ADA4665-2ARZ-R7 [ADI]

16 V, 1 MHz, CMOS Rail-to-Rail Input/Output Operational Amplifier; 16 V , 1 MHz时, CMOS轨到轨输入/输出运算放大器
ADA4665-2ARZ-R7
型号: ADA4665-2ARZ-R7
厂家: ADI    ADI
描述:

16 V, 1 MHz, CMOS Rail-to-Rail Input/Output Operational Amplifier
16 V , 1 MHz时, CMOS轨到轨输入/输出运算放大器

运算放大器 放大器电路 光电二极管 PC
文件: 总20页 (文件大小:697K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16 V, 1 MHz, CMOS Rail-to-Rail  
Input/Output Operational Amplifier  
ADA4665-2  
PIN CONFIGURATIONS  
FEATURES  
Lower power at high voltage: 290 μA per amplifier typical  
Low input bias current: 1 pA maximum  
Wide bandwidth: 1.2 MHz typical  
Slew rate: 1 V/μs typical  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
ADA4665-2  
TOP VIEW  
(Not to Scale)  
OUT B  
–IN B  
+IN B  
Offset voltage drift: 3 μV/°C typical  
Single-supply operation: 5 V to 16 V  
Dual-supply operation: 2.5 V to 8 V  
Unity gain stable  
Figure 1. 8-Lead SOIC  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
ADA4665-2  
OUT B  
–IN B  
+IN B  
APPLICATIONS  
TOP VIEW  
(Not to Scale)  
Portable systems  
High density power budget systems  
Medical equipment  
Physiological measurement  
Precision references  
Multipole filters  
Figure 2. 8-Lead MSOP  
Sensors  
Transimpedance amplifiers  
Buffer/level shifting  
GENERAL DESCRIPTION  
The ADA4665-2 is a rail-to-rail input/output dual amplifier  
optimized for lower power budget designs. The ADA4665-2  
offers a low supply current of 400 μA maximum per amplifier  
at 25°C and 600 μA maximum per amplifier over the extended  
industrial temperature range. This feature makes the ADA4665-2  
well suited for low power applications. In addition, the ADA4665-2  
has a very low bias current of 1 pA maximum, low offset voltage  
drift of 3 μV/°C, and bandwidth of 1.2 MHz. The combination of  
these features, together with a wide supply voltage range from  
5 V to 16 V, allows the device to be used in a wide variety of  
other applications, including process control, instrumentation  
equipment, buffering, and sensor front ends. Furthermore, its  
rail-to-rail input and output swing adds to its versatility. The  
ADA4665-2 is specified from −40°C to +125°C and is available  
in standard SOIC and MSOP packages.  
Table 1. Low Cost Rail-to-Rail Input/Output Op Amps  
Supply  
Single  
Dual  
5 V  
16 V  
AD8541  
AD8542  
AD8544  
ADA4665-2  
Quad  
Table 2. Other Rail-to-Rail Input/Output Op Amps  
Supply  
Single  
Dual  
5 V  
16 V  
36 V  
AD8603  
AD8607  
AD8609  
AD8663  
AD8667  
AD8669  
ADA4091-2  
Quad  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
ADA4665-2  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Thermal Resistance.......................................................................5  
ESD Caution...................................................................................5  
Typical Performance Characteristics ..............................................6  
Applications Information.............................................................. 15  
Rail-to-Rail Input Operation.................................................... 15  
Current Shunt Sensor ................................................................ 15  
Active Filters ............................................................................... 15  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 17  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—16 V Operation ............................. 3  
Electrical Characteristics—5 V Operation................................ 4  
Absolute Maximum Ratings............................................................ 5  
REVISION HISTORY  
1/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
ADA4665-2  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—16 V OPERATION  
VSY = 16 V, VCM = VSY/2, TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VCM = 16 V  
1
1
4
6
9
mV  
mV  
mV  
μV/°C  
pA  
pA  
pA  
pA  
V
dB  
dB  
dB  
dB  
VCM = 0 V to 16 V  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Offset Voltage Drift  
Input Bias Current  
∆VOS/∆T  
IB  
3
0.1  
1
200  
1
40  
16  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
0.1  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
VCM = 0 V to 16 V  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, VO = 0.5 V to 15 V  
−40°C ≤ TA ≤ +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
0
CMRR  
AVO  
55  
50  
85  
75  
75  
Large Signal Voltage Gain  
100  
Input Resistance  
RIN  
CINDM  
CINCM  
4
2
7
GΩ  
pF  
pF  
Input Capacitance, Differential Mode  
Input Capacitance, Common Mode  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
RL = 100 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to VCM  
15.95  
15.9  
15.9  
15.8  
15.99  
15.95  
4
V
V
V
V
mV  
mV  
mV  
mV  
mA  
Ω
Output Voltage Low  
VOL  
7.5  
15  
75  
40  
−40°C ≤ TA ≤ +125°C  
150  
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ISC  
ZOUT  
30  
f = 100 kHz, AV = 1  
100  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY = 5 V to 16 V  
−40°C ≤ TA ≤ +125°C  
IO = 0 mA  
70  
65  
95  
dB  
dB  
μA  
μA  
Supply Current per Amplifier  
290  
400  
600  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time to 0.1%  
Gain Bandwidth Product  
Phase Margin  
SR  
tS  
GBP  
ΦM  
RL = 10 kΩ, CL = 50 pF, AV = 1  
VIN = 1 V step, RL = 2 kΩ, CL = 50 pF  
RL = 10 kΩ, CL = 50 pF, AV = 1  
RL = 10 kΩ, CL = 50 pF, AV = 1  
1
V/μs  
μs  
MHz  
Degrees  
6.5  
1.2  
50  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
en p-p  
en  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
3
μV p-p  
nV/√Hz  
nV/√Hz  
fA/√Hz  
32  
27  
50  
Current Noise Density  
in  
f = 1 kHz  
Rev. 0 | Page 3 of 20  
 
ADA4665-2  
ELECTRICAL CHARACTERISTICS—5 V OPERATION  
VSY = 5 V, VCM = VSY/2, TA = 25°C, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VCM = 5 V  
1
1
4
6
9
mV  
mV  
mV  
μV/°C  
pA  
pA  
pA  
pA  
V
dB  
dB  
dB  
dB  
VCM = 0 V to 5 V  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Offset Voltage Drift  
Input Bias Current  
∆VOS/∆T  
IB  
3
0.1  
1
100  
1
10  
5
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
0.1  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
VCM = 0 V to 5 V  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, VO = 0.5 V to 4.5 V  
−40°C ≤ TA ≤ +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
0
CMRR  
AVO  
55  
50  
85  
75  
75  
Large Signal Voltage Gain  
100  
Input Resistance  
RIN  
CINDM  
CINCM  
1
2
7
GΩ  
pF  
pF  
Input Capacitance, Differential Mode  
Input Capacitance, Common Mode  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
RL = 100 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to VCM  
4.95  
4.9  
4.9  
4.99  
4.96  
3
V
V
V
V
mV  
mV  
mV  
mV  
mA  
Ω
4.8  
Output Voltage Low  
VOL  
5
10  
50  
100  
30  
−40°C ≤ TA ≤ +125°C  
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ISC  
ZOUT  
8
f = 100 kHz, AV = 1  
100  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY = 5 V to 16 V  
−40°C ≤ TA ≤ +125°C  
IO = 0 mA  
70  
65  
95  
dB  
dB  
μA  
μA  
Supply Current per Amplifier  
270  
350  
600  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time to 0.1%  
Gain Bandwidth Product  
Phase Margin  
SR  
tS  
GBP  
ΦM  
RL = 10 kΩ, CL = 50 pF, AV = 1  
VIN = 1 V step, RL = 2 kΩ, CL = 50 pF  
RL = 10 kΩ, CL = 50 pF, AV = 1  
RL = 10 kΩ, CL = 50 pF, AV = 1  
1
V/μs  
μs  
MHz  
Degrees  
6.5  
1.2  
50  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
en p-p  
en  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
3
μV p-p  
nV/√Hz  
nV/√Hz  
fA/√Hz  
32  
27  
50  
Current Noise Density  
in  
f = 1 kHz  
Rev. 0 | Page 4 of 20  
 
ADA4665-2  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages. This  
value was measured using a 4-layer JEDEC standard printed  
circuit board.  
Parameter  
Rating  
Supply Voltage  
Input Voltage1  
Input Current  
Differential Input Voltage  
Output Short-Circuit Duration to GND Indefinite  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
16.5 V  
GND − 0.3 V to VSY + 0.3 V  
10 mA  
VSY  
Table 6. Thermal Resistance  
Package Type  
θJA  
θJC  
43  
52  
Unit  
°C/W  
°C/W  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
8-Lead SOIC_N (R-8)  
8-Lead MSOP (RM-8)  
158  
186  
Lead Temperature (Soldering, 60 sec) 300°C  
ESD CAUTION  
1 The input pins have clamp diodes to the power supply pins.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 5 of 20  
 
 
ADA4665-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
70  
70  
60  
50  
40  
V
V
= 5V  
= V /2  
SY  
SY  
V
V
= 16V  
= V /2  
SY  
SY  
CM  
CM  
60  
50  
40  
30  
20  
10  
30  
20  
10  
0
0
–6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
10  
5
–6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
10  
16  
V
(mV)  
V
(mV)  
OS  
OS  
Figure 3. Input Offset Voltage Distribution  
Figure 6. Input Offset Voltage Distribution  
10  
10  
V
= 16V  
V
= 5V  
SY  
–40°C T +125°C  
SY  
–40°C T +125°C  
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
A
A
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
TCV (µV/°C)  
OS  
TCV (µV/°C)  
OS  
Figure 4. Input Offset Voltage Drift Distribution  
Figure 7. Input Offset Voltage Drift Distribution  
5
5
4
V
= 5V  
V
= 16V  
SY  
SY  
4
3
3
2
2
1
1
0
0
–1  
–2  
–3  
–4  
–1  
–2  
–3  
–4  
0
1
2
3
4
0
2
4
6
8
10  
12  
14  
V
(V)  
V
(V)  
CM  
CM  
Figure 5. Input Offset Voltage vs. Common-Mode Voltage  
Figure 8. Input Offset Voltage vs. Common-Mode Voltage  
Rev. 0 | Page 6 of 20  
 
 
 
ADA4665-2  
TA = 25°C, unless otherwise noted.  
1k  
1k  
100  
10  
V
= 5V  
SY  
V
= 16V  
I
I
+
SY  
B
B
I
I
+
B
B
100  
10  
1
1
0.1  
0.01  
0.1  
0.01  
0.001  
0.001  
25  
50  
75  
100  
125  
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 9. Input Bias Current vs. Temperature  
Figure 12. Input Bias Current vs. Temperature  
1k  
1k  
V
= 5V  
V
= 16V  
SY  
SY  
100  
10  
1
100  
10  
1
125°C  
105°C  
125°C  
105°C  
85°C  
25°C  
85°C  
25°C  
0.1  
0.01  
0.1  
0.01  
0.001  
0.001  
0.0001  
0.0001  
0
1
2
3
4
5
0
2
4
6
8
10  
12  
14  
16  
V
(V)  
V
(V)  
CM  
CM  
Figure 10. Input Bias Current vs. Input Common-Mode Voltage  
Figure 13. Input Bias Current vs. Input Common-Mode Voltage  
10k  
10k  
V
= 5V  
V
= 16V  
SY  
SY  
1k  
100  
10  
1k  
100  
10  
1
0.1  
–40°C  
+25°C  
+85°C  
+125°C  
–40°C  
+25°C  
+85°C  
+125°C  
1
0.1  
0.001  
0.01  
0.001  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 11. Output Voltage (VOH) to Supply Rail vs. Load Current  
Figure 14. Output Voltage (VOH) to Supply Rail vs. Load Current  
Rev. 0 | Page 7 of 20  
ADA4665-2  
TA = 25°C, unless otherwise noted.  
10k  
10k  
1k  
V
= 16V  
V
= 5V  
SY  
SY  
1k  
100  
10  
100  
10  
1
–40°C  
+25°C  
+85°C  
+125°C  
–40°C  
+25°C  
+85°C  
+125°C  
1
0.1  
0.001  
0.1  
0.001  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 15. Output Voltage (VOL) to Supply Rail vs. Load Current  
Figure 18. Output Voltage (VOL) to Supply Rail vs. Load Current  
5.00  
4.99  
16.00  
15.99  
R
= 100k  
R
= 100kΩ  
L
L
15.98  
15.97  
15.96  
15.95  
15.94  
15.93  
15.92  
15.91  
15.90  
4.98  
4.97  
4.96  
4.95  
R
= 10kΩ  
L
R
= 10kΩ  
L
4.94  
4.93  
4.92  
V
= 5V  
SY  
V
= 16V  
SY  
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 16. Output Voltage (VOH) vs. Temperature  
Figure 19. Output Voltage (VOH) vs. Temperature  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
V
= 5V  
V
= 16V  
SY  
SY  
R
= 10kΩ  
L
R
= 10k  
L
R
= 100kΩ  
L
R
= 100kΩ  
L
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. Output Voltage (VOL) vs. Temperature  
Figure 20. Output Voltage (VOL) vs. Temperature  
Rev. 0 | Page 8 of 20  
ADA4665-2  
TA = 25°C, unless otherwise noted.  
180  
135  
90  
45  
0
180  
80  
80  
60  
V
R
C
= 5V  
= 10k  
= 50pF  
V
R
C
= 16V  
= 10kΩ  
= 50pF  
SY  
SY  
L
L
L
L
135  
60  
PHASE  
PHASE  
GAIN  
40  
20  
40  
20  
90  
45  
0
GAIN  
0
0
–20  
–40  
–20  
–40  
–45  
–90  
–45  
–90  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
Figure 21. Open-Loop Gain and Phase vs. Frequency  
Figure 24. Open-Loop Gain and Phase vs. Frequency  
50  
40  
50  
40  
V
R
= 5V  
= 10kΩ  
V
R
= 16V  
= 10kΩ  
A
= 100  
= 10  
A
= 100  
= 10  
SY  
SY  
V
V
V
L
L
30  
30  
A
A
V
20  
20  
10  
10  
A
= 1  
A
= 1  
V
V
0
0
–10  
–20  
–30  
–40  
–50  
–10  
–20  
–30  
–40  
–50  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 22. Closed-Loop Gain vs. Frequency  
Figure 25. Closed-Loop Gain vs. Frequency  
1k  
1k  
V
= 5V  
V
= 16V  
SY  
SY  
100  
100  
10  
A
= 100  
A
= 100  
V
V
10  
1
A
= 10  
V
A = 10  
V
1
A
= 1  
V
A
= 1  
V
0.1  
0.1  
0.01  
0.01  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 23. Output Impedance vs. Frequency  
Figure 26. Output Impedance vs. Frequency  
Rev. 0 | Page 9 of 20  
ADA4665-2  
TA = 25°C, unless otherwise noted.  
100  
100  
V
= 5V  
V
= 16V  
SY  
SY  
90  
80  
90  
80  
70  
60  
50  
40  
70  
60  
50  
40  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 27. CMRR vs. Frequency  
Figure 30. CMRR vs. Frequency  
120  
120  
100  
80  
V
= 5V  
V
= 16V  
SY  
SY  
100  
80  
60  
60  
40  
20  
0
40  
20  
0
PSRR+  
PSRR–  
PSRR+  
PSRR–  
–20  
100  
–20  
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 28. PSRR vs. Frequency  
Figure 31. PSRR vs. Frequency  
80  
80  
V
V
R
= 16V  
= 100mV p-p  
= 10kΩ  
V
V
R
= 5V  
= 100mV p-p  
= 10kΩ  
SY  
IN  
SY  
IN  
70  
60  
50  
40  
70  
60  
50  
40  
L
L
OS+  
OS–  
OS+  
OS–  
30  
20  
10  
0
30  
20  
10  
0
10  
100  
CAPACITANCE (pF)  
1k  
10  
100  
CAPACITANCE (pF)  
1k  
Figure 32. Small Signal Overshoot vs. Load Capacitance  
Figure 29. Small Signal Overshoot vs. Load Capacitance  
Rev. 0 | Page 10 of 20  
ADA4665-2  
TA = 25°C, unless otherwise noted.  
V
R
C
= 5V  
= 2kΩ  
= 10pF  
V
R
C
= 16V  
= 2kΩ  
= 10pF  
SY  
SY  
L
L
L
L
TIME (100µs/DIV)  
TIME (100µs/DIV)  
Figure 33. Large Signal Transient Response  
Figure 36. Large Signal Transient Response  
V
R
C
= 5V  
= 2kΩ  
= 10pF  
V
R
C
= 16V  
= 2kΩ  
= 10pF  
SY  
SY  
L
L
L
L
TIME (100µs/DIV)  
TIME (100µs/DIV)  
Figure 34. Small Signal Transient Response  
Figure 37. Small Signal Transient Response  
50  
50  
V
= ±8V  
V
= ±2.5V  
SY  
SY  
0
0
INPUT  
INPUT  
–50  
–50  
–100  
–100  
3
2
10  
5
0
1
0
OUTPUT  
OUTPUT  
–5  
–1  
TIME (20µs/DIV)  
TIME (20µs/DIV)  
Figure 35. Positive Overload Recovery  
Figure 38. Positive Overload Recovery  
Rev. 0 | Page 11 of 20  
ADA4665-2  
TA = 25°C, unless otherwise noted.  
150  
150  
V
= ±2.5V  
V
= ±8V  
SY  
SY  
100  
50  
100  
50  
INPUT  
INPUT  
0
0
OUTPUT  
0
OUTPUT  
0
–1  
–2  
–3  
–5  
–10  
TIME (20µs/DIV)  
TIME (20µs/DIV)  
Figure 39. Negative Overload Recovery  
Figure 42. Negative Overload Recovery  
V
R
C
= 16V  
= 2kΩ  
= 50pF  
SY  
V
R
C
= 5V  
= 2kΩ  
= 50pF  
SY  
L
L
L
L
INPUT  
INPUT  
OUTPUT  
OUTPUT  
+5mV  
+5mV  
ERROR  
BAND  
ERROR  
BAND  
0
0
–5mV  
–5mV  
TIME (2µs/DIV)  
TIME (2µs/DIV)  
Figure 40. Negative Settling Time to 0.1%  
Figure 43. Negative Settling Time to 0.1%  
INPUT  
INPUT  
V
= 16V  
V
= 5V  
SY  
SY  
R
C
= 2kΩ  
= 50pF  
R
C
= 2kΩ  
= 50pF  
L
L
L
L
ERROR  
BAND  
OUTPUT  
OUTPUT  
+5mV  
+5mV  
ERROR  
BAND  
0
0
–5mV  
–5mV  
TIME (2µs/DIV)  
TIME (2µs/DIV)  
Figure 41. Positive Settling Time to 0.1%  
Figure 44. Positive Settling Time to 0.1%  
Rev. 0 | Page 12 of 20  
ADA4665-2  
TA = 25°C, unless otherwise noted.  
100  
100  
V
= 5V  
V
= 16V  
SY  
SY  
10  
100  
10  
100  
1k  
10k  
100k  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 45. Voltage Noise Density vs. Frequency  
Figure 48. Voltage Noise Density vs. Frequency  
V
= 5V  
V
= 16V  
SY  
SY  
TIME (2s/DIV)  
TIME (2s/DIV)  
Figure 46. 0.1 Hz to 10 Hz Noise  
Figure 49. 0.1 Hz to 10 Hz Noise  
900  
900  
800  
700  
600  
500  
800  
700  
600  
500  
400  
300  
200  
100  
0
+125°C  
+85°C  
+25°C  
–40°C  
V
= 16V  
SY  
V
= 5V  
SY  
400  
300  
0
2
4
6
8
10  
12  
14  
16  
–50  
–25  
0
25  
50  
75  
100  
125  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 47. Supply Current vs. Supply Voltage  
Figure 50. Supply Current vs. Temperature  
Rev. 0 | Page 13 of 20  
ADA4665-2  
TA = 25°C, unless otherwise noted.  
0
0
V
R
A
= 5V  
= 10kΩ  
= –100  
V
R
A
= 16V  
= 10k  
= –100  
100kΩ  
SY  
100kΩ  
SY  
L
V
L
V
1kΩ  
1kΩ  
–20  
–40  
–20  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
V
V
V
= 1V p-p  
= 5V p-p  
= 15V p-p  
IN  
IN  
IN  
V
V
= 1V p-p  
= 4V p-p  
IN  
IN  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 51. Channel Separation vs. Frequency  
Figure 53. Channel Separation vs. Frequency  
1
1
V
R
A
= 16V  
= 10k  
= 1  
V
R
A
= 5V  
= 10kΩ  
= 1  
SY  
SY  
L
V
L
V
0.1  
0.1  
0.01  
0.001  
0.01  
V
V
V
= 1V p-p  
= 5V p-p  
= 15V p-p  
IN  
IN  
IN  
V
V
= 1V p-p  
= 4V p-p  
IN  
IN  
0.001  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 54. THD + Noise vs. Frequency  
Figure 52. THD + Noise vs. Frequency  
Rev. 0 | Page 14 of 20  
ADA4665-2  
APPLICATIONS INFORMATION  
I
RAIL-TO-RAIL INPUT OPERATION  
16V  
R
0.1Ω  
S
R
L
SUPPLY  
The ADA4665-2 is a unity-gain stable CMOS operational  
amplifier designed with rail-to-rail input/output swing  
capability to optimize performance. The rail-to-rail input  
feature is vital to maintain the wide dynamic input voltage  
range and to maximize signal swing to both supply rails. For  
example, the rail-to-rail input feature is extremely useful in  
buffer applications where the input voltage must cover both  
the supply rails.  
I
R2  
1MΩ  
R1  
10kΩ  
V
*
OUT  
16V  
1/2  
ADA4665-2  
R4  
1MΩ  
R3  
10kΩ  
The input stage has two input differential pairs, nMOS and  
pMOS. When the input common-mode voltage is at the low  
end of the input voltage range, the pMOS input differential pair  
is active and amplifies the input signal. As the input common-  
mode voltage is slowly increased, the pMOS differential pair  
gradually turns off while the nMOS input differential pair turns  
on. This transition is inherent to all rail-to-rail input amplifiers  
that use the dual differential pairs topology. For the ADA4665-2,  
this transition occurs approximately 1 V away from the positive  
rail and results in a change in offset voltage due to the different  
offset voltages of the differential pairs (see Figure 5 and Figure 8).  
*V  
= AMPLIFIER GAIN × VOLTAGE ACROSS R  
S
OUT  
= 100 × R × I  
S
= 10 × I  
Figure 55. Low-Side Current Sensing Circuit  
R
S
0.1Ω  
I
16V  
SUPPLY  
R
L
I
R4  
R3  
1MΩ  
10kΩ  
16V  
1/2  
V
*
OUT  
CURRENT SHUNT SENSOR  
ADA4665-2  
R2  
1MΩ  
R1  
10kΩ  
Many applications require the sensing of signals near the  
positive or the negative rails. Current shunt sensors are one  
such application and are mostly used for feedback control  
systems. They are also used in a variety of other applications,  
including power metering, battery fuel gauging, and feedback  
controls in electrical power steering. In such applications, it is  
desirable to use a shunt with very low resistance to minimize  
the series voltage drop. This not only minimizes wasted power,  
but also allows the measurement of high currents while saving  
power. The ADA4665-2 provides a low cost solution for  
implementing current shunt sensors.  
*V  
= AMPLIFIER GAIN × VOLTAGE ACROSS R  
S
OUT  
= 100 × R × I  
= 10 × I  
S
Figure 56. High-Side Current Sensing Circuit  
ACTIVE FILTERS  
The ADA4665-2 is well suited for active filter designs. An active  
filter requires an op amp with a unity-gain bandwidth at least  
100 times greater than the product of the corner frequency, fc,  
and the quality factor, Q. An example of an active filter is the  
Sallen-Key, one of the most widely used filter topologies. This  
topology gives the user the flexibility of implementing either  
a low-pass or a high-pass filter by simply interchanging the  
resistors and capacitors. To achieve the desired performance,  
1% or better component tolerances are usually required.  
Figure 55 shows a low-side current sensing circuit, and Figure 56  
shows a high-side current sensing circuit using the ADA4665-2.  
A typical shunt resistor of 0.1 Ω is used. In these circuits, the  
difference amplifier amplifies the voltage drop across the shunt  
resistor by a factor of 100. For true difference amplification,  
matching of the resistor ratio is very important, where R1/R2 =  
R3/R4. The rail-to-rail feature of the ADA4665-2 allows the  
output of the op amp to almost reach 16 V (the power supply of  
the op amp). This allows the current shunt sensor to sense up to  
approximately 1.6 A of current.  
Figure 57 shows a two-pole low-pass filter. It is configured as a  
unity-gain filter with cutoff frequency at 10 kHz. Resistor and  
capacitor values are chosen to give a quality factor, Q, of 1/√2  
for a Butterworth filter, which has maximally flat pass-band  
frequency response. Figure 58 shows the frequency response of  
the low-pass Sallen-Key filter. The response falls off at a rate of  
40 dB per decade after the cutoff frequency of 10 kHz.  
Rev. 0 | Page 15 of 20  
 
 
 
 
ADA4665-2  
C1  
1nF  
R1  
22.5kΩ  
Figure 59 shows a two-pole high-pass filter, with cutoff frequency  
at 10 kHz and quality factor, Q, of 1/√2.  
V
IN  
+V  
R2  
SY  
C1  
0.5nF  
R1  
22.5kΩ  
22.5kΩ  
V
IN  
1/2  
V
OUT  
C2  
0.5nF  
+V  
SY  
C2  
0.5nF  
ADA4665-2  
–V  
SY  
1/2  
V
OUT  
R2  
45kΩ  
ADA4665-2  
Figure 57. Two-Pole Low-Pass Filter  
–V  
SY  
When R1 = R2 and C1 = 2C2, the values of Q and the cutoff  
frequency are calculated as follows:  
Figure 59. Two-Pole High-Pass Filter  
When R2 = 2R1 and C1 = C2, the values of Q and the cutoff  
frequency are calculated as follows:  
R1R2C1C2  
Q =  
C2(R1+ R2)  
R1R2C1C2  
Q =  
1
fc =  
R1(C1+C2)  
2π R1 R2 C1 C2  
1
fc =  
10  
0
2π R1R2 C1C2  
10  
0
–10  
–20  
–10  
–20  
–30  
–40  
–50  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–60  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 58. Low-Pass Filter: Gain vs. Frequency  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 60. High-Pass Filter: Gain vs. Frequency  
Rev. 0 | Page 16 of 20  
 
 
 
ADA4665-2  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 61. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 62. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
Package Option  
Branding  
ADA4665-2ARZ1  
ADA4665-2ARZ-RL1  
ADA4665-2ARZ-R71  
ADA4665-2ARMZ1  
ADA4665-2ARMZ-R71  
ADA4665-2ARMZ-RL1  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
A26  
A26  
A26  
8-Lead MSOP  
8-Lead MSOP  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 17 of 20  
 
 
 
ADA4665-2  
NOTES  
Rev. 0 | Page 18 of 20  
ADA4665-2  
NOTES  
Rev. 0 | Page 19 of 20  
ADA4665-2  
NOTES  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07650-0-1/09(0)  
Rev. 0 | Page 20 of 20  
 

相关型号:

ADA4665-2ARZ-R71

16 V, 1 MHz, CMOS Rail-to-Rail Input/Output Operational Amplifier
ADI

ADA4665-2ARZ-RL

16 V, 1 MHz, CMOS Rail-to-Rail Input/Output Operational Amplifier
ADI

ADA4665-2ARZ-RL1

16 V, 1 MHz, CMOS Rail-to-Rail Input/Output Operational Amplifier
ADI

ADA4665-2ARZ1

16 V, 1 MHz, CMOS Rail-to-Rail Input/Output Operational Amplifier
ADI

ADA4665-2_16

16 V, 1 MHz, CMOS Rail-to-Rail Input/Output Operational Amplifier
ADI

ADA4666-2

18 V, 725 A, 4 MHz CMOS RRIO Operational Amplifier
ADI

ADA4666-2ACPZ-R7

18 V, 725 A, 4 MHz CMOS RRIO Operational Amplifier
ADI

ADA4666-2ACPZ-RL

18 V, 725 A, 4 MHz CMOS RRIO Operational Amplifier
ADI

ADA4666-2ARMZ

18 V, 725 A, 4 MHz CMOS RRIO Operational Amplifier
ADI

ADA4666-2ARMZ-R7

18 V, 725 A, 4 MHz CMOS RRIO Operational Amplifier
ADI

ADA4666-2ARMZ-RL

18 V, 725 A, 4 MHz CMOS RRIO Operational Amplifier
ADI

ADA4691-2

Dual, Low Power, Wideband, Low Noise, Rail-to-Rail Output, Operational Amplifiers
ADI