode  
can be enabled by writing a Logic 1 to the corresponding bit in  
Register 0x00.  
fOUT (MHz)  
Figure 88. AD9707 SFDR vs. fOUT @ 175 MSPS and IOUTFS = 2 mA  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
CALIBRATED  
Table 25. Power-Down Mode Selection  
UNCALIBRATED  
Power-Down  
Mode  
(Reg. 0x00)  
Bit #  
Functional Description  
Turn off clock  
Turn off output current  
Turn off output current and  
internal voltage reference  
Clock Off  
Sleep  
Power Down  
1
2
3
0
5
10  
15  
20  
LOWER fOUT (MHz)  
Figure 89. IMD vs. fOUT @ 175 MSPS and IOUTFS = 2 mA  
Rev. 0 | Page 38 of 52  
 
 
 
 
AD9704/AD9705/AD9706/AD9707  
To perform a device self-calibration, the following procedure  
can be used.  
To read the calibration coefficients  
1. Enable the calibration clock by setting the CALCLK bit  
(Register 0x02, Bit 0).  
The calibration clock frequency is equal to the DAC clock  
divided by the division factor chosen by the DIVSEL value. The  
frequency of the calibration clock must be set to under 10 MHz  
for reliable calibrations. Best results are obtained by setting  
DIVSEL[2:0] (Register 0x0E, Bit 2 to Bit 0) to produce the  
lowest frequency calibration clock frequency that your system  
requirements allow.  
2. Write the address of the first coefficient (0x00) to  
Register 0x10.  
3. Set the SMEMRD bit (Register 0x0F, Bit 2) by writing 0x04  
to Register 0x0F.  
4. Read the value of the first coefficient by reading the  
contents of Register 0x11.  
1. Enable the calibration clock by setting the CALCLK bit  
(Register 0x02, Bit 0).  
5. Clear the SMEMRD bit by writing 0x00 to Register 0x0F.  
2. Enable self-calibration by writing 0x40 to Register 0x0F.  
6. Repeat Step 2 through Step 5 for each of the remaining 32  
coefficients by incrementing the address by one each read.  
3. Wait approximately 4500 calibration clock cycles. Each  
calibration clock cycle is between 2 and 256 DAC clock  
cycles, depending on the value of DIVSEL[2:0].  
7. Disable the calibration clock by clearing the CALCLK Bit  
(Register 0x02, Bit 0).  
4. Check if the self-calibration has completed by reading the  
CALSTAT bit (Register 0x0F, Bit 7). A Logic 1 indicates the  
calibration has completed.  
To write the calibration coefficients to the device:  
1. Enable the calibration clock by setting the CALCLK bit  
(Register 0x02, Bit 0).  
5. When the self-calibration has completed, write 0x00 to  
Register 0x0F.  
2. Set the SMEMWR bit (Register 0x0F, Bit 3) by writing 0x08  
to Register 0x0F.  
6. Disable the calibration clock by clearing the CALCLK Bit  
(Register 0x02, Bit 0).  
3. Write the address of the first coefficient (0x00) to  
Register 0x10.  
The AD970x devices allow reading and writing of the calibration  
coefficients. There are 33 coefficients in total. The read/write  
feature of the coefficients could be useful for improving the results  
of the self-calibration routine by averaging the results of several  
calibration results and loading the averaged results back into the  
device. The reading and writing routines follow.  
4. Write the value of the first coefficient to Register 0x11.  
5. Repeat Step 2 and Step 3 for each of the remaining 32  
coefficients by incrementing the address by one each write.  
6. Clear the SMEMWR bit by writing 0x00 to Register 0x0F.  
7. Disable the calibration clock by clearing the CALCLK bit  
(Register 0x02, Bit 0).  
Rev. 0 | Page 39 of 52  
AD9704/AD9705/AD9706/AD9707  
APPLICATIONS  
A differential resistor, RDIFF, can be inserted in applications where  
the output of the transformer is connected to the load, RLOAD, via  
a passive reconstruction filter or cable. RDIFF, as reflected by the  
transformer, is chosen to provide a source termination that  
results in a low VSWR. Note that approximately half the signal  
OUTPUT CONFIGURATIONS  
The following sections illustrate some typical output configura-  
tions for the AD970x. Unless otherwise noted, it is assumed that  
I
OUTFS is set to a nominal 2 mA. For applications requiring the  
optimum dynamic performance, a differential output configuration  
is suggested. A differential output configuration can consist of  
either an RF transformer or a differential op amp configuration.  
The transformer configuration provides the optimum high  
frequency performance and is recommended for any application  
that allows ac coupling. The differential op amp configuration is  
suitable for applications requiring dc coupling, signal gain,  
and/or a low output impedance.  
power is dissipated across RDIFF  
.
SINGLE-ENDED BUFFERED OUTPUT  
USING AN OP AMP  
An op amp can be used to perform a single-ended current-  
to-voltage conversion, as shown in Figure 91.. Thue AD970x is  
configured with a pair of series resistors, RS, off each output.  
The feedback resistor, RFB, determines the peak single-ended  
output voltage by the formula  
A single-ended output is suitable for applications where low  
cost and low power consumption are primary concerns.  
IFS  
2
VOUT = RFB  
×
DIFFERENTIAL COUPLING USING A TRANSFORMER  
An RF transformer can be used to perform a differential-to-  
single-ended signal conversion, as shown in Figure 90. The  
distortion performance of a transformer typically exceeds that  
available from standard op amps, particularly at higher frequencies.  
Transformer coupling provides excellent rejection of common-  
mode distortion (that is, even-order harmonics) over a wide  
frequency range. It also provides electrical isolation and can  
deliver voltage gain without adding noise. Transformers with  
different impedance ratios can also be used for impedance  
matching purposes. The main disadvantages of transformer  
coupling are the low frequency roll-off, lack of power gain, and  
the higher output impedance.  
The common-mode voltage of the output is determined by the  
formula  
R
VCM = VREF × (1+ FB ) VOUT  
RB  
The maximum and minimum voltages out of the amplifier are  
RFB  
RB  
VMAX = VREF × (1+  
)
VMIN = VMAX IFS × RFB  
respectively.  
C
F
22  
IOUTB  
AD9704/AD9705  
AD9706/AD9707  
R
R
FB  
B
R
LOAD  
+5V  
AD9704/AD9705  
AD9706/AD9707  
R
S
21  
21  
IOUTA  
IOUTA  
OPTIONAL R  
DIFF  
V
ADA4841  
OUT  
23  
REFIO  
Figure 90. Differential Output Using a Transformer  
C
R
S
20  
19  
IOUTB  
OTCM  
The center tap on the primary side of the transformer must be  
connected to a voltage that keeps the voltages on IOUTA and  
IOUTB within the output common voltage range of the device.  
It should be noted that the dc component of the DAC output  
current is equal to IFS/2 and flows out of both IOUTA and  
IOUTB. The center tap of the transformer should provide a  
path for this dc current. In many applications, AGND provides  
the most convenient voltage for the transformer center tap. The  
complementary voltages appearing at IOUTA and IOUTB (that  
is, VIOUTA and VIOUTB) swing symmetrically around AGND and  
should be maintained with the specified output compliance  
range of the AD970x.  
Figure 91. Single-Supply Single-Ended Buffer  
Rev. 0 | Page 40 of 52  
 
 
 
 
AD9704/AD9705/AD9706/AD9707  
C
F
DIFFERENTIAL BUFFERED OUTPUT  
USING AN OP AMP  
R
R
FB  
B
A dual op amp (see the circuit shown in Figure 92) can be used  
in a differential version of the single-ended buffer shown in  
Figure 91. The same R-C network is used to form a 1-pole  
differential, low-pass filter to isolate the op amp inputs from the  
high frequency images produced by the DAC outputs. The feed-  
back resistors, RFB, determine the peak differential output  
voltage by the formula  
AD9704/AD9705  
AD9706/AD9707  
R
S
21  
IOUTA  
ADA4841  
ADA4841  
23  
REFIO  
V
C
OUT  
OTCM  
IOUTB  
19  
20  
R
S
VOUT = RFB × IFS  
C
F
The maximum and minimum voltages out of the amplifier are  
R
R
FB  
B
RFB  
RB  
VMAX = VREF × (1+  
)
Figure 92. Single-Supply Differential Buffer  
VMIN =VMAX VOUT  
respectively. The common-mode voltage of the output is  
determined by the formula  
V OUT  
2
VCM = VMAX  
Rev. 0 | Page 41 of 52  
 
 
AD9704/AD9705/AD9706/AD9707  
EVALUATION BOARD  
The AD970x board allows the user the flexibility to operate the  
part in various configurations. Possible output configurations  
include transformer coupled, resistor terminated, and single and  
differential outputs. The digital inputs are designed to be driven  
from various data pattern generators, with the on-board option  
to add a resistor network for proper load termination. Provisions  
are also made to operate the AD970x with either the internal or  
external reference, or to exercise the power-down feature.  
GENERAL DESCRIPTION  
The TxDAC family evaluation boards allow for easy setup and  
testing of any TxDAC products. Careful attention to layout and  
circuit design, combined with a prototyping area, allows the user  
to evaluate the AD970x easily and effectively in any application  
where a low power, high resolution, high speed conversion is  
required.  
Rev. 0 | Page 42 of 52  
 
AD9704/AD9705/AD9706/AD9707  
EVALUATION BOARD SCHEMATICS  
5 1 0 6 - 9 2 0 5  
1
1 0  
R 9  
R1  
2
9
R 8  
R2  
3
8
R 7  
R3  
4
7
R 6  
R4  
5
6
R 5  
R5  
6
5
R 4  
R6  
7
4
R 3  
R7  
8
3
R 2  
R8  
9
2
R 1  
R9  
10  
1
1
RCOM  
1 0  
R 9  
R1  
2
9
R 8  
R2  
3
8
R 7  
R3  
4
7
R 6  
R4  
5
6
R 5  
R5  
6
5
R 4  
R6  
7
4
R 3  
R7  
8
3
R 2  
R8  
9
2
R 1  
R9  
10  
1
RIBBON R A  
Figure 93. Digital Inputs  
Rev. 0 | Page 43 of 52  
 
AD9704/AD9705/AD9706/AD9707  
0 - 5 2 5 0 9 2 6  
3 0 0 6 R C  
3
0 6 0 R C  
RC0805  
J P 9  
Y A 6 E R V 3 , 2 3 B E A 6 Y E R  
3 0 0 6 R C  
RC0805  
3 0 0 6 R C  
3 0 0 6 R C  
J P 8  
Y A 6 E R V 3 , 2 3 B E A 6 Y E R  
RC0805  
J P 7  
Y A 6 E R V 3 , 2 3 B E A 6 Y E R  
3 0 0 6 R C  
R 7  
Figure 94. Output Signal Conditioning  
Rev. 0 | Page 44 of 52  
AD9704/AD9705/AD9706/AD9707  
5 3 0 6 - 9 2 0 5  
0 6 C 0 R 3  
2
A
B
1
3
0
J P 2  
2
B
A
1
3
J P 2  
3
0 6 C 0 C 3  
2
A
B
1
3
0
J P 3  
6 0 3 C R  
0 6 C 0 C 3  
JP16  
JP21  
Figure 95. Clock  
Rev. 0 | Page 45 of 52  
AD9704/AD9705/AD9706/AD9707  
5 4 0 6 - 9 2 0 5  
3 6 0 R C 0  
3 6 0 R C 0  
J P 5  
J P 4  
J P 1  
3 6 0 R C 0  
Figure 96. SPI  
Rev. 0 | Page 4± of 52  
AD9704/AD9705/AD9706/AD9707  
0 7 7 2 6 - 5 9 0  
6 0 3 C R  
0 3 0 6 C R  
0 3 0 6 C R  
0 3 0 6 C R  
6 0 3 C C  
6 0 3 C C  
6 0 3 C C  
0 3 0 6 C C  
2
2
2
1
P
P
Figure 97. Power Supplies  
Rev. 0 | Page 47 of 52  
AD9704/AD9705/AD9706/AD9707  
EVALUATION BOARD LAYOUT  
Figure 98. Assembly—Primary Side  
Figure 99. Assembly—Secondary Side  
Rev. 0 | Page 48 of 52  
 
AD9704/AD9705/AD9706/AD9707  
Figure 100. Layer 1—Primary Side  
Figure 101. Layer 4—Secondary Side  
Rev. 0 | Page 49 of 52  
AD9704/AD9705/AD9706/AD9707  
Figure 102. Layer 2—Ground Plane  
Figure 103. Layer 3—Power Plane  
Rev. 0 | Page 50 of 52  
AD9704/AD9705/AD9706/AD9707  
OUTLINE DIMENSIONS  
5.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
25  
24  
32  
1
PIN 1  
INDICATOR  
0.50  
BSC  
TOP  
VIEW  
3.25  
3.10 SQ  
2.95  
EXPOSED  
PAD  
(BOTTOM VIEW)  
4.75  
BSC SQ  
0.50  
0.40  
0.30  
17  
16  
8
9
0.25 MIN  
3.50 REF  
0.80 MAX  
0.65 TYP  
12° MAX  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2  
Figure 104. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
5 mm × 5 mm, Very Thin Quad  
(CP-32-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
32-Lead LFCSP_VQ  
32-Lead LFCSP_VQ  
32-Lead LFCSP_VQ  
32-Lead LFCSP_VQ  
32-Lead LFCSP_VQ  
32-Lead LFCSP_VQ  
32-Lead LFCSP_VQ  
32-Lead LFCSP_VQ  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Package Option  
CP-32-2  
CP-32-2  
AD9704BCPZ1  
AD9704BCPZRL71  
AD9705BCPZ1  
AD9705BCPZRL71  
AD970±BCPZ1  
AD970±BCPZRL71  
AD9707BCPZ1  
AD9707BCPZRL71  
AD9704-EB  
CP-32-2  
CP-32-2  
CP-32-2  
CP-32-2  
CP-32-2  
CP-32-2  
AD9705-EB  
AD970±-EB  
AD9707-EB  
1 Z = Pb-free part.  
Rev. 0 | Page 51 of 52  
 
 
 
AD9704/AD9705/AD9706/AD9707  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05926-0-7/06(0)  
Rev. 0 | Page 52 of 52  
 
 
 
 
 
 
 
 
 
 
 
 

相关型号:

AD9706BRUZ

IC PARALLEL INPUT LOADING, 12-BIT DAC, PDSO28, MO-153AE, TSSOP-28, Digital to Analog Converter
ADI

AD9706BRUZRL7

IC PARALLEL INPUT LOADING, 12-BIT DAC, PDSO28, MO-153AE, TSSOP-28, Digital to Analog Converter
ADI

AD9707

Digital-to-Analog Converters
ADI

AD9707-DPG2-EBZ

Digital-to-Analog Converters
ADI

AD9707-EB

8-/10-/12-/14-Bit, 175 MSPS TxDAC D/A Converters
ADI

AD9707ACPZ

IC,D/A CONVERTER,SINGLE,14-BIT,CMOS,LLCC,32PIN
ADI

AD9707ACPZRL7

IC,D/A CONVERTER,SINGLE,14-BIT,CMOS,LLCC,32PIN
ADI

AD9707ARUZ

IC,D/A CONVERTER,SINGLE,14-BIT,CMOS,TSSOP,28PIN
ADI

AD9707ARUZRL7

IC,D/A CONVERTER,SINGLE,14-BIT,CMOS,TSSOP,28PIN
ADI

AD9707BCPZ

8-/10-/12-/14-Bit, 175 MSPS TxDAC D/A Converters
ADI

AD9707BCPZRL7

8-/10-/12-/14-Bit, 175 MSPS TxDAC D/A Converters
ADI

AD9707BRUZ

IC PARALLEL INPUT LOADING, 14-BIT DAC, PDSO28, MO-153AE, TSSOP-28, Digital to Analog Converter
ADI