AD9779 [ADI]

Dual 16-Bit, 1.0 GSPS D/A Converter; 双通道16位, 1.0 GSPS D / A转换器
AD9779
型号: AD9779
厂家: ADI    ADI
描述:

Dual 16-Bit, 1.0 GSPS D/A Converter
双通道16位, 1.0 GSPS D / A转换器

转换器
文件: 总34页 (文件大小:1089K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual 16-Bit, 1.0 GSPS  
D/A Converter  
AD9779  
Preliminary Technical Data  
DAC that provides a sample rate of 1 GSPS, permitting multi  
carrier generation up to its Nyquist frequency. It includes features  
optimized for direct conversion transmit applications, including  
complex digital modulation and gain and offset compensation. The  
DAC outputs are optimized to interface seamlessly with analog  
quadrature modulators such as the AD8349. A serial peripheral  
interface (SPI) provides for programming many internal  
FEATURES  
1.8/3.3 V Single Supply Operation  
Low power: 950mW (IOUTFS = 20 mA; fDAC = 1 GSPS, 4×  
Interpolation  
DNL = 1.5 LSB, INL = 5.0 LSB  
SFDR =82 dBc to fOUT = 100 MHz  
ACLR = 87 dBc @ 80 MHz IF  
parameters and also enables read-back of status registers. The  
output current can be programmed over a range of 10mA to 30mA.  
The AD9779 is manufactured on an advanced 0.18µm CMOS  
process and operates from 1.8V and 3.3V supplies for a total power  
consumption of 950mW. It is supplied in a 100-lead QFP package.  
CMOS data interface with Autotracking Input Timing  
Analog Output: Adjustable 10-30mA (RL=25 to 50 )  
100-lead Exposed Paddle TQFP Package  
Multiple Chip Synchronization Interface  
84dB Digital Interpolation Filter Stopband Attenuation  
Digital Inverse Sinc Filter  
PRODUCT HIGHLIGHTS  
Ultra-low noise and Intermodulation Distortion (IMD) enable  
high quality synthesis of wideband signals from baseband to high  
intermediate frequencies.  
APPLICATIONS  
Wireless Infrastructure  
Direct Conversion  
Single-ended CMOS interface supports a maximum input rate of  
300 MSPS with 1x interpolation.  
Transmit Diversity  
Wideband Communications Systems:  
Point-to-Point Wireless, LMDS  
Manufactured on a CMOS process, the AD9779 uses a proprietary  
switching technique that enhances dynamic performance.  
PRODUCT DESCRIPTION  
The current outputs of the AD9779 can be easily configured for  
various single-ended or differential circuit topologies.  
The AD9779 is a dual 16-bit high performance, high frequency  
FUNCTIONAL BLOCK DIAGRAM  
Delay Line  
Delay Line  
SYNC_O  
SYNC_I  
Clock Generation/Distribution  
DATACLK_OUT  
Clock  
Multiplier  
2X/4X/8X  
CLK+  
CLK-  
Data  
Assembler  
IOUT1_P  
IOUT1_N  
Sinc-1  
16-Bit  
IDAC  
P1D[15:0]  
P2D[15:0]  
I Latch  
2X  
2X  
2X  
2X  
2X  
n * Fdac/8  
n = 1, 2, 3… 7  
Complex  
Modulator  
IOUT2_P  
IOUT2_N  
Q Latch  
2X  
16-Bit  
QDAC  
Sinc-1  
Digital Controller  
10  
10  
Gain  
Gain  
VREF  
RSET  
Reference  
& Bias  
Serial  
Peripheral  
Interface  
Power-On  
Reset  
10  
10  
AUX1_P  
AUX1_N  
AUX2_P  
AUX2_N  
Offset  
Offset  
Figure 1 Functional Block Diagram  
Rev. PrD  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
AD9779  
Preliminary Technical Data  
TABLE OF CONTENTS  
Specifications............................................................................................3  
Instruction Byte.................................................................................12  
Serial Interface Port Pin Descriptions............................................12  
MSB/LSB Transfers ...........................................................................13  
Notes on Serial Port Operation .......................................................13  
SPI Register Map ...............................................................................14  
Internal Reference/Full Scale Current Generation.......................22  
Auxiliary DACs..................................................................................22  
Power Down and Sleep Modes........................................................22  
Internal PLL Clock Multiplier / Clock Distribution.....................23  
Timing Information..........................................................................23  
Interpolation Filter Architecture.....................................................25  
EvaLuation Board Schematics..............................................................27  
DC SPECIFICATIONS ......................................................................3  
DIGITAL SPECIFICATIONS............................................................4  
AC SPECIFICATIONS.......................................................................4  
Pin Function Descriptions .....................................................................5  
Pin Configuration....................................................................................6  
Interpolation Filter Coefficients............................................................7  
INTERPOLATION Filter RESPONSE CURVES................................8  
CHARACTERIZATION DATA............................................................9  
General Description..............................................................................12  
Serial Peripheral Interface................................................................12  
General Operation of the Serial Interface......................................12  
REVISION HISTORY  
Revision PrA: Initial Version  
Revision PrB: Updated Page 1 Features, added eval board schematics, SPI register map, filter coefficients and filter response curves  
Revision PrC: Added characterization data, description of modulation modes, internal clock distribution architecture, timing information  
Revision PrD: Added more ac characterization data, power dissipation  
Rev. PrD | Page 2 of 34  
Preliminary Technical Data  
AD9779  
SPECIFICATIONS1  
DC SPECIFICATIONS  
(VDD33 = 3.3 V, VDD18 = 1.8 V, MAXIMUM SAMPLE RATE, UNLESS OTHERWISE NOTED)  
Parameter  
Temp  
Test Level  
Min  
Typ  
Max  
Unit  
Bits  
RESOLUTION  
ACCURACY  
16  
Integral Nonlinearity (DNL)  
Differential Nonlinearity (INL)  
Offset Error  
LSB  
LSB  
± 1.5  
± 5  
% FSR  
% FSR  
% FSR  
mA  
± TBD  
± TBD  
± TBD  
20  
Gain Error (With Internal Reference)  
Gain Error (Without Internal Reference)  
Full Scale Output Current  
Output Compliance Range  
Output Resistance  
Output Capacitance  
Offset  
ANALOG OUTPUTS  
10  
30  
1.0  
V
TBD  
TBD  
TBD  
TBD  
TBD  
1.2  
kΩ  
pF  
ppm/°C  
TEMPERATURE DRIFT  
REFERENCE  
Gain  
ppm/°C  
Reference Voltage  
Internal Reference Voltage  
Output Current  
ppm/°C  
V
100  
3.3  
nA  
V
VDDA33  
3.13  
1.70  
3.13  
1.70  
1.70  
3.47  
1.90  
3.47  
1.90  
1.90  
ANALOG SUPPLY  
VOLTAGES  
VDDA18  
1.8  
V
VDDD33  
3.3  
V
DIGITAL SUPPLY  
VOLTAGES  
VDDD18  
1.8  
V
VDDCLK  
1.8  
V
POWER CONSUMPTION 600 MSPS  
Standby Power  
TBD  
TBD  
mW  
mW  
Table 1: DC Specifications  
1 Specifications subject to change without notice  
Rev. PrD | Page 3 of 34  
AD9779  
Preliminary Technical Data  
DIGITAL SPECIFICATIONS  
(VDD33 = 3.3 V, VDD18 = 1.8 V, MAXIMUM SAMPLE RATE, UNLESS OTHERWISE NOTED)  
Parameter  
Temp  
Test Level  
Min  
Typ  
Max  
Unit  
mV  
Differential peak-to-peak Voltage  
Common Mode Voltage  
800  
400  
1
DAC CLOCK INPUT  
(CLK+, CLK-)  
mV  
GSPS  
MHz  
ns  
Maximum Clock Rate  
Maximum Clock Rate (SCLK)  
Maximum Pulse width high  
Maximum pulse width low  
40  
SERIAL PERIPHERAL  
INTERFACE  
TBD  
TBD  
ns  
Table 2: Digital Specifications  
AC SPECIFICATIONS  
(VDD33 = 3.3 V, VDD18 = 1.8 V, MAXIMUM SAMPLE RATE, UNLESS OTHERWISE NOTED)  
Parameter  
Temp  
Test Level  
Min  
Typ  
Max  
Unit  
Output Settling Time (tst) (to 0.025%)  
Output Rise Time (10% to 90%)  
Output Fall Time (90% to 10%)  
Output Noise (IoutFS=20mA)  
fDAC = 100 MSPS, fOUT = 20 MHz  
fDAC = 200 MSPS, fOUT = 50 MHz  
fDAC = 400 MSPS, fOUT = 70 MHz  
fDAC = 800 MSPS, fOUT = 70 MHz  
fDAC = 200 MSPS, fOUT = 50 MHz  
fDAC = 400 MSPS, fOUT = 60 MHz  
fDAC = 400 MSPS, fOUT = 80 MHz  
fDAC = 800 MSPS, fOUT = 100 MHz  
fDAC = 156 MSPS, fOUT = 60 MHz  
fDAC = 200 MSPS, fOUT = 80 MHz  
fDAC = 312 MSPS, fOUT = 100 MHz  
fDAC = 400 MSPS, fOUT = 100 MHz  
fDAC = 245.76 MSPS, fOUT = 20 MHz  
fDAC = 491.52 MSPS, fOUT = 100 MHz  
TBD  
TBD  
TBD  
TBD  
82  
ns  
ns  
DYNAMIC  
PERFORMANCE  
ns  
pA/rtHz  
dBc  
SPURIOUS FREE  
DYNAMIC RANGE  
(SFDR)  
82  
dBc  
84  
dBc  
87  
dBc  
91  
dBc  
TWO-TONE  
INTERMODULATION  
DISTORTION (IMD)  
88  
dBc  
81  
dBc  
88  
dBc  
-158  
-157  
-159  
-159  
80  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBc  
NOISE SPECTRAL  
DENSITY (NSD)  
WCDMA ADJACENT  
CHANNEL LEAKAGE  
RATIO (ACLR), SINGLE  
CARRIER  
79  
dBc  
fDAC = 491.52 MSPS, fOUT = 200 MHz  
74  
dBc  
WCDMA SECOND  
ADJACENT CHANNEL  
LEAKAGE RATIO  
(ACLR), SINGLE  
CARRIER  
fDAC = 245.76 MSPS, fOUT = 60 MHz  
fDAC = 491.52 MSPS, fOUT = 100 MHz  
fDAC = 491.52 MSPS, fOUT = 200 MHz  
78  
80  
76  
dBc  
dBc  
dBc  
Table 3: AC Specifications  
Rev. PrD | Page 4 of 34  
Preliminary Technical Data  
AD9779  
PIN FUNCTION DESCRIPTIONS  
Pin  
No.  
Name  
Description  
Pin  
No.  
Name  
Description  
1
VDDC18  
VDDC18  
VSSC  
1.8 V Clock Supply  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
P2D<6>  
P2D<5>  
VDDD18  
VSSD  
Port 2 Data Input D6  
Port 2 Data Input D5  
1.8 V Digital Supply  
Digital Common  
2
1.8 V Clock Supply  
3
Clock Common  
4
VSSC  
Clock Common  
5
CLK+  
Differential Clock Input  
Differential Clock Input  
Clock Common  
P1D<4>  
P1D<3>  
P1D<2>  
P1D<1>  
P1D<0>  
VDDD18  
VDDD33  
SYNC_O-  
SYNC_O+  
VSSD  
Port 2 Data Input D4  
Port 2 Data Input D3  
Port 2 Data Input D2  
Port 2 Data Input D1  
6
CLK-  
7
VSSC  
8
VSSC  
Clock Common  
9
VDDC18  
VDDC18  
VSSC  
1.8 V Clock Supply  
Port 2 Data Input D0 (LSB)  
1.8 V Digital Supply  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
1.8 V Clock Supply  
Clock Common  
3.3 V Digital Supply  
VSSC  
Clock Common  
Differential Synchronization Output  
Differential Synchronization Output  
Digital Common  
SYNC_I+  
SYNC_I-  
VSSD  
Differential Synchronization Input  
Differential Synchronization Input  
Digital Common  
PLL_LOCK PLL Lock Indicator  
VDDD33  
P1D<15>  
P1D<14>  
P1D<13>  
P1D<12>  
P1D<11>  
VSSD  
3.3 V Digital Supply  
Port 1 Data Input D15 (MSB)  
Port 1 Data Input D14  
Port 1 Data Input D13  
Port 1 Data Input D12  
Port 1 Data Input D11  
Digital Common  
SPI_SDO  
SPI_SDIO  
SPI_CLK  
SPI_CSB  
RESET  
SPI Port Data Output  
SPI Port Data Input/Output  
SPI Port Clock  
SPI Port Chip Select Bar  
Reset  
IRQ  
Interrupt Request  
Analog Common  
VSS  
VDDD18  
P1D<10>  
P1D<9>  
P1D<8>  
P1D<7>  
P1D<6>  
P1D<5>  
P1D<4>  
P1D<3>  
VSSD  
1.8 V Digital Supply  
Port 1 Data Input D10  
Port 1 Data Input D9  
Port 1 Data Input D8  
Port 1 Data Input D7  
Port 1 Data Input D6  
Port 1 Data Input D5  
Port 1 Data Input D4  
Port 1 Data Input D3  
Digital Common  
IPTAT  
Reference Current  
Voltage Reference Output  
120 µA Reference Current  
3.3 V Analog Supply  
Analog Common  
VREF  
I120  
VDDA33  
VSSA  
VDDA33  
VSSA  
3.3 V Analog Supply  
Analog Common  
VDDA33  
VSSA  
3.3 V Analog Supply  
Analog Common  
VSSA  
Analog Common  
VDDD18  
P1D<2>  
P1D<1>  
P1D<0>  
DATACLK_OUT  
VDDD33  
TXENABLE  
P2D<15>  
P2D<14>  
P2D<13>  
VDDD18  
VSSD  
1.8 V Digital Supply  
Port 1 Data Input D2  
Port 1 Data Input D1  
Port 1 Data Input D0 (LSB)  
Data Clock Output  
IOUT2_P  
IOUT2_N  
VSSA  
Differential DAC Current Output, Channel 2  
Differential DAC Current Output, Channel 2  
Analog Common  
AUX2_P  
AUX2_N  
VSSA  
Auxiliary DAC Voltage Output, Channel 2  
Auxiliary DAC Voltage Output, Channel 2  
Analog Common  
3.3 V Digital Supply  
Transmit Enable  
AUX1_N  
AUX1_P  
VSSA  
Auxiliary DAC Voltage Output, Channel 1  
Auxiliary DAC Voltage Output, Channel 1  
Analog Common  
Port 2 Data Input D15 (MSB)  
Port 2 Data Input D14  
Port 2 Data Input D13  
1.8 V Digital Supply  
Digital Common  
IOUT1_N  
IOUT1_P  
VSSA  
Differential DAC Current Output, Channel 1  
Differential DAC Current Output, Channel 1  
Analog Common  
P2D<12>  
P2D<11>  
P2D<10>  
P2D<9>  
P2D<8>  
P2D<7>  
Port 2 Data Input D12  
Port 2 Data Input D11  
Port 2 Data Input D10  
Port 2 Data Input D9  
Port 2 Data Input D8  
Port 2 Data Input D7  
VSSA  
Analog Common  
VDDA33  
VSSA  
3.3 V Analog Supply  
Analog Common  
VDDA33  
VSSA  
3.3 V Analog Supply  
Analog Common  
VDDA33  
3.3 V Analog Supply  
Table 4: Pin Function Descriptions  
Rev. PrD | Page 5 of 34  
AD9779  
Preliminary Technical Data  
PIN CONFIGURATION  
1
75  
VDDC18  
I120  
2
74  
VDDC18  
VREF  
3
73  
VSSC  
IPTAT  
Analog Domain  
Digital Domain  
4
72  
VSSC  
VSS  
5
71  
CLK+  
IRQ  
6
70  
CLK-  
RESET  
7
69  
VSSC  
SPI_CSB  
8
68  
VSSC  
SPI_CLK  
9
67  
VDDC18  
SPI_SDI  
10  
66  
VDDC18  
SPI_SDO  
11  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PLL_LOCK  
VSSD  
VSSC  
12  
VSSC  
13  
SYNC_I+  
SYNC_O+  
SYNC_O-  
VDDD33  
VDDD18  
P2D<0>  
P2D<1>  
P2D<2>  
P2D<3>  
P2D<4>  
VSSD  
AD9779  
14  
SYNC_I-  
15  
VSSD  
16  
VDDD33  
17  
P1D<15>  
18  
P1D<14>  
19  
P1D<13>  
20  
P1D<12>  
21  
P1D<11>  
22  
VSSD  
23  
VDDD18  
VDDD18  
P2D<5>  
P2D<6>  
24  
P1D<10>  
25  
P1D<9>  
Figure 2. Pin Configuration  
Rev. PrD | Page 6 of 34  
Preliminary Technical Data  
AD9779  
INTERPOLATION FILTER COEFFICIENTS  
Table 7: Halfband Filter 3  
Lower Upper  
Coefficient Coefficient Value  
Table 5: Halfband Filter 1  
Integer  
Lower  
Upper  
Integer  
Coefficient Coefficient Value  
H(1)  
H(2)  
H(3)  
H(4)  
H(5)  
H(6)  
H(7)  
H(8)  
H(15)  
H(14)  
H(13)  
H(12)  
H(11)  
H(10)  
H(9)  
-39  
0
273  
0
-1102  
0
4964  
8192  
H(1)  
H(2)  
H(3)  
H(4)  
H(5)  
H(6)  
H(7)  
H(8)  
H(55)  
H(54)  
H(53)  
H(52)  
H(51)  
H(50)  
H(49)  
H(48)  
H(47)  
H(46)  
H(45)  
H(44)  
H(43)  
H(42)  
H(41)  
H(40)  
H(39)  
H(38)  
H(37)  
H(36)  
H(35)  
H(34)  
H(33)  
H(32)  
H(31)  
H(30)  
H(29)  
-4  
0
13  
0
-34  
0
72  
0
-138  
0
245  
0
-408  
0
650  
0
-1003  
0
1521  
0
-2315  
0
3671  
0
-6642  
0
H(9)  
Table 8: Inverse Sinc Filter  
Lower Upper  
H(10)  
H(11)  
H(12)  
H(13)  
H(14)  
H(15)  
H(16)  
H(17)  
H(18)  
H(19)  
H(20)  
H(21)  
H(22)  
H(23)  
H(24)  
H(25)  
H(26)  
H(27)  
H(28)  
Integer  
Coefficient Coefficient Value  
H(1)  
H(2)  
H(3)  
H(4)  
H(5)  
H(9)  
H(8)  
H(7)  
H(6)  
2
-4  
10  
-35  
401  
20755  
32768  
Table 6: Halfband Filter 2  
Lower Upper  
Integer  
Coefficient Coefficient Value  
H(1)  
H(2)  
H(3)  
H(4)  
H(5)  
H(6)  
H(7)  
H(8)  
H(9)  
H(10)  
H(11)  
H(12)  
H(23)  
H(22)  
H(21)  
H(20)  
H(19)  
H(18)  
H(17)  
H(16)  
H(15)  
H(14)  
H(13)  
-2  
0
17  
0
-75  
0
238  
0
-660  
0
2530  
4096  
Rev. PrD | Page 7 of 34  
AD9779  
Preliminary Technical Data  
INTERPOLATION FILTER RESPONSE CURVES  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-4  
-3  
-2  
-1  
0
1
2
3
4
Figure 3. AD9779 2x Interpolation, Low Pass Response to  
4x Input Data Rate (Dotted Lines Indicate 1dBRoll-Off)  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-4  
-3  
-2  
-1  
0
1
2
3
4
Figure 4. AD9779 4x Interpolation, Low Pass Response to  
4x Input Data Rate (Dotted Lines Indicate 1dBRoll-Off)  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-4  
-3  
-2  
-1  
0
1
2
3
4
Figure 5.AD9779 8x Interpolation, Low Pass Response to  
4x Input Data Rate (Dotted Lines Indicate 1dBRoll-Off)  
Rev. PrD | Page 8 of 34  
Preliminary Technical Data  
AD9779  
CHARACTERIZATION DATA  
6
5
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
FDATA=200MSPS  
FDATA=160MSPS  
FDATA=100MSPS  
0
8192  
16384  
24576  
32768  
40960  
49152  
57344  
65536  
0
20  
40  
60  
80  
100  
Code  
Fout - MHz  
Figure 6. AD9779 Typical INL  
Figure 9. SFDR vs. FOUT, 2x Interpolation  
2
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
FDATA=125MSPS  
FDATA=100MSPS  
1.5  
1
0.5  
0
FDATA=200MSPS  
FDATA=150MSPS  
-0.5  
-1  
0
8192  
16384  
24576  
32768  
40960  
49152  
57344  
65536  
0
20  
40  
60  
80  
Code  
Fout - MHz  
Figure 7. AD9779 Typical DNL  
Figure 10. SFDR vs. FOUT, 4x Interpolation  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
FDATA=200MSPS  
FDATA=62.5MSPS  
50MSPS  
FDATA=160MSPS  
FDATA=100MSPS  
75MSPS  
100MSPS  
0
20  
40  
60  
80  
100  
Fout - MHz  
0
10  
20  
30  
40  
50  
Fout - M Hz  
Figure 8. SFDR vs. FOUT, 1x Interpolation  
Figure 11. SFDR vs. FOUT, 8x Interpolation  
Rev. PrD | Page 9 of 34  
AD9779  
Preliminary Technical Data  
100.0  
FDATA=200MSPS  
100  
90  
80  
70  
60  
50  
90.0  
80.0  
70.0  
60.0  
50.0  
100MSPS  
112.5MSPS  
75MSPS  
FDATA=160MSPS  
50MSPS  
FDATA=62.5MSPS  
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
Fout - MHz  
0
20  
40  
60  
80  
Fout - MHz  
Figure 15. Third Order IMD vs. FOUT, 8x Interpolation  
Figure 12. Third Order IMD vs. FOUT, 1x Interpolation  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
-150  
-152  
-154  
-156  
-158  
-160  
-162  
-164  
-166  
-168  
-170  
FDATA=200MSPS  
FDATA=156MSPS  
FDATA=78MSPS  
FDATA=160MSPS  
FDATA=200MSPS  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Fout - MHz  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
Fout - MHz  
Figure 16. Noise Spectral Density vs. FOUT, 1x Interpolation  
Figure 13. Third Order IMD vs. FOUT, 2x Interpolation  
100  
90  
80  
70  
60  
50  
-150  
-152  
-154  
-156  
-158  
-160  
-162  
-164  
-166  
-168  
-170  
FDATA=125MSPS  
FDATA=156MSPS  
FDATA=78MSPS  
FDATA=150MSPS  
FDATA=200MSPS  
FDATA=100MSPS  
0
40  
80  
120  
160  
200  
240  
280  
320  
360  
400  
FDATA=200MSPS  
Fout - MHz  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
Figure 14. Third Order IMD vs. FOUT, 4x Interpolation  
Fout - MHz  
Figure 17. Noise Spectral Density vs. FOUT, 2x Interpolation  
Rev. PrD | Page 10 of 34  
Preliminary Technical Data  
AD9779  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-90  
8x Interpolation  
FDATA=122.88MSPS  
-85  
-80  
-75  
-70  
-65  
-60  
-55  
-50  
4x Interpolation  
4x Interpolation,  
Zero Stuffing  
8x Interpolation,  
Zero Stuffing  
2x Interpolation,  
Zero Stuffing  
FDATA=61.44MSPS  
2x Interpolation  
1x Interpolation,  
Zero Stuffing  
1x Interpolation  
0
20  
40  
60  
80 100 120 140 160 180 200 220 240 260 280 300  
Fout - MHz  
Figure 18. ACLR for 1st Adjacent Band WCDMA, 4x Interpolation. On-Chip  
Modulation is used to translate baseband signal to IF.  
0
25  
50  
75  
100  
125  
DATA (MSPS)  
150  
175  
200  
225  
250  
F
-90  
Figure 21. Power Dissipation, Single DAC Mode  
-85  
FDATA=122.88MSPS  
-80  
-75  
-70  
1.1  
1
8x Interpolation,FDAC/4 Modulation  
8x Interpolation,FDAC/2 Modulation  
4x Interpolation,FDA C/4 Modulation  
4x Interpolation,FDA C/2 Modulation  
4x Interpolation,Modulation off  
8x Interpolation,FDAC/8 Modulation  
8x Interpolation,Modulation off  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
FDATA=61.44MSPS  
-65  
-60  
-55  
-50  
2x Interpolation,  
Zero Stuffing  
4x Interpolation,  
Zero Stuffing  
8x Interpolation,  
Zero Stuffing  
2x Interpolation,FDAC/2 Modulation  
2x Interpolation,Modulation off  
0
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300  
1x Interpolation,  
Zero Stuffing  
Fout - MHz  
1x Interpolation  
Figure 19. ACLR for 2nd Adjacent Band WCDMA, 4x Interpolation. On-Chip  
Modulation is used to translate baseband signal to IF.  
-90  
-85  
FDATA=122.88MSPS  
0
25  
50  
75  
100 125 150 175 200 225 250  
-80  
FDATA (MSPS)  
-75  
-70  
Figure 22. Power Dissipation, Dual DAC Mode  
0.16  
0.14  
0.12  
0.1  
-65  
-60  
-55  
-50  
FDATA=61.44MSPS  
0
20  
40  
60  
80 100 120 140 160 180 200 220 240 260 280 300  
0.08  
0.06  
0.04  
0.02  
0
Fout - MHz  
Figure 20. ACLR for 3rd Adjacent Band WCDMA, 4x Interpolation. On-Chip  
Modulation is used to translate baseband signal to IF.  
0
200  
400  
600  
800  
1000  
1200  
FDAC - MSPS  
Figure 23. Power Dissipation of Inverse Sinc Filter  
Rev. PrD | Page 11 of 34  
AD9779  
Preliminary Technical Data  
GENERAL DESCRIPTION  
The remaining SCLK edges are for Phase 2 of the communication  
cycle. Phase 2 is the actual data transfer between the AD9779 and  
the system controller. Phase 2 of the communication cycle is a  
transfer of 1, 2, 3, or 4 data bytes as determined by the instruction  
byte. Using one multibyte transfer is the preferred method. Single  
byte data transfers are useful to reduce CPU overhead when  
register access requires one byte only. Registers change immediately  
upon writing to the last bit of each transfer byte.  
The AD9779 combines many features which make it make it a very  
attractive DAC for wired and wireless communications systems.  
The dual digital signal path and dual DAC structure allow an easy  
interface with common quadrature modulators when designing  
single sideband transmitters. The speed and performance of the  
AD9779 allow wider bandwidths/more carriers to be synthesized  
than with previously available DACs. The digital engine in the  
AD9779 uses a breakthrough filter architecture that combines the  
interpolation with a digital quadrature modulator. This allows the  
AD9779 to do digital quadrature frequency up conversion. The  
AD9779 also has features which allow simplified synchronization  
with incoming data, and also allows multiple AD9779s to be  
synchronized.  
Instruction Byte  
The instruction byte contains the information shown in Error!  
Reference source not found..  
MSB  
I7  
LSB  
I0  
Serial Peripheral Interface  
I6  
I5  
I4  
I3  
I2  
I1  
R/W  
N1  
N0  
A4  
A3  
A2  
A1  
A0  
SPI_SDO (pin 66)  
Table 9. SPI Instruction Byte  
AD9779  
SPI  
PORT  
SPI_SDI (pin 67)  
SPI_SCLK (pin 68)  
SPI_CSB (pin 69)  
R/W, Bit 7 of the instruction byte, determines whether a read or a  
write data transfer will occur after the instruction byte write. Logic  
high indicates read operation. Logic 0 indicates a write operation.  
N1, N0, Bits 6 and 5 of the instruction byte, determine the number  
of bytes to be transferred during the data transfer cycle. The bit  
decodes are shown in Table 10.  
Figure 24. AD9779 SPI Port  
The AD9779 serial port is a flexible, synchronous serial  
communications port allowing easy interface to many industry-  
standard microcontrollers and microprocessors. The serial I/O is  
compatible with most synchronous transfer formats, including both  
the Motorola SPI® and Intel® SSR protocols. The interface allows  
read/write access to all registers that configure the AD9779. Single  
or multiple byte transfers are supported, as well as MSB first or LSB  
first transfer formats. The AD9779s serial interface port can be  
configured as a single pin I/O (SDIO) or two unidirectional pins for  
in/out (SDIO/SDO).  
A4, A3, A2, A1, A0, Bits 4, 3, 2, 1, 0 of the instruction byte,  
determine which register is accessed during the data transfer  
portion of the communications cycle. For multibyte transfers, this  
address is the starting byte address. The remaining register  
addresses are generated by the AD9779 based on the LSBFIRST bit  
(REG00, bit 6).  
N1  
0
N2  
0
Description  
Transfer 1 Byte  
Transfer 2 Bytes  
Transfer 3 Bytes  
Transfer 4 Bytes  
0
1
General Operation of the Serial Interface  
1
0
1
1
There are two phases to a communication cycle with the AD9779.  
Phase 1 is the instruction cycle, which is the writing of an  
instruction byte into the AD9779, coincident with the first eight  
SCLK rising edges. The instruction byte provides the AD9779 serial  
port controller with information regarding the data transfer cycle,  
which is Phase 2 of the communication cycle. The Phase 1  
instruction byte defines whether the upcoming data transfer is read  
or write, the number of bytes in the data transfer, and the starting  
register address for the first byte of the data transfer. The first eight  
SCLK rising edges of each communication cycle are used to write  
the instruction byte into the AD9779.  
Table 10. Byte Transfer Count  
Serial Interface Port Pin Descriptions  
SCLK—Serial Clock. The serial clock pin is used to synchronize  
data to and from the AD9779 and to run the internal state  
machines. SCLKs maximum frequency is 20 MHz. All data input  
to the AD9779 is registered on the rising edge of SCLK. All data is  
driven out of the AD9779 on the falling edge of SCLK.  
CSB—Chip Select. Active low input starts and gates a  
A logic high on the CS pin, followed by a logic low, will reset the  
SPI port timing to the initial state of the instruction cycle. This is  
true regardless of the present state of the internal registers or the  
other signal levels present at the inputs to the SPI port. If the SPI  
port is in the midst of an instruction cycle or a data transfer  
cycle,none of the present data will be written.  
communication cycle. It allows more than one device to be used on  
the same serial communications lines. The SDO and SDIO pins will  
go to a high impedance state when this input is high. Chip select  
should stay low during the entire communication cycle.  
SDIO—Serial Data I/O. Data is always written into the AD9779 on  
Rev. PrD | Page 12 of 34  
Preliminary Technical Data  
AD9779  
this pin. However, this pin can be used as a bidirectional data line.  
The configuration of this pin is controlled by Bit 7 of register  
address 00h. The default is Logic 0, which configures the SDIO pin  
as unidirectional.  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CSB  
SCLK  
SDIO  
SDO  
SDO—Serial Data Out. Data is read from this pin for protocols  
that use separate lines for transmitting and receiving data. In the  
case where the AD9779 operates in a single bidirectional I/O mode,  
this pin does not output data and is set to a high impedance state.  
R/W N0 N1 A0 A1 A2 A3 A4 D7 D6 D5  
N
D3 D2 D1 D0  
0 0 0  
N
0
D7 D6 D5  
D3 D2 D1 D0  
0 0 0  
N
N
0
MSB/LSB Transfers  
Figure 25. Serial Register Interface Timing MSB First  
The AD9779 serial port can support both most significant bit  
(MSB) first or least significant bit (LSB) first data formats. This  
functionality is controlled by register bit LSBFIRST (REG00, bit 6).  
The default is MSB first (LSBFIRST = 0).  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CSB  
SCLK  
SDIO  
SDO  
When LSBFIRST = 0 (MSB first) the instruction and data bytes  
must be written from most significant bit to least significant bit.  
Multibyte data transfers in MSB first format start with an  
instruction byte that includes the register address of the most  
significant data byte. Subsequent data bytes should follow in order  
from high address to low address. In MSB first mode, the serial  
port internal byte address generator decrements for each data byte  
of the multibyte communication cycle.  
A0 A1 A2 A3 A4 N1 N0 R/W D0 D1 D2  
D4 D5 D6 D7  
N N N  
0
0
0
N
N
D0 D1 D2  
D4 D5 D6 D7  
N N N  
0
0
0
Figure 26. Serial Register Interface Timing LSB First  
tDS  
tSCLK  
CSB  
tPWH  
tPWL  
When LSBFIRST = 1 (LSB first) the instruction and data bytes  
must be written from least significant bit to most significant bit.  
Multibyte data transfers in LSB first format start with an  
instruction byte that includes the register address of the least  
significant data byte followed by multiple data bytes. The serial port  
internal byte address generator increments for each byte of the  
multibyte communication cycle.  
SCLK  
tDS  
tDH  
INSTRUCTION BIT 7  
INSTRUCTION BIT 6  
SDIO  
Figure 27. Timing Diagram for SPI Register Write  
CSB  
The AD9779 serial port controller data address will decrement  
from the data address written toward 0x00 for multibyte I/O  
operations if the MSB first mode is active. The serial port controller  
address will increment from the data address written toward 0x1F  
for multibyte I/O operations if the LSB first mode is active.  
SCLK  
tDV  
SDIO  
SDO  
DATA BIT n  
DATA BIT n1  
Figure 28. Timing Diagram for SPI Register Read  
Notes on Serial Port Operation  
The AD9779 serial port configuration is controlled by REG00, bits  
6 and 7 . It is important to note that the configuration changes  
immediately upon writing to the last bit of the register. For  
multibyte transfers, writing to this register may occur during the  
middle of communication cycle. Care must be taken to compensate  
for this new configuration for the remaining bytes of the current  
communication cycle.  
The same considerations apply to setting the software reset, RESET  
(REG00, bit 5). All registers are set to their default values EXCEPT  
REG00 and REG04 which remain unchanged.  
Use of only single byte transfers when changing serial port  
configurations or initiating a software reset is recommended to  
prevent unexpected device behavior.  
Rev. PrD | Page 13 of 34  
AD9779  
Preliminary Technical Data  
SPI Register Map  
Register  
Name  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
00h  
00 SDIO  
LSB,MSB First Software  
Reset  
Power  
Down  
Mode  
Auto  
PLL Lock  
Indicator  
00h  
Comm  
Register  
Bidirectional  
Power  
Down  
Enable  
Digital  
Control  
Register  
01h  
02h  
01 Filter Interpolation Factor  
<1: 0>  
Filter Interpolation Mode <4:0>  
Zero  
Stuffing  
Enable  
00h  
00h  
02 Data Format  
One Port  
Mode  
Real Mode  
Inverse  
DATACLK  
Invert  
IQ Select  
Invert  
Q First  
Sinc  
Enable  
Sync  
Control  
03h  
04h  
05h  
03 Data Delay Mode <1:0>  
04 Sync Out Delay <3:0>  
Data Clock Delay <2:0>  
Data Window Delay <2:0>  
00h  
00h  
00h  
Sync Window Delay <3:0>  
05 Sync Enable  
Sync Driver  
Enable  
Dac Clock Offset <2:0>  
Interrupt  
Register  
06h  
06 Data Delay  
IRQ  
Sync Delay  
IRQ  
Cross  
Control IRQ  
Data Delay Sync Delay  
IRQ Enable IRQ Enable  
Cross  
Control IRQ  
Enable  
00h  
PLL Control  
07h  
08h  
07 PLL Band Select <4:0>  
PLL Loop Cap Select <2:0>  
CFh  
37h  
08 PLL Enable  
PLL Output Freq Divide  
PLL Loop Freq Divide  
<1:0>  
PLL Loop Filter Pole/Zero <2:0>  
<1:0>  
Misc.  
Control  
Register  
09h  
24 PLL Error  
Source  
PLL Ref  
Bypass  
PLL Gain <2:0>  
PLL Bias <2:0>  
38h  
I DAC  
Control  
Register  
0Ah 09 IDAC Gain Adjustment <7:0>  
F9h  
01h  
0Bh 10 IDAC SLEEP  
IDAC Power  
Down  
IDAC Gain Adjustment  
<9:8>  
Aux 1 DAC  
Control  
Register  
0Ch 11 Auxiliary DAC1 Data <7:0>  
00h  
00h  
0Dh 12 Auxiliary  
DAC1 Sign  
Auxiliary  
DAC1  
Auxiliary  
DAC1 Sleep  
Auxiliary DAC1 Data  
<9:8>  
Current  
Direction  
Q DAC  
Control  
Register  
0Eh  
0Fh  
13 QDAC Gain Adjustment <7;0>  
F9h  
01h  
14 QDAC SLEEP  
QDAC Sleep  
QDAC Gain Adjustment  
<9:8>  
Rev. PrD | Page 14 of 34  
Preliminary Technical Data  
AD9779  
Aux 2 DAC  
Control  
10h  
15 Auxiliary DAC2 Data <7:0>  
00h  
Register  
11h  
16 Auxiliary  
DAC2 Sign  
Auxiliary  
DAC2  
Current  
Direction  
Auxiliary  
DAC2 Power  
Down  
Auxiliary DAC2 Data  
<9:8>  
00h  
12h  
13h  
14h  
15h  
17 Cross Updel <7:0>  
18 Cross Dndel <7:0>  
19 Cross Clock Divide <3:0>  
00h  
00h  
00h  
00h  
Cross  
Register  
Cross Wiggle Delay <3:0>  
Cross Wiggle <2:0>  
20 Cross Run  
Cross Status  
Cross Done  
Cross Step <1:0>  
Analog  
Write  
16h  
23 Analog Write <7:0>  
00h  
Analog  
Control  
Register  
17h  
18h  
21 Mirror Roll Off <1:0>  
Band Gap Trim <2:0>  
00h  
22 Stack Headroom Control<7:0>  
CAh  
Analog  
Status  
19h  
25  
Analog Status <7:0>  
--h  
Register  
Test 1  
Register  
1Ah 26 MISR Enable  
MISR IQ  
Select  
MISR  
Samples  
Internal  
Data  
Test Mode <2:0>  
00h  
Enable  
Test 2  
Register  
1Bh 27 BIST<31:24>  
1Ch 28 BIST<23:16>  
1Dh 29 BIST<15:8>  
--h  
--h  
--h  
--h  
1Eh  
30 BIST<7:0>  
Table 11: SPI Register Map  
Rev. PrD | Page 15 of 34  
AD9779  
Preliminary Technical Data  
Register (hex)  
00  
Bits  
Name  
Function  
Default  
7
SDIO Bidirectional  
0: Use SDIO pin as input data only  
1: Use SDIO as both input and output data  
0: First bit of serial data is MSB of data byte  
1: First bit of serial data is LSB of data byte  
0
Comm Register  
6
LSB/MSB First  
0
5
4
Software RESET  
Bit must be written with a 1, then 0 to soft reset SPI register map  
0: All circuitry is active  
0
0
Power Down  
Mode  
1: Disable all digital and analog circuitry, only SPI port is active  
3
1
Auto Power Down  
Enable  
0
0
PLL LOCK (read  
only)  
0: PLL is not locked  
1: PLL is locked  
01  
7:6  
Filter Interpolation 00: 1x interpolation  
00  
Rate  
01: 2x interpolation  
Digital Path Filter  
Control  
10: 4x interpolation  
11: 8x interpolation  
5:2  
0
Control Halfband  
Filters 1,2,3  
0000  
0
See Table 13 for filter modes  
Zero Stuffing  
Data Format  
One Port Mode  
Real Mode  
0: Zero stuffing off  
1: Zero stuffing on  
02  
7
6
5
3
2
1
0: Signed binary  
0
0
0
0
0
0
1: Unsigned binary  
General Mode  
Control  
0: Both input data ports receive data  
1: Data port 1 only receives data  
0: Enable Q path for signal processing  
1: Disable Q path data (clocks disabled)  
0: Inverse sinc disabled  
Inverse Sinc  
Enable  
1: Inverse sinc disabled  
DATACLK Invert  
0: Output DATACLK same phase as internal capture clock  
1: Output DATACLK opposite phase as internal capture clock  
0: TxEnable (pin 39) =1, routes input data to I channel  
TxEnable (pin 39) =0, routes input data to Q channel  
1: TxEnable (pin 39) =1, routes input data to Q channel  
TxEnable (pin 39) =0, routes input data to I channel  
0: First byte of data is always I data at beginning of transmit  
1: First byte of data is always Q data at beginning of transmit  
00: Manual, no error correction  
IQ Select Invert  
0
Q First  
03  
7:6  
Data Delay Mode  
00  
01: Manual, continuous error correction  
10: automatic, one pass check  
Data Clock Delay  
11: automatic, continuous pass check  
Data Clock delay control  
5:3  
2:0  
Data Clock Delay  
000  
000  
Data Window  
Delay  
Window delay control  
04  
7:4  
3:0  
Sync Output Delay  
0000  
0000  
Synchronization  
Delay  
Sync Window  
Delay  
05  
7
Sync Enable  
0: LVDS and synchronization rceiver logic off  
1: LVDS and synchronization rceiver logic on  
0
0
0
Chip Sync and Data  
Delay Control  
6
Sync Driver Enable 0: LVDS driver off  
1: LVDS driver on  
5:3  
DAC Clock Offset  
Rev. PrD | Page 16 of 34  
Preliminary Technical Data  
AD9779  
06  
7
Data Delay Error  
(read only)  
0
0
IRQ Status  
6
Chip  
Synchronization  
Delay Error (read  
only)  
5
3
2
Cross Control  
Error (read only)  
0
0
0
Data Delay Error  
Enable  
Chip  
Synchronization  
Error Enable  
1
Cross Control  
Error Enable  
0
07  
7:3  
PLL Band Select  
See Table 14 for  
values.  
11001  
PLL Band and Divide  
2:0  
7
PLL Ripple Cap  
Adjust  
111  
0
08  
PLL Enable  
0: PLL off, DAC rate clock supplied by outside source  
1: PLL on, DAC rate clock synthesized internally from data rate clock via PLL  
clock multiplier  
PLL Enable and  
Charge Pump  
Control  
6:5  
4:3  
2:0  
PLL Output Divide  
Ratio  
00: Divide by 1  
01  
01: Divide by 2  
10: Divide by 4  
11: Divide by 8  
PLL Loop  
Feedback Divide  
Ratio  
00: Divide by 1  
10  
01: Divide by 2  
10: Divide by 4  
11: Divide by 8  
PLL Loop Filter  
Bandwidth Tuning  
Recommended  
Settings. See  
Table 14 for PLL  
Band Select  
000: PLL band select 00000-00111  
100: PLL band select 01000-01111  
110: PLL band select 10000-10111  
111: PLL band select 11000-11111  
111  
values.  
09  
7
PLL Error Bit  
Source  
0: Phase error detect  
0
1: Range limit  
Misc. Control  
6
PLL Reference  
Bypass  
0: Use PLL reference  
0
1: Use DAC reference  
5:3  
VCO AGC Gain  
Control. See Table  
14 for PLL Band  
Select values.  
000: PLL band select 00000-00111  
100: PLL band select 01000-01111  
110: PLL band select 10000-10111  
111: PLL band select 11000-11111  
111  
2:0  
7:0  
PLL Bias Current  
Level/Trim  
000  
0A  
IDAC Gain  
(7:0) LSB slice of 10 bit gain setting word for IDAC  
11111001  
Adjustment  
IDAC Gain  
0B  
7
6
IDAC Sleep  
0: IDAC on  
1: IDAC off  
0
0
IDAC Gain and  
Control  
IDAC Power Down 0: IDAC on  
1: IDAC off  
1:0  
7:0  
IDAC Gain  
Adjustment  
(9:8) MSB slice of 10 bit gain setting word for IDAC  
01  
0C  
Aux DAC1 Gain  
Adjustment  
(7:0) LSB slice of 10 bit gain setting word for Aux DAC1  
00000000  
Auxiliary DAC1 Gain  
Rev. PrD | Page 17 of 34  
AD9779  
Preliminary Technical Data  
0D  
7
6
5
Aux DAC1 Sign  
0: Positive  
0
0
0
1: Negative  
0: Source  
Auxiliary DAC1  
Control and Data  
Aux DAC1  
Direction  
1: Sink  
Aux DAC1 Sleep  
0: Aux DAC1 on  
1: Aux DAC 1 off  
1:0  
7:0  
Aux DAC1 Gain  
Adjustment  
(9:8) MSB slice of 10 bit gain setting word for Aux DAC1  
00  
0E  
QDAC Gain  
Adjustment  
(7:0) LSB slice of 10 bit gain setting word for QDAC  
11111001  
QDAC Gain  
0F  
7
6
QDAC Sleep  
0: QDAC on  
0
0
1: QDAC off  
QDAC Gain and  
Control  
QDAC Power  
Down  
0: QDAC on  
1: QDAC off  
1:0  
7:0  
QDAC Gain  
Adjustment  
(9:8) MSB slice of 10 bit gain setting word for QDAC  
01  
10  
Aux DAC2 Gain  
Adjustment  
(7:0) LSB slice of 10 bit gain setting word for Aux DAC2  
00000000  
Auxiliary DAC2 Gain  
11  
7
6
5
Aux DAC2 Sign  
0: Positive  
0
0
0
1: Negative  
Auxiliary DAC2  
Control and Data  
Aux DAC2  
Direction  
0: Source  
1: Sink  
Aux DAC2 Sleep  
0: Aux DAC1 on  
1: Aux DAC 1 off  
1:0  
7:0  
Aux DAC2 Gain  
Adjustment  
(9:8) MSB slice of 10 bit gain setting word for Aux DAC2  
00  
12  
Updelay  
Value above zero for upper cross delay (bits 7,6, unused)  
Value below zero for lower cross delay (bits 7,6, unused)  
Divide rate of CNTCLK by 2^(3:0), CNTCLK = 1/16 DAC clock rate  
00000000  
Cross Point Upper  
Delay  
13  
7:0  
7:3  
Dndelay  
00000000  
00000  
Cross Point Upper  
Delay  
14  
Cross Control  
Clock Delay  
Wiggle Delay for  
Cross Point Control  
2:0  
7
Wiggle Delay  
Cross Run  
Time step in 2^(Wiggle Delay) CNTCLK cycles  
0: Disables Cross Control loop  
000  
0
15  
1: Enables Cross Control loop  
Cross Point Control  
6
5
Cross Status (read  
only)  
0: Control loop is lowering cross point  
0
0
1: Control loop is raising cross point  
Cross Done (read  
only)  
0: Control loop is chnaging cross point value  
1: Control loop is holding cross point value  
(2:0) Number of iterations allowed in control loop  
(1:0) Value to change cross point value per iteration (wiggle)  
Provides extra writeable control registers for analog circuit  
4:2  
1:0  
7:0  
Cross Wiggle  
Cross Step  
000  
00  
16  
Analog Write  
00000000  
Analog Write  
17  
7:6  
2:0  
Mirror Roll off  
Frequency  
00  
Mirror Roll off and  
band gap Trim  
Band Gap Trim  
Temperature  
Characteristic  
000  
18  
Output stack headroom control  
Output Stack  
headroom Control  
Overdrive (current density) trim (temperature packing)  
Reference offset from VDD3V (vcas centering)  
Provides extra status register for analog circuitry (unused, read only)  
19  
7:0  
Analog Status  
Analog Status  
Rev. PrD | Page 18 of 34  
Preliminary Technical Data  
AD9779  
1A  
7
MISR Enable  
MISR IQ Select  
MISR Samples  
0: MISR disabled  
0
0
0
0
1: MISR Enabled  
MISR Control  
6
0: Read back I path signature  
1: Read back Q path signature  
0: MISR uses short sample period  
1: MISR uses long sample period  
0: Internal data generator off  
1: Internal data generator on  
000: Normal data port operation  
001-111: To be defined test modes  
(31:24) Slice of 32 bit MISR signature  
5
3
Internal Data  
Enable  
2:0  
7:0  
Test Mode  
000  
1B  
MISR Signature  
MISR Signature  
Register 1  
1C  
7:0  
7:0  
7:0  
MISR Signature  
MISR Signature  
MISR Signature  
(23:16) Slice of 32 bit MISR signature  
(15:8) Slice of 32 bit MISR signature  
(7:0) Slice of 32 bit MISR signature  
MISR Signature  
Register 2  
1D  
MISR Signature  
Register 3  
1E  
MISR Signature  
Register 4  
Table 12: SPI RegisterDescription  
Rev. PrD | Page 19 of 34  
AD9779  
Preliminary Technical Data  
Interp.  
Factor  
<7:6>  
Filter  
Filter1 mode Filter2 mode  
Filter3 mode  
(Mode_F3)  
Modulation  
Nyquist  
Zone  
Passband  
F_low  
Center  
F_High  
(Mode_F1)  
(Mode_F2)  
Mode  
<5:2>  
(Freq. Normalized to FDAC  
)
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
4
4
4
4
4
4
4
4
2
2
2
2
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
00h  
01h  
02h  
03h  
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
0
DC_odd  
1
-0.05  
0.0125  
0.075  
0.1375  
0.2  
0
0.05  
In 8x  
interpolation,  
BW=0.0375-  
1
0
DC_even  
F/8_odd  
2
0.0625  
0.125  
0.1875  
0.25  
0.1125  
0.175  
0.2375  
0.3  
(0.1* FDAC  
)
2
1
3
Worst case:  
F/32  
3
2
F/8_even  
2F/8_odd  
2F/8_even  
3F/8_odd  
3F/8_even  
-4F/8_even  
-4F/8_odd  
-3F/8_even  
-3F/8_odd  
-2F/8_even  
-2F/8_odd  
-F/8_even  
-F/8_odd  
DC_odd  
4
4
2
5
5
2
6
0.2625  
0.325  
0.3875  
0.45  
0.3125  
0.375  
0.4375  
0.5  
0.3625  
0.425  
0.4875  
0.55  
6
3
7
7
4
8
0
4
-8  
-7  
-6  
-5  
-4  
-3  
-2  
-1  
1
1
4
0.5125  
0.575  
0.6375  
0.7  
0.5625  
0.625  
0.6875  
0.75  
0.6125  
0.675  
0.7375  
0.8  
2
5
3
6
4
6
5
6
0.7625  
0.825  
0.8875  
-0.1  
0.8125  
0.875  
0.9375  
0
0.8625  
0.925  
0.9875  
0.1  
6
7
7
0
0
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
In 8x  
interpolation,  
BW=0.075-(0.2*  
1
DC_even  
F/4_odd  
2
0.025  
0.15  
0.125  
0.25  
0.225  
0.35  
FDAC  
)
2
3
Worst case:  
F/16  
3
F/4_even  
-F/2_even  
-F/2_odd  
-F/4_even  
-F/4_odd  
DC_odd  
4
0.275  
0.4  
0.375  
0.5  
0.475  
0.6  
4
-4  
-3  
-2  
-1  
1
5
0.525  
0.65  
0.625  
0.75  
0.725  
0.85  
6
7
0.775  
-0.2  
0.875  
0
0.975  
0.2  
OFF  
OFF  
OFF  
OFF  
In 2x  
Interpolation  
DC_even  
-F/2_even  
-F/2_odd  
2
0.05  
0.25  
0.45  
BW=0.15-0.4  
FDAC  
-1  
-2  
0.3  
0.5  
0.7  
Worst case: F/8  
0.55  
0.75  
0.95  
Table 13: Interpolation Filter Modes, see Reg 01, bits 5 :2  
Rev. PrD | Page 20 of 34  
Preliminary Technical Data  
AD9779  
PLL Frequency Band Select  
00110 (6)  
00101 (5)  
00100 (4)  
00011 (3)  
00010 (2)  
00001 (1)  
00000 (0)  
1525 – 1597  
1560 – 1632  
1594 – 1667  
1629 – 1702  
1665 – 1737  
1700 – 1773  
1735 – 1810  
PLL Band Select Value  
11111 (31)  
11110 (30)  
11101 (29)  
11100 (28)  
11011 (27)  
11010 (26)  
11001 (25)  
11000 (24)  
10111 (23)  
10110 (22)  
10101 (21)  
10100 (20)  
10011 (19)  
10010 (18)  
10001 (17)  
10000 (16)  
01111 (15)  
01110 (14)  
01101 (13)  
01100 (12)  
01011 (11)  
01010 (10)  
01001 (9)  
Frequency in MHz  
804 – 850  
827 – 875  
850 – 899  
875 – 925  
899 – 951  
Table 14. VCO Frequency Range vs. PLL Band Select Value  
925 – 977  
951 – 1005  
977 – 1032  
1004 – 1061  
1032 – 1089  
1060 – 1119  
1089 – 1149  
1118 – 1179  
1148 – 1210  
1176 – 1239  
1206 – 1270  
1237 – 1302  
1268 – 1334  
1299 – 1366  
1331 – 1399  
1363 – 1432  
1396 – 1466  
1425 – 1495  
1458 – 1529  
1492 – 1563  
01000 (8)  
00111 (7)  
Rev. PrD | Page 21 of 34  
AD9779  
Preliminary Technical Data  
Internal Reference/Full Scale Current Generation  
Full scale current on the AD9779 IDAC and QDAC can be set from  
10 to 30ma. Initially, the 1.2V bandgap reference is used to set up a  
current in an external resistor connected to I120 (pin 75). A  
simplified block diagram of the AD9779 reference circuitry is given  
below in Figure 29. The recommended value for the external resistor  
is 10K , which sets up an I REFERENCE in the resistor of 120µa.  
Internal current mirrors provide a current gain scaling, where  
IDAC or QDAC gain is a 10 bit word in the SPI port register  
(registers 0A, 0B, 0E, and 0F). The default value for the DAC gain  
registers gives an IFS of 20ma.  
Auxiliary DACs  
Two auxiliary DACs are provided on the AD9779. The full scale  
output current on these DACs is derived from the 1.2V bandgap  
reference and external resistor. The gain scale from the reference  
amplifier to the DAC reference current for each aux DAC is 16.67.  
with the Aux DAC gain set to full scale (10 bit values, SPI reg 0C,  
0D, 10, 11), this gives a full scale current of 2ma for Aux DAC1 and  
for Aux DAC2. Through these same SPI port registers, the Aux  
DACs can be turned off, their signs can be inverted (scale is  
reversed, 0-1024 gives IFS to 0), and they can be programmed for  
sourcing or sinking current. When sourcing current, the output  
compliance voltage is 0-1.5V, and when sinking current the output  
compliance voltage is 0.8-1.5V.  
AD9779  
1.2V bandgap  
IDAC gain  
IDAC  
DAC full scale  
VREF  
I120  
The Aux DACs can be used for LO cancellation when the DAC  
output is followed by a quadrature. A typical DAC to Quadrature  
Modulator interface is given in Figure 31. Often, the input common  
mode voltage for the modulator is much higher than the output  
compliance range of the DAC, so that ac coupling is necessary. The  
input referred offset voltage of thee quadrature modulator can  
result in LO feed through on the modulator output, degrading  
system, performance. If the configuration of Figure 29 is used, the  
Aux DACs can be used to compensate for the input DC offset of the  
quad mod, thus reducing LO feedthrough.  
current scaling  
reference current  
0.1µF  
QDAC  
QDAC gain  
10KΩ  
Figure 29 . Reference Circuitry  
where IFS is equal to;  
1.2V  
27  
12  
6
1024  
× DAC gain × 32  
×
+
AUX  
DAC1  
R
35  
30  
25  
20  
15  
10  
5
AUX1_N  
AUX1_P  
IOUT1_P  
IDAC  
Quad Mod  
I Inputs  
IOUT1_N  
IOUT2_P  
Quad Mod  
Q Inputs  
QDAC  
IOUT2_N  
0
AUX2_P  
AUX2_N  
0
200  
400  
600  
800  
1000  
DAC gain code  
AUX  
DAC2  
Figure 30. IFS vs. DAC Gain Code  
Figure 31. Typical Use of Auxiliary DACs  
Power Down and Sleep Modes  
The AD9779 has a variety of power down modes, so that the digital  
engine, main TxDACs, or auxiliary DACs can be powered down  
individually, or all at once. Via the SPI port, the main TxDACs can  
be placed in sleep or powered down modes. In sleep mode, the  
TxDAC output is turned off, thus reducing power dissipation. The  
reference remains powered on though, so that recovery from sleep  
mode is very fast. When the TxDAC is placed in Power Down  
mode, the TxDAC and 1.2V bandgap reference are turned off. This  
mode offers more substantial power savings than in sleep mode,  
but the time to turn on is much longer. The Auxiliary DACs also  
have the capability to be programmed via the SPI port into sleep  
mode.  
Rev. PrD | Page 22 of 34  
Preliminary Technical Data  
AD9779  
The power down bit (register 00h, bit 4) controls the power down  
function for the digital section of the AD9779. The power down  
function in bit 4 works in conjunction with TxEnable (pin 39)  
according to the following;  
2. PLL Disabled (reg 08h, bit 7=0) – The PLL enable switch  
in Figure 32 is connected to the Reference Clock Input.  
The differential reference clock input will be the DAC  
output sample rate and N3 will determine the  
interpolation rate.  
TxEnable =  
0:PWDWN=  
0: Flush data path with zeroes  
1: Digital engine in power down state, DACs and  
reference are not affected.  
1: Normal operation  
Internal PLL Clock Multiplier / Clock Distribution  
The internal clock structure on the AD9779 allows the user to drive  
the differential clock inputs with a clock at 1x or an integer multiple  
of the input data rate, or at the DAC output sample rate. A PLL  
internal to the AD9779 provides input clock multiplication and  
provides all of the internal clocks required for the interpolation  
filters and data synchronization.  
The internal clock architecture is shown in Figure 32. The  
reference clock is the differential clock at pins 5 and 6. This clock  
input can be run differentially, or singled ended by driving pin 5  
with a clock signal, and biasing pin 6 to the mid swing point of the  
signal at pin 5. There are various configurations in which this clock  
architecture can be run;  
Figure 32. Internal Clock Architecture of AD9779  
Timing Information  
Figure 33 through Figure 35 show some of the various timing  
possibilities when the PLL is enabled. The combination of the  
settings of N2 and N3 means that the reference clock frequency  
may be a multiple of the actual input data rate. Figure 33 through  
Figure 35 show, respectively, what the timing looks like when  
N2/N3 = 1, 2, and 4.  
1. PLL Enabled (reg 08h, bit 7=1) – The PLL enable switch  
in Figure 32 is connected to the junction of the dividers  
N1 and N2. Divider N3 determines the interpolation rate  
of the DAC, and the ratio N2/N3 determines the ratio of  
Reference Clock/Input Data Rate. The VCO runs  
optimally over the range 804MHz to 1800MHz, so that  
N1 is used to keep the speed of the VCO in this range,  
even though the DAC sample rate may be lower. The loop  
filter components are entirely internal and no external  
compensation is necessary.  
Figure 36 shows the timing specifications for the AD9779 when the  
PLL is disabled. The reference clock is at the DAC output sample  
rate. In the example shown in Figure 36, if the PLL is disabled, the  
interpolation is 4x.. The set up and hold time for the input data are  
with respect to the rising edge of the reference clock which occurs  
just before the rising edge of the DATACLK out. Note that if reg  
02h, bit2 is set, DATACLK out is inverted so the latching reference  
clock edge will occur just before the DATACLK out falling edge.  
Reference Clock  
tD  
DATACLK out  
tS  
tH  
Input Data  
Figure 33. Timing Specifications for AD9779, PLL Enabled, Reference Clock = 1x Input Sample Rate  
Rev. PrD | Page 23 of 34  
AD9779  
Preliminary Technical Data  
Reference Clock  
DATACLK out  
Input Data  
tD  
tS  
tH  
Figure 34. Timing Specifications for AD9779, PLL Enabled, Reference Clock = 2x Input Sample Rate  
Reference Clock  
tD  
DATACLK out  
tS  
tH  
Input Data  
Figure 35. Timing Specifications for AD9779, PLL Enabled, Reference Clock = 4x Input Sample Rate  
Reference Clock  
tD  
DATACLK out  
tS  
tH  
Input Data  
tS=-2.3ns typ  
tH=3.7ns typ  
tD=5.5ns typ  
Figure 36. Timing Specifications for AD9779, PLL Disabled, 4x Interpolation  
Using Data Delay to Meet Timing Requirements  
In order to meet strict timing requirements at input data rates of up  
to 250MSPS, the AD9779 has a fine timing feature. Fine timing  
adjustments can be made by programming values into the DATA  
CLOCK DELAY register (reg 03h, 5:3). By changing the values in  
this register, delay can be added to the default delay between the  
DACCLK in the DATACLK out. The effect of this is shown in  
Figure 37 and Figure 38.  
Figure 38. . Delay from DACCLK to DATACLK out with CLK DATA DELAY = 111  
The difference between the default delay of Figure 37 and the  
maximum delay shown in Figure 38 is the range programmable via  
the DATA CLK DELAY register. The resulting delays when  
programming DATA CLK DELAY between 000 and 111 are a  
linear extrapolation between these two figures. (typically 300ps-  
400ps per increment to DATA CLK DELAY).  
Figure 37. Delay from DACCLK to DATACLK out with CLK DATA DELAY = 000  
Rev. PrD | Page 24 of 34  
Preliminary Technical Data  
AD9779  
Interpolation Filter Architecture  
10  
0
The AD9779 can provide up to 8× interpolation or disable the  
interpolation filters entirely. The coefficients of the low pass filters  
and the inverse sinc filter are given in Table 5, Table 6, Table 7, and  
Table 8. Spectral plots for the filter responses are given in Figure 3,  
Figure 4, and Figure 5.  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
With the interpolation filter and modulator combined, the  
incoming signal can be placed anywhere within the Nyquist region  
of the DAC output sample rate. Where the input signal is complex,  
this architecture allows modulation of the input signal to positive  
or negative Nyquist regions (refer to Table 13).  
The Nyquist regions up to 4× the input data rate can be seen in  
Figure 39.  
-4  
-3  
-2  
-1  
0
1
2
3
4
Figure 41. Interpolation/Modulation Combination of -3fDAC/8  
Filter in Odd Mode  
-8 -7 -6 -5 -4 -3 -2 -1 1  
2 3 4 5 6 7 8  
10  
-4  
×
-3  
×
-2×  
-1  
×
DC  
1×  
4×  
2
×
3×  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
Figure 39. Nyquist Zones  
Figure 3, Figure 4 and Figure 5 show the low pass response of the  
digital filters with no modulation used. By turning on the  
modulation feature, the response of the digital filters can be tuned  
to any Nyquist zone within the DAC bandwidth. As an example,  
Figure 40 to Figure 46 show the odd mode filter responses (refer to  
Table 13 for odd/even mode filter responses).  
10  
0
-4  
-3  
-2  
-1  
0
1
2
3
4
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
Figure 42. Interpolation/Modulation Combination of -2fDAC/8  
Filter in Odd Mode  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-4  
-3  
-2  
-1  
0
1
2
3
4
Figure 40. Interpolation/Modulation Combination of -4fDAC/8  
Filter in Odd Mode  
-4  
-3  
-2  
-1  
0
1
2
3
4
Figure 43. Interpolation/Modulation Combination of -1fDAC/8  
Filter in Odd Mode  
Rev. PrD | Page 25 of 34  
AD9779  
Preliminary Technical Data  
10  
0
Even mode filter responses allow the passband to be centered  
around 0.5, 1.5, 2.5 and 3.5 FDATA. Switching from and odd  
mode response to an even mode filter response does not modulate  
the signal. Instead, the pass band is simply shifted. As an example,  
picture the response of Figure 46, and assume the signal in band is  
a complex signal over the bandwidth 3.2 to 3.3×FDATA. If the even  
mode filter response is then selected, the pass band will now be  
centered at 3.5×FDATA. However, the signal will still remain at the  
same place in the spectrum. The even/odd mode capability allows  
the passband to be placed anywhere in the DAC Nyquist  
bandwidth.  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
The AD9779 is a dual DAC with an internal complex modulator  
built into the interpolating filter response. The modulator can be  
set to a real or a complex mode by programming register 02h, bit 5.  
In the default mode, bit 5 is set to zero and the modulation is  
complex. The AD9779 then expects the real and the imaginary  
components of a complex signal at digital input ports one and two  
(I and Q respectively). The DAC outputs will then represent the  
real and imaginary components of the input signal, modulated by  
the complex carrier FDAC/2, FDAC/4 or FDAC/8.  
-100  
-4  
-3  
-2  
-1  
0
1
2
3
4
Figure 44. Interpolation/Modulation Combination of fDAC/8  
Filter in Odd Mode  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
With Bit 5 set to one, the modulation is real. The Q channel is shut  
off and it’s value at the modulator inputs replaced with zero. The  
output spectrum at either the IDAC or the QDAC will then  
represent the signal at digital input port one, real modulated by the  
internal digital carrier (FDAC/2, FDAC/4 or FDAC/8).  
-4  
-3  
-2  
-1  
0
1
2
3
4
Figure 45. Interpolation/Modulation Combination of 2fDAC/8  
Filter in Odd Mode  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-4  
-3  
-2  
-1  
0
1
2
3
4
Figure 46. Interpolation/Modulation Combination of 3fDAC/8  
Filter in Odd Mode  
Rev. PrD | Page 26 of 34  
Preliminary Technical Data  
AD9779  
EVALUATION BOARD SCHEMATICS  
Figure 47. AD9779 Eval Board, Rev B , Power Supply Decoupling and SPI Interface  
Rev. PrD | Page 27 of 34  
AD9779  
Preliminary Technical Data  
Figure 48. AD9779 Eval Board, Rev B , Circuitry Local to AD9779  
Rev. PrD | Page 28 of 34  
Preliminary Technical Data  
AD9779  
Figure 49. AD9779 Eval Board, RevB , AD8349 Quadrature Modulator  
Rev. PrD | Page 29 of 34  
AD9779  
Preliminary Technical Data  
Figure 50. AD9779 Eval Board, RevB , DAC Clock Interface  
Rev. PrD | Page 30 of 34  
Preliminary Technical Data  
AD9779  
Figure 51. AD9779 Eval Board, RevB , Input Port 1, Digital Input Buffers  
Rev. PrD | Page 31 of 34  
AD9779  
Preliminary Technical Data  
Figure 52. AD9779 Eval Board, RevB , Input Port 2, Digital Input Buffers  
Rev. PrD | Page 32 of 34  
Preliminary Technical Data  
AD9779  
Outline Dimensions  
Rev. PrD | Page 33 of 34  
AD9779  
Preliminary Technical Data  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features proprietary  
ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges.  
Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.  
ORDERING GUIDE  
Model  
AD9779BSV  
AD9779/PCB  
Temperature Range  
-40°C to +85°C (Ambient)  
25°C (Ambient)  
Description  
100-Lead TQFP, Exposed Paddle  
Evaluation Board  
Table 15: Ordering Guide  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR05363–0–1/05(PrD)  
Rev. PrD | Page 34 of 34  

相关型号:

AD9779-EBZ1

Dual 12-/14-/16-Bit, 1 GSPS, Digital-to-Analog Converters
ADI

AD9779A

Dual, 12-/14-/16-Bit,1 GSPS Digital-to-Analog Converters
ADI

AD9779A-EBZ

Dual, 12-/14-/16-Bit,1 GSPS
ADI

AD9779ABSVZ

Dual, 12-/14-/16-Bit,1 GSPS
ADI

AD9779ABSVZRL

Dual, 12-/14-/16-Bit,1 GSPS
ADI

AD9779A_15

Dual, 12-/14-/16-Bit,1 GSPS Digital-to-Analog Converters
ADI

AD9779BSV

Dual 16-Bit, 1.0 GSPS D/A Converter
ADI

AD9779BSVZ

Dual 12-/14-/16-Bit, 1 GSPS, Digital-to-Analog Converters
ADI

AD9779BSVZ1

Dual 12-/14-/16-Bit, 1 GSPS, Digital-to-Analog Converters
ADI

AD9779BSVZRL

DUAL, PARALLEL, WORD INPUT LOADING, 16-BIT DAC, PQFP100, ROHS COMPLIANT, MS-026AED-HD, TQFP-100
ROCHESTER

AD9779BSVZRL1

Dual 12-/14-/16-Bit, 1 GSPS, Digital-to-Analog Converters
ADI

AD9779PCB

Dual 16-Bit, 1.0 GSPS D/A Converter
ADI