AD9895KBCRL [ADI]

IC SPECIALTY CONSUMER CIRCUIT, PBGA64, PLASTIC, CSPBGA-64, Consumer IC:Other;
AD9895KBCRL
型号: AD9895KBCRL
厂家: ADI    ADI
描述:

IC SPECIALTY CONSUMER CIRCUIT, PBGA64, PLASTIC, CSPBGA-64, Consumer IC:Other

CD
文件: 总59页 (文件大小:598K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CCD Signal Processors with  
Precision TimingGenerator  
a
AD9891/AD9895  
FEATURES  
PRODUCT DESCRIPTION  
AD9891: 10-Bit 20 MHz Version  
AD9895: 12-Bit 30 MHz Version  
The AD9891 and AD9895 are highly integrated CCD signal  
processors for digital still camera applications. Both include a  
complete analog front end with A/D conversion combined with  
a full-function programmable timing generator. A Precision  
Timing core allows adjustment of high speed clocks with 1 ns  
resolution at 20 MHz operation and 700 ps resolution at 30  
MHz operation.  
Correlated Double Sampler (CDS)  
4 6 dB Pixel Gain Amplifier (PxGA®)  
2 dB to 36 dB 10-Bit Variable Gain Amplifier (VGA)  
10-Bit 20 MHz A/D Converter (AD9891)  
12-Bit 30 MHz A/D Converter (AD9895)  
Black Level Clamp with Variable Level Control  
Complete On-Chip Timing Generator  
Precision Timing Core with 1 ns Resolution  
On-Chip 5 V Horizontal and RG Drivers  
2-Phase and 4-Phase H-Clock Modes  
4-Phase Vertical Transfer Clocks  
The AD9891 is specified at pixel rates of up to 20 MHz, and  
the AD9895 is specified at 30 MHz. The analog front end  
includes black level clamping, CDS, PxGA, VGA, and a 10-Bit  
or 12-Bit A/D converter. The timing generator provides all the  
necessary CCD clocks: RG, H-clocks, V-clocks, sensor gate  
pulses, substrate clock, and substrate bias control. Operation is  
programmed using a 3-wire serial interface.  
Electronic and Mechanical Shutter Modes  
On-Chip Driver for External Crystal  
On-Chip Sync Generator with External Sync Option  
64-Lead CSPBGA Package  
Packaged in a space-saving 64-lead CSPBGA, the AD9891 and  
AD9895 are specified over an operating temperature range of  
20°C to +85°C.  
APPLICATIONS  
Digital Still Cameras  
Digital Video Camcorders  
Industrial Imaging  
FUNCTIONAL BLOCK DIAGRAM  
VRT VRB  
AD9891/AD9895  
4dB 6dB  
2dBTO 36dB  
VGA  
VREF  
10 OR 12  
ADC  
CDS  
PxGA  
CCDIN  
DOUT  
CLAMP  
CLAMP  
DCLK  
INTERNAL CLOCKS  
CLPOB/PBLK  
FD/LD  
RG  
H1–H4  
PRECISION  
TIMING  
HORIZONTAL  
DRIVERS  
MSHUT  
STROBE  
CLO  
4
4
8
GENERATOR  
V1–V4  
V-H  
CONTROL  
SYNC  
GENERATOR  
INTERNAL  
REGISTERS  
VSG1–VSG8  
VSUB SUBCK  
HD  
VD SYNC  
CLI  
SL SCK DATA  
PxGA is a registered trademark and Precision Timing is a trademark of Analog Devices, Inc.  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
AD9891/AD9895  
TABLE OF CONTENTS  
SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
DIGITAL SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . 3  
AD9891 ANALOG SPECIFICATIONS . . . . . . . . . . . . . . 4  
AD9895 ANALOG SPECIFICATIONS . . . . . . . . . . . . . . 5  
TIMING SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . 6  
PACKAGE THERMAL CHARACTERISTICS . . . . . . . . 6  
ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . 6  
ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
PIN CONFIGURATION-AD9891 . . . . . . . . . . . . . . . . . . . 7  
PIN FUNCTION DESCRIPTIONS-AD9891 . . . . . . . . . . . 7  
PIN CONFIGURATION-AD9895 . . . . . . . . . . . . . . . . . . . 8  
PIN FUNCTION DESCRIPTIONS-AD9895 . . . . . . . . . . . 8  
SPECIFICATION DEFINITIONS . . . . . . . . . . . . . . . . . . . 9  
EQUIVALENT CIRCUITS . . . . . . . . . . . . . . . . . . . . . . . . . 9  
TYPICAL PERFORMANCE CHARACTERISTICS . . . . 10  
SYSTEM OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Typical System Block Diagram . . . . . . . . . . . . . . . . . . . . 11  
PRECISION TIMING HIGH SPEED TIMING  
GENERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Timing Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
High Speed Clock Programmability . . . . . . . . . . . . . . . . . .12  
H-Driver and RG Outputs . . . . . . . . . . . . . . . . . . . . . . . . .13  
Digital Data Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
HORIZONTAL CLAMPING AND BLANKING . . . . . . . .15  
Individual CLPOB, CLPDM, and PBLK Sequences . . . . .15  
Individual HBLK Sequences . . . . . . . . . . . . . . . . . . . . . . .15  
Horizontal Sequence Control . . . . . . . . . . . . . . . . . . . . . . .15  
VERTICAL TIMING GENERATION . . . . . . . . . . . . . . . .17  
Individual Vertical Sequences . . . . . . . . . . . . . . . . . . . . . .18  
Individual Vertical Regions . . . . . . . . . . . . . . . . . . . . . . . .19  
Complete Field: Combining the Regions . . . . . . . . . . . . . .20  
Vertical Sequence Alteration . . . . . . . . . . . . . . . . . . . . . . .21  
Second Vertical Sequence During VSG Lines . . . . . . . . . .22  
Vertical Sweep Mode Operation . . . . . . . . . . . . . . . . . . . .22  
Vertical Multiplier Mode . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Frame Transfer CCD Mode . . . . . . . . . . . . . . . . . . . . . . 24  
Vertical Sensor Gate (Shift Gate) Timing . . . . . . . . . . . . .25  
SHUTTER TIMING CONTROL . . . . . . . . . . . . . . . . . . . .26  
Normal Shutter Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
High Precision Shutter Mode . . . . . . . . . . . . . . . . . . . . . . .26  
Low Speed Shutter Mode . . . . . . . . . . . . . . . . . . . . . . . . .26  
SUBCK Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Readout After Exposure . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
VSUB Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
MSHUT and STROBE Control . . . . . . . . . . . . . . . . . . . .27  
Example of Exposure and Readout of Interlaced Frame . . .29  
ANALOG FRONT END DESCRIPTION AND  
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
DC Restore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Correlated Double Sampler . . . . . . . . . . . . . . . . . . . . . . . 30  
Input Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
PxGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
PxGA Color Steering Mode Timing . . . . . . . . . . . . . . . . 31  
Variable Gain Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
PxGA and VGA Gain Curves . . . . . . . . . . . . . . . . . . . . . 33  
Optical Black Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
A/D Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
POWER-UP AND SYNCHRONIZATION . . . . . . . . . . . . 34  
Recommended Power-Up Sequence for Master Mode . . . .34  
SYNC During Master Mode Operation . . . . . . . . . . . . . . .35  
Synchronization in Slave Mode . . . . . . . . . . . . . . . . . . . . .35  
POWER-DOWN MODE OPERATION . . . . . . . . . . . . . . 35  
HORIZONTAL TIMING SEQUENCE EXAMPLE . . . . . 37  
VERTICAL TIMING EXAMPLE . . . . . . . . . . . . . . . . . . . 39  
CIRCUIT LAYOUT INFORMATION . . . . . . . . . . . . . . . .40  
SERIAL INTERFACE TIMING . . . . . . . . . . . . . . . . . . . . .41  
Notes About Accessing a Double-Wide Register . . . . . . . 41  
NOTES ON REGISTER LISTING . . . . . . . . . . . . . . . . . . 42  
COMPLETE REGISTER LISTING . . . . . . . . . . . . . . . . . 43  
OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . 57  
REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
–2–  
REV. A  
AD9891/AD9895–SPECIFICATIONS  
Parameter  
Min  
Typ  
Max  
Unit  
TEMPERATURE RANGE  
Operating  
Storage  
20  
65  
+85  
+150  
°C  
°C  
POWER SUPPLY VOLTAGE  
AVDD1, AVDD2 (AFE Analog Supply)  
TCVDD (Timing Core Analog Supply)  
RGVDD (RG Driver)  
HVDD (H1H4 Drivers)  
DRVDD (Data Output Drivers)  
DVDD (Digital)  
2.7  
2.7  
3.0  
3.0  
2.7  
2.7  
3.0  
3.0  
5.0  
5.0  
3.0  
3.0  
3.6  
3.6  
5.25  
5.25  
3.6  
V
V
V
V
V
V
3.6  
POWER DISSIPATIONAD9891 (See TPC 1 for Power Curves)  
20 MHz, Typ Supply Levels, 100 pF H1H4 Loading  
Power from HVDD Only*  
Power-Down 1 Mode  
Power-Down 2 Mode  
380  
220  
42  
8
2.5  
mW  
mW  
mW  
mW  
mW  
Power-Down 3 Mode  
POWER DISSIPATIONAD9895 (See TPC 4 for Power Curves)  
30 MHz, Typ Supply Levels, 100 pF H1H4 Loading  
Power from HVDD Only*  
Power-Down 1 Mode  
Power-Down 2 Mode  
600  
320  
138  
22  
mW  
mW  
mW  
mW  
mW  
Power-Down 3 Mode  
2.5  
MAXIMUM CLOCK RATE (CLI)  
AD9891  
AD9895  
20  
30  
MHz  
MHz  
*The total power dissipated by the HVDD supply may be approximated using the equation:  
Total HVDD Power = [CLOAD  
HVDD Pixel Frequency] HVDD Number of H-Outputs Used  
Reducing the H-loading, using only two of the outputs, and/or using a lower HVDD supply will reduce the power dissipation.  
Actual HVDD power may be slightly higher than the calculated value because of stray capacitance inherent in the PCB layout/routing.  
Specifications subject to change without notice.  
(RGVDD = HVDD = 4.75 V to 5.25 V, DVDD = DRVDD = 2.7 V to 3.5 V, CL = 20 pF, TMIN to TMAX  
,
DIGITAL SPECIFICATIONS  
unless otherwise noted.)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
LOGIC INPUTS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
VIH  
VIL  
IIH  
IIL  
CIN  
2.1  
V
V
µA  
µA  
pF  
0.6  
10  
10  
10  
LOGIC OUTPUTS (Except H and RG)  
High Level Output Voltage @ IOH = 2 mA  
Low Level Output Voltage @ IOL = 2 mA  
VOH  
VOL  
2.2  
V
V
0.5  
0.5  
RG and H-DRIVER OUTPUTS (H1H4)  
High Level Output Voltage @ Max Current  
Low Level Output Voltage @ Max Current  
Maximum Output Current (Programmable)  
Maximum Load Capacitance (for Each Output)  
VOH  
VOL  
VDD 0.5  
V
V
mA  
pF  
24  
100  
Specifications subject to change without notice.  
REV. A  
–3–  
 
AD9891/AD9895  
(AVDD1, AVDD2 = 3.0 V, fCLI = 20 MHz, TMIN to TMAX, unless otherwise noted.)  
AD9891–ANALOG SPECIFICATIONS  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
CDS  
Gain  
0
dB  
Allowable CCD Reset Transient  
Max Input Range before Saturation  
Max CCD Black Pixel Amplitude  
500  
mV  
V p-p  
mV  
Input signal characteristics*  
1.0  
200  
PIXEL GAIN AMPLIFIER (PxGA)  
Max Input Range  
Max Output Range  
Gain Control Resolution  
Gain Monotonicity  
1.0  
1.6  
V p-p  
V p-p  
Steps  
64  
Guaranteed  
Gain Range  
Min Gain (PxGA Code 32)  
Med Gain (PxGA Code 0)  
Max Gain (PxGA Code 31)  
2.5  
+3.5  
+9.5  
dB  
dB  
dB  
Default setting  
VARIABLE GAIN AMPLIFIER (VGA)  
Max Input Range  
Max Output Range  
Gain Control Resolution  
Gain Monotonicity  
1.6  
2.0  
V p-p  
V p-p  
Steps  
1024  
Guaranteed  
Gain Range  
Low Gain (VGA Code 70)  
Max Gain (VGA Code 1023)  
2
36  
dB  
dB  
BLACK LEVEL CLAMP  
Clamp Level Resolution  
Clamp Level  
256  
Steps  
Measured at ADC output  
Min Clamp Level  
Max Clamp Level  
0
LSB  
LSB  
63.75  
A/D CONVERTER  
Resolution  
10  
Bits  
Differential Nonlinearity (DNL)  
No Missing Codes  
Full-Scale Input Voltage  
0.4  
Guaranteed  
2.0  
1.0  
LSB  
V
VOLTAGE REFERENCE  
Reference Top Voltage (VRT)  
Reference Bottom Voltage (VRB)  
2.0  
1.0  
V
V
SYSTEM PERFORMANCE  
Gain Accuracy  
Low Gain (VGA Code 70)  
Max Gain (VGA Code 1023)  
Peak Nonlinearity, 500 mV Input Signal  
Total Output Noise  
Includes entire signal chain  
Includes 4 dB default PxGA gain  
Gain = (0.035 Code) + 3.55 dB  
5
38.5  
6
7
40.5  
dB  
dB  
%
LSB rms  
dB  
39.5  
0.2  
0.6  
40  
12 dB gain applied  
AC grounded input, 6 dB gain applied  
Measured with step change on supply  
Power Supply Rejection (PSR)  
*Input signal characteristics defined as follows:  
500mV TYP  
RESET  
TRANSIENT  
1V MAX  
INPUT  
SIGNAL RANGE  
200mV MAX  
OPTICAL  
BLACK PIXEL  
Specifications subject to change without notice.  
–4–  
REV. A  
AD9891/AD9895  
(AVDD1, AVDD2 = 3.0 V, fCLI = 30 MHz, TMIN to TMAX, unless otherwise noted.)  
AD9895–ANALOG SPECIFICATIONS  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
CDS  
Gain  
0
dB  
Allowable CCD Reset Transient  
Max Input Range before Saturation  
Max CCD Black Pixel Amplitude  
500  
mV  
V p-p  
mV  
Input signal characteristics*  
1.0  
200  
PIXEL GAIN AMPLIFIER (PxGA)  
Max Input Range  
Max Output Range  
Gain Control Resolution  
Gain Monotonicity  
1.0  
1.6  
V p-p  
V p-p  
Steps  
64  
Guaranteed  
Gain Range  
Min Gain (PxGA Code 32)  
Med Gain (PxGA Code 0)  
Max Gain (PxGA Code 31)  
2.5  
+3.5  
+9.5  
dB  
dB  
dB  
Default setting  
VARIABLE GAIN AMPLIFIER (VGA)  
Max Input Range  
Max Output Range  
Gain Control Resolution  
Gain Monotonicity  
1.6  
2.0  
V p-p  
V p-p  
Steps  
1024  
Guaranteed  
Gain Range  
Low Gain (VGA Code 70)  
Max Gain (VGA Code 1023)  
2
36  
dB  
dB  
BLACK LEVEL CLAMP  
Clamp Level Resolution  
Clamp Level  
256  
Steps  
Measured at ADC output  
Min Clamp Level  
Max Clamp Level  
0
255  
LSB  
LSB  
A/D CONVERTER  
Resolution  
12  
Bits  
Differential Nonlinearity (DNL)  
No Missing Codes  
Full-Scale Input Voltage  
0.5  
Guaranteed  
2.0  
1.0  
LSB  
V
VOLTAGE REFERENCE  
Reference Top Voltage (VRT)  
Reference Bottom Voltage (VRB)  
2.0  
1.0  
V
V
SYSTEM PERFORMANCE  
Gain Accuracy  
Low Gain (VGA Code 70)  
Max Gain (VGA Code 1023)  
Peak Nonlinearity, 500 mV Input Signal  
Total Output Noise  
Includes entire signal chain  
Includes 4 dB default PxGA gain  
Gain = (0.035 Code) + 3.55 dB  
5
38.5  
6
7
40.5  
dB  
dB  
%
LSB rms  
dB  
39.5  
0.2  
0.8  
40  
12 dB gain applied  
AC grounded input, 6 dB gain applied  
Measured with step change on supply  
Power Supply Rejection (PSR)  
*Input signal characteristics defined as follows:  
500mV TYP  
RESET  
TRANSIENT  
1V MAX  
INPUT  
SIGNAL RANGE  
200mV MAX  
OPTICAL  
BLACK PIXEL  
Specifications subject to change without notice.  
REV. A  
–5–  
AD9891/AD9895  
(CL = 20 pF, AVDD = DVDD = DRVDD = 3.0 V, fCLI = 20 MHz [AD9891] or 30 MHz [AD9895], unless  
otherwise noted.)  
TIMING SPECIFICATIONS  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
MASTER CLOCK, CLI (Figure 7)  
CLI Clock Period, AD9891  
CLI High/Low Pulsewidth, AD9891  
CLI Clock Period, AD9895  
CLI High/Low Pulsewidth, AD9895  
Delay from CLI Rising Edge to Internal Pixel Position 0  
tCONV  
tCONV  
tCLIDLY  
50  
20  
33.3  
13  
ns  
ns  
ns  
ns  
ns  
25  
16.7  
6
AFE CLAMP PULSES1 (Figure 13)  
CLPDM Pulsewidth  
4
2
10  
20  
Pixels  
Pixels  
CLPOB Pulsewidth2  
AFE SAMPLE LOCATION1 (Figure 10)  
SHP Sample Edge to SHD Sample Edge, AD9891  
SHP Sample Edge to SHD Sample Edge, AD9895  
tS1  
tS1  
20  
13  
25  
16.7  
ns  
ns  
DATA OUTPUTS (Figure 12)  
Output Delay from DCLK Rising Edge1  
Pipeline Delay from SHP/SHD Sampling  
tOD  
8
9
ns  
Cycles  
SERIAL INTERFACE (Figures 52 and 53)  
Maximum SCK Frequency  
SL to SCK Setup Time  
fSCLK  
tLS  
tLH  
tDS  
tDH  
tDV  
10  
10  
10  
10  
10  
10  
MHz  
ns  
ns  
ns  
ns  
SCK to SL Hold Time  
SDATA Valid to SCK Rising Edge Setup  
SCK Falling Edge to SDATA Valid Hold  
SCK Falling Edge to SDATA Valid Read  
ns  
NOTES  
1Parameter is programmable.  
2Minimum CLPOB pulsewidth is for functional operation only. Wider typical pulses are recommended to achieve good clamp performance.  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE THERMAL CHARACTERISTICS  
Thermal Resistance  
JA = 61°C/W  
JC = 29.7°C/W  
With  
Respect  
To  
Parameter  
Min Max  
Unit  
AVDD1, AVDD2  
TCVDD  
HVDD  
RGVDD  
DVDD  
DRVDD  
RG Output  
H1H4 Output  
Digital Outputs  
Digital Inputs  
SCK, SL, SDATA  
VRT, VRB  
BYP1BYP3, CCDIN  
Junction Temperature  
Lead Temperature, 10 sec  
AVSS  
0.3 +3.9  
V
V
V
V
V
V
V
V
V
V
V
V
V
°C  
°C  
ORDERING GUIDE  
TCVSS 0.3 +3.9  
HVSS 0.3 +5.5  
RGVSS 0.3 +5.5  
DVSS 0.3 +3.9  
DRVSS 0.3 +3.9  
RGVSS 0.3 RGVDD + 0.3  
HVSS  
DVSS  
DVSS  
DVSS  
AVSS  
AVSS  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
AD9891KBC 20°C to +85°C  
AD9895KBC 20°C to +85°C  
CSPBGA  
CSPBGA  
BC-64  
BC-64  
0.3 HVDD + 0.3  
0.3 DVDD + 0.3  
0.3 DVDD + 0.3  
0.3 DVDD + 0.3  
0.3 AVDD + 0.3  
0.3 AVDD + 0.3  
150  
350  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
AD9891 and AD9895 feature proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–6–  
REV. A  
AD9891/AD9895  
AD9891 PIN CONFIGURATION  
A1 CORNER  
INDEX AREA  
1
2 3 4 5 6 7 8 9 10  
A
B
C
D
E
F
G
H
J
AD9891  
TOP  
VIEW  
(Not to Scale)  
K
PIN FUNCTION DESCRIPTIONS1  
Pin  
Mnemonic Type2 Description  
Pin  
Mnemonic Type2 Description  
A1  
VD  
DO  
Vertical Sync Pulse  
K9  
J9  
K10  
J10  
H10  
H9  
G10  
G9  
F10  
F9  
E10  
E9  
VSG5  
VSG6  
VSG7  
VSG8  
H1  
DO  
DO  
DO  
DO  
DO  
DO  
P
CCD Sensor Gate Pulse 5  
CCD Sensor Gate Pulse 6  
CCD Sensor Gate Pulse 7  
CCD Sensor Gate Pulse 8  
CCD Horizontal Clock 1  
CCD Horizontal Clock 2  
H1H4 Driver Supply  
H1H4 Driver Ground  
CCD Horizontal Clock 3  
CCD Horizontal Clock 4  
RG Driver Supply  
(Input for Slave Mode,  
Output for Master Mode)  
Horizontal Sync Pulse  
(Input for Slave Mode,  
Output for Master Mode)  
External System Sync Input  
Line or Field Designator  
Output  
B1  
HD  
DO  
H2  
C1  
C2  
SYNC  
LD/FD  
DI  
DO  
HVDD  
HVSS  
H3  
P
DO  
DO  
P
P
DO  
D1  
D2  
DCLK  
CLPOB/  
PBLK  
NC  
NC  
DO/SDO  
DO  
DO  
Data Clock Output  
CLPOB or PBLK Output  
H4  
RGVDD  
RGVSS  
RG  
RG Driver Ground  
E1  
E2  
F2  
Not Internally Connected  
Not Internally Connected  
Data Output (LSB)  
(also Serial Data Output3)  
Data Output  
Data Output  
Data Output  
Data Output  
Data Output  
Data Output  
Data Output  
D9  
D10  
CCD Reset Gate Clock  
Reference Clock Output for  
Crystal  
Reference Clock Input  
Analog Supply for Timing Core  
Analog Ground for Timing  
Core  
Analog Supply for AFE  
Analog Ground for AFE  
Analog Circuit Bypass  
Analog Circuit Bypass  
CCD Signal Input  
Analog Circuit Bypass  
Analog Supply for AFE  
Analog Ground for AFE  
Voltage Reference Bottom  
Bypass  
CLO  
DO  
DO  
C10  
B10  
C9  
CLI  
TCVDD  
TCVSS  
DI  
P
P
F1  
G2  
G1  
H2  
H1  
J2  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
P
A10  
B9  
A9  
B8  
A8  
A7  
B7  
B6  
A6  
AVDD1  
AVSS1  
BYP1  
BYP2  
CCDIN  
BYP3  
AVDD2  
AVSS2  
REFB  
P
P
AO  
AO  
AI  
AO  
P
J1  
K2  
K1  
K3  
K4  
J3  
Data Output  
D9  
Data Output (MSB)  
Data Output Driver Supply  
Data Output Driver Ground  
CCD Substrate Bias  
CCD Substrate Clock  
(E-Shutter)  
CCD Vertical Transfer Clock 1  
CCD Vertical Transfer Clock 2  
CCD Vertical Transfer Clock 3  
CCD Vertical Transfer Clock 4  
CCD Sensor Gate Pulse 1  
(also V54)  
DRVDD  
DRVSS  
VSUB  
SUBCK  
P
DO  
DO  
P
AO  
J4  
A5  
B5  
A4  
B4  
A3  
B3  
B2  
A2  
REFT  
SL  
SDI  
AO  
DI  
DI  
DI  
DO  
DO  
P
Voltage Reference Top Bypass  
3-Wire Serial Load Pulse  
3-Wire Serial Data Input  
3-Wire Serial Clock  
Mechanical Shutter Pulse  
Strobe Pulse  
K5  
J5  
K6  
J6  
V1  
V2  
V3  
V4  
DO  
DO  
DO  
DO  
DO  
SCK  
MSHUT  
STROBE  
DVSS  
DVDD  
K7  
VSG1/V5  
Digital Ground  
J7  
VSG2/V6  
VSG3/V7  
VSG4/V8  
DO  
DO  
DO  
CCD Sensor Gate Pulse 2  
P
Digital Supply for VSG,  
V1V4, HD, VD, MSHUT,  
STROBE, and Serial Interface  
(also V64)  
K8  
J8  
CCD Sensor Gate Pulse 3  
(also V74)  
NOTES  
1See Figure 50 for circuit configuration.  
CCD Sensor Gate Pulse 4  
(also V84)  
2AI = Analog Input, AO = Analog Output, DI = Digital Input,  
DO = Digital Output, DIO = Digital Input/Output, P = Power.  
3In Register Readback Mode  
4In Frame Transfer CCD Mode  
REV. A  
–7–  
AD9891/AD9895  
AD9895 PIN CONFIGURATION  
A1 CORNER  
INDEX AREA  
1
2 3 4 5 6 7 8 9 10  
A
B
C
D
E
F
G
H
J
AD9895  
TOP  
VIEW  
(Not to Scale)  
K
PIN FUNCTION DESCRIPTIONS1  
Pin  
Mnemonic Type2 Description  
Pin  
Mnemonic Type2 Description  
A1  
VD  
DO  
Vertical Sync Pulse  
K9  
J9  
K10  
J10  
H10  
H9  
G10  
G9  
F10  
F9  
E10  
E9  
VSG5  
VSG6  
VSG7  
VSG8  
H1  
DO  
DO  
DO  
DO  
DO  
DO  
P
CCD Sensor Gate Pulse 5  
CCD Sensor Gate Pulse 6  
CCD Sensor Gate Pulse 7  
CCD Sensor Gate Pulse 8  
CCD Horizontal Clock 1  
CCD Horizontal Clock 2  
H1H4 Driver Supply  
H1H4 Driver Ground  
CCD Horizontal Clock 3  
CCD Horizontal Clock 4  
RG Driver Supply  
(Input for Slave Mode,  
Output for Master Mode)  
Horizontal Sync Pulse  
(Input for Slave Mode,  
Output for Master Mode)  
External System Sync Input  
Line or Field Designator  
Output  
B1  
HD  
DO  
H2  
C1  
C2  
SYNC  
LD/FD  
DI  
DO  
HVDD  
HVSS  
H3  
P
DO  
DO  
P
P
DO  
D1  
D2  
DCLK  
CLPOB/  
PBLK  
DO  
D1  
D2/SDO  
DO  
DO  
Data Clock Output  
CLPOB or PBLK Output  
H4  
RGVDD  
RGVSS  
RG  
RG Driver Ground  
E2  
E1  
F2  
DO  
DO  
DO  
Data Output (LSB)  
Data Output  
D9  
D10  
CCD Reset Gate Clock  
Reference Clock Output for  
Crystal  
Reference Clock Input  
Analog Supply for Timing Core  
Analog Ground for Timing  
Core  
Analog Supply for AFE  
Analog Ground for AFE  
Analog Circuit Bypass  
Analog Circuit Bypass  
CCD Signal Input  
Analog Circuit Bypass  
Analog Supply for AFE  
Analog Ground for AFE  
Voltage Reference Bottom  
Bypass  
CLO  
DO  
Data Output  
(also Serial Data Output3)  
Data Output  
C10  
B10  
C9  
CLI  
TCVDD  
TCVSS  
DI  
P
P
F1  
G2  
G1  
H2  
H1  
J2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
DRVDD  
DRVSS  
VSUB  
SUBCK  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
P
Data Output  
Data Output  
Data Output  
Data Output  
Data Output  
Data Output  
Data Output  
Data Output (MSB)  
Data Output Driver Supply  
Data Output Driver Ground  
CCD Substrate Bias  
CCD Substrate Clock  
(E-Shutter)  
CCD Vertical Transfer Clock 1  
CCD Vertical Transfer Clock 2  
CCD Vertical Transfer Clock 3  
CCD Vertical Transfer Clock 4  
CCD Sensor Gate Pulse 1  
(also V54)  
A10  
B9  
A9  
B8  
A8  
A7  
B7  
B6  
A6  
AVDD1  
AVSS1  
BYP1  
BYP2  
CCDIN  
BYP3  
AVDD2  
AVSS2  
REFB  
P
P
AO  
AO  
AI  
AO  
P
J1  
K2  
K1  
K3  
K4  
J3  
P
DO  
DO  
P
AO  
J4  
A5  
B5  
A4  
B4  
A3  
B3  
B2  
A2  
REFT  
SL  
SDI  
AO  
DI  
DI  
DI  
DO  
DO  
P
Voltage Reference Top Bypass  
3-Wire Serial Load Pulse  
3-Wire Serial Data Input  
3-Wire Serial Clock  
Mechanical Shutter Pulse  
Strobe Pulse  
K5  
J5  
K6  
J6  
V1  
V2  
V3  
V4  
DO  
DO  
DO  
DO  
DO  
SCK  
MSHUT  
STROBE  
DVSS  
DVDD  
K7  
VSG1/V5  
Digital Ground  
J7  
VSG2/V6  
VSG3/V7  
VSG4/V8  
DO  
DO  
DO  
CCD Sensor Gate Pulse 2  
P
Digital Supply for VSG,  
V1V4, HD, VD, MSHUT,  
STROBE, and Serial Interface  
(also V64)  
K8  
J8  
CCD Sensor Gate Pulse 3  
(also V74)  
NOTES  
1See Figure 50 for circuit configuration.  
CCD Sensor Gate Pulse 4  
(also V84)  
2AI = Analog Input, AO = Analog Output, DI = Digital Input,  
DO = Digital Output, DIO = Digital Input/Output, P = Power.  
3In Register Readback Mode  
4In Frame Transfer CCD Mode  
–8–  
REV. A  
AD9891/AD9895  
SPECIFICATION DEFINITIONS  
percentage of the 2 V ADC full-scale signal. The input signal is  
Differential Nonlinearity (DNL)  
always appropriately gained up to fill the ADCs full-scale range.  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. Thus, every  
code must have a finite width. No missing codes guaranteed to  
12-bit resolution indicates that all 4096 codes, respectively,  
must be present over all operating conditions.  
Total Output Noise  
The rms output noise is measured using histogram techniques. The  
standard deviation of the ADC output codes is calculated in LSB  
and represents the rms noise level of the total signal chain at the  
specified gain setting. The output noise can be converted to an  
equivalent voltage, using the relationship 1 LSB = (ADC Full  
Scale/2n codes) when n is the bit resolution of the ADC. For the  
AD9891, 1 LSB is 2 mV, while for the AD9895, 1 LSB is 0.5 mV.  
Peak Nonlinearity  
Peak nonlinearity, a full signal chain specification, refers to the  
peak deviation of the output of the AD9891/AD9895 from a  
true straight line. The point used as zero scaleoccurs 0.5 LSB  
before the first code transition. Positive full scaleis defined as  
a level 1 and 0.5 LSB beyond the last code transition. The  
deviation is measured from the middle of each particular output  
code to the true straight line. The error is then expressed as a  
Power Supply Rejection (PSR)  
The PSR is measured with a step change applied to the supply  
pins. The PSR specification is calculated from the change in the  
data outputs for a given step change in the supply voltage.  
DVDD  
EQUIVALENT CIRCUITS  
AVDD1  
330ꢁ  
R
AVSS1  
AVSS1  
DVSS  
Figure 1. CCDIN  
Figure 3. Digital Inputs  
HVDD OR  
RGVDD  
DVDD  
DRVDD  
DATA  
RG, H1–H4  
THREE-  
STATE  
DOUT  
ENABLE  
OUTPUT  
HVSS OR  
RGVSS  
DVSS  
DRVSS  
Figure 2. Digital Data Outputs  
Figure 4. H1–H4, RG Drivers  
REV. A  
–9–  
AD9891/AD9895–Typical Performance Characteristics  
440  
400  
360  
320  
280  
240  
200  
725  
650  
575  
500  
425  
350  
275  
RGVDD = HVDD = 5.0V  
RGVDD = HVDD = 5.0V  
V
= 3.3V  
DD  
V
= 3.3V  
DD  
V
= 3.0V  
DD  
V
= 3.0V  
DD  
V
= 2.7V  
DD  
V
= 2.7V  
DD  
10  
15  
SAMPLE RATE – MHz  
20  
10  
20  
SAMPLE RATE – MHz  
30  
TPC 1. AD9891 Power vs. Sample Rate  
TPC 4. AD9895 Power vs. Sample Rate  
1.0  
0.5  
1.0  
0.5  
0
0
–0.5  
–1.0  
–0.5  
–1.0  
0
200  
400  
600  
800  
1000  
0
800  
1600  
2400  
3200  
4000  
TPC 2. AD9891 Typical DNL Performance  
TPC 5. AD9895 Typical DNL Performance  
24  
4
21  
18  
15  
12  
9
3
2
1
0
6
3
0
0
200  
400  
600  
800  
1000  
0
400  
VGA GAIN CODE – LSB  
200  
600  
800  
1000  
VGA GAIN CODE –LSB  
TPC 3. AD9891 Output Noise vs. VGA Gain  
TPC 6. AD9895 Output Noise vs. VGA Gain  
–10–  
REV. A  
AD9891/AD9895  
SYSTEM OVERVIEW  
The H-drivers for H1H4 and RG are included in the AD9891/  
Figure 5 shows the typical system block diagram for the AD9891/  
AD9895 used in Master Mode. The CCD output is processed by  
the AD9891/AD9895s AFE circuitry, which consists of a CDS,  
PxGA, VGA, black level clamp, and an A/D converter. The digi-  
tized pixel information is sent to the digital image processor chip,  
which performs the post-processing and compression. To operate  
the CCD, all CCD timing parameters are programmed into the  
AD9891/AD9895 from the system microprocessor, through the  
3-wire serial interface. From the system master clock, CLI, pro-  
vided by the image processor or external crystal, the AD9891/  
AD9895 generates all of the CCDs horizontal and vertical clocks  
and all internal AFE clocks. External synchronization is provided  
by a SYNC pulse from the microprocessor, which will reset  
internal counters and resync the VD and HD outputs.  
AD9895, allowing these clocks to be directly connected to the CCD.  
H-drive voltage of up to 5 V is supported. An external V-driver is  
required for the vertical transfer clocks, the sensor gate pulses,  
and the substrate clock.  
The AD9891/AD9895 also includes programmable MSHUT  
and STROBE outputs, which may be used to trigger mechani-  
cal shutter and strobe (flash) circuitry.  
Figure 6 shows the horizontal and vertical counter dimensions  
for the AD9891/AD9895. All internal horizontal and vertical  
clocking is programmed using these dimensions to specify line  
and pixel locations.  
MAXIMUM  
FIELD  
DIMENSIONS  
V1–V4, VSG1–VSG8, SUBCK  
V-DRIVER  
H1–H4, RG, VSUB  
DOUT  
CCDIN  
DCLK  
CLPOB/PBLK  
LD/FD  
DIGITAL  
IMAGE  
PROCESSING  
ASIC  
CCD  
12-BIT HORIZONTAL = 4096 PIXELS MAX  
AD989x  
HD, VD  
MSHUT  
STROBE  
CLI  
SERIAL  
INTERFACE  
SYNC  
P  
12-BITVERTICAL = 4096 LINES MAX  
Figure 5. Typical System Block Diagram, Master Mode  
Alternatively, the AD9891/AD9895 may be operated in Slave  
Mode, in which the VD and HD are provided externally from  
the image processor. In this mode, all AD9891/AD9895 timing  
will be synchronized with VD and HD.  
Figure 6. Vertical and Horizontal Counters  
REV. A  
–11–  
AD9891/AD9895  
PRECISION TIMING HIGH SPEED TIMING GENERATION  
The AD9891/AD9895 generates flexible, high speed timing  
signals using the Precision Timing core. This core is the founda-  
tion for generating the timing used for both the CCD and the  
AFE: the reset gate RG, horizontal drivers H1H4, and the  
SHP/SHD sample clocks. A unique architecture makes it rou-  
tine for the system designer to optimize image quality by  
providing precise control over the horizontal CCD readout and  
the AFE correlated double sampling.  
The AD9891/AD9895 also includes a master clock output,  
CLO, which is the inverse of CLI. This output is intended to be  
used as a crystal driver. A crystal can be placed between the  
CLI and CLO Pins to generate the master clock for the  
AD9891/AD9895. For more information on using a crystal, see  
Figure 51.  
High Speed Clock Programmability  
Figure 8 shows how the high speed clocks RG, H1H4, SHP,  
and SHD are generated. The RG pulse has programmable  
rising and falling edges, and may be inverted using the polarity  
control. The horizontal clocks H1 and H3 have programmable  
rising and falling edges and polarity control. The H2 and H4  
clocks are always inverses of H1 and H3, respectively.  
Table I summarizes the high speed timing registers and their  
parameters. Figure 9 shows the typical 2-phase H-clock  
arrangement in which H3 and H4 are programmed for the same  
edge location as H1 and H2.  
The high speed timing of the AD9891/AD9895 operates the  
same in either Master or Slave Mode configuration.  
Timing Resolution  
The Precision Timing core uses a 1master clock input (CLI) as  
a reference. This clock should be the same as the CCD pixel  
clock frequency. Figure 7 illustrates how the internal timing  
core divides the master clock period into 48 steps or edge posi-  
tions. Using a 20 MHz CLI frequency, the edge resolution of  
the Precision Timing core is 1 ns. If a 1system clock is not  
available, it is also possible to use a 2reference clock by pro-  
gramming the CLIDIVIDE Register (Addr x01F). The AD9891/  
AD9895 will then internally divide the CLI frequency by two.  
The edge location registers are six bits wide, but there are only  
48 valid edge locations available. Therefore, the register values  
are mapped into four quadrants, with each quadrant containing  
12 edge locations. Table II shows the correct register values for  
P[0]  
P[12]  
P[24]  
P[36]  
P[48] = P[0]  
POSITION  
CLI  
tCLIDLY  
1 PIXEL  
PERIOD  
NOTES  
PIXEL CLOCK PERIOD IS DIVIDED INTO 48 POSITIONS, PROVIDING FINE EDGE RESOLUTION FOR HIGH SPEED CLOCKS.  
THERE IS A FIXED DELAY FROM THE CLI INPUT TO THE INTERNAL PIXEL PERIOD POSITIONS (tCLIDLY = 6ns TYP).  
Figure 7. High Speed Clock Resolution from CLI Master Clock Input  
3
CCD  
SIGNAL  
4
1
5
2
RG  
6
H1  
H2  
7
8
H3  
H4  
PROGRAMMABLE CLOCK POSITIONS:  
1: RG RISING EDGE  
2: RG FALLING EDGE  
3: SHP SAMPLE LOCATION  
4: SHD SAMPLE LOCATION  
5: H1 RISING EDGE POSITION AND 6: H1 FALLING EDGE POSITION (H2 IS INVERSE OF H1)  
7: H3 RISING EDGE POSITION AND 8: H3 FALLING EDGE POSITION (H4 IS INVERSE OF H3)  
Figure 8. High Speed Clock Programmable Locations  
–12–  
REV. A  
AD9891/AD9895  
the corresponding edge locations. Figure 10 shows the range  
and default locations of the high speed clock signals.  
in an H1/H2 crossover voltage at approximately 50% of the out-  
put swing. The crossover voltage is not programmable.  
H-Driver and RG Outputs  
Digital Data Outputs  
In addition to the programmable timing positions, the AD9891/  
AD9895 features on-chip output drivers for the RG and H1H4  
outputs. These drivers are powerful enough to directly drive the  
CCD inputs. The H-driver current can be adjusted for optimum  
rise/fall time into a particular load by using the DRV Registers  
(Addr x0E1 to x0E4). The RG drive current is adjustable using  
the RGDRV Register (Addr x0E8). Each 3-bit DRV Register is  
adjustable in 3.5 mA increments, with the minimum setting of 0  
equal to OFF or three-state, and the maximum setting of 7  
equal to 24.5 mA.  
The AD9891/AD9895 data output and DCLK phase are pro-  
grammable using the DOUTPHASE Register (Addr x01D). Any  
edge from 0 to 47 may be programmed, as shown in Figure 12.  
Normally, the DOUT and DCLK signals will track in phase,  
based on the DOUTPHASE Register contents. The DCLK  
output phase can also be held fixed with respect to the data  
outputs, by changing the DCLKMODE Register (Addr x01E)  
HIGH. In this mode, the DCLK output will remain at a fixed  
phase equal to CLO (the inverse of CLI) while the data output  
phase is still programmable.  
As shown in Figure 11, the H2 and H4 outputs are inverses of  
H1 and H3, respectively. The internal propagation delay resulting  
from the signal inversion is less than 1 ns, which is significantly  
less than the typical rise time driving the CCD load. This results  
There is a fixed output delay from the DCLK rising edge to the  
DOUT transition, called tOD. This delay can be programmed to  
four values between 0 ns and 12 ns, using the DOUT_DELAY  
Register (Addr x032). The default value is 8 ns.  
Table I. H1–H4, RG, SHP, and SHD Timing Parameters  
Register  
POL  
Length  
1b  
Range  
Description  
High/Low  
Polarity Control for H1, H3, and RG (0 = No Inversion, 1 = Inversion)  
POSLOC  
6b  
047 Edge Location  
Positive Edge Location for H1, H3, and RG  
Sample Location for SHP, SHD  
NEGLOC  
DRV  
6b  
3b  
047 Edge Location  
07 Current Steps  
Negative Edge Location for H1, H3, and RG  
Drive Current for H1H4 and RG Outputs (3.5 mA per Step)  
CCD  
SIGNAL  
RG  
H1/H3  
H2/H4  
USING THE SAME TOGGLE POSITIONS FOR H1 AND H3 GENERATES STANDARD 2-PHASE H-CLOCKING.  
Figure 9. 2-Phase H-Clock Operation  
Table II. Precision Timing Edge Locations  
Quadrant  
Edge Location (Dec)  
Register Value (Dec)  
Register Value (Bin)  
I
II  
III  
IV  
0 to 11  
0 to 11  
000000 to 001011  
010000 to 011011  
100000 to 101011  
110000 to 111011  
12 to 23  
24 to 35  
36 to 47  
16 to 27  
32 to 43  
48 to 59  
REV. A  
–13–  
AD9891/AD9895  
P[0]  
P[12]  
P[24]  
P[36]  
P[48] = P[0]  
POSITION  
PIXEL  
PERIOD  
RGr[0]  
RGf[12]  
RG  
Hr[0]  
Hf[24]  
H1/H3  
SHP[28]  
tS1  
CCD  
SIGNAL  
SHD[48]  
NOTES  
ALL SIGNAL EDGES ARE FULLY PROGRAMMABLE TO ANY OF THE 48 POSITIONS WITHIN ONE PIXEL PERIOD.  
DEFAULT POSITIONS FOR EACH SIGNAL ARE SHOWN.  
Figure 10. High Speed Clock Default and Programmable Locations  
tRISE  
H1/H3  
H2/H4  
tPD < tRISE  
tPD  
H1/H3  
H2/H4  
FIXED CROSSOVER VOLTAGE  
Figure 11. H-Clock Inverse Phase Relationship  
P[0]  
P[12]  
P[24]  
P[36]  
P[48] = P[0]  
PIXEL  
PERIOD  
DCLK  
tOD  
DOUT  
NOTES  
DATA OUTPUT (DOUT) AND DCLK PHASE ARE ADJUSTABLE WITH RESPECT TO THE PIXEL PERIOD.  
WITHIN 1 CLOCK PERIOD, THE DATA TRANSITION CAN BE PROGRAMMED TO 48 DIFFERENT LOCATIONS.  
OUTPUT DELAY (tOD) FROM DCLK RISING EDGE TO DOUT RISING EDGE IS PROGRAMMABLE.  
Figure 12. Digital Output Phase Adjustment  
–14–  
REV. A  
AD9891/AD9895  
HORIZONTAL CLAMPING AND BLANKING  
To simplify the programming requirements, the CLPDM signal  
will track the CLPOB signal by default. If separate control of  
the CLPDM signal is desired, the SINGLE_CLAMP Register  
(Addr x031) should be set LOW.  
The AD9891/AD9895s horizontal clamping and blanking pulses  
are fully programmable to suit a variety of applications. As with  
the vertical timing generation, individual sequences are defined  
for each signal, which are then organized into multiple regions  
during image readout. This allows the dark pixel clamping and  
blanking patterns to be changed at each stage of the readout in  
order to accommodate different image transfer timing and high  
speed line shifts.  
Individual HBLK Sequences  
The HBLK programmable timing shown in Figure 14 is similar  
to CLPOB, CLPDM, and PBLK. However, there is no start  
polarity control. Only the toggle positions are used to designate  
the start and the stop positions of the blanking period. Addition-  
ally, there is a polarity control, HBLKMASK, that designates the  
polarity of the horizontal clock signals H1H4 during the blank-  
ing period. Setting HBLKMASK high will set H1 = H3 = Low  
and H2 = H4 = High during the blanking, as shown in Figure 15.  
Up to four individual sequences are available for HBLK.  
Individual CLPOB, CLPDM, and PBLK Sequences  
The AFE horizontal timing consists of CLPOB, CLPDM, and  
PBLK, as shown in Figure 13. These three signals are indepen-  
dently programmed using the registers in Table III. SPOL is  
the start polarity for the signal, and TOG1 and TOG2 are the  
first and second toggle positions of the pulse. All three signals  
are active low and should be programmed accordingly. Up to  
four individual sequences can be created for each signal.  
Horizontal Sequence Control  
The AD9891/AD9895 use sequence change positions (SCP)  
and sequence pointers (SPTR) to organize the individual hori-  
HD  
1
2
3
CLPOB  
CLPDM  
PBLK  
CLAMP  
CLAMP  
PROGRAMMABLE SETTINGS:  
1: START POLARITY (CLAMP AND BLANK REGION ARE ACTIVE LOW)  
2: 1ST TOGGLE POSITION  
3: 2ND TOGGLE POSITION  
Figure 13. Clamp and Preblank Pulse Placement  
HD  
1
2
BLANK  
BLANK  
HBLK  
PROGRAMMABLE SETTINGS:  
1: 1ST TOGGLE POSITION = START OF BLANKING  
2: 2ND TOGGLE POSITION = END OF BLANKING  
Figure 14. Horizontal Blanking (HBLK) Pulse Placement  
HD  
HBLK  
H1/H3  
H1/H3  
H2/H4  
THE POLARITY OF H1 DURING BLANKING IS PROGRAMMABLE (H2 IS OPPOSITE POLARITY OF H1)  
Figure 15. HBLK Masking Control  
REV. A  
–15–  
AD9891/AD9895  
zontal sequences. Up to four SCPs are available to divide the  
readout into four separate regions, as shown in Figure 16. The  
SCP0 is always hard-coded to line 0, and SCP1SCP3 are  
register programmable. During each region bound by the SCP,  
the SPTR Registers designate which sequence is used by each  
signal. CLPOB and CLPDM share the same SCP, PBLK has a  
separate set of SCP, and HBLK shares the vertical RCP (see  
Vertical Timing Generation section). For example,  
CLPSCP1 will define Region 0 for CLPOB and CLPDM,  
and in that region any of the four individual CLPOB and  
CLPDM sequences may be selected with the SPTR Registers.  
The next SCP defines a new region, and in that region each  
signal can be assigned to a different individual sequence. Be-  
cause HBLK shares the vertical RCP, there are up to eight  
regions where HBLK sequences may be changed using the eight  
HBLKSPTR Registers.  
Table III. CLPOB, CLPDM, and PBLK Individual Sequence Parameters  
Register  
Length  
Range  
Description  
SPOL  
TOG1  
TOG2  
1b  
12b  
12b  
High/Low  
04095 Pixel Location  
04095 Pixel Location  
Starting Polarity of Vertical Transfer Pulse for Sequences 03  
First Toggle Position within Line for Sequences 03  
Second Toggle Position within Line for Sequences 03  
Table IV. HBLK Individual Sequence Parameters  
Register  
Length  
Range  
Description  
HBLKMASK  
HBLKTOG1  
HBLKTOG2  
1b  
12b  
12b  
High/Low  
04095 Pixel Location  
04095 Pixel Location  
Masking Polarity for H1 for Sequences 03 (0 = H1 Low, 1 = H1 High)  
First Toggle Position within Line for Sequences 03  
Second Toggle Position within Line for Sequences 03  
Table V. Horizontal Sequence Control Parameters for CLPOB, CLPDM, and PBLK  
Register  
Length  
Range  
Description  
SCP1SCP3  
SPTR0SPTR3 2b  
12b  
04095 Line Number  
03 Sequence Number  
CLPOB/PBLK SCP to Define Horizontal Regions 03  
Sequence Pointer for Horizontal Regions 03  
Table VI. Horizontal Sequence Control Parameters for HBLK  
Register  
Length  
12b  
Range  
Description  
VTPRCP1–  
04095 Line Number  
Vertical Region Change Positions (See Table IX.)  
VTPRCP7  
HBLKSPTR02b  
03 Sequence Number  
Sequence Pointer for HBLK Regions 07  
HBLKSPTR7  
SINGLE FIELD (1 VD INTERVAL)  
SEQUENCE CHANGE POSITION #0  
(V-COUNTER = 0)  
CLAMP AND PBLK SEQUENCE REGION 1  
SEQUENCE CHANGE POSITION #1  
SEQUENCE CHANGE POSITION #2  
CLAMP AND PBLK SEQUENCE REGION 2  
CLAMP AND PBLK SEQUENCE REGION 3  
CLAMP AND PBLK SEQUENCE REGION 4  
SEQUENCE CHANGE POSITION #3  
UP TO FOUR INDIVIDUAL HORIZONTAL CLAMP AND BLANKING REGIONS MAY BE PROGRAMMED WITH-  
IN A SINGLE FIELD, USING THE SEQUENCE CHANGE POSITIONS.  
Figure 16. Clamp and Blanking Sequence Flexibility  
–16–  
REV. A  
AD9891/AD9895  
VERTICAL TIMING GENERATION  
sequences are created by using the Vertical Transfer Pulse (VTP)  
Registers. These sequences are a essentially a poolof pulse  
patterns that may be assigned to any of the V1-V4 outputs. Sec-  
ond, individual regions are built by assigning a sequence to each  
of the V1V4 outputs. Up to five unique regions may be speci-  
fied. Finally, the readout of the entire field is constructed by  
combining one or more of the individual regions sequentially.  
With up to eight region areas available, different steps of the  
readout such as high speed line shifts and vertical image transfer  
can be supported.  
The AD9891/AD9895 provide a very flexible solution for gener-  
ating vertical CCD timing and can support multiple CCDs and  
different system architectures. The 4-phase vertical transfer  
clocks V1V4 are used to shift each line of pixels into the hori-  
zontal output register of the CCD. The AD9891/AD9895 allow  
these outputs to be individually programmed into different pulse  
patterns. Vertical sequence control registers then organize the  
individual vertical pulses into the desired CCD vertical timing  
arrangement.  
Figure 17 shows an overview of how the vertical timing is gener-  
ated in three basic steps. First, the individual pulse patterns or  
CREATE THE INDIVIDUAL VERTICAL  
SEQUENCES (MAXIMUM OF 12 SEQUENCES).  
SEQUENCE 0  
SEQUENCE 1  
SEQUENCE 2  
SEQUENCE 3  
SEQUENCE 4  
SEQUENCE 5  
SEQUENCE 6  
SEQUENCE 7  
SEQUENCE 8  
SEQUENCE 9  
SEQUENCE 10  
SEQUENCE 11  
BUILD THE INDIVIDUAL VERTICAL REGIONS BY ASSIGNING  
EACH SEQUENCE TO V1–V4 OUTPUTS (MAXIMUM OF 5 REGIONS).  
REGION 0 V1 (SEQ 0)  
V2 (SEQ 0*)  
V3 (SEQ 1)  
V4 (SEQ 1*)  
REGION 1 V1 (SEQ 2)  
V2 (SEQ 3)  
V3 (SEQ 4)  
V4 (SEQ 5)  
BUILD THE ENTIRE FIELD READOUT BY COMBINING  
MULTIPLE REGIONS (MAXIMUM OF 8 COMBINATIONS).  
REGION 4 V1 (SEQ 6)  
V2 (SEQ 6*)  
USE REGION 2 FOR LINES 1 TO 20  
USE REGION 1 FOR LINE 21  
V3 (SEQ 7)  
V4 (SEQ 7*)  
*SEQUENCES MAY BE SHIFTED AND/OR INVERTED  
USE REGION 0 FOR LINES 22 TO 2000  
USE REGION 2 FOR LINES 2001 TO 2020  
Figure 17. Summary of Vertical Timing Generation  
REV. A  
–17–  
AD9891/AD9895  
Individual Vertical Sequences  
single line. Programming 1for VTPREP gives a single  
pulse, while setting to 0will provide a fixed dc output based  
on the start polarity value. There is a total of 12 individual  
sequences that may be programmed.  
To generate the individual vertical sequences or patterns shown  
in Figure 18, five registers are required for each sequence.  
Table VII summarizes these registers and their respective bit  
lengths. The start polarity (VTPPOL) determines the starting  
polarity of the vertical sequence and can be programmed high  
or low. The first toggle position (VTPTOG1) and second  
toggle position (VTPTOG2) are the pixel locations within the line  
where the pulse transitions. A third toggle position  
(VTPTOG3) is also available for sequences 0 through 7. All  
toggle positions are 10-bit values, which limits the placement of  
a pulse to within 1024 pixels of a line. A separate register,  
VSTART, sets the start position of the sequence within the line  
(see Individual Vertical Regions section). The Length  
(VTPLEN) Register determines the number of pixels between  
each of the pulse repetitions, if any repetitions have been  
programmed. The number of repetitions (VTPREP) simply  
determines the number of pulse repetitions desired within a  
When specifying the individual regions, each sequence may be  
assigned to any of the V1V4 outputs. For example, Figure 19  
shows a typical 4-phase V-clock arrangement. Two different  
sequences are needed to generate the different pulsewidths.  
The use of individual start positions for V1V4 allows the four  
outputs to be generated from two sequences. Figure 20 shows a  
slightly different V-clock arrangement in which V2, V3, and V4  
are simply shifted and/or inverted versions of V1. Only one  
individual sequence is needed because all signals have the same  
pulsewidth. The invert sequence registers (VINV) are used for  
V3 and V4 (see Table VII).  
Note that for added flexibility, the VTPPOL Registers (Start  
Polarity) may be used as an extra toggle position.  
Table VII. Individual VTP Sequence Parameters  
Register  
Length  
Range  
Description  
VTPPOL  
VTPTOG1  
VTPTOG2  
VTPTOG3  
VTPLEN  
VTPREP  
1b  
High/Low  
Starting Polarity of Vertical Transfer Pulse for Each Sequence 011  
First Toggle Position within Line for Each Sequence 011  
Second Toggle Position within Line for Each Sequence 011  
Third Toggle Position within Line for Each Sequence 07  
Length between Pulse Repetitions for Each Sequence 011  
Number of Pulse Repetitions for Each Sequence 011 (0 = DC Output)  
10b  
10b  
10b  
10b  
12b  
01023 Pixel Location  
01023 Pixel Location  
01023 Pixel Location  
01023 Pixels  
04095 Pulses  
START POSITION OF SEQUENCE IS INDIVIDUALLY PROGRAMMABLE FOR EACH V1–V4 OUTPUT  
HD  
5
4
V1–V4  
1
3
2
PROGRAMMABLE SETTINGS FOR EACH SEQUENCE:  
1: START POLARITY  
2: 1ST TOGGLE POSITION  
3: 2ND TOGGLE POSITION (THERE IS ALSO A 3RD TOGGLE POSITION AVAILABLE FOR SEQUENCES 0 TO 7)  
4: LENGTH BETWEEN REPEATS  
5: NUMBER OF REPEATS  
Figure 18. Individual Vertical Sequence Programmability  
HD  
V1  
V2  
V3  
V4  
V1 USES SEQUENCE 0  
V2 USES SEQUENCE 0,  
WITH DIFFERENT START POSITION  
V3 USES SEQUENCE 1  
V4 USES SEQUENCE 1,  
WITH DIFFERENT START POSITION  
Figure 19. Example of Separate V1–V4 Signals Using Two Individual Sequences  
–18–  
REV. A  
AD9891/AD9895  
Individual Vertical Regions  
The Sequence Pointer registers VxSPTRFIRST and  
VxSPTRSECOND assign the individual vertical sequences to  
each of the V-clock outputs (V1V4) within a given region.  
Typically, only the SPTRFIRST Registers are used, with the  
SPTRSECOND Registers reserved for generating line-by-line  
alternation (see Vertical Sequence Alternation). Any of the 12  
individual sequences may also be inverted using the  
VxINVFIRST and VxINVSECOND Registers, effectively dou-  
bling the number of sequences available. There is one  
SPTRFIRST Register for each V-output, for a total of four regis-  
ters per region. If all five regions are used, there is a total of 20  
SPTRFIRST Registers. There is also the same number of  
SPTRSECOND Registers, if alternation is required. Note that the  
SPTR Registers are four bits wide; if a value greater than 11 is  
programmed, the Vx output will be dc at the level of the  
VxINV Register.  
The AD9891/AD9895 arranges the individual sequences into re-  
gions through the use of Sequence Pointers (SPTR). Within each  
region, different sequences may be assigned to each V-clock  
output. Figure 21 shows the programmability of each region  
and Table VIII summarizes the registers needed for generating  
each region.  
For each individual region, the line length (in pixels) is programmable  
using the HDLEN Registers. Each region can have a different  
line length to accommodate various image readout techniques.  
The maximum number of pixels per line is 4096. Also unique to  
each region are the sequence start positions for each V-output,  
which are programmed using the VSTART Registers. Each  
VSTART is a 12-bit value, allowing the start position to be  
placed anywhere in the line. There are five HDLEN Registers,  
one for each region. There is a total of 20 VSTART Registers:  
one for each V1V4 output, for five different regions.  
Note that the last line of the field is separately programmable  
using the HDLASTLEN Register.  
HD  
V1  
V2  
V3  
V4  
V1 USES SEQUENCE 2  
V2 USES SEQUENCE 2,  
WITH DIFFERENT START POSITION  
V3 USES SEQUENCE 2, INVERTED  
V4 USES SEQUENCE 2, INVERTED,  
WITH DIFFERENT START POSITION  
Figure 20. Example of Inverted V1–V4 Signals Using One Individual Sequence with Inversion  
1
HD  
2
3
V1–V4  
SEQUENCES A, B, C, D  
PROGRAMMABLE SETTINGS FOR EACH REGION:  
1: START POSITION OF SELECTED SEQUENCE IS SEPARATELY PROGRAMMABLE FOR EACH OUTPUT  
2: HD LINE LENGTH  
3: SEQUENCE POINTERS (SPTR) TO SELECT AN INDIVIDUAL SEQUENCE FOR EACH OUTPUT  
4: ANY SEQUENCES MAY ALSO BE ALTERNATED FOR ADDITIONAL FLEXIBILITY  
Figure 21. Individual Vertical Region Programmability  
REV. A  
–19–  
AD9891/AD9895  
Table VIII. Individual Vertical Region Parameters  
Range Description  
Register  
Length  
HDLEN  
VxSTART  
VxSPTRFIRST 4b  
12b  
12b  
04095 Pixels  
04095 Pixel Location  
Sequence 011  
HD Line Length for Lines in Each Region 04  
Sequence Start Position for Each Vx Output in Each Region 04  
Sequence Pointer for Vx Output during Each Region 04  
(Can Be Used with SPTRSECOND for Alternation, See Text)  
VxINVFIRST 1b  
High/Low  
When High, the Polarity of Sequence VxSPTRFIRST Is Inverted  
x is the V-output from 14.  
Complete Field: Combining the Regions  
different region areas in the field to be defined. The first RCP is  
The individual regions are combined into a complete field readout  
by using region change positions (RCP) and region pointers  
(REGPTR). Figure 22 shows how each field is divided into  
multiple regions. This allows the user to change the vertical  
timing during various stages of the image readout. The boundaries  
of each region are defined by the sequence change positions  
(RCP). Each RCP is a 12-bit value representing the line number  
bounding the region. A total of seven RCPs allow up to eight  
always hard-coded to zero, and the remaining seven are register  
programmable. Note that there are only five possible individual  
regions that can be defined, but the eight region areas allow the  
same region to be used in more than one place during the field.  
Within each region area, the region pointers specify which of the  
five individual regions will be used. There are eight region  
pointers, one for each region area. Table IX summarizes the  
registers for the region change positions and region pointers.  
SINGLE FIELD (1 VD INTERVAL)  
REGION CHANGE POSTION #0  
(V-COUNTER = 0)  
USE THE REGION SPECIFIED BY REGION POINTER 0  
REGION CHANGE POSTION #1  
REGION CHANGE POSTION #2  
REGION CHANGE POSTION #3  
USE THE REGION SPECIFIED BY REGION POINTER 1  
USE THE REGION SPECIFIED BY REGION POINTER 2  
USE THE REGION SPECIFIED BY REGION POINTER 3  
USE THE REGION SPECIFIED BY REGION POINTER 4  
REGION CHANGE POSTION #4  
REGION CHANGE POSTION #5  
USE THE REGION SPECIFIED BY REGION POINTER 5  
REGION CHANGE POSTION #6  
REGION CHANGE POSTION #7  
USE THE REGION SPECIFIED BY REGION POINTER 6  
USE THE REGION SPECIFIED BY REGION POINTER 7  
UP TO EIGHT V-CLOCK REGION AREAS MAY BE DEFINED WITHIN ONE FIELD BY  
USING THE REGION CHANGE POSITION AND THE REGION POINTERS.  
Figure 22. Complete Field Using Multiple Region Areas  
Table IX. Complete Vertical Field Registers  
Register  
Length  
Range  
Description  
VTPRCP  
VTPREGPTR  
12b  
3b  
04095 Line Location  
Region 04  
Region Change Position for each Region Area in Field  
Region Pointer for each Region Area of Field  
–20–  
REV. A  
AD9891/AD9895  
Vertical Sequence Alternation  
the VxSPTRFIRST and VxSPTRSECOND Registers are pro-  
grammed with the desired sequences to be alternated. The  
VTPALT Register must be set HIGH for that region to use  
alternation. If VTPALT is LOW, then the VxSPTRSECOND  
Registers will be ignored. Figure 24 shows an example of line-  
by-line alternation.  
The AD9891/AD9895 also supports line-by-line alternation of  
vertical sequences within any region, as shown in Figure 23.  
Table X summarizes the additional registers used to support differ-  
ent alternation patterns. To create an alternating vertical pattern,  
SINGLE FIELD (1 VD INTERVAL)  
REGION CHANGE POSTION #0  
NO ALTERNATION  
ONLY FIRST LINES ARE USED  
REGION CHANGE POSITION #1  
FIRST LINES  
LINE-BY-LINE ALTERNATION  
SECOND LINES  
REGION CHANGE POSTION #2  
ONLY FIRST LINES ARE USED  
NO ALTERNATION  
WHEN THE VTPALT REGISTER IS LOW (NO ALTERNATION), ONLY THE FIRST LINES ARE USED.  
Figure 23. Use of Line Alteration in Vertical Sequencing  
USE FIRST V SEQUENCES  
USE SECOND V SEQUENCES  
USE FIRST V SEQUENCES  
HD  
V1  
V2  
V3  
V4  
SEQUENCES MAY BE ALTERNATED WITHIN A REGION BY USING THE SPTRFIRST AND SPTRSECOND REGISTERS.  
Figure 24. Example of Line Alteration within a Region  
Table X. Vertical Sequence Alternation Parameters  
Register  
Length  
1b  
4b  
1b  
4b  
Range  
Description  
VTPALT  
Enabled/Disabled  
Sequence 011  
High/Low  
Sequence 011  
High/Low  
Enables the Line-by-Line Alternation (1 = Enabled)  
VxSPTRFIRST  
VxINVFIRST  
VxSPTRSECOND  
VxINVSECOND  
x is the V-output from 14.  
SPTR for Vx Output during Each Region 04 for FIRST Lines  
When High, the Polarity of VxSPTRFIRST Is Inverted  
SPTR for Vx Output during Each Region 04 for SECOND Lines  
When High, the Polarity of VxSPTRSECOND Is Inverted  
1b  
REV. A  
–21–  
AD9891/AD9895  
Second Vertical Sequence During VSG Lines  
pulses, the vertical interline CCD Registers should be cleanof  
all charge. This can be accomplished by quickly shifting out any  
charge with a long series of pulses on the V1V4 outputs. De-  
pending on the vertical resolution of the CCD, up to two or  
three thousand clock cycles will be needed to shift the charge out  
of each vertical CCD line. This operation will span across mul-  
tiple HD line lengths. Normally, the AD9891/AD9895 sequences  
are contained within one HD line length. But when Sweep Mode  
is enabled, the HD boundaries will be ignored until the region is  
finished. To enable Sweep Mode within any region, program  
the appropriate SWEEP (04) Registers to HIGH.  
Most CCDs require additional vertical timing during the sensor  
gate line. The AD9891/AD9895 supports the option to output a  
second set of sequences for V1V4 during the line when the sen-  
sor gates VSG1VSG4 are active. Figure 25 shows a typical VSG  
line, which includes two separate sets of vertical sequences on V1–  
V4. The sequences at the start of the line are the same as those  
generated in the previous line. But the second sequence only  
occurs in the line where the VSG signals are active. To select the  
sequences used for the second sequence, the registers in  
Table XI are used. To enable the second set of sequences during  
the VSG line, the VTP_SGLINEMODE is set HIGH. As with  
the standard vertical regions, each V1V4 output has an indi-  
vidual start position, programmed in the VxSTART_SGLINE  
Registers. Each V1V4 output can select from the pool of 12  
unique sequences using individual sequence pointer registers,  
VxSPTR_SGLINE. Also, any sequence may be inverted for a  
particular V1V4 output by using the VxINV_SGLINE Registers.  
Figure 26 shows an example of the Sweep Mode operation. The  
number of vertical pulses needed will depend on the vertical  
resolution of the CCD. The V1V4 output signals are generated  
using the Individual Vertical Sequence Registers (shown in Table  
VII). A single pulse is created using the first, second, and third  
toggle positions, and then the number of repeats is set to the  
number of vertical shifts required by the CCD. The maximum  
number of repeats is 4096 in this mode, using the VTPREP  
Register. This produces a pulse train of the appropriate length.  
Normally, the pulse train would be truncated at the end of the  
HD line length. But with Sweep Mode enabled for this region, the  
HD boundaries will be ignored. In Figure 26, the sweep region  
occupies 23 HD lines. After the Sweep Mode region is completed,  
Vertical Sweep Mode Operation  
The AD9891/AD9895 contains a special mode of vertical timing  
operation called Sweep Mode. This mode is used to generate a  
large number of repetitive pulses that span across multiple HD  
lines. One example of where this mode may be needed is at the  
start of the CCD readout operation. At the end of the image  
exposure, but before the image is transferred by the sensor gate  
normal sequence operation will resume in the next region  
.
Table XI. Second Vertical Sequence Registers During SG Lines  
Length Range Description  
Register Name  
VTP_SGLINEMODE  
VxSTART_SGLINE  
VxSPTR_SGLINE  
VxINV_SGLINE  
1b  
HIGH/LOW  
To Turn on Second Sequences during SG Line, Set = HIGH  
12b  
4b  
04095 Pixel Location Sequence Start Position for Each Vx Output for SG Line Sequence  
011 Sequence #  
Sequence Pointer for Vx Output during second SG Line Sequence  
When HIGH, the Polarity of Sequence VxSPTRFIRST Is Inverted  
1b  
HIGH/LOW  
x is the V-output from 14.  
–22–  
REV. A  
AD9891/AD9895  
HD  
SENSOR GATE LINE  
VSG1–  
VSGX  
V1  
V2  
V3  
V4  
2ND GROUP OF V-SEQUENCES ARE OUTPUT DURING VSG LINE  
Figure 25. Example of Second Sequences During Sensor Gate Line  
VD  
HD  
LINE 0  
LINE 1  
LINE 2  
LINE 24  
LINE 25  
V1–V4  
REGION AREA 0  
REGION AREA 1: SWEEP REGION  
REGION AREA 2  
Figure 26. Example of Sweep Region for High Speed Vertical Shift  
REV. A  
–23–  
AD9891/AD9895  
Vertical Multiplier Mode  
The example shown in Figure 27 illustrates this operation. The  
first toggle position is 2 and the second toggle position is 9. In  
Nonmultiplier Mode, this would cause the V-sequence to  
toggle at pixel 2 and then pixel 9 within a single HD line. How-  
ever, now toggle positions are multiplied by the VTPLEN = 4,  
so the first toggle occurs at pixel count = 8, and the second toggle  
occurs at pixel count = 36. Sweep Mode should be enabled to  
allow the toggle positions to cross the HD line boundaries.  
To generate very wide vertical timing pulses, a vertical region may  
be configured into Multiplier Mode. This mode uses the vertical  
sequence registers in a slightly different manner. Multiplier Mode  
can be used to support unusual CCD timing requirements, such as  
vertical pulses that are wider than a single HD line length.  
The start polarity and toggle positions are still used in the same  
manner as the standard sequence generation, but the length is  
used differently. Instead of using the pixel counter (HD counter)  
to specify the toggle position locations (VTPTOG1, 2, 3) of the  
sequence, VTP length (VTPLEN) is multiplied by the  
VTPTOG position to allow very long sequences to be generated.  
To calculate the exact toggle position, counted in pixels after the  
start position:  
Frame Transfer CCD Mode  
The AD9891/AD9895 may also be configured for use with frame  
transfer CCDs. In Frame Transfer CCD (FTCCD) Mode,  
an additional four vertical outputs are available for a total of  
eight outputs (V1V8). In this case, V1V4 are used for clock-  
ing the active image area, and V5V8 are used for clocking the  
storage area. In FTCCD Mode, the sequences assigned to the  
V1V4 outputs are duplicated at the V5V8 outputs to allow the  
storage area to be clocked along with the image area. Individual  
masking of the V1V4 and V5V8 outputs allows for vertical  
decimation techniques during transfer from the image to the  
storage area. The additional outputs V5V8 are available on four  
of the sensor gate output pins, VSG1VSG4. Figure 28 shows  
an example of the eight V-clocks configured for use with a frame  
transfer CCD.  
Multiplier Toggle Position =VTPTOG ×VTPLEN  
Because the VTPTOG Register is multiplied by VTPLEN, the  
resolution of the toggle position placement is reduced. If  
VTPLEN = 4, the toggle position accuracy is now reduced to  
4-pixel steps instead of single pixel steps. Table XII summarizes  
how the Individual Vertical Sequence Registers are pro-  
grammed for Multiplier Mode operation. Note that the bit  
ranges for the VTPTOG and VTPREP Registers differ from the  
normal operation shown in Table VII. In Multiplier Mode, the  
VTPREP Register should always be programmed to the same  
value as the highest toggle position register.  
START POSITION OF SEQUENCE IS INDIVIDUALLY PROGRAMMABLE FOR EACH V1–V4 OUTPUT  
HD  
5
5
3
VTPLEN  
PIXELS  
1
1
2
2
3
3
4
4
1
5
2
6
3
7
4
8
1
9
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
4
4
V1–V4  
1
2
2
MULTIPLIER MODE VERTICAL SEQUENCE PROPERTIES:  
1: START POLARITY (ABOVE: STARTPOL = 0)  
2: 1ST, 2ND, AND 3RD TOGGLE POSITIONS (ABOVE: VTPTOG1 = 2, VTPTOG2 = 9)  
3: LENGTH OF VTP COUNTER (ABOVE: VTPLEN = 4). THIS IS THE MINIMUM RESOLUTION FOR TOGGLE POSITION CHANGES.  
4: TOGGLE POSITIONS OCCUR AT LOCATION EQUAL TO (VTPTOG VTPLEN)  
5: ENABLE SWEEP REGION ALLOWS THE COUNTERS TO CROSS THE HD BOUNDARIES  
Figure 27. Example of Multiplier Region for Wide Vertical Pulse Timing  
Table XII. Multiplier Mode and Sequence Register Parameters  
Register  
Length  
1b  
Range  
Description  
MULTI  
HIGH/LOW  
High Enables Multiplier Mode for Each Region 04  
Starting Polarity of Vertical Transfer Pulse for Each Sequence 011  
First Toggle Position for Each Sequence 011  
Second Toggle Position for Each Sequence 011  
Third Toggle Position for Each Sequence 07  
MultiplierFactor for Repetition Counter  
VTPPOL  
VTPTOG1  
VTPTOG2  
VTPTOG3  
VTPLEN  
VTPREP  
1b  
HIGH/LOW  
12b  
12b  
12b  
10b  
12b  
04095 Pixel Location  
04095 Pixel Location  
04095 Pixel Location  
01023 Pixels  
04096  
Should Be Programmed to the Same Value as the Highest Toggle Position  
–24–  
REV. A  
AD9891/AD9895  
HD  
V1  
V2  
V3  
V4  
V1 USES SEQUENCE 0  
V2 USES SEQUENCE 0  
V3 USES SEQUENCE 1  
V4 USES SEQUENCE 1  
ACTIVE  
IMAGE  
AREA  
V5 USES SEQUENCE 0  
V6 USES SEQUENCE 0  
V7 USES SEQUENCE 1  
V8 USES SEQUENCE 1  
V5  
V6  
V7  
V8  
STORAGE  
AREA  
Figure 28. Example of Frame Transfer CCD Mode using V1–V8  
Vertical Sensor Gate (Shift Gate) Timing  
The frame transfer CCD also requires additional timing control  
when decimating the image for Preview Mode. The  
AD9891/AD9895 contain registers to independently stop the  
operation of the V5V8 outputs while the V1V4 outputs con-  
tinue to run or to stop the V1V4 outputs, while the V5V8  
outputs remain operational. The FREEZE and RESUME Regis-  
ters specify the pixel locations within each line of a region where  
the V1V4 or V5V8 clock outputs will start to hold their state,  
and where they will resume normal operation. FREEZE and  
RESUME can be used in any region during the frame readout.  
With an interline CCD, the vertical sensor gates (VSG) are used to  
transfer the pixel charges from the light-sensitive image area into the  
light-shielded vertical registers. When a mechanical shutter is not being  
used, this transfer will effectively end the exposure period during the  
image acquisition. From the light-shield vertical registers, the image  
is then read out line-by-line by using the vertical transfer pulses  
V1V4 in conjunction with the high speed horizontal clocks.  
VD  
HD  
4
VSG1–VSG8  
1
2
3
PROGRAMMABLE SETTINGS FOR EACH SEQUENCE:  
1: START POLARITY OF PULSE  
2: 1ST TOGGLE POSITION  
3: 2ND TOGGLE POSITION  
4: ACTIVE LINE FOR VSG PULSE WITHIN THE FIELD  
Figure 29. Vertical Sensor Gate Pulse Placement  
Table XIII. Sensor Gate Register Parameters  
Description  
Register  
Length  
Range  
High/Low  
SGPOL  
1b  
Sensor Gate Starting Polarity for Sequence 03  
SGTOG1  
SGTOG2  
SGACTLINE  
SGSEL  
12b  
12b  
12b  
2b  
04095 Pixel Location  
04095 Pixel Location  
04095 Pixel Location  
Sequence 03  
First Toggle Position for Sequence 011  
Second Toggle Position for Sequence 011  
Line in Field where VSG1VSG8 Are Active  
Selects Sequence 03 for VSG1VSG8  
SGMASK  
8b  
8 Individual Bits  
Masking for any of VSG1VSG8 Signals (0 = On, 1 = Mask)  
REV. A  
–25–  
AD9891/AD9895  
Table XIII contains the summary of the VSG Registers. The  
AD9891/AD9895 has eight SG outputs, VSG1VSG8. Each of  
the outputs can be assigned to one of four programmed  
sequences by using the SGSEL1SGSEL8 Registers. Each  
sequence is generated in the same manner as the individual vertical  
sequences, with a programmable start polarity (SGPOL), first toggle  
position (SGTOG1), and second toggle position (SGTOG2).  
The active line where the VSG1VSG8 pulses occur is program-  
mable using the two SGACTLIN Registers. Additionally, any  
of the VSG1VSG8 pulses may be individually disabled by  
using the SGMASK Register. The masking allows all of the differ-  
ent SG sequences to be preprogrammed and the appropriate  
pulses for odd or even fields can be masked.  
ters (see Table XIV). The number of SUBCK pulses per field is  
programmed in the SUBCKNUM Register.  
As shown in Figure 30, the SUBCK pulses will always begin  
on the line after the sensor gates occur, specified by the  
SGACTLINE Register (Addr x265 and Addr x266). The  
SUBCKPOL, SUBCK1TOG, SUBCK2TOG, and  
SUBCKNUM Registers are updated at the start of the line after  
the sensor gate line. All other shutter mode registers are up-  
dated with the majority of the AD9891/AD9895s registers at  
the VD/HD falling edge.  
High Precision Shutter Mode  
High precision shuttering is controlled in the same way as nor-  
mal shuttering but requires a second set of toggle registers. In  
this mode, the SUBCK still pulses once per line, but the last  
SUBCK in the field will have an additional SUBCK pulse  
whose location is determined by the SUBCK2TOG1 and  
SUBCK2TOG2 Registers (see Figure 31). Finer resolution of  
the exposure time is possible using this mode. Leaving both  
SUBCK2TOG Registers set to 4095 (x3F) will disable the High  
Precision Mode (default setting).  
SHUTTER TIMING CONTROL  
CCD image exposure time is controlled through use of the substrate  
clock signal (SUBCK), which pulses the CCD substrate to clear  
out accumulated charge. The AD9891/AD9895 supports three  
types of electronic shuttering: Normal Shutter Mode, High Preci-  
sion Shutter Mode, and Low Speed Shutter Mode. Along with the  
SUBCK pulse placement, the AD9891/AD9895 can accommo-  
date different progressive and interlaced readout modes.  
Additionally, the AD9891/AD9895 provides output signals to  
control an external mechanical shutter, strobe (flash), and the  
CCD bias for still mode readout (VSUB).  
Low Speed Shutter Mode  
For normal exposure times less than one field interval, the  
EXPOSURE Register will be set to 0. Exposure times greater  
than one field interval can be achieved by writing a value  
greater than zero to the EXPOSURE Register. As shown in  
Figure 32, this shutter mode will suppress the SUBCK and  
VSG outputs for up to 4095 fields (VD periods). The VD and  
HD outputs may be suppressed during the exposure period by  
programming the VDHDOFF Register to 1.  
Normal Shutter Mode  
Figure 30 shows the VD and SUBCK output for Normal Shut-  
ter Mode. The SUBCK will pulse once per line, and the total  
number of repetitions within the field is programmable. The  
pulse polarity, width, and line location is programmable using  
the SUBCKPOL, SUBCK1TOG1, and SUBCK1TOG2 Regis-  
VD  
HD  
VSG1–  
VSG8  
tEXP  
tEXP  
SUBCK  
SUBCK PROGRAMMABLE SETTINGS:  
1: PULSE POLARITY USING THE SUBCKPOL REGISTER  
2: NUMBER OF PULSES WITHIN THE FIELD USING THE SUBCKNUM REGISTER  
3: PIXEL LOCATION OF PULSE WITHIN THE LINE AND PULSE WIDTH PROGRAMMED USING SUBCK1 TOGGLE POSITION REGISTERS  
Figure 30. Normal Shutter Mode  
VD  
HD  
VSG1–  
VSG8  
tEXP  
tEXP  
SUBCK  
NOTES  
1. 2ND SUBCK PULSE IS ADDED IN THE LAST SUBCK LINE.  
2. LOCATION OF 2ND PULSE IS FULLY PROGRAMMABLE USING THE SUBCK2 TOGGLE POSITION REGISTERS.  
Figure 31. High Precision Shutter Mode  
–26–  
REV. A  
AD9891/AD9895  
SUBCK Suppression  
VSUB Control  
Normally, the SUBCKs will begin to pulse on the line following  
the sensor gate line (VSG). With some CCDs, the SUBCKs  
need to be suppressed for one or more lines following the VSG  
line. The SUBCKSUPPRESS Register allows for the suppression  
the SUBCK pulses for up to 63 lines following the VSG line.  
The CCD readout bias (VSUB) can be programmed to accom-  
modate different CCDs. Figure 35 shows two different modes  
that are available. In Mode 0, VSUB goes active during the  
field of the last SUBCK when the exposure begins. The  
on-position (rising edge in Figure 35) is programmable to any  
line within the field. VSUB will remain active until the end of  
the image readout. In Mode 1, the VSUB is not activated  
until the start of the readout.  
Readout After Exposure  
A write to the EXPOSURE Register will designate the number  
fields in the exposure time (tEXP) from 0 to 4095. After the exposure,  
the readout of the CCD data occurs. During readout, the  
SUBCK output may need to be further suppressed until the  
readout is completed. The READOUT Register specifies the  
number of additional fields after the exposure to continue the  
suppression of SUBCK. READOUT can be programmed for  
zero to seven additional fields and should be preprogrammed at  
start-up, not at the same time as the exposure write. A typical  
interlaced CCD frame readout mode will generally require two  
additional fields of SUBCK suppression (READOUT = 2).  
MSHUT and STROBE Control  
MSHUT and STROBE operation is shown in Figures 33, 34,  
and 35. Table XV shows the registers parameters for control-  
ling the MSHUT and STROBE outputs. The MSHUT output  
is switched on with the MSHUTON Registers, and it will  
remain on until the location specified in the MSHUTOFF  
Registers. The location of MSHUTOFF is fully programmable to  
anywhere within the exposure period, using the FD (field), LN  
(line), and PX (pixel) Registers. The STROBE pulse is defined  
by the ON and OFF positions. STROBON_FD is the field in  
which the STROBE is turned on, measured from the field con-  
taining the last SUBCK before exposure begins. The  
STROBON_ LN and STROBON_PX Registers give the line  
and pixel positions with respect to STROBON_FD. The  
STROBE off position is programmable to any field, line, and  
pixel location with respect to the field of the last SUBCK.  
Note that a write to the EXPOSURE Register acts as a trigger  
for readout after the exposure is completed. If no write to the  
EXPOSURE Register occurs, than the READOUT Register will  
have no effect. See Figure 35 for an example of triggering the  
exposure and subsequent readout.  
VD  
VSG1–  
VSG8  
tEXP  
SUBCK  
NOTES  
1. SUBCK MAY BE SUPPRESSED FOR MULTIPLE FIELDS BY PROGRAMMING THE EXPOSURE REGISTER GREATER THAN ZERO.  
2. ABOVE EXAMPLE USES EXPOSURE = 1.  
3. VD/HD OUTPUTS MAY ALSO BE SUPPRESSED USING THE VDHDOFF REGISTER = 1.  
Figure 32. Low Speed Shutter Mode Using EXPOSURE Register  
Table XIV. Electronic Shutter Mode Register Parameters  
Register  
Length  
Range  
Description  
SUBCKPOL*  
1b  
HIGH/LOW  
SUBCK Start Polarity for SUBCK1 and SUBCK2  
SUBCK First Toggle Position  
SUBCK Second Toggle Position  
Second SUBCK First Toggle Position (for High Precision Mode)  
Second SUBCK Second Toggle Position (for High Precision Mode)  
Total Number of SUBCKs per Field (at 1 Pulse per Line)  
Number of SUBCKs to Suppress after VSG Line  
Number of Fields to Suppress to SUBCK and VSG;  
Triggers Readout to Occur after tEXP  
SUBCK1TOG1*  
SUBCK1TOG2*  
SUBCK2TOG1*  
SUBCK2TOG2*  
SUBCKNUM*  
SUBCKSUPPRESS*  
EXPOSURE  
12b  
12b  
12b  
12b  
12b  
6b  
04095 Pixel Location  
04095 Pixel Location  
04095 Pixel Location  
04095 Pixel Location  
04095 # of Pulses  
063 # of Pulses  
12b  
04095 # of Fields  
VDHDOFF  
READOUT  
1b  
3b  
ON/OFF  
07 # of Fields  
Disable VD/HD Output during Exposure (1 = On, 0 = Off)  
Number of Fields to Suppress SUBCK after Exposure (for Readout)  
*Register is not VD/HD updated but is updated at the start of line after sensor gate line.  
REV. A  
–27–  
AD9891/AD9895  
VD  
VSG1–  
VSG8  
tEXP  
SUBCK  
MSHUT  
1
2
3
MSHUT PROGRAMMABLE SETTINGS:  
1: ACTIVE POLARITY  
2: ON-POSITION IS VD UPDATED AND MAY BE SWITCHED ON AT ANY TIME  
3: OFF-POSITION CAN BE PROGRAMMED ANYWHERE FROM THE FIELD OF LAST SUBCK UNTIL THE FIELD BEFORE READOUT  
Figure 33. MSHUT Output Programmability  
VD  
VSG1–  
VSG8  
tEXP  
SUBCK  
STROBE  
1
2
3
STROBE PROGRAMMABLE SETTINGS:  
1: ACTIVE POLARITY  
2: ON-POSITION WITH RESPECT TO TO FIELD OF LAST SUBCK  
3: OFF-POSITION CAN BE PROGRAMMED ANYWHERE DURING THE EXPOSURE TIME  
Figure 34. STROBE Output Programmability  
Table XV. VSUB, MSHUT, and STROBE Register Parameters  
Register  
Length  
Range  
Description  
TRIGGER  
3b  
On/Off for Three Signals 1-Bit Triggers for VSUB[0], MSHUT[1], and STROBE[2]  
VSUBMODE  
VSUBKEEPON  
VSUBPOL  
1b  
1b  
1b  
HIGH/LOW  
HIGH/LOW  
HIGH/LOW  
VSUB Mode (0 = Mode 0, 1 = Mode 1) (See Figure 27)  
Sets VSUB to Stay Active after Readout When High  
VSUB Active Polarity  
VSUBON  
MSHUTON  
MSHUTONPOS_LN  
MSHUTONPOS_LN  
MSHUTPOL  
12b  
1b  
12b  
12b  
1b  
04095 Line Location  
ON/OFF  
04095 Line Location  
04095 Pixel Location  
HIGH/LOW  
VSUB On Position. Active starting in any line of field.  
MSHUT Signal Enable (1 = Active or Open)  
MSHUT Line Location  
MSHUTON Pixel Location  
MSHUT Active Polarity  
MSHUTOFF_FD  
MSHUTOFF_LN  
MSHUTOFF_PX  
STROBPOL  
12b  
12b  
12b  
1b  
04095 Field Location  
04095 Line Location  
04095 Pixel Location  
HIGH/LOW  
Field Location to Switch OFF MSHUT. (Inactive or Closed)  
Line Location to Switch OFF MSHUT. (Inactive or Closed)  
Pixel Location to Switch OFF MSHUT. (Inactive or Closed)  
STROBE Active Polarity  
STROBON_FD  
STROBON_LN  
STROBON_PX  
STROBOFF_FD  
STROBOFF_LN  
STROBOFF_PX  
12b  
12b  
12b  
12b  
12b  
12b  
04095 Field Location  
04095 Line Location  
04095 Pixel Location  
04095 Field Location  
04095 Line Location  
04095 Pixel Location  
STROBE ON Field Location, with Respect to Last SUBCK Field  
STROBE ON Line Location  
STROBE ON Pixel Location  
STROBE OFF Field Location, with Respect to Last SUBCK Field  
STROBE OFF Location  
STROBE OFF Location  
–28–  
REV. A  
AD9891/AD9895  
SERIAL  
WRITES  
ODD  
EVEN  
VD  
IMAGE READOUT  
VSG  
tEXP  
SUBCK  
STROBE  
MSHUT  
OPEN  
OPEN  
MECHANICAL  
SHUTTER  
CLOSED  
VSUB  
MODE 0  
MODE 1  
Figure 35. Exposure and Readout of Interlaced Frame  
Example of Exposure and Readout of Interlaced Frame  
Figure 35 shows the sequence of events for a typical exposure and  
readout operation using a mechanical shutter and strobe. The  
register values for the VSUB, MSHUT, and STROBE toggle  
positions may be previously loaded at any time, prior to triggering  
these functions. Additional register writes are required to configure  
the vertical clock outputs, V1V4, which are not described here.  
STROBE output turns ON at the location specified in the  
STROBON Registers (Addr x294 to Addr x299).  
4: STROBE output turns OFF at the location specified in the  
STROBEOFF Registers (Addr x29A to Addr x29F).  
5: MSHUT Output turns OFF at the location specified in the  
MSHUTOFF Registers (Addr x28D to Addr x292).  
6: Write to the SGACTLINE Register (Addr x253 and  
Addr x254) and SGMASK Register to configure the sensor  
gates for EVEN field readout.  
0: Write to the READOUT Register (Addr x281) to specify  
the number of fields to further suppress SUBCK while the  
CCD data is readout. In this example, READOUT = 2.  
7: VD/HD falling edge will update the serial writes from 6.  
1: Write to the EXPOSURE Register (Addr x27D) to start the  
exposure and specify the number of fields to suppress  
SUBCK and VSG outputs during exposure. In this example,  
EXPOSURE = 2.  
8: Write to the SGACTLINE Register and SGMASK Register  
to reconfigure the sensor gates for Draft/Preview Mode output.  
Write to the MSHUTON Register (Addr x287) to reopen  
the mechanical shutter for Draft/Preview Mode.  
Write to the TRIGGER Register (Addr x280) to enable the  
STROBE, MSHUT, and VSUB signals. To trigger all three  
signals (as in Figure 36) the register TRIGGER = 7.  
9: VD/HD falling edge will update the serial writes from 8.  
10: VSG outputs returns to Draft/Preview Mode timing.  
SUBCK output resumes operation.  
Write to the SGACTLINE Register (Addr x265 and  
Addr x266) and SGMASK Register (Addr x26F and  
Addr x270) to configure the sensor gates for ODD field  
readout (interlaced CCD).  
MSHUT output returns to the ON position (Active or  
Open).  
2: VD/HD falling edge will update the serial writes from 1.  
VSUB output returns to the OFF position (Inactive).  
3: If VSUB Mode = 0, VSUB output turns ON at the line  
specified in the VSUBON Register (Addr x272 and  
Addr x273).  
REV. A  
–29–  
AD9891/AD9895  
ANALOG FRONT END DESCRIPTION AND OPERATION  
The AD9891/AD9895 AFE signal processing chain is shown in  
Figure 36. Each processing step is essential in achieving a high  
quality image from the raw CCD pixel data. AFE Register de-  
tails are shown in Table XXXI.  
system black level. Another advantage of removing this offset at  
the input stage is to maximize system headroom. Some area  
CCDs have large black level offset voltages, which, if not cor-  
rected at the input stage, can significantly reduce the available  
headroom in the internal circuitry when higher VGA gain set-  
tings are used.  
DC Restore  
To reduce the large dc offset of the CCD output signal, a dc-  
restore circuit is used with an external 0.1 µF series coupling  
capacitor. This restores the dc level of the CCD signal to  
approximately 1.5 V, to be compatible with the 3 V analog  
supply of the AD9891/AD9895.  
The input clamp is controlled by the CLPDM signal, which is  
fully programmable (see Horizontal Clamping and Blanking  
section). System timing examples are shown in the Horizontal  
Timing Sequence Example section. It is recommended that the  
CLPDM pulse be used during valid CCD dark pixels. CLPDM  
may be used during the optical black pixels, either together  
with CLPOB or separately. The CLPDM pulse should be a  
minimum of 4 pixels wide.  
Correlated Double Sampler  
The CDS circuit samples each CCD pixel twice to extract the  
video information and reject low frequency noise. The timing  
shown in Figure 10 illustrates how the two internally  
generated CDS clocks, SHP and SHD, are used to sample  
the reference level and the data level, respectively, of the  
CCD signal. The placement of the SHP and SHD sampling  
edges is determined by the setting of the SHPPOSLOC and  
SHDPOSLOC Registers located at Addr 0xE9 and  
Addr 0xEA, respectively. Placement of these two clock signals  
is critical in achieving the best performance from the CCD.  
PxGA  
The PxGA provides separate gain adjustment for the individual color  
pixels. A programmable gain amplifier with four separate values,  
the PxGA has the capability to multiplexits gain value on a  
pixel-to-pixel basis (see Figure 37). This allows lower output  
color pixels to be gained up to match higher output color pixels.  
Also, the PxGA may be used to adjust the colors for white balance,  
reducing the amount of digital processing that is needed. The four  
different gain values are switched according to the color  
steeringcircuitry. Seven different color steering modes for dif-  
ferent types of CCD color filter arrays are programmed in the  
AD9891/AD9895 AFE CTLMODE Register, at Addr 0x06  
(see Figures 39a39g for internal color steering timing). For  
Input Clamp  
A line-rate input clamping circuit is used to remove the CCDs  
optical black offset. This offset exists in the CCDs shielded  
black reference pixels. The AD9891/AD9895 remove this offset  
in the input stage to minimize the effect of a gain change on the  
1.0F  
1.0F  
REFB  
1.0V  
REFT  
2.0V  
DC RESTORE  
1.5V  
INTERNAL  
V
REF  
DOUT  
PHASE  
SHP  
SHD  
2VFULL  
SCALE  
10  
or  
12  
–2dB TO +10dB  
0dB TO 36dB  
0.1F  
OUTPUT  
DATA  
LATCH  
CCDIN  
CDS  
VGA  
ADC  
DOUT  
PxGA  
10  
CLPDM  
OPTICAL BLACK  
CLAMP  
8-BIT  
DAC  
VGA GAIN  
REGISTER  
INPUT OFFSET  
CLAMP  
PBLK  
CLPOB  
0.1F  
DIGITAL  
BYP1  
BYP2  
BYP3  
FILTER  
0.1F  
0.1F  
8
DOUT  
PHASE  
CLAMP LEVEL  
REGISTER  
SHP  
CLPDM  
SHD  
CLPOB PBLK  
PRECISION  
V-H  
TIMING  
TIMING  
GENERATION  
GENERATION  
Figure 36. AFE Block Diagram  
–30–  
REV. A  
AD9891/AD9895  
example, the Mosaic Separate Steering Mode accommodates the  
popular Bayerarrangement of Red, Green, and Blue filters  
(see Figure 38a).  
MOSAIC SEPARATE COLOR  
STEERING MODE  
CCD: PROGRESSIVE BAYER  
Gr LINE0  
GAIN0, GAIN1, GAIN0, GAIN1, ...  
GAIN2, GAIN3, GAIN2, GAIN3, ...  
GAIN0, GAIN1, GAIN0, GAIN1, ...  
R
Gb  
R
Gr  
B
R
Gb  
R
The same Bayer pattern can also be interlaced, and the Mosaic  
Interlaced Mode should be used with this type of CCD (see  
Figure 38b). The color steering performs the proper multiplex-  
ing of the R, G, and B gain values (loaded into the PxGA gain  
registers) and is synchronized by the vertical (VD) and horizon-  
tal (HD) sync pulses. The PxGA gain for each of the four  
channels is variable from 2 dB to +10 dB, controlled in 64  
steps through the serial interface. The PxGA gain curve is  
shown in Figure 40.  
LINE1  
LINE2  
B
Gr  
Gr  
B
Gb  
Gb  
B
Figure 38a. CCD Color Filter Example: Progressive Scan  
CCD: INTERLACED BAYER  
EVEN FIELD  
MOSAIC INTERLACED  
COLOR STEERING MODE  
Gr LINE0  
Gr LINE1  
GAIN0, GAIN1, GAIN0, GAIN1, ...  
GAIN0, GAIN1, GAIN0, GAIN1, ...  
GAIN0, GAIN1, GAIN0, GAIN1, ...  
R
R
R
R
Gr  
Gr  
Gr  
Gr  
R
R
R
R
VD  
HD  
3
PxGA  
STEERING  
MODE  
CONTROL  
REGISTER  
BITS D0:D2  
COLOR  
STEERING  
CONTROL  
SHP/SHD  
SELECTION  
Gr  
Gr  
LINE2  
2
GAIN0  
GAIN1  
GAIN2  
GAIN3  
PxGA GAIN  
REGISTERS  
4:1  
ODD FIELD  
MUX  
Gb  
B
Gb  
B
LINE0  
LINE1  
LINE2  
GAIN2, GAIN3, GAIN2, GAIN3, ...  
GAIN2, GAIN3, GAIN2, GAIN3, ...  
GAIN2, GAIN3, GAIN2, GAIN3, ...  
6
Gb  
Gb  
B
B
Gb  
Gb  
B
B
CDS  
VGA  
PxGA  
Gb  
B
Gb  
B
Figure 37. PxGA Block Diagram  
Figure 38b. CCD Color Filter Example: Interlaced  
FLD  
ODD FIELD  
EVEN FIELD  
VD  
HD  
PxGA GAIN  
REGISTER  
X
X
0
1
0
1
2
3
2
3
0
1
0
1
0
1
0
1
2
3
2
3
0
1
0
1
0
NOTES  
1. VD FALLING EDGE WILL RESET THE PxGA GAIN REGISTER STEERING TO “0101” LINE.  
2. HD FALLING EDGES WILL ALTERNATE THE PxGA GAIN REGISTER STEERING BETWEEN “0101” AND “2323” LINES.  
3. FLD STATUS IS IGNORED.  
Figure 39a. Mosaic Separate Color Steering Mode  
ODD FIELD  
EVEN FIELD  
FLD  
VD  
HD  
PxGA GAIN  
REGISTER  
X
X
0
1
0
1
0
1
0
1
0
1
0
1
2
3
2
3
2
3
2
3
2
3
2
3
0
NOTES  
1. FLD FALLING EDGE (START OF ODD FIELD) WILL RESET THE PxGA GAIN REGISTER STEERING TO “0101” LINE.  
2. FLD RISING EDGE (START OF EVEN FIELD) WILL RESET THE PxGA GAIN REGISTER STEERING TO “2323” LINE.  
3. HD FALLING EDGES WILL RESET THE PxGA GAIN REGISTER STEERING TO EITHER “0” (FLD = ODD) OR “2” (FLD = EVEN).  
Figure 39b. Mosaic Interlaced Color Steering Mode  
REV. A  
–31–  
AD9891/AD9895  
FLD  
ODD FIELD  
EVEN FIELD  
VD  
HD  
PxGA GAIN  
REGISTER  
X
X
0
1
0
1
1
2
1
2
0
1
0
1
0
1
0
1
1
2
1
2
0
1
0
1
0
NOTES  
1. VD FALLING EDGE WILL RESET THE PxGA GAIN STEERING TO “0101” LINE.  
2. HD FALLING EDGES WILL ALTERNATE THE PxGA GAIN STEERING BETWEEN “0101” AND “1212” LINES.  
3. ALL FIELDS WILL HAVE THE SAME PxGA GAIN STEERING PATTERN (FLD STATUS IS IGNORED).  
Figure 39c. Mosaic Repeat Color Steering Mode  
FLD  
VD  
ODD FIELD  
EVEN FIELD  
HD  
PxGA GAIN  
REGISTER  
X
X
0
1
2
0
0
1
2
0
0
1
2
0
0
1
2
0
0
1
2
0
0
1
2
0
0
NOTES  
1. EACH LINE FOLLOWS “012012” STEERING PATTERN.  
2. VD AND HD FALLING EDGES WILL RESET THE PxGA GAIN REGISTER STEERING TO GAIN REGISTER “0.”  
3. FLD STATUS IS IGNORED.  
Figure 39d. 3-Color 1-Color Steering Mode  
FLD  
VD  
ODD FIELD  
EVEN FIELD  
HD  
PxGA GAIN  
REGISTER  
X
X
0
1
2
0
2
1
0
2
0
1
2
0
0
1
2
0
2
1
0
2
0
1
2
0
0
NOTES  
1. VD FALLING EDGE WILL RESET THE PxGA GAIN REGISTER STEERING TO “012012” LINE.  
2. HD FALLING EDGES WILL ALTERNATE THE PxGA GAIN REGISTER STEERING BETWEEN “012012” AND “210210” LINES.  
3. FLD STATUS IS IGNORED.  
Figure 39e. 3-Color 2-Color Steering Mode  
FLD  
VD  
ODD FIELD  
EVEN FIELD  
HD  
PxGA GAIN  
REGISTER  
X
X
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
NOTES  
1. EACH LINE FOLLOWS “01230123” STEERING PATTERN.  
2. VD AND HD FALLING EDGES WILL RESET THE PxGA GAIN REGISTER STEERING TO GAIN REGISTER “0.”  
3. FLD STATUS IS IGNORED.  
Figure 39f. 4-Color 1-Color Steering Mode  
–32–  
REV. A  
AD9891/AD9895  
FLD  
VD  
ODD FIELD  
EVEN FIELD  
HD  
PxGA GAIN  
REGISTER  
X
X
0
1
2
3
2
3
0
1
0
1
2
3
0
1
2
3
2
3
0
1
0
1
2
3
0
NOTES  
1. VD FALLING EDGE WILL RESET THE PxGA GAIN REGISTER STEERING TO “01230123” LINE.  
2. HD FALLING EDGES WILL ALTERNATE THE PxGA GAIN REGISTER STEERING BETWEEN “01230123” AND “23012301” LINES.  
3. FLD STATUS IS IGNORED.  
Figure 39g. 4-Color 2-Color Steering Mode  
10  
The VGA gain curve follows a linear-in-dBcharacteristic.  
The exact VGA gain can be calculated for any gain register  
value by using the equation:  
8
6
Gain = (0.035×Code)+ 3.55  
where the code range is 0 to 1023. PxGA default gain is included.  
4
The gain accuracy specifications include the PxGA gain of  
approximately 4 dB, for a total gain range of 6 dB to 40 dB.  
2
Optical Black Clamp  
0
The optical black clamp loop is used to remove residual offsets  
in the signal chain and to track low frequency variations in the  
CCDs black level. During the optical black (shielded) pixel  
interval on each line, the ADC output is compared with a fixed  
black level reference selected by the user in the Clamp Level  
Register. The clamp level is programmable in 256 steps, with a  
range between 0 LSB and 63.75 LSB in the AD9891 and be-  
tween 0 LSB and 255 LSB in the AD9895. The resulting error  
signal is filtered to reduce noise, and the correction value is  
applied to the ADC input through a D/A converter. Normally,  
the optical black clamp loop is turned on once per horizontal  
line, but this loop can be updated more slowly to suit a particu-  
lar application. If external digital clamping is used during  
the post- processing, the AD9891/AD9895 optical black  
clamping may be disabled using Bit D5 in the Operation Regis-  
ter (see Serial Interface Timing and Register Listing sections).  
When the loop is disabled, the Clamp Level Register may still  
be used to provide programmable offset adjustment.  
–2  
–4  
32  
40  
48  
58  
0
8
16  
24  
31  
(011111)  
(100000)  
PxGA GAIN REGISTER CODE  
Figure 40. PxGA Gain Curve  
36  
30  
24  
18  
12  
6
The optical black clamp is controlled by the CLPOB signal,  
which is fully programmable (see Horizontal Clamping and  
Blanking section). System timing examples are shown in the  
Horizontal Timing Sequence Example section. The CLPOB  
pulse should be placed during the CCDs optical black pixels. It  
is recommended that the CLPOB pulse duration be at least  
20 pixels wide. Shorter pulsewidths may be used, but the ability  
to track low frequency variations in the black level will be  
reduced.  
0
0
127  
255  
383  
511  
639  
767  
895  
1023  
VGA GAIN REGISTER CODE  
Figure 41. VGA Gain Curve (PxGA not included)  
Variable Gain Amplifier  
The VGA stage provides a gain range of 2 dB to 36 dB, pro-  
grammable with 10-bit resolution through the serial digital  
interface. Combined with approximately 4 dB from the PxGA  
stage, the total gain range for the AD9891/AD9895 is 6 dB to  
40 dB. The minimum gain of 6 dB is needed to match a 1 V  
input signal with the ADC full-scale range of 2 V. When com-  
pared to 1 V full-scale systems (such as ADIs AD9803), the  
equivalent gain range is 0 dB to 34 dB.  
A/D Converter  
The AD9891 uses a high a performance 10-bit ADC archi-  
tecture, optimized for high speed and low power, while the  
AD9895 uses a 12-bit ADC architecture. Differential  
nonlinearity (DNL) performance is typically better than  
0.5 LSB for both products. The ADC uses a 2 V input range.  
Better noise performance results from using a larger ADC full-  
scale range.  
REV. A  
–33–  
AD9891/AD9895  
VDD  
(INPUT)  
CLI  
(INPUT)  
tPWR  
SERIAL  
WRITES  
SYNC  
(INPUT)  
1 V  
VD  
(OUTPUT)  
ODD FIELD  
1 H  
EVEN FIELD  
HD  
(OUTPUT)  
H2/H4  
DIGITAL  
OUTPUTS  
H1/H3, RG, DCLK  
CLOCKS ACTIVE WHEN OUT_CONT REGISTER IS  
UPDATED AT VD/HD EDGE  
Figure 42. Recommended Power-Up Sequence and Synchronization, Master Mode  
POWER-UP AND SYNCHRONIZATION  
9. Write to desired registers to configure high speed timing,  
horizontal timing, vertical timing, and shutter timing.  
Recommended Power-Up Sequence for Master Mode  
When the AD9891/AD9895 are powered up, the following  
sequence is recommended (refer to Figure 42 for each step).  
10. If SYNC is HIGH at power-up, then bring SYNC input  
LOW. Also, SYNC may be held low from power-up.  
1. Turn on power supplies for the AD9891/AD9895.  
2. Apply the master clock input CLI.  
11. Write a 1to the OUT_CONT Register (Addr x018). This  
will allow the outputs to become active after SYNC rising edge.  
3. Reset and initialize the internal AD9891/AD9895 Registers.  
First, write a 1to the SW_RESET Register (Addr x017)  
followed by a 0to the same register. Next, write  
110101(53 decimal) to the INITIAL1 Register  
(Addr x02B) followed by 000100(4 decimal) to the  
INTIAL2 Register (Addr x010). This sequence of writes  
must always be done in the proper order:  
12. Write a 0to the PREVENTUPDATE Register  
(Addr x01B). This will allow the serial information to be up-  
dated at the next VD/HD falling edge.  
13. Bring SYNC back HIGH. This will cause the internal  
counters to reset to 0and start VD/HD operation.  
VD/HD edge allows register updates to occur, including  
OUT_CONT, which enables all clock outputs.  
Addr x017  
Addr x017  
Addr x02B  
Addr x010  
Data 000001  
Data 000000  
Data 110101  
Data 000100  
SYNC During Master Mode Operation  
The SYNC input may be used any time during operation to  
resync the AD9891/AD9895 counters with external timing, as  
shown in Figure 43. The operation of the digital outputs may  
be suspended during the SYNC operation by setting the  
SYNCSUSPEND Register (Addr x026) to a 1.”  
4. Configure the AD9891/AD9895 for Master Mode timing by  
writing a 1to the MASTER Register (Addr x0EB).  
5. By default, the internal timing core is held in a reset state  
with TGCORE_RSTB Register = 0.Write a 1to the  
TGCORE_RSTB Register (Addr x029) to start the internal  
timing core operation.  
Synchronization in Slave Mode  
When the AD9891/AD9895 is used in Slave Mode, the VD and  
HD inputs are used to synchronize the internal counters. Fol-  
lowing a falling edge of VD, there will be a latency of eight  
master clock cycles (CLI) after the falling edge of HD until the  
internal H-counter will be reset. The reset operation is shown in  
Figure 44.  
6. Write a 1to the PREVENTUPDATE Register  
(Addr x01B). This will prevent any updating of the serial  
register data.  
7. Write a 1to the SYNCENABLE Register (Addr x024).  
This will allow the external SYNC to be used.  
8. Write a 1to the SYNCSUSPEND Register (Addr x026).  
This will cause the outputs to be suspended during the  
SYNC operation (see Figure 43).  
–34–  
REV. A  
AD9891/AD9895  
SYNC  
VD  
SUSPEND  
HD  
H124, RG, V1–V4,  
VSG, SUBCK  
NOTES  
1. SYNC RISING EDGE RESETS VD/HD AND COUNTERS TO ZERO.  
2. SYNC POLARITY IS PROGRAMMABLE USING SYNCPOL REGISTER (ADDR x025).  
3. DURING SYNC LOW, ALL INTERNAL COUNTERS ARE RESET AND VD/HD CAN BE SUSPENDED USING THE SYNCSUSPEND REGISTER (ADDR x026).  
4. IF SYNCSUSPEND = 1, VERTICAL CLOCKS AND H1–H2, RG ARE HELD AT THEIR DEFAULT POLARITIES.  
5. IF SYNCSUSPEND = 0, THEN ALL CLOCK OUTPUTS CONTINUE TO OPERATE NORMALLY UNTIL SYNC RESET EDGE.  
Figure 43. SYNC Timing to Synchronize AD989x with External Timing  
VD  
H-COUNTER  
RESET  
HD  
3ns MIN  
CLI  
H-COUNTER  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
1
1
2
0
3
1
4
0
5
1
6
0
7
1
8
0
9
1
10 11 12 13 14  
0
2
1
3
2
2
3
3
4
(PIXEL COUNTER)  
PxGA GAIN  
REGISTER  
X
0
1
0
1
0
NOTES  
1. INTERNAL H-COUNTER IS RESET 8 CLOCK CYCLES AFTER THE HD FALLING EDGE.  
2. PxGA STEERING IS SYNCHRONIZED WITH THE RESET OF THE INTERNAL H-COUNTER (MOSAIC SEPARATE MODE IS SHOWN).  
Figure 44. External VD/HD and Internal H-Counter Synchronization, SLAVE Mode  
POWER-DOWN MODE OPERATION  
Table XVI summarizes the operation of each power-down mode.  
Note that in any mode, the OUT_CONT Register takes priority  
over the power-down modes where the digital output states are  
concerned. Power-Down 3 Mode has the lowest power consump-  
tion, and it even powers down the crystal oscillator circuit  
between CLI and CLO. Thus, if CLI and CLO are being used  
with a crystal to generate the master clock, this circuit will be  
powered down and there will be no clock signal. When returning  
from Power-Down 3 Mode to normal operation, the timing core  
must be reset at least 500 ms after the OPR_MODE Register is  
written to. This will allow sufficient time for the crystal circuit  
to settle.  
The AD9891/AD9895 contain three different power-down  
modes to optimize the overall power dissipation in a particular  
application. Bits [1:0] of the OPRMODE Register control the  
power-down state of the device:  
OPR_MODE [1:0] = 00 = Normal Operation (full power)  
OPR_MODE[1:0] = 01 = Power-Down 1 Mode  
OPR_MODE[1:0] = 10 = Power-Down 2 Mode  
OPR_MODE[1:0] = 11 = Power-Down 3 Mode (lowest  
overall power)  
REV. A  
–35–  
AD9891/AD9895  
Table XVI. Power-Down Mode Operation  
I/O Block  
OUT_CONT== LOW1  
Power-Down 11  
Power-Down 21, 2  
Power-Down 31, 3, 4  
AFE  
ON  
ON  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
Timing Core  
CLO  
Oscillator  
ON  
ON  
ON  
OFF  
V1  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
LOW  
LOW  
LOW  
HIGH  
LOW  
HIGH  
LOW  
LOW  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
LOW  
LOW  
LOW  
HIGH  
LOW  
HIGH  
LOW  
LOW  
HIGH  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
Hi-Z  
V2  
LOW  
V3  
HIGH  
V4  
HIGH  
VSG1  
VSG2  
VSG3  
VSG4  
VSG5  
VSG6  
VSG7  
VSG8  
SUBCK  
VSUB  
MSHUT  
STROBE  
H1  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
LOW  
LOW  
LOW (3.5 mA)  
HIGH (3.5 mA)  
LOW (3.5 mA)  
HIGH (3.5 mA)  
LOW (3.5 mA)  
LOW  
H2  
Hi-Z  
H3  
Hi-Z  
H4  
Hi-Z  
RG  
Hi-Z  
LD/FD  
LOW  
LOW  
CLPOB/  
PBLK  
HIGH  
VD  
vdhdpol  
vdhdpol  
LOW  
running  
running  
running  
running  
LOW  
vdhdpol  
vdhdpol  
LOW  
LOW  
LOW  
LOW  
HIGH  
LOW  
HD  
DCLK  
CLO  
DOUT  
NOTES  
running  
LOW  
running  
LOW  
1First column represents the defaults when OUT_CONT==LO (OUT_CONT takes precedence). Power-Down 1, 2, and 3 are direct decodes of the OPRMODE  
Register Bits [1:0]. These polarities assume OUT_CONT==HI.  
2Power-Down 2 will set H[1,2,3,4]DRV and RGDRV to 3h1 (3.5 mA). Power-Down 3 will three-state the H and RG clocks (set H[1,2,3,4]DRV and RGDRV to 3h0).  
3Both the Timing Core and the CLO Oscillator will be powered down in Power-Down 3.  
4To exit Power-Down 3, first write a 2b00 to OPRMODE[1:0] (will wake up the oscillator and the timing core), then reset the timing core after ~500µs to guarantee lock.  
–36–  
REV. A  
AD9891/AD9895  
HORIZONTAL TIMING SEQUENCE EXAMPLE  
Figure 45 shows an example CCD layout. The horizontal regis-  
ter contains 28 dummy pixels that will occur on each line  
clocked from the CCD. In the vertical direction, there are 10  
optical black (OB) lines at the front of the readout and two at  
the back of the readout. The horizontal direction has four OB  
pixels in the front and 48 in the back.  
CLPDM signals are not used. In some cases, if the horizontal  
clocks are used during this time, the CLPDM signal may be used  
to keep the AD9891/AD9895s input clamp partially settled.  
PBLK may be enabled during this time because no valid data is  
available.  
Figure 47 shows the recommended sequence for the vertical OB  
interval. The clamp signals are used across the whole lines in  
order to stabilize the clamp loops of the AD9891/AD9895.  
To configure the AD9891/AD9895 horizontal signals for this  
CCD, three sequences can be used. Figure 46 shows the first  
sequence to be used during vertical blanking. During this time,  
there are no valid OB pixels from the sensor, so the CLPOB and  
Figure 48 shows the recommended sequence for the effective  
pixel readout. The 48 OB pixels at the end of each line are used  
for the CLPOB and CLPDM signals.  
SEQUENCE 2 (OPTIONAL)  
2 VERTICAL OB LINES  
USE SEQUENCE 3  
EFFECTIVE IMAGE AREA  
V
10 VERTICAL OB LINES  
USE SEQUENCE 2  
H
48 OB PIXELS  
4 OB PIXELS  
HORIZONTAL CCD REGISTER  
28 DUMMY PIXELS  
Figure 45. Example CCD Configuration  
SEQUENCE 1: VERTICAL BLANKING  
CCDIN  
INVALID PIX  
VERTICAL SHIFT  
DUMMY  
INVALID PIXELS  
VERT SHIFT  
SHP  
SHD  
H1/H3  
H2/H4  
HBLK  
PBLK  
CLPOB  
CLPDM  
CLPDM PULSE MAY BE USED DURING HORIZONTAL DUMMY PIXELS IF THE H-CLOCKS ARE USED DURING VERTICAL BLANKING.  
Figure 46. Horizontal Sequences During Vertical Blanking  
REV. A  
–37–  
AD9891/AD9895  
SEQUENCE 2: VERTICAL OPTICAL BLACK LINES  
VERTICAL SHIFT  
DUMMY  
OPTICAL BLACK  
CCDIN  
VERT SHIFT  
OPTICAL BLACK  
SHP  
SHD  
H1/H3  
H2/H4  
HBLK  
PBLK  
CLPOB  
CLPDM  
Figure 47. Horizontal Sequences During Vertical Optical Black Pixels  
SEQUENCE 3: EFFECTIVE PIXEL LINES  
OB  
OPTICAL BLACK  
OPTICAL BLACK  
VERTICAL SHIFT  
DUMMY  
EFFECTIVE PIXELS  
VERT SHIFT  
CCDIN  
SHP  
SHD  
H1/H3  
H2/H4  
HBLK  
PBLK  
CLPOB  
CLPDM  
Figure 48. Horizontal Sequences During Effective Pixels  
–38–  
REV. A  
AD9891/AD9895  
VERTICAL TIMING EXAMPLE  
Region Area 2 is the sensor gate line, where the VSG pulses trans-  
fer the image into the vertical CCD registers. This region will  
require the use of the second vertical sequence for SG lines.  
Figure 49 shows an example CCD timing chart for an interlaced  
readout. Each field can be broken down into four separate region  
areas. The vertical region change positions (RCPs) will set the  
line boundaries for each region area, and the region pointers will  
assign a unique region to each region area.  
Region Area 3 also uses the standard single line vertical shift  
timing, the same timing as Region Area 1.  
In summary, three unique regions are required to support the four  
region areas, since Region Areas 1 and 3 use the same timing.  
Region Area 0 is a high speed vertical shift region. Sweep Mode  
can be used to generate this timing operation, with the desired  
number of high speed vertical pulses needed to cleanthe  
charge from the CCDs vertical registers.  
Some of the timing parameters will need to be adjusted to read out  
the second field, such as the sensor gate pulse and line location.  
Region Area 1 consists of only two lines and uses standard  
single line vertical shift timing. The timing of this region area  
will be the same as the timing in Region Area 3.  
EXPOSURE PERIOD (tEXP  
)
INTERLACED READOUT PERIOD  
VD  
HD  
V1/VSG1  
V2  
V3/VSG2  
V4  
SUBCK  
MSHUT  
VSUB  
CLOSE  
OPEN  
OPEN  
CCD  
OUT  
REGION  
AREA 0  
REGION  
AREA 3  
REGION REGION  
AREA 1 AREA 2  
Figure 49. Vertical Timing Example—Separate Regions  
REV. A  
–39–  
AD9891/AD9895  
CIRCUIT LAYOUT INFORMATION  
The H1H4 and RG traces should be designed to have low  
inductance to avoid excessive distortion of the signals. Heavier  
traces are recommended because of the large transient current  
demand on H1H4 by the CCD. If possible, physically locating  
the AD9891/AD9895 closer to the CCD will reduce the induc-  
tance on these lines. As always, the routing path should be as  
direct as possible from the AD9891/AD9895 to the CCD.  
The AD9891/AD9895 Typical Circuit Connection is shown in  
Figure 50. Note that Pins E1 and E2 will be No Connects when  
using the AD9891. The PCB layout is critical in achieving good  
image quality from the AD989x products. All of the supply pins,  
particularly the AVDD1, TCVDD, RGVDD, and HVDD sup-  
plies, must be decoupled to ground with good quality high  
frequency chip capacitors. The decoupling capacitors should be  
located as close as possible to the supply pins and should have  
a very low impedance path to a continuous ground plane.  
There should also be a 4.7 µF or larger value bypass capacitor  
for each main supplyAVDD, RGVDD, HVDD, and DRVDD  
although this is not necessary for each individual pin. In most  
applications, it is easier to share the supply for RGVDD and  
HVDD, which may be done as long as the individual supply  
pins are separately bypassed. A separate 3 V supply may also be  
used for DRVDD, but this supply pin should still be decoupled  
to the same ground plane as the rest of the chip. A separate  
ground for DRVSS is not recommended.  
The AD9891/AD9895 also contains an on-chip oscillator for  
driving an external crystal. Figure 51 shows an example appli-  
cation using a typical 18 MHz crystal. For the exact values of  
the external resistors and capacitors, it is best to consult with  
the crystal manufacturers data sheet.  
AD9891/AD9895  
C10  
CLI  
CLO  
1Mꢁ  
The analog bypass pins (BYP13, VRB, VRT) should also be  
carefully decoupled to ground as close as possible to their re-  
spective pins. The analog input (CCDIN) capacitor should also  
be located close to the pin.  
500ꢁ  
20pF  
20pF  
18MHz  
XTAL  
Figure 51. Crystal Driver Application  
3V  
ANALOG  
SUPPLY  
TO STROBE CIRCUIT  
0.1F  
TO MECHANICAL SHUTTER CIRCUIT  
EXTERNAL SYNC FROM ASIC/DSP  
5
3
LINE/FIELD/CLAMP SYNC TO ASIC/DSP  
SERIAL INTERFACE TO ASIC OR DSP  
D3  
F1  
+
REFT  
REFB  
AVSS2  
AVDD2  
BYP3  
CCDIN  
BYP2  
BYP1  
AVSS1  
AVDD1  
TCVDD  
TCVSS  
CLI  
1F  
1F  
A5  
A6  
4.7F  
D4  
G2  
D5  
G1  
B6  
3V  
D6  
H2  
D7  
H1  
D8  
J2  
B7  
ANALOG  
SUPPLY  
0.1F  
A7  
0.1F  
A8  
OUTPUT FROM CCD  
D9  
J1  
0.1F  
0.1F  
0.1F  
B8  
D10  
AD9895  
K2  
A9  
(MSB) D11  
DRVDD  
DRVSS  
VSUB  
SUBCK  
V1  
10  
TOP VIEW  
K1  
K3  
K4  
J3  
J4  
K5  
J5  
K6  
B9  
DATA OUTPUTS  
3V  
(Not to Scale)  
3V  
A10  
B10  
C9  
ANALOG  
SUPPLY  
0.1F  
4.7F  
0.1F  
DRIVER  
SUPPLY  
+
MASTER CLOCK INPUT  
C10  
D10  
E10  
D9  
CLO  
V2  
5V  
RG  
RGVDD  
RG  
V3  
+
VSUB TO CCD  
SUPPLY  
4.7F  
0.1F  
RG, H1–H4 TO CCD  
5
+
5V  
H1–H4  
SUPPLY  
9
4.7F  
0.1F  
V1–V4,  
VSG1–VSG4,  
SUBCK  
TO V-DRIVER  
Figure 50. AD9891/AD9895 Typical Circuit Configuration  
–40–  
REV. A  
AD9891/AD9895  
SERIAL INTERFACE TIMING  
bits located in the higher of the two addresses. For example, the  
six LSBs of the OPRMODE Register, OPRMODE[5:0], are  
located at Addr 0x00. The most significant six bits of the  
OPRMODE Register, OPRMODE[11:6], are located at  
Addr 0x1. The following rules must be followed when access-  
ing double-wide registers:  
All of the internal registers of the AD9891/AD9895 are accessed  
through a 3-wire serial interface. Each register consists of a  
10-bit address and a 6-bit data-word. Both the 10-bit address and  
6-bit data-word are written starting with the LSB. To write to  
each register, a 16-bit operation is required, as shown in  
Figure 52. Although many registers are less than six bits wide, all  
six bits must be written to for each register. If the register is only  
two bits wide, then the upper four bits are Dont Cares and can  
be filled with 0s during the serial write operation. If less than six  
bits are written, the register will not be updated with new data.  
1. When accessing a double-wide register, BOTH addresses  
must be written to.  
2. The lower of the two consecutive addresses for the double-  
wide register must be written to first. In the example of the  
OPRMODE Register, the contents of Addr 0x00 must be  
written first followed by the contents of Addr 0x01. The  
register will be internally updated after the completion of  
the write to Register 0x01, either at the next SL rising edge  
or the next VD/HD falling edge depending on the register.  
Because of the large number of registers in the AD9891/AD9895,  
Figure 53 shows a more efficient way to write to the registers,  
using the AD9891/AD9895s address auto-increment capability.  
Using this method, the lowest desired address is written first, fol-  
lowed by multiple 6-bit data-words. Each new 6-bit data-word will  
automatically be written to the next highest register address. By  
eliminating the need for each 10-bit address to be written,  
faster register loading is accomplished. Address auto-incre-  
ment may be used starting with any register location and may be  
used to write to as few as two registers or as many as the entire  
register space.  
3. A single write to the lower of the two consecutive addresses  
of a double-wide register that is not followed by a write to  
the higher address of the registers is not supported. This will  
not update the register.  
4. A single write to the higher of the two consecutive addresses  
of a double-wide register that is not preceded by a write to  
the lower of the two addresses is not supported. Although  
the write to the higher address will update the full double-  
wide register, the lower six bits of the register will be written  
with an indeterminate value if the lower address was not  
written to first.  
Notes About Accessing a Double-Wide Register  
There are many double-wide registers in the AD9891/  
AD9895. These registers are configured into two consecutive  
6-bit registers with the least significant six bits located in the  
lower of the two addresses and the remaining most significant  
SDATA  
SCK  
SL  
A0  
A1  
A2  
A4  
A5  
A6  
A7  
A8  
A9  
D0  
D1  
D2  
D3  
D4  
D5  
A3  
tDS  
tDH  
tLH  
tLS  
SL UPDATED  
VD/HD UPDATED  
VD  
HD  
NOTES  
SDATA BITS ARE LATCHED ON SCK RISING EDGES.  
EACH INTERNAL REGISTER IS PRELOADED WITH NEW DATA AT SL RISING EDGE.  
NEW DATA IS UPDATED AT EITHER THE SL RISING EDGE OR AT THE HD FALLING EDGE AFTER THE NEXT VD FALLING EDGE.  
VD/HD UPDATE POSITION MAY BE DELAYED TO ANY HD FALLING EDGE IN THE FIELD USING THE UPDATE REGISTER.  
Figure 52. Serial Write Operation  
DATA FOR STARTING  
REGISTER ADDRESS  
DATA FOR NEXT  
REGISTER ADDRESS  
A0  
A1  
A2  
A4  
A5  
A6  
A7  
A8  
A9  
D0  
D1  
D2  
D3  
D4  
D5  
D0  
D1  
D2  
D3  
D4  
D5  
D0  
A3  
SDATA  
SCK  
SL  
NOTES  
MULTIPLE SEQUENTIAL REGISTERS MAY BE LOADED CONTINUOUSLY.  
THE FIRST (LOWEST ADDRESS) REGISTER ADDRESS IS WRITTEN FOLLOWED BY MULTIPLE 6-BIT DATA-WORDS.  
THE ADDRESS WILL AUTOMATICALLY INCREMENT WITH EACH 6-BIT DATA-WORD.  
SL IS HELD LOW UNTIL THE LAST DESIRED REGISTER HAS BEEN LOADED.  
NEW DATA IS UPDATED AT EITHER THE SL RISING EDGE OR AT THE HD FALLING EDGE AFTER THE NEXT VD FALLING EDGE.  
Figure 53. Continuous Serial Write Operation  
REV. A  
–41–  
AD9891/AD9895  
NOTES ON REGISTER LISTING  
Table XVIII. SG-Line Updated Registers  
Description  
1. Registers larger than six bits occupy two adjacent addresses.  
When writing to these registers, the lower address contain-  
ing the least significant data bits should be written to first.  
The data for both addresses should be written to avoid  
corruption of register data.  
Register  
SUBCKPOL  
SUBCK Start Polarity  
SUBCK1TOG1  
SUBCK1TOG2  
SUBCK2TOG1  
SUBCK2TOG2  
SUBCKNUM  
SUBCK First Toggle Position  
SUBCK Second Toggle Position  
Second SUBCK First Toggle Position  
Second SUBCK Second Toggle Position  
Total Number of SUBCKs per Field  
Number of SUBCKs to Suppress after  
VSG Line  
2. All addresses and default values are expressed in hexadecimal.  
3. All registers are VD/HD updated as shown in Figure 52, except  
for the registers indicated in Table XVII, which are SL updated.  
SUBCKSUPPRESS  
4. The registers indicated in Table XVIII are not updated by  
SL or VD/HD, but are updated at the HD line following  
the VSG line.  
Table XVII. SL-Updated Register  
Register  
Description  
OPRMODE  
CTLMODE  
SW_RESET  
READBACK  
AFE Operation Modes  
AFE Control Modes  
Software Reset Bit  
Enables Serial Register Readback  
Mode  
FIELDVAL  
H1HBLKRETIME  
Resets Internal Field Pulse.  
Retimes the H1 HBLK to Internal  
Clock  
H3HBLKRETIME  
Retimes the H3 HBLK to Internal  
Clock  
SYNCENABLE  
SYNCPOL  
SYNCSUSPEND  
External Synchronization Enable  
External SYNC Active Polarity  
SYNC Suspend while Active  
Reset Bar Signal for Internal TG  
Core  
TG_CORE RSTB  
FFTRANCCD  
H12POL  
H1POSLOC  
H1NEGLOC  
H34POL  
H3POSLOC  
H3NEGLOC  
H1DRV  
Frame Transfer CCD Mode  
H1/H2 Polarity Control  
H1 Positive Edge Location  
H1 Negative Edge Location  
H3/H4 Polarity Control  
H3 Positive Edge Location  
H3 Negative Edge Location  
H1 Drive Current  
H2DRV  
H2 Drive Current  
H3DRV  
H4DRV  
H3 Drive Current  
H4 Drive Current  
RGPOL  
RG Polarity  
RGPOSLOC  
RGNEGLOC  
SHPLOC  
SHDLOC  
MASTER  
VDHDPOL  
SINGLE_CLAMP  
DOUT_DELAY  
OSC_PWRDOWN  
VDHDPOL  
RG Positive Edge Location  
RG Negative Edge Location  
SHP Sample Location  
SHD Sample Location  
VD/HD Master/Slave Timing Mode  
VD/HD Active Polarity  
Sets CLPDM = CLPOB  
Sets the Output Delay of DOUT  
Powers Down the CLO Oscillator  
VD/HD Active Polarity  
–42–  
REV. A  
AD9891/AD9895  
Table XIX. AFE Register Map  
Bit  
Width  
Default  
Value  
Address  
Content  
Register Name Register Description  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
[5:0]  
[1:0]  
[5:0]  
[3:0]  
[5:0]  
[1:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
6
2
6
4
6
2
6
6
6
6
6
10  
00  
05  
01  
00  
02  
00  
00  
00  
00  
00  
OPRMODE[5:0]  
OPRMODE[7:6]  
CCDGAIN[5:0]  
CCDGAIN[9:6]  
REFBLACK[5:0]  
REFBLACK[7:6]  
CTLMODE  
PXGA GAIN0  
PXGA GAIN1  
PXGA GAIN2  
PXGA GAIN3  
AFE Operation Mode (See Table XXXI.)  
VGA Gain (Defaults to 2 dB)  
Black Clamp Level  
Control Mode (See Table XXXI.)  
PxGA Color 0 Gain  
PxGA Color 1 Gain  
PxGA Color 2 Gain  
PxGA Color 3 Gain  
Table XX. MISCELLANEOUS/EXTRA Register Map  
Default  
Bit  
Width  
Address  
Content  
Value  
Register Name  
Register Description  
010  
017  
018  
019  
[5:0]  
[0]  
[0]  
6
1
1
6
00  
00  
00  
00  
INTIAL2  
See Power-Up Sequence. Should be set to 4.”  
Software Reset (1 = Reset All Registers to Default)  
Output Control (0 = Make All Outputs DC Inactive)  
Serial Data Update Control. Sets the line (HD)  
within the field for the serial data update to occur.  
SW_RESET  
OUT_CONT  
UPDATE[5:0]  
[5:0]  
01A  
01B  
01C  
01D  
01E  
[5:0]  
[0]  
[0]  
[5:0]  
[0]  
6
1
1
6
1
00  
00  
00  
00  
00  
UPDATE[11:6]  
PREVENTUPDATE  
READBACK  
DOUTPHASE  
DCLKMODE  
Prevents the Update of the VD Updated Registers  
Serial Interface Readback Enable  
DOUT Phase Control  
DCLK Mode (0 = DCLK Tracks DOUT Phase,  
1 = DCLK Is CLO, i.e., CLI Inverse)  
Divide CLI Input Clock by 2  
Disable CCDIN DC Restore Circuit during PBLK  
(1 = Disable)  
01F  
020  
[0]  
[0]  
1
1
00  
00  
CLIDIVIDE  
DISABLERESTORE  
021  
[0]  
1
01  
FIELDVAL  
Reset Internal Field Pulse Value (0 = Next Field  
Odd, 1 = Next Field Even)  
022  
023  
024  
025  
026  
027  
028  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
1
1
1
1
1
1
1
00  
00  
00  
00  
00  
00  
00  
H1HBLKRETIME  
H3HBLKRETIME  
SYNCENABLE  
SYNCPOL  
SYNCSUSPEND  
OUTPUTLD  
Re-time H1/H2 HBLK to Internal H1 Clock  
Re-time H3/H4 HBLK to Internal H3 Clock  
External Synchronization Enable (1 = Enable)  
SYNC Active Polarity (0 = Active LOW)  
Suspend Clocks during SYNC Active (1 = Suspend)  
Assign LD/FD Output (0 = FD, 1 = LD)  
Assign CLPOB/PBLK Output (0 = CLPOB,  
1 = PBLK)  
OUTPUTPBLK  
029  
[0]  
[0]  
1
1
00  
00  
TGCORE_RSTB  
FTRANCCD  
TG Core Reset_bar (0 = Hold TG Core in Reset,  
1 = Resume Operation)  
Frame Transfer CCD Mode (1 = VSG1VSG4  
02A  
Become V5V8 Out)  
02B  
031  
[5:0]  
[0]  
6
1
00  
01  
INTIAL1  
SINGLE_CLAMP  
See Power-Up Sequence. Should be set to 53.”  
CLPDM = CLPOB when Set to 1 (Only CLPOB  
Registers Used).  
032  
033  
[1:0]  
[0]  
2
1
02  
01  
DOUT_DELAY  
Delay from DCLK to DOUT (0 = No Delay,  
1 = 4 ns, 2 = 8 ns, 3 = 12 ns)  
CLO Oscillator Power-Down (0 = Oscillator Is  
Powered Down)  
OSC_PWRDOWN  
REV. A  
–43–  
AD9891/AD9895  
Table XXI. CLPDM/CLPOB Shared Register Map  
Default  
Bit  
Width  
Address  
Content  
Value  
Register Name  
Register Description  
064  
0
00  
CLPSCP0  
CLPOB/DM Sequence-Change Position #0  
(Hard-Coded to 0)  
065  
066  
067  
068  
069  
06A  
06B  
06C  
06D  
06E  
06F  
070  
071  
072  
073  
074  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
3F  
CLPSCP1[5:0]  
CLPSCP1[11:6]  
CLPSCP2[5:0]  
CLPSCP2[11:6]  
CLPSCP3[5:0]  
CLPSCP3[11:6]  
CLPMASK0[5:0]  
CLPMASK0[11:6]  
CLPMASK1[5:0]  
CLPMASK1[11:6]  
CLPMASK2[5:0]  
CLPMASK2[11:6]  
CLPMASK3[5:0]  
CLPMASK3[11:6]  
CLPMASK4[5:0]  
CLPMASK4[11:6]  
CLPOB/CLPDM Sequence-Change Position #1  
CLPOB/CLPDM Sequence-Change Position #2  
CLPOB/CLPDM Sequence-Change Position #3  
CLPOB/CLPDM Masking Line #0  
CLPOB/CLPDM Masking Line #1  
CLPOB/CLPDM Masking Line #2  
CLPOB/CLPDM Masking Line #3  
CLPOB/CLPDM Masking Line #4  
Table XXII. CLPDM Register Map  
Bit  
Width  
Default  
Value  
Address  
Content  
Register Name  
Register Description  
075  
076  
077  
078  
079  
07A  
07B  
07C  
07D  
07E  
07F  
080  
081  
082  
083  
084  
085  
086  
087  
088  
089  
08A  
08B  
08C  
[0]  
1
6
6
6
6
1
6
6
6
6
1
6
6
6
6
1
6
6
6
6
2
2
2
2
01  
2E  
00  
06  
03  
00  
3F  
3F  
3F  
3F  
00  
3F  
3F  
3F  
3F  
00  
3F  
3F  
3F  
3F  
00  
00  
00  
00  
CLPDMSPOL0  
Sequence #0: Start Polarity for CLPDM  
Sequence #0: Toggle Position 1 for CLPDM  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[1:0]  
[1:0]  
[1:0]  
[1:0]  
CLPDMTOG1_0[5:0]  
CLPDMTOG1_0[11:6]  
CLPDMTOG2_0[5:0]  
CLPDMTOG2_0[11:6]  
CLPDMSPOL1  
CLPDMTOG1_1[5:0]  
CLPDMTOG1_1[11:6]  
CLPDMTOG2_1[5:0]  
CLPDMTOG2_1[11:6]  
CLPDMSPOL2  
CLPDMTOG1_2[5:0]  
CLPDMTOG1_2[11:6]  
CLPDMTOG2_2[5:0]  
CLPDMTOG2_2[11:6]  
CLPDMSPOL3  
CLPDMTOG1_3[5:0]  
CLPDMTOG1_3[11:6]  
CLPDMTOG2_3[5:0]  
CLPDMTOG2_3[11:6]  
CLPDMSPTR0  
Sequence #0: Toggle Position 2 for CLPDM  
Sequence #1: Start Polarity for CLPDM  
Sequence #1: Toggle Position 1 for CLPDM  
Sequence #1: Toggle Position 2 for CLPDM  
Sequence #2: Start Polarity for CLPDM  
Sequence #2: Toggle Position 1 for CLPDM  
Sequence #2: Toggle Position 2 for CLPDM  
Sequence #3: Start Polarity for CLPDM  
Sequence #3: Toggle Position 1 for CLPDM  
Sequence #3: Toggle Position 2 for CLPDM  
CLPDM Sequence Pointer for Region #0  
CLPDM Sequence Pointer for Region #1  
CLPDM Sequence Pointer for Region #2  
CLPDM Sequence Pointer for Region #3  
CLPDMSPTR1  
CLPDMSPTR2  
CLPDMSPTR3  
–44–  
REV. A  
AD9891/AD9895  
Table XXIII. CLPOB Register Map  
Default  
Bit  
Width  
Address  
Content  
Value  
Register Name  
Register Description  
08D  
08E  
08F  
090  
091  
092  
093  
094  
095  
096  
097  
098  
099  
09A  
09B  
09C  
09D  
09E  
09F  
0A0  
0A1  
0A2  
0A3  
0A4  
[0]  
1
6
6
6
6
1
6
6
6
6
1
6
6
6
6
1
6
6
6
6
2
2
2
2
01  
0A  
00  
2F  
00  
00  
3F  
3F  
3F  
3F  
00  
3F  
3F  
3F  
3F  
00  
3F  
3F  
3F  
3F  
00  
00  
00  
00  
CLPOBPOL0  
Sequence #0: Start Polarity for CLPOB  
Sequence #0: Toggle Position 1 for CLPOB  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[1:0]  
[1:0]  
[1:0]  
[1:0]  
CLPOBTOG1_0[5:0]  
CLPOBTOG1_0[11:6]  
CLPOBTOG2_0[5:0]  
CLPOBTOG2_0[11:6]  
CLPOBPOL1  
CLPOBTOG1_1[5:0]  
CLPOBTOG1_1[11:6]  
CLPOBTOG2_1[5:0]  
CLPOBTOG2_1[11:6]  
CLPOBPOL2  
CLPOBTOG1_2[5:0]  
CLPOBTOG1_2[11:6]  
CLPOBTOG2_2[5:0]  
CLPOBTOG2_2[11:6]  
CLPOBSPOL3  
CLPOBTOG1_3[5:0]  
CLPOBTOG1_3[11:6]  
CLPOBTOG2_3[5:0]  
CLPOBTOG2_3[11:6]  
CLPOBSPTR0  
Sequence #0: Toggle Position 2 for CLPOB  
Sequence #1: Start Polarity for CLPOB  
Sequence #1: Toggle Position 1 for CLPOB  
Sequence #1: Toggle Position 2 for CLPOB  
Sequence #2: Start Polarity for CLPOB  
Sequence #2: Toggle Position 1 for CLPOB  
Sequence #2: Toggle Position 2 for CLPOB  
Sequence #3: Start Polarity for CLPOB  
Sequence #3: Toggle Position 1 for CLPOB  
Sequence #3: Toggle Position 2 for CLPOB  
CLPOB Sequence Pointer for Region #0  
CLPOB Sequence Pointer for Region #1  
CLPOB Sequence Pointer for Region #2  
CLPOB Sequence Pointer for Region #3  
CLPOBSPTR1  
CLPOBSPTR2  
CLPOBSPTR3  
Table XXIV. HBLK Register Map*  
Bit  
Width  
Default  
Value  
Address  
Content  
Register Name  
Register Description  
0A5  
0A6  
0A7  
0A8  
0A9  
0AA  
0AB  
0AC  
0AD  
0AE  
0AF  
0B0  
0B1  
0B2  
0B3  
0B4  
0B5  
0B6  
0B7  
0B8  
0B9  
0BA  
0BB  
0BC  
[0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
1
1
6
6
6
6
1
1
6
6
6
6
1
1
6
6
6
6
1
1
6
6
6
6
01  
01  
34  
00  
2C  
02  
00  
00  
3F  
3F  
3F  
3F  
00  
00  
3F  
3F  
3F  
3F  
00  
00  
3F  
3F  
3F  
3F  
HBLKMASK_H1_0  
HBLKMASK_H3_0  
HBLKTOG1_0[5:0]  
HBLKTOG1_0[11:6]  
HBLKTOG2_0[5:0]  
HBLKTOG2_0[11:6]  
HBLKMASK_H1_1  
HBLKMASK_H3_1  
HBLKTOG1_1[5:0]  
HBLKTOG1_1[11:6]  
HBLKTOG2_1[5:0]  
HBLKTOG2_1[11:6]  
HBLKMASK_H1_2  
HBLKMASK_H3_2  
HBLKTOG1_2[5:0]  
HBLKTOG1_2[11:6]  
HBLKTOG2_2[5:0]  
HBLKTOG2_2[11:6]  
HBLKMASK_H1_3  
HBLKMASK_H3_3  
HBLKTOG1_3[5:0]  
HBLKTOG1_3[11:6]  
HBLKTOG2_3[5:0]  
HBLKTOG2_3[11:6]  
Sequence #0: H1 Masking Polarity for HBLK  
Sequence #0: H3 Masking Polarity for HBLK  
Sequence #0: Toggle Position 1 for HBLK  
Sequence #0: Toggle Position 2 for HBLK  
Sequence #1: H1 Masking Polarity for HBLK  
Sequence #1: H3 Masking Polarity for HBLK  
Sequence #1: Toggle Position 1 for HBLK  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
Sequence #1: Toggle Position 2 for HBLK  
Sequence #2: H1 Masking Polarity for HBLK  
Sequence #2: H3 Masking Polarity for HBLK  
Sequence #2: Toggle Position 1 for HBLK  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
Sequence #2: Toggle Position 2 for HBLK  
Sequence #3: H1 Masking Polarity for HBLK  
Sequence #3: H3 Masking Polarity for HBLK  
Sequence #3: Toggle Position 1 for HBLK  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
Sequence #3: Toggle Position 2 for HBLK  
*HBLK Sequence-Change Positions shared with the vertical transfer pulses.  
REV. A  
–45–  
AD9891/AD9895  
Table XXV. PBLK Register Map  
Register Name  
Bit  
Width  
Default  
Value  
Address  
Content  
Register Description  
0BD  
0BE  
0BF  
0C0  
0C1  
0C2  
0C3  
0C4  
0C5  
0C6  
0C7  
0C8  
0C9  
0CA  
0CB  
0CC  
0CD  
0CE  
0CF  
0D0  
[0]  
1
6
6
6
6
1
6
6
6
6
1
6
6
6
6
1
6
6
6
6
0
00  
10  
03  
3F  
3F  
00  
3F  
3F  
3F  
3F  
00  
3F  
3F  
3F  
3F  
00  
3F  
3F  
3F  
3F  
00  
PBLKSPOL0  
Sequence #0: Start Polarity for PBLK  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
PBLKTOG1_0[5:0]  
PBLKTOG1_0[11:6]  
PBLKBTOG2_0[5:0]  
PBLKBTOG2_0[11:6]  
PBLKSPOL1  
Sequence #0: Toggle Position 1 for PBLK  
Sequence #0: Toggle Position 2 for PBLK  
Sequence #1: Start Polarity for PBLK  
Sequence #1: Toggle Position 1 for PBLK  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
PBLKTOG1_1[5:0]  
PBLKTOG1_1[11:6]  
PBLKTOG2_1[5:0]  
PBLKTOG2_1[11:6]  
PBLKSPOL2  
PBLKTOG1_2[5:0]  
PBLKTOG1_2[11:6]  
PBLKTOG2_2[5:0]  
PBLKTOG2_2[11:6]  
PBLKSPOL3  
PBLKTOG1_3[5:0]  
PBLKTOG1_3[11:6]  
PBLKTOG2_3[5:0]  
PBLKTOG2_3[11:6]  
PBLKSCP0  
Sequence #1: Toggle Position 2 for PBLK  
Sequence #2: Start Polarity for PBLK  
Sequence #2: Toggle Position 1 for PBLK  
Sequence #2: Toggle Position 2 for PBLK  
Sequence #3: Start Polarity for PBLK  
Sequence #3: Toggle Position 1 for PBLK  
Sequence #3: Toggle Position 2 for PBLK  
PBLK Sequence-Change Position #0  
(Hard-Coded to 0)  
0D1  
0D2  
0D3  
0D4  
0D5  
0D6  
0D7  
0D8  
0D9  
0DA  
[1:0]  
[5:0]  
[5:0]  
[1:0]  
[5:0]  
[5:0]  
[1:0]  
[5:0]  
[5:0]  
[1:0]  
2
6
6
2
6
6
2
6
6
2
00  
3F  
3F  
00  
3F  
3F  
00  
3F  
3F  
00  
PBLKSPTR0  
PBLK Sequence Pointer for Region #0  
PBLK Sequence-Change Position #1  
PBLKSCP1[5:0]  
PBLKSCP1[11:6]  
PBLKSPTR1  
PBLK Sequence Pointer for Region #1  
PBLK Sequence-Change Position #2  
PBLKSCP2[5:0]  
PBLKSCP2[11:6]  
PBLKSPTR2  
PBLKSCP3[5:0]  
PBLKSCP3[11:6]  
PBLKSPTR3  
PBLK Sequence Pointer for Region #2  
PBLK Sequence-Change Position #3  
PBLK Sequence Pointer for Region #3  
Table XXVI. H1–H4, RG, SHP, SHD Register Map  
Default  
Bit  
Width  
Address  
Content  
Value  
Register Name  
Register Description  
0DB  
[0]  
1
01  
H12POL  
H1/H2 Polarity Control (0 = Inversion,  
1 = No Inversion)  
0DC  
0DD  
0DE  
[5:0]  
[5:0]  
[0]  
6
6
1
00  
20  
01  
H1POSLOC  
H1NEGLOC  
H34POL  
H1 Positive Edge Location  
H1 Negative Edge Location  
H3/H4 Polarity Control (0 = Inversion,  
1 = No Inversion)  
H3 Positive Edge Location  
H3 Negative Edge Location  
H1 Drive Strength (0 = Off, 1 = 3.5 mA,  
2 = 7 mA, 3 = 10.5 mA, 4 = 14 mA,  
5 = 17.5 mA, 6 = 21 mA, 7 = 24.5 mA)  
H2 Drive Strength  
H3 Drive Strength  
H4 Drive Strength  
RG Polarity Control (0 = Inversion,  
1 = No Inversion)  
RG Positive Edge Location  
RG Negative Edge Location  
RG Drive Strength (0 = Off, 1 = 3.5 mA,  
2 = 7 mA, 3 = 10.5 mA, 4 = 14 mA,  
5 = 17.5 mA, 6 = 21 mA, 7 = 24.5 mA)  
SHP (Positive) Edge Sampling Location  
SHD (Positive) Edge Sampling Location  
0DF  
0E0  
0E1  
[5:0]  
[5:0]  
[2:0]  
6
6
3
00  
20  
03  
H3POSLOC  
H3NEGLOC  
H1DRV  
0E2  
0E3  
0E4  
0E5  
[2:0]  
[2:0]  
[2:0]  
[0]  
3
3
3
1
03  
03  
03  
01  
H2DRV  
H3DRV  
H4DRV  
RGPOL  
0E6  
OE7  
0E8  
[5:0]  
[5:0]  
[2:0]  
6
6
3
00  
10  
02  
RGPOSLOC  
RGNEGLOC  
RGDRV  
0E9  
0EA  
[5:0]  
[5:0]  
6
6
24  
00  
SHPPOSLOC  
SHDPOSLOC  
–46–  
REV. A  
AD9891/AD9895  
Table XXVII. HD/VD Register Map  
Default  
Bit  
Width  
Address  
Content  
Value  
Register Name  
Register Description  
0EB  
[0]  
1
00  
MASTER  
VD/HD Master or Slave Timing (0 = Slave,  
1 = Master)  
0EC  
[0]  
1
00  
VDHDPOL  
VD/HD Active Polarity (0 = Low Active,  
1 = High Active)  
0ED  
0EE  
0EF  
0F0  
0F1  
0F2  
[5:0]  
[5:0]  
[4:0]  
[5:0]  
[5:0]  
[5:0]  
6
6
6
6
6
6
09  
07  
04  
33  
01  
38  
VDRISE  
VD Rising Edge Location (HD Location in Field)  
VD Field Length (Number of Lines per Field)  
VDLEN[5:0]  
VDLEN[11:6]  
HDRISE[5:0]  
HDRISE[11:6]  
HDLASTLEN[5:0]  
HD Rising Edge Location (Pixel Location in Line)  
HD Last Line Length (Number of Pixels in Last  
Line of Field)  
0F3  
[5:0]  
6
11  
HDLASTLEN[11:6]  
Table XXVIII. V1–V8 Register Map  
Bit  
Width  
Default  
Value  
Address  
Content  
Register Name  
Register Description  
0F4  
0F5  
0F6  
0F7  
0F8  
0F9  
0FA  
0FB  
0FC  
0FD  
0FE  
0FF  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
10A  
10B  
10C  
10D  
10E  
10F  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
11A  
11B  
[0]  
1
6
6
6
6
6
6
6
4
6
6
1
6
6
6
6
6
6
6
4
6
6
1
6
6
6
6
6
6
6
4
6
6
1
6
6
6
6
6
6
00  
05  
00  
12  
00  
3F  
3F  
24  
00  
03  
00  
00  
17  
00  
3F  
3F  
3F  
3F  
24  
00  
03  
00  
01  
16  
02  
2C  
04  
28  
05  
28  
05  
01  
00  
01  
1A  
01  
30  
03  
2C  
04  
VTPPOL0  
Sequence #0: Start Polarity  
Sequence #0: Toggle Position 1  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[3:0]  
[5:0]  
[11:6]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[3:0]  
[5:0]  
[11:6]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[3:0]  
[5:0]  
[11:6]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
VTPTOG1_0[5:0]  
VTPTOG1_0[11:6]  
VTPTOG2_0[5:0]  
VTPTOG2_0[11:6]  
VTPTOG3_0[5:0]  
VTPTOG3_0[11:6]  
VTPLEN0[5:0]  
VTPLEN0[9:6]  
VTPREP0[5:0]  
VTPREP0[11:6]  
VTPPOL1  
VTPTOG1_1[5:0]  
VTPTOG1_1[11:6]  
VTPTOG2_1[5:0]  
VTPTOG2_1[11:6]  
VTPTOG3_1[5:0]  
VTPTOG3_1[11:6]  
VTPLEN1[5:0]  
VTPLEN1[9:6]  
VTPREP1[5:0]  
VTPREP1[11:6]  
VTPPOL2  
VTPTOG1_2[5:0]  
VTPTOG1_2[11:6]  
VTPTOG2_2[5:0]  
VTPTOG2_2[11:6]  
VTPTOG3_2[5:0]  
VTPTOG3_2[11:6]  
VTPLEN2[5:0]  
VTPLEN2[9:6]  
VTPREP2[5:0]  
VTPREP2[11:6]  
VTPPOL3  
VTPTOG1_3[5:0]  
VTPTOG1_3[11:6]  
VTPTOG2_3[5:0]  
VTPTOG2_3[11:6]  
VTPTOG3_3[5:0]  
VTPTOG3_3[11:6]  
Sequence #0: Toggle Position 2  
Sequence #0: Toggle Position 3  
Sequence #0: Total Length  
Sequence #0: Repetitions  
Sequence #1: Start Polarity  
Sequence #1: Toggle Position 1  
Sequence #1: Toggle Position 2  
Sequence #1: Toggle Position 3  
Sequence #1: Total Length  
Sequence #1: Repetitions  
Sequence #2: Start Polarity  
Sequence #2: Toggle Position 1  
Sequence #2: Toggle Position 2  
Sequence #2: Toggle Position 3  
Sequence #2: Total Length  
Sequence #2: Repetitions  
Sequence #3: Start Polarity  
Sequence #3: Toggle Position 1  
Sequence #3: Toggle Position 2  
Sequence #3: Toggle Position 3  
REV. A  
–47–  
AD9891/AD9895  
Table XXVIII. V1–V8 Register Map (continued)  
Default  
Bit  
Width  
Address  
Content  
Value  
Register Name  
Register Description  
11C  
11D  
11E  
11F  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
12A  
12B  
12C  
12D  
12E  
12F  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
13A  
13B  
13C  
13D  
13E  
13F  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
14A  
14B  
14C  
14D  
14E  
14F  
150  
151  
152  
153  
[5:0]  
[3:0]  
[5:0]  
[11:6]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[3:0]  
[5:0]  
[11:6]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[3:0]  
[5:0]  
[11:6]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[3:0]  
[5:0]  
[11:6]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[3:0]  
[5:0]  
[11:6]  
[0]  
[5:0]  
[3:0]  
[5:0]  
[3:0]  
[5:0]  
[3:0]  
[5:0]  
6
4
6
6
1
6
6
6
6
6
6
6
4
6
6
1
6
6
6
6
6
6
6
4
6
6
1
6
6
6
6
6
6
6
4
6
6
1
6
6
6
6
6
6
6
4
6
6
1
6
4
6
4
6
4
6
2C  
04  
01  
00  
00  
34  
02  
0A  
05  
06  
06  
06  
06  
01  
00  
00  
12  
03  
2C  
04  
28  
05  
28  
05  
01  
00  
00  
3F  
3F  
3F  
3F  
3F  
3F  
00  
00  
00  
00  
00  
3F  
3F  
3F  
3F  
3F  
3F  
00  
00  
00  
00  
00  
3F  
3F  
3F  
3F  
00  
00  
00  
VTPLEN3[5:0]  
VTPLEN3[9:6]  
VTPREP3[5:0]  
VTPREP3[11:6]  
VTPPOL4  
VTPTOG1_4[5:0]  
VTPTOG1_4[11:6]  
VTPTOG2_4[5:0]  
VTPTOG2_4[11:6]  
VTPTOG3_4[5:0]  
VTPTOG3_4[11:6]  
VTPLEN4[5:0]  
VTPLEN4[9:6]  
VTPREP4[5:0]  
Sequence #3: Total Length  
Sequence #3: Repetitions  
Sequence #4: Start Polarity  
Sequence #4: Toggle Position 1  
Sequence #4: Toggle Position 2  
Sequence #4: Toggle Position 3  
Sequence #4: Total Length  
Sequence #4: Repetitions  
VTPREP4[11:6]  
VTPPOL5  
Sequence #5: Start Polarity  
Sequence #5: Toggle Position 1  
VTPTOG1_5[5:0]  
VTPTOG1_5[11:6]  
VTPTOG2_5[5:0]  
VTPTOG2_5[11:6]  
VTPTOG3_5[5:0]  
VTPTOG3_5[11:6]  
VTPLEN5[5:0]  
VTPLEN5[9:6]  
VTPREP5[5:0]  
Sequence #5: Toggle Position 2  
Sequence #5: Toggle Position 3  
Sequence #5: Total Length  
Sequence #5: Repetitions  
VTPREP5[11:6]  
VTPPOL6  
Sequence #6: Start Polarity  
Sequence #6: Toggle Position 1  
VTPTOG1_6[5:0]  
VTPTOG1_6[11:6]  
VTPTOG2_6[5:0]  
VTPTOG2_6[11:6]  
VTPTOG3_6[5:0]  
VTPTOG3_6[11:6]  
VTPLEN6[5:0]  
VTPLEN6[9:6]  
VTPREP6[5:0]  
Sequence #6: Toggle Position 2  
Sequence #6: Toggle Position 3  
Sequence #6: Total Length  
Sequence #6: Repetitions  
VTPREP6[11:6]  
VTPPOL7  
Sequence #7: Start Polarity  
Sequence #7: Toggle Position 1  
VTPTOG1_7[5:0]  
VTPTOG1_7[11:6]  
VTPTOG2_7[5:0]  
VTPTOG2_7[11:6]  
VTPTOG3_7[5:0]  
VTPTOG3_7[11:6]  
VTPLEN7[5:0]  
VTPLEN7[9:6]  
VTPREP7[5:0]  
Sequence #7: Toggle Position 2  
Sequence #7: Toggle Position 3  
Sequence #7: Total Length  
Sequence #7: Repetitions  
VTPREP7[11:6]  
VTPPOL8  
Sequence #8: Start Polarity  
Sequence #9: Toggle Position 1  
VTPTOG1_8[5:0]  
VTPTOG1_8[9:6]  
VTPTOG2_8[5:0]  
VTPTOG2_8[9:6]  
VTPLEN8[5:0]  
VTPLEN8[9:6]  
VTPREP8  
Sequence #8: Toggle Position 2  
Sequence #8: Total Length  
Sequence #8: Repetitions  
–48–  
REV. A  
AD9891/AD9895  
Table XXVIII. V1–V8 Register Map (continued)  
Default  
Bit  
Width  
Address  
Content  
Value  
Register Name  
Register Description  
154  
155  
156  
157  
158  
159  
15A  
15B  
15C  
15D  
15E  
15F  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
16A  
16B  
[0]  
1
6
4
6
4
6
4
6
1
6
4
6
4
6
4
6
1
6
4
6
4
6
4
6
0
00  
3F  
3F  
3F  
3F  
00  
00  
00  
00  
3F  
3F  
3F  
3F  
00  
00  
00  
00  
3F  
3F  
3F  
3F  
00  
00  
00  
00  
VTPPOL8  
Sequence #9: Start Polarity  
Sequence #9: Toggle Position 1  
[5:0]  
[3:0]  
[5:0]  
[3:0]  
[5:0]  
[3:0]  
[5:0]  
[0]  
[5:0]  
[3:0]  
[5:0]  
[3:0]  
[5:0]  
[3:0]  
[5:0]  
[0]  
[5:0]  
[3:0]  
[5:0]  
[3:0]  
[5:0]  
[3:0]  
[5:0]  
VTPTOG1_9[5:0]  
VTPTOG1_9[9:6]  
VTPTOG2_9[5:0]  
VTPTOG2_9[9:6]  
VTPLEN9[5:0]  
VTPLEN9[9:6]  
VTPREP9  
Sequence #9: Toggle Position 2  
Sequence #9: Total Length  
Sequence #9: Repetitions  
Sequence #10: Start Polarity  
Sequence #10: Toggle Position 1  
VTPPOL10  
VTPTOG1_10[5:0]  
VTPTOG1_10[6:0]  
VTPTOG2_10[5:0]  
VTPTOG2_10[9:6]  
VTPLEN10[5:0]  
VTPLEN10[9:6]  
VTPREP10  
Sequence #10: Toggle Position 2  
Sequence #10: Total Length  
Sequence #10: Repetitions  
Sequence #11: Start Polarity  
Sequence #11: Toggle Position 1  
VTPPOL11  
VTPTOG1_11[5:0]  
VTPTOG1_11[9:6]  
VTPTOG2_11[5:0]  
VTPTOG2_11[9:6]  
VTPLEN11[5:0]  
VTPLEN11[9:6]  
VTPREP11  
Sequence #11: Toggle Position 2  
Sequence #11: Total Length  
Sequence #11: Repetitions  
V Region-Change Position #0  
VTPRCP0  
(Hard-Coded to 0)  
16C  
16D  
16E  
16F  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
17A  
17B  
17C  
17D  
17E  
17F  
180  
181  
182  
183  
184  
185  
186  
187  
188  
[2:0]  
[5:0]  
[5:0]  
[2:0]  
[5:0]  
[5:0]  
[2:0]  
[5:0]  
[5:0]  
[2:0]  
[5:0]  
[5:0]  
[2:0]  
[5:0]  
[5:0]  
[2:0]  
[5:0]  
[5:0]  
[2:0]  
[5:0]  
[5:0]  
[2:0]  
[0]  
3
6
6
3
6
6
3
6
6
3
6
6
3
6
6
3
6
6
3
6
6
3
1
1
6
6
2
1
4
00  
3F  
3F  
00  
3F  
3F  
00  
3F  
3F  
00  
3F  
3F  
00  
3F  
3F  
00  
3F  
3F  
00  
3F  
3F  
00  
00  
00  
30  
23  
00  
00  
00  
VTPREGPTR0  
VTPRCP1[5:0]  
VTPRCP1[11:6]  
VTPREGPTR1  
VTPRCP2[5:0]  
VTPRCP2[11:6]  
VTPREGPTR2  
VTPRCP3[5:0]  
VTPRCP3[11:6]  
VTPREGPTR3  
VTPRCP4[5:0]  
VTPRCP4[11:6]  
VTPREGPTR4  
VTPRCP5[5:0]  
VTPRCP5[11:6]  
VTPREGPTR5  
VTPRCP6[5:0]  
VTPRCP6[11:6]  
VTPREGPTR6  
VTPRCP7[5:0]  
VTPRCP7[11:6]  
VTPREGPTR7  
SWEEP0  
V Region Pointer for Sequence-Change Position #0  
V Region-Change Position #1  
V Region Pointer for Sequence-Change Position #1  
V Region-Change Position #2  
V Region Pointer for Sequence-Change Position #2  
V Region-Change Position #3  
V Region Pointer for Sequence-Change Position #3  
V Region-Change Position #4  
V Region Pointer for Sequence-Change Position #4  
V Region-Change Position #5  
V Region Pointer for Sequence-Change Position #5  
V Region-Change Position #6  
V Region Pointer for Sequence-Change Position #6  
V Region-Change Position #7  
V Region Pointer for Sequence-Change Position #7  
V Sweep for Region #0  
V Multiplier for Region #0  
[0]  
MULTI0  
[5:0]  
[5:0]  
[1:0]  
[0]  
HDLEN0[5:0]  
HDLEN0[11:6]  
HBLKSPTR0  
VTPALT0  
Region #0 HD Line Length  
HBLK Sequence for Region #0  
VTP Sequence Alternation for Region #0  
V1 Sequence for Region #0 (1st Lines)  
[3:0]  
V1SPTRFIRST0  
REV. A  
–49–  
AD9891/AD9895  
Table XXVIII. V1–V8 Register Map (continued)  
Default  
Bit  
Width  
Address  
Content  
Value  
Register Name  
Register Description  
189  
18A  
18B  
18C  
18D  
18E  
18F  
190  
191  
192  
193  
194  
[0]  
[3:0]  
[0]  
[5:0]  
[5:0]  
[3:0]  
[0]  
[3:0]  
[0]  
[5:0]  
[5:0]  
[3:0]  
[0]  
[3:0]  
[0]  
[5:0]  
[5:0]  
[3:0]  
[0]  
[3:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
1
4
1
6
6
4
1
4
1
6
6
4
1
4
1
6
6
4
1
4
1
6
6
6
6
6
6
6
6
6
6
1
1
6
6
2
1
4
1
4
1
6
6
4
1
4
1
6
6
4
1
4
1
6
00  
00  
00  
34  
00  
00  
00  
00  
00  
3D  
00  
01  
00  
00  
00  
34  
00  
01  
00  
00  
00  
3D  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
3F  
3F  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
V1INVFIRST0  
V1 Sequence Inversion for Region #0 (First Lines)  
V1 Sequence for Region #0 (Second Lines)  
V1 Sequence Inversion for Region #0 (Second Lines)  
V1 and V5 Sequence Start for Region #0  
V1SPTRSECOND0  
V1INVSECOND0  
V4_7START4[5:0]  
V1_5START0[11:6]  
V2SPTRFIRST0  
V2INVFIRST0  
V2SPTRSECOND0  
V2INVSECOND0  
V4_7START4[5:0]  
V2_6START0[11:6]  
V3SPTRFIRST0  
V3INVFIRST0  
V3SPTRSECOND0  
V3INVSECOND0  
V4_7START4[5:0]  
V3_7START0[11:6]  
V4SPTRFIRST0  
V4INVFIRST0  
V4SPTRSECOND0  
V4INVSECOND0  
V4_8START0[5:0]  
V4_8START0[11:6]  
V1_4FREEZE0[5:0]  
V1_4FREEZE0[11:6]  
V1_4RESUME0[5:0]  
V1_4RESUME0[11:6]  
V5_8FREEZE0[5:0]  
V5_8FREEZE0[11:6]  
V5_8RESUME0[5:0]  
V5_8RESUME0[11:6]  
SWEEP1  
MULTI1  
HDLEN1[5:0]  
HDLEN1[11:6]  
HBLKSPTR1  
VTPALT1  
V1SPTRFIRST1  
V1INVFIRST1  
V1SPTRSECOND1  
V1INVSECOND1  
V1_5START1[5:0]  
V1_5START1[11:6]  
V2SPTRFIRST1  
V2INVFIRST1  
V2SPTRSECOND1  
V2INVSECOND1  
V2_6START1[5:0]  
V2_6START1[11:6]  
V3SPTRFIRST1  
V3INVFIRST1  
V2 Sequence for Region #0 (First Lines)  
V2 Sequence Inversion for Region #0 (First Lines)  
V2 Sequence for Region #0 (Second Lines)  
V2 Sequence Inversion for Region #0 (Second Lines)  
V2 and V6 Sequence Start for Region #0  
V3 Sequence for Region #0 (First Lines)  
195  
196  
197  
198  
V3 Sequence Inversion for Region #0 (First Lines)  
V3 Sequence for Region #0 (Second Lines)  
V3 Sequence Inversion for Region #0 (Second Lines)  
V3 and V7 Sequence Start for Region #0  
199  
19A  
19B  
19C  
19D  
19E  
19F  
1A0  
1A1  
1A2  
1A3  
1A4  
1A5  
1A6  
1A7  
1A8  
1A9  
1AA  
1AB  
1AC  
1AD  
1AE  
1AF  
1B0  
1B1  
1B2  
1B3  
1B4  
1B5  
1B6  
1B7  
1B8  
1B9  
1BA  
1BB  
1BC  
1BD  
1BE  
V4 Sequence for Region #0 (First Lines)  
V4 Sequence Inversion for Region #0 (First Lines)  
V4 Sequence for Region #0 (Second Lines)  
V4 Sequence Inversion for Region #0 (Second Lines)  
V4 and V8 Sequence Start for Region #0  
V1V4 Freeze Start Position for Region #0  
V1V4 Resume Start Position for Region #0  
V5V8 Freeze Start Position for Region #0  
V5V8 Resume Start Position for Region #0  
V Sweep for Region #1  
V Multiplier for Region #1  
Region #1 HD Line Length  
[0]  
[5:0]  
[5:0]  
[1:0]  
[0]  
[3:0]  
[0]  
[3:0]  
[0]  
[5:0]  
[5:0]  
[3:0]  
[0]  
[3:0]  
[0]  
[5:0]  
[5:0]  
[3:0]  
[0]  
[3:0]  
[0]  
[5:0]  
HBLK Sequence for Region #1  
V Sequence Alternation for Region #1  
V1 Sequence for Region #1 (First Lines)  
V1 Sequence Inversion for Region #1 (First Lines)  
V1 Sequence for Region #1 (Second Lines)  
V1 Sequence Inversion for Region #1 (Second Lines)  
V1 and V5 Sequence Start for Region #1  
V2 Sequence for Region #1 (First Lines)  
V2 Sequence Inversion for Region #1 (First Lines)  
V2 Sequence for Region #1 (Second Lines)  
V2 Sequence Inversion for Region #1 (Second Lines)  
V2 and V6 Sequence Start for Region #1  
V3 Sequence for Region #1 (First Lines)  
V3 Sequence Inversion for Region #1 (First Lines)  
V3 Sequence for Region #1 (Second Lines)  
V3 Sequence Inversion for Region #1 (Second Lines)  
V3 and V7 Sequence Start for Region #1  
V3SPTRSECOND1  
V3INVSECOND1  
V3_7START1[5:0]  
–50–  
REV. A  
AD9891/AD9895  
Table XXVIII. V1–V8 Register Map (continued)  
Default  
Bit  
Width  
Address  
Content  
Value  
Register Name  
Register Description  
1BF  
1C0  
1C1  
1C2  
1C3  
1C4  
1C5  
1C6  
1C7  
1C8  
1C9  
1CA  
1CB  
1CC  
1CD  
1CE  
1CF  
1D0  
1D1  
1D2  
1D3  
1D4  
1D5  
1D6  
1D7  
1D8  
1D9  
1DA  
1DB  
1DC  
1DD  
1DE  
1DF  
1E0  
1E1  
1E2  
1E3  
1E4  
1E5  
1E6  
1E7  
1E8  
1E9  
1EA  
1EB  
1EC  
1ED  
1EE  
1EF  
1F0  
1F1  
1F2  
1F3  
1F4  
1F5  
[5:0]  
[3:0]  
[0]  
[3:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
6
4
1
4
1
6
6
6
6
6
6
6
6
6
6
1
1
6
6
2
1
4
1
4
1
6
6
4
1
4
1
6
6
4
1
4
1
6
6
4
1
4
1
6
6
6
6
6
6
6
6
6
6
1
1
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
3F  
3F  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
V3_7START1[11:6]  
V4SPTRFIRST1  
V4INVFIRST1  
V4 Sequence for Region #1 (First Lines)  
V4 Sequence Inversion for Region #1 (First Lines)  
V4 Sequence for Region #1 (Second Lines)  
V4 Sequence Inversion for Region #1 (Second Lines)  
V4 and V8 Sequence Start for Region #1  
V4SPTRSECOND1  
V4INVSECOND1  
V4_8START1[5:0]  
V4_8START1[11:6]  
V1_4FREEZE1[5:0]  
V1_4FREEZE1[11:6]  
V1_4RESUME1[5:0]  
V1_4RESUME1[11:6]  
V5_8FREEZE1[5:0]  
V5_8FREEZE1[11:6]  
V5_8RESUME1[5:0]  
V5_8RESUME1[11:6]  
SWEEP2  
MULTI2  
HDLEN2[5:0]  
HDLEN2[11:6]  
HBLKSPTR2  
VTPALT2  
V1SPTRFIRST2  
V1INVFIRST2  
V1SPTRSECOND2  
V1INVSECOND2  
V1_5START2[5:0]  
V1_5START2[11:6]  
V2SPTRFIRST2  
V2INVFIRST2  
V2SPTRSECOND2  
V2INVSECOND2  
V2_6START2[5:0]  
V2_6START2[11:6]  
V3SPTRFIRST2  
V3INVFIRST2  
V3SPTRSECOND2  
V3INVSECOND2  
V3_7START2[5:0]  
V3_7START2[11:6]  
V4SPTRFIRST2  
V4INVFIRST2  
V4SPTRSECOND2  
V4INVSECOND2  
V4_8START2[5:0]  
V4_8START2[11:6]  
V1_4FREEZE2[5:0]  
V1_4FREEZE2[11:6]  
V1_4RESUME2[5:0]  
V1_4RESUME2[11:6]  
V5_8FREEZE2[5:0]  
V5_8FREEZE2[11:6]  
V5_8RESUME2[5:0]  
V5_8RESUME2[11:6]  
SWEEP3  
V1V4 Freeze Start Position for Region #1  
V1V4 Resume Start Position for Region #1  
V5V8 Freeze Start Position for Region #1  
V5V8 Resume Start Position for Region #1  
V Sweep for Region #2  
V Multiplier for Region #2  
Region #2 HD Line Length  
[0]  
[5:0]  
[5:0]  
[1:0]  
[0]  
[3:0]  
[0]  
[3:0]  
[0]  
[5:0]  
[5:0]  
[3:0]  
[0]  
[3:0]  
[0]  
[5:0]  
[5:0]  
[3:0]  
[0]  
HBLK Sequence for Region #2  
V Sequence Alternation for Region #2  
V1 Sequence for Region #2 (First Lines)  
V1 Sequence Inversion for Region #2 (First Lines)  
V1 Sequence for Region #2 (Second Lines)  
V1 Sequence Inversion for Region #2 (Second Lines)  
V1 and V5 Sequence Start for Region #2  
V2 Sequence for Region #2 (First Lines)  
V2 Sequence Inversion for Region #2 (First Lines)  
V2 Sequence for Region #2 (Second Lines)  
V2 Sequence Inversion for Region #2 (Second Lines)  
V2 and V6 Sequence Start for Region #2  
V3 Sequence for Region #2 (First Lines)  
V3 Sequence Inversion for Region #2 (First Lines)  
V3 Sequence for Region #2 (Second Lines)  
V3 Sequence Inversion for Region #2 (Second Lines)  
V3 and V7 Sequence Start for Region #2  
[3:0]  
[0]  
[5:0]  
[5:0]  
[3:0]  
[0]  
V4 Sequence for Region #2 (First Lines)  
V4 Sequence Inversion for Region #2 (First Lines)  
V4 Sequence for Region #2 (Second Lines)  
V4 Sequence Inversion for Region #2 (Second Lines)  
V4 and V8 Sequence Start for Region #2  
[3:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
V1V4 Freeze Start Position for Region #2  
V1V4 Resume Start Position for Region #2  
V5V8 Freeze Start Position for Region #2  
V5V8 Resume Start Position for Region #2  
V Sweep for Region #3  
V Multiplier for Region #3  
[0]  
MULTI3  
REV. A  
–51–  
AD9891/AD9895  
Table XXVIII. V1–V8 Register Map (continued)  
Default  
Bit  
Width  
Address  
Content  
Value  
Register Name  
Register Description  
1F6  
1F7  
1F8  
1F9  
1FA  
1FB  
1FC  
1FD  
1FE  
1FF  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
20A  
20B  
20C  
20D  
20E  
20F  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
21A  
21B  
21C  
21D  
21E  
21F  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
22A  
22B  
22C  
[5:0]  
[5:0]  
[1:0]  
[0]  
[3:0]  
[0]  
[3:0]  
[0]  
[5:0]  
[5:0]  
[3:0]  
[0]  
[3:0]  
[0]  
[5:0]  
[5:0]  
[3:0]  
[0]  
[3:0]  
[0]  
[5:0]  
[5:0]  
[3:0]  
[0]  
6
6
2
1
4
1
4
1
6
6
4
1
4
1
6
6
4
1
4
1
6
6
4
1
4
1
6
6
6
6
6
6
6
6
6
6
1
1
6
6
2
1
4
1
4
1
6
6
4
1
4
1
6
6
4
3F  
3F  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
3F  
3F  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
HDLEN3[5:0]  
HDLEN3[11:6]  
HBLKSPTR3  
VTPALT3  
V1SPTRFIRST3  
V1INVFIRST3  
Region #3 HD Line Length  
HBLK Sequence for Region #3  
VTP Sequence Alternation for Region #3  
V1 Sequence for Region #3 (First Lines)  
V1 Sequence Inversion for Region #3 (First Lines)  
V1 Sequence for Region #3 (Second Lines)  
V1 Sequence Inversion for Region #3 (Second Lines)  
V1 and V5 Sequence Start for Region #3  
V1SPTRSECOND3  
V1INVSECOND3  
V1_5START3[5:0]  
V1_5START3[11:6]  
V2SPTRFIRST3  
V2INVFIRST3  
V2SPTRSECOND3  
V2INVSECOND3  
V2_6START3[5:0]  
V2_6START3[11:6]  
V3SPTRFIRST3  
V3INVFIRST3  
V3SPTRSECOND3  
V3INVSECOND3  
V3_7START3[5:0]  
V3_7START3[11:6]  
V4SPTRFIRST3  
V4INVFIRST3  
V4SPTRSECOND3  
V4INVSECOND3  
V4_8START3[5:0]  
V4_8START3[11:6]  
V1_4FREEZE3[5:0]  
V1_4FREEZE3[11:6]  
V1_4RESUME3[5:0]  
V1_4RESUME3[11:6]  
V5_8FREEZE3[5:0]  
V5_8FREEZE3[11:6]  
V5_8RESUME3[5:0]  
V5_8RESUME3[11:6]  
SWEEP4  
MULTI4  
HDLEN4[5:0]  
HDLEN4[11:6]  
HBLKSPTR4  
VTPALT4  
V1SPTRFIRST4  
V1INVFIRST4  
V1SPTRSECOND4  
V1INVSECOND4  
V1_5START4[5:0]  
V1_5START4[11:6]  
V2SPTRFIRST4  
V2INVFIRST4  
V2SPTRSECOND4  
V2INVSECOND4  
V2_6START4[5:0]  
V2_6START4[11:6]  
V4SPTRFIRST4  
V2 Sequence for Region #3 (First Lines)  
V2 Sequence Inversion for Region #3 (First Lines)  
V2 Sequence for Region #3 (Second Lines)  
V2 Sequence Inversion for Region #3 (Second Lines)  
V2 and V6 Sequence Start for Region #3  
V3 Sequence for Region #3 (First Lines)  
V3 Sequence Inversion for Region #3 (First Lines)  
V3 Sequence for Region #3 (Second Lines)  
V3 Sequence Inversion for Region #3 (Second Lines)  
V3 and V7 Sequence Start for Region #3  
V4 Sequence for Region #3 (First Lines)  
V4 Sequence Inversion for Region #3 (First Lines)  
V4 Sequence for Region #3 (Second Lines)  
V4 Sequence Inversion for Region #3 (Second Lines)  
V4 and V8 Sequence Start for Region #3  
[3:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
V1V4 Freeze Start Position for Region #3  
V1V4 Resume Start Position for Region #3  
V5V8 Freeze Start Position for Region #3  
V5V8 Resume Start Position for Region #3  
V Sweep for Region #4  
V Multiplier for Region #4  
Region #4 HD Line Length  
[0]  
[5:0]  
[5:0]  
[1:0]  
[0]  
[3:0]  
[0]  
[3:0]  
[0]  
[5:0]  
[5:0]  
[3:0]  
[0]  
[3:0]  
[0]  
[5:0]  
[5:0]  
[3:0]  
HBLK Sequence for Region #4  
VTP Sequence Alternation for Region #4  
V1 Sequence for Region #4 (First Lines)  
V1 Sequence Inversion for Region #4 (First Lines)  
V1 Sequence for Region #4 (Second Lines)  
V1 Sequence Inversion for Region #4 (Second Lines)  
V1 and V5 Sequence Start for Region #4  
V2 Sequence for Region #4 (First Lines)  
V2 Sequence Inversion for Region #4 (First Lines)  
V2 Sequence for Region #4 (Second Lines)  
V2 Sequence Inversion for Region #4 (Second Lines)  
V2 and V6 Sequence Start for Region #4  
V4 Sequence for Region #4 (First Lines)  
–52–  
REV. A  
AD9891/AD9895  
Table XXVIII. V1–V8 Register Map (continued)  
Default  
Bit  
Width  
Address  
Content  
Value  
Register Name  
Register Description  
22D  
22E  
22F  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
23A  
23B  
23C  
23D  
23E  
23F  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
24A  
24B  
24C  
24D  
24E  
24F  
250  
[0]  
[3:0]  
[0]  
[5:0]  
[5:0]  
[3:0]  
[0]  
[3:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[3:0]  
[0]  
[5:0]  
[5:0]  
[3:0]  
[0]  
1
4
1
6
6
4
1
4
1
6
6
6
6
6
6
6
6
6
6
1
4
1
6
6
4
1
6
6
4
1
6
6
4
1
6
6
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
01  
02  
00  
10  
10  
03  
00  
2A  
11  
04  
00  
32  
0F  
05  
00  
2E  
10  
V4INVFIRST4  
V4 Sequence Inversion for Region #4 (First Lines)  
V4 Sequence for Region #4 (Second Lines)  
V4 Sequence Inversion for Region #4 (Second Lines)  
V4 and V7 Sequence Start for Region #4  
V4SPTRSECOND4  
V4INVSECOND4  
V4_7START4[5:0]  
V4_7START4[11:6]  
V4SPTRFIRST4  
V4 Sequence for Region #4 (First Lines)  
V4INVFIRST4  
V4 Sequence Inversion for Region #4 (First Lines)  
V4 Sequence for Region #4 (Second Lines)  
V4 Sequence Inversion for Region #4 (Second Lines)  
V4 and V8 Sequence Start for Region #4  
V4SPTRSECOND4  
V4INVSECOND4  
V4_8START4[5:0]  
V4_8START4[11:6]  
V1_4FREEZE4[5:0]  
V1_4FREEZE4[11:6]  
V1_4RESUME4[5:0]  
V1_4RESUME4[11:6]  
V5_8FREEZE4[5:0]  
V5_8FREEZE4[11:6]  
V5_8RESUME4[5:0]  
VTP5_8RESUME4[11:6]  
VTP_SGLINEMODE  
V1SPTR_SGLINE  
V1INV_SGLINE  
V1START_SGLINE[5:0] V1 Start Position of Second V Pulse  
V1START_SGLINE[11:6]  
V2SPTR_SGLINE  
V2INV_SGLINE  
V2START_SGLINE[5:0] V2 Start Position of Second V Pulse  
V2START_SGLINE[11:6]  
V1V4 Freeze Start Position for Region #4  
V1V4 Resume Start Position for Region #4  
V5V8 Freeze Start Position for Region #4  
V5V8 Resume Start Position for Region #4  
VTP Second Sequence Output Enable during SGLINE  
V1 Second Sequence  
V1 Second Sequence Inversion  
V2 Second Sequence  
V2 Second Sequence Inversion  
[5:0]  
[5:0]  
[3:0]  
[0]  
[5:0]  
[5:0]  
[3:0]  
[0]  
V3SPTR_SGLINE  
V3INV_SGLINE  
V3START_SGLINE[5:0]  
V3START_SGLINE[11:6]  
V4SPTR_SGLINE  
V4INV_SGLINE  
V3 Second Sequence  
V3 Second Sequence Inversion  
V3 Start Position of Second VTP Pulse  
V4 Second Sequence  
V4 Second Sequence Inversion  
[5:0]  
[5:0]  
V4START_SGLINE[5:0] V4 Start Position of Second VTP Pulse  
V4START_SGLINE[11:6]  
REV. A  
–53–  
AD9891/AD9895  
Table XXIX. VSG1–VSG8 Register Map  
Default  
Bit  
Width  
Address  
Content  
Value  
Register Name  
Register Description  
251  
252  
253  
254  
255  
256  
257  
258  
259  
25A  
25B  
25C  
25D  
25E  
25F  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
26A  
26B  
26C  
26D  
26E  
26F  
270  
[0]  
1
6
6
6
6
1
6
6
6
6
1
6
6
6
6
1
6
6
6
6
6
6
2
2
2
2
2
2
2
2
6
2
01  
22  
13  
1E  
14  
01  
0C  
11  
08  
12  
01  
3F  
3F  
3F  
3F  
01  
3F  
3F  
3F  
3F  
00  
00  
00  
00  
00  
00  
01  
01  
01  
01  
00  
00  
SGPOL0  
Sequence #0: Start Polarity  
Sequence #0: Toggle Position 1  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[4:0]  
[1:0]  
[1:0]  
[1:0]  
[1:0]  
[1:0]  
[1:0]  
[1:0]  
[1:0]  
[5:0]  
[1:0]  
SGTOG1_0[5:0]  
SGTOG1_0[11:6]  
SGTOG2_0[5:0]  
SGTOG2_0[11:6]  
SGPOL1  
SGTOG1_1[5:0]  
SGTOG1_1[11:6]  
SGTOG2_1[5:0]  
SGTOG2_1[11:6]  
SGPOL2  
SGTOG1_2[5:0]  
SGTOG1_2[11:6]  
SGTOG2_2[5:0]  
SGTOG2_2[11:6]  
SGPOL3  
SGTOG1_3[5:0]  
SGTOG1_3[11:6]  
SGTOG2_3[5:0]  
SGTOG2_3[11:6]  
SGACTLINE[5:0]  
SGACTLINE11:6]  
SGSEL1  
SGSEL2  
SGSEL3  
SGSEL4  
SGSEL5  
SGSEL6  
SGSEL7  
SGSEL8  
SGMASK[5:0]  
SGMASK[7:6]  
Sequence #0: Toggle Position 2  
Sequence #1: Start Polarity  
Sequence #1: Toggle Position 1  
Sequence #1: Toggle Position 2  
Sequence #2: Start Polarity  
Sequence #2: Toggle Position 1  
Sequence #2: Toggle Position 2  
Sequence #3: Start Polarity  
Sequence #3: Toggle Position 1  
Sequence #3: Toggle Position 2  
VSG Active Line  
VSG1 Sequence Selector  
VSG2 Sequence Selector  
VSG3 Sequence Selector  
VSG4 Sequence Selector  
VSG5 Sequence Selector  
VSG6 Sequence Selector  
VSG7 Sequence Selector  
VSG8 Sequence Selector  
VSG Masking (0 = Output, 1 = Mask)  
Table XXX. SUBCK, VSUB, MSHUT Register Map  
Default  
Bit  
Width  
Address  
Content  
Value  
Register Name  
Register Description  
271  
272  
273  
274  
275  
276  
277  
278  
279  
27A  
27B  
27C  
27D  
[0]  
1
6
6
6
6
6
6
6
6
6
6
6
6
01  
0B  
01  
05  
02  
3F  
3F  
3F  
3F  
3F  
00  
00  
00  
SUBCKPOL  
SUBCK Start Polarity  
First SUBCK Toggle Position 1  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
SUBCK1TOG1[5:0]  
SUBCK1TOG1[11:6]  
SUBCK1TOG2[5:0]  
SUBCK1TOG2[11:6]  
SUBCK2TOG1[5:0]  
SUBCK2TOG1[11:6]  
SUBCK2TOG2[5:0]  
SUBCK2TOG2[11:6]  
SUBCKNUM[5:0]  
SUBCKNUM[11:6]  
SUBCKSUPPRESS  
EXPOSURE[5:0]  
First SUBCK Toggle Position 2  
Second SUBCK Toggle Position 1  
Second SUBCK Toggle Position 2  
Number of SUBCKs per Field  
Number of SUCKs to Suppress after VSG Line  
Number of Fields to Suppress SUBCK/VSG  
(Exposure Time)  
27E  
27F  
280  
[5:0]  
[0]  
[2:0]  
6
1
3
00  
00  
00  
EXPOSURE[11:6]  
VDHDOFF  
TRIGGER  
Disable VD and HD during Exposure  
VSUB (TRIGGER[0]), MSHUT (TRIGGER[1]),  
STROBE (TRIGGER[2]) Trigger  
281  
282  
[2:0]  
[0]  
3
1
02  
00  
READOUT  
VSUBMODE  
SUBCK Suppression after Exposure during Readout  
VSUB Readout Mode  
–54–  
REV. A  
AD9891/AD9895  
Table XXX. SUBCK, VSUB, MSHUT Register Map (continued)  
Default  
Bit  
Address  
Content  
Width  
Value  
Register Name  
Register Description  
283  
[0]  
1
00  
VSUBKEEPON  
VSUB Off Mode (0 = Turn Off after Readout or  
Next VD, 1 = Keep Active beyond Readout)  
VSUB Active Polarity  
284  
285  
286  
287  
288  
289  
[0]  
1
6
6
1
1
6
01  
00  
00  
00  
01  
00  
VSUBPOL  
[5:0]  
[5:0]  
[0]  
[0]  
[5:0]  
VSUBON[5:0]  
VSUBON[11:6]  
MSHUTON  
MSHUTPOL  
VSUB On Position  
MSHUT Enable (VD Aligned)  
MSHUT Active Polarity  
MSHUTONPOS_LN[5:0] MSHUT On Line Position (In Terms of HDs from  
VD Update)  
28A  
28B  
[5:0]  
[5:0]  
6
6
00  
00  
MSHUTONPOS_LN[11:6]  
MSHUTONPOS_PIX[5:0] MSHUT On Pixel Position (In Terms of Pixels  
from HD On Position)  
28C  
28D  
[5:0]  
[5:0]  
6
6
00  
00  
MSHUTONPOS_PIX[11:6]  
MSHUTOFF_FD[5:0]  
MSHUT Field Off Position (In Terms of VDs  
from Field Containing Last SUBCK)  
28E  
28F  
[5:0]  
[5:0]  
6
6
00  
00  
MSHUTOFF_FD[11:6]  
MSHUTOFF_LN[5:0]  
MSHUT Line Off Position (In Terms of HDs  
from VD Aligned Off Position)  
290  
291  
[5:0]  
[5:0]  
6
6
00  
00  
MSHUTOFF_LN[11:6]  
MSHUTOFF_PX[5:0]  
MSHUT Pixel Off Position (In Terms of Pixels  
from HD Aligned Off Position)  
292  
293  
294  
[5:0]  
[0]  
[5:0]  
6
1
6
00  
01  
00  
MSHUTOFF_PX[11:6]  
STROBPOL  
STROBON_FD[5:0]  
STROBE Active Polarity  
STROBE Field On Position (In Terms of VDs  
from Field Containing Last SUBCK)  
295  
296  
[5:0]  
[5:0]  
6
6
00  
00  
STROBON_FD[11:6]  
STROBON_LN[5:0]  
STROBE Line On Position (In Terms of HDs  
from VD Aligned On Position)  
297  
298  
[5:0]  
[5:0]  
6
6
00  
00  
STROBON_LN[11:6]  
STROBON_PX[5:0]  
STROBE Pixel On Position (In Terms of Pixels  
from HD Aligned On Position)  
299  
29A  
[5:0]  
[5:0]  
6
6
00  
00  
STROBON_PX[11:6]  
STROBOFF_FD[5:0]  
STROBE Field Off Position (In Terms of VDs  
from Field Containing Last SUBCK)  
29B  
29C  
[5:0]  
[5:0]  
6
6
00  
00  
STROBOFF_FD[11:6]  
STROBOFF_LN[5:0]  
STROBE Line Off Position (In Terms of HDs  
from VD Aligned Off Position)  
29D  
29E  
[5:0]  
[5:0]  
6
6
00  
00  
STROBOFF_LN[11:6]  
STROBOFF_PX[5:0]  
STROBE Pixel Off Position (In Terms of Pixels  
from HD Aligned Off Position)  
29F  
[5:0]  
6
00  
STROBOFF_PX[11:6]  
REV. A  
–55–  
AD9891/AD9895  
Table XXXI. AFE Register Breakdown  
Default  
Bit  
Width  
Content  
Value  
Register Name  
Register Description  
OPRMODE  
[7:0]  
8h0  
Serial Address: 10h0{OPRMODE[5:0]},  
10h1{OPRMODE[7:6]}  
[1:0]  
2h0  
2h1  
2h2  
2h3  
POWERDOWN[1:0]  
Normal Operation  
Standby1 (See Standby Modes Table)  
Standby2 (See Standby Modes Table)  
Standby3 (See Standby Modes Table)  
Disable Black Loop Clamping (HIGH Active)  
Test ModeShould Be Set LOW  
Test ModeShould Be Set HIGH  
Test ModeShould Be Set LOW  
Test ModeShould Be Set LOW  
Test ModeShould Be Set LOW  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
DISBLACK  
Test Mode  
Test Mode  
Test Mode  
Test Mode  
Test Mode  
CTLMODE  
[5:0]  
6h0  
Serial Address: 10h6{CLTMODE[5:0]}  
OFF  
Mosaic Separate  
VD Selected/Mosaic Interlaced  
Mosaic Repeat  
3-Color  
3-Color II  
4-Color  
4-Color II  
[2:0]  
3h0  
3h1  
3h2  
3h3  
3h4  
3h5  
3h6  
3h7  
CTLMODE[2:0]  
[3]  
[4]  
ENABLEPXGA  
OUTPUTLAT  
Enable PxGA (HIGH Active)  
Latch Output Data on Selected DOUT Edge  
Leave Output Latch Transparent  
ADC Outputs Are Driven  
ADC Outputs Are Three-Stated  
1h0  
1h1  
1h0  
1h1  
[5]  
TRISTATEOUT  
–56–  
REV. A  
AD9891/AD9895  
OUTLINE DIMENSIONS  
64-Lead Plastic Ball Grid Array [CSPBGA]  
(BC-64)  
Dimensions shown in millimeters  
A1 CORNER  
INDEX AREA  
9.00 BSC SQ  
10  
9
8
7
6
5
4
3
2 1  
A
B
C
D
E
F
A1  
BOTTOM  
VIEW  
TOP VIEW  
G
H
J
0.90 REF  
SQ  
K
7.20 BSC  
DETAIL A  
DETAIL A  
0.85 MIN  
0.25 MIN  
0.12 MAX  
COPLANARITY  
1.70  
MAX  
0.55  
0.50  
0.45  
SEATING  
PLANE  
0.80  
BSC  
BALL DIAMETER  
COMPLIANT TO JEDEC STANDARDS MO-205-AB  
Revision History  
Location  
8/02—Data Sheet changed from REV. 0 to REV. A.  
Added AD9895 part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal  
Page  
REV. A  
–57–  
–58–  
This datasheet has been download from:  
www.datasheetcatalog.com  
Datasheets for electronics components.  

相关型号:

AD9895KBCZ

CCD Signal Processor with Precision Timing&trade; Generator
ADI

AD9895KBCZRL

CCD Signal Processor with Precision Timing&trade; Generator
ADI

AD9895_15

CCD Signal Processors with Precision Timing Generator
ADI

AD9898

CCD Signal Processor with Precision Timing⑩ Generator
ADI

AD9898KCP-20

CCD Signal Processor with Precision Timing⑩ Generator
ADI

AD9898KCPRL-20

CCD Signal Processor with Precision Timing⑩ Generator
ADI

AD9901

Ultrahigh Speed Phase/Frequency Discriminator
ADI

AD9901KP

Ultrahigh Speed Phase/Frequency Discriminator
ADI

AD9901KP-REEL

PHASE DETECTOR, 200 MHz, PQCC20, PLASTIC, LCC-20
ROCHESTER

AD9901KPZ

Ultrahigh Speed Phase/Frequency Discriminator
ADI

AD9901KPZ-REEL

Ultrahigh Speed Phase/Frequency Discriminator
ADI

AD9901KQ

Ultrahigh Speed Phase/Frequency Discriminator
ADI