ADA4862-3_16 [ADI]

High Speed, G = 2, Low Cost, Triple Op Amp;
ADA4862-3_16
型号: ADA4862-3_16
厂家: ADI    ADI
描述:

High Speed, G = 2, Low Cost, Triple Op Amp

文件: 总17页 (文件大小:342K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Speed, G = +2,  
Low Cost, Triple Op Amp  
ADA4862-3  
FEATURES  
PIN CONFIGURATION  
Ideal for RGB/HD/SD video  
Supports 1080i/720p resolution  
High speed  
−3 dB bandwidth: 300 MHz  
Slew rate: 750 V/μs  
Settling time: 9 ns ( 0.5%)  
0.1 dB flatness: 65 MHz  
Differential gain: 0.02%  
Differential phase: 0.03°  
Wide supply range: 5 V to 12 V  
Low power: 5.3 mA/amp  
Low voltage offset (RTO): 3.5 mV (typ)  
High output current: 25 mA  
Also configurable for gains of +1, −1  
Power-down  
550Ω  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
POWER DOWN 1  
POWER DOWN 2  
POWER DOWN 3  
V
2
OUT  
–IN 2  
+IN 2  
550Ω  
ADA4862-3  
+V  
–V  
S
S
+IN 1  
–IN 1  
+IN 3  
–IN 3  
550Ω  
550Ω  
8
V
1
V
3
OUT  
OUT  
550Ω  
550Ω  
Figure 1. 14-Lead SOIC (R-14)  
APPLICATIONS  
Consumer video  
Professional video  
Filter buffers  
GENERAL DESCRIPTION  
The ADA4862-3 (triple) is a low cost, high speed, internally  
fixed, G = +2 op amp, which provides excellent overall  
performance for high definition and RGB video applications.  
The 300 MHz, G = +2, −3 dB bandwidth, and 750 V/μs slew  
rate make this amplifier well suited for many high speed  
applications. The ADA4862-3 can also be configured to  
operate in gains of G = +1 and G = −1.  
The ADA4862-3 is available in a 14-lead SOIC package and is  
designed to work in the extended temperature range of −40°C  
to +105°C.  
6.1  
6.0  
V
= +5V  
S
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
5.2  
5.1  
With its combination of low price, excellent differential gain  
(0.02%), differential phase (0.03°), and 0.1 dB flatness out to  
65 MHz, this amplifier is ideal for both consumer and  
professional video applications.  
G = +2  
V
= ±5V  
S
R
C
= 150Ω  
L
L
= 4pF  
= 2V p-p  
V
OUT  
The ADA4862-3 is designed to operate on supply voltages as  
low as +5 V and up to 5 V using only 5.3 mA/amp of supply  
current. To further reduce power consumption, each amplifier  
is equipped with a power-down feature that lowers the supply  
current to 200 μA/amp. The ADA4862-3 also consumes less  
board area because feedback and gain set resistors are on-chip.  
Having the resistors on chip simplifies layout and minimizes the  
required board space.  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
Figure 2. Large Signal 0.1 dB Bandwidth for Various Supplies  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
 
ADA4862-3* Product Page Quick Links  
Last Content Update: 11/01/2016  
Comparable Parts  
Design Resources  
View a parametric search of comparable parts  
• ADA4862-3 Material Declaration  
• PCN-PDN Information  
Evaluation Kits  
• ADA4862-3 Evaluation Board  
• Quality And Reliability  
• Symbols and Footprints  
Documentation  
Data Sheet  
Discussions  
View all ADA4862-3 EngineerZone Discussions  
• ADA4862-3: High Speed, G= +2, Low Cost, Triple Op  
Amp Data Sheet  
Sample and Buy  
Visit the product page to see pricing options  
Product Highlight  
• Amplifier pricing where you want it,  
User Guides  
Technical Support  
Submit a technical question or find your regional support  
number  
• UG-114: Universal Evaluation Board for Triple, High  
Speed Op Amps Offered in 14-Lead SOIC Packages  
Reference Materials  
Informational  
• Advantiv™ Advanced TV Solutions  
Product Selection Guide  
• Amplifiers for Video Distribution  
• High Speed Amplifiers Selection Table  
Tutorials  
• MT-034: Current Feedback (CFB) Op Amps  
• MT-051: Current Feedback Op Amp Noise Considerations  
• MT-057: High Speed Current Feedback Op Amps  
• MT-059: Compensating for the Effects of Input Capacitance  
on VFB and CFB Op Amps Used in Current-to-Voltage  
Converters  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to  
the content on this page does not constitute a change to the revision number of the product data sheet. This content may be  
frequently modified.  
ADA4862-3  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications..................................................................................... 11  
Using the ADA4862-3 in Gains = +1, −1................................ 11  
Video Line Driver....................................................................... 13  
Single-Supply Operation ........................................................... 13  
Power Down................................................................................ 13  
Layout Considerations............................................................... 14  
Power Supply Bypassing............................................................ 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
Pin Configuration............................................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
REVISION HISTORY  
8/05—Rev. 0 to Rev. A  
Changes to Ordering Guide .......................................................... 15  
7/05—Revision 0: Initial Version  
Rev. A | Page 2 of 16  
 
ADA4862-3  
SPECIFICATIONS  
VS = +5 V (@TA = 25oC, G = +2, RL = 150 Ω, unless otherwise noted).  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
VO = 0.2 V p-p  
VO = 2 V p-p  
VO = 0.2 V p-p  
VO = 2 V p-p  
VO = 2 V p-p  
VO = 2 V p-p  
VO = 2 V step  
300  
200  
620  
65  
750  
600  
9
MHz  
MHz  
MHz  
MHz  
V/μs  
V/μs  
ns  
G = +1  
Bandwidth for 0.1 dB Flatness  
+Slew Rate (Rising Edge)  
−Slew Rate (Falling Edge)  
Settling Time to 0.5%  
DISTORTION/NOISE PERFORMANCE  
Harmonic Distortion HD2  
Harmonic Distortion HD3  
Harmonic Distortion HD2  
Harmonic Distortion HD3  
Voltage Noise (RTO)  
fC = 1 MHz, VO = 2 V p-p  
fC = 1 MHz, VO = 2 V p-p  
fC = 5 MHz, VO = 2 V p-p  
fC = 5 MHz, VO = 2 V p-p  
f = 100 kHz  
−81  
−88  
−68  
−76  
10.6  
1.4  
0.02  
0.03  
−75  
dBc  
dBc  
dBc  
dBc  
nV/√Hz  
pA/√Hz  
%
Degrees  
dB  
Current Noise (RTI)  
Differential Gain  
Differential Phase  
Crosstalk  
f = 100 kHz, +IN  
Amplifier 1 driven, Amplifier 2 output  
measured, f = 1 MHz  
DC PERFORMANCE  
Offset Voltage (RTO)  
+Input Bias Current  
Gain Accuracy  
Referred to output (RTO)  
−25  
−2.5  
1.9  
+3.5  
−0.6  
2
+25  
+1  
2.1  
mV  
μA  
V/V  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
POWER DOWN PIN  
Input Voltage  
+IN  
+IN  
G = +1  
13  
2
1 to 4  
MΩ  
pF  
V
Enabled  
Power down  
Enabled  
0.6  
1.8  
−3  
115  
3.5  
200  
V
V
μA  
μA  
μs  
ns  
Bias Current  
Power down  
Turn-On Time  
Turn-Off Time  
OUTPUT CHARACTERISTICS  
Output Overdrive Recovery Time (Rise/Fall)  
Output Voltage Swing  
Output Voltage Swing  
Short-Circuit Current  
POWER SUPPLY  
VIN = +2.25 V to −0.25 V  
RL = 150 Ω  
RL = 1 kΩ  
85/50  
1.2 to 3.8  
1 to 4  
65  
ns  
V
V
Sinking or sourcing  
mA  
Operating Range  
5
12  
V
Total Quiescent Current  
Quiescent Current /Amplifier  
Power Supply Rejection Ratio (RTO)  
+PSR  
Enabled  
Power down = +VS  
14  
16  
0.2  
18  
0.33  
mA  
mA  
dB  
dB  
dB  
+VS = 2 V to 3 V, −VS = −2.5 V  
+VS = 2.5 V, −VS = −2 V to −3 V  
Power Down pin = −VS  
−52  
−49  
−55  
−52  
−PSR  
Rev. A | Page 3 of 16  
 
ADA4862-3  
VS = 5 V (@TA = +25oC, G = +2, RL = 150 Ω, unless otherwise noted).  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
VO = 0.2 V p-p  
VO = 2 V p-p  
VO = 0.2 V p-p  
VO = 2 V p-p  
VO = 2 V p-p  
VO = 2 V p-p  
VO = 2 V step  
310  
260  
720  
54  
1050  
830  
9
MHz  
MHz  
MHz  
MHz  
V/μs  
V/μs  
ns  
G = +1  
Bandwidth for 0.1 dB Flatness  
+Slew Rate (Rising Edge)  
−Slew Rate (Falling Edge)  
Settling Time to 0.5%  
DISTORTION/NOISE PERFORMANCE  
Harmonic Distortion HD2  
Harmonic Distortion HD3  
Harmonic Distortion HD2  
Harmonic Distortion HD3  
Voltage Noise (RTO)  
fC = 1 MHz, VO = 2 V p-p  
fC = 1 MHz, VO = 2 V p-p  
fC = 5 MHz, VO = 2 V p-p  
fC = 5 MHz, VO = 2 V p-p  
f = 100 kHz  
−87  
−100  
−74  
−90  
10.6  
1.4  
0.01  
0.02  
−75  
dBc  
dBc  
dBc  
dBc  
nV/√Hz  
pA/√Hz  
%
Degrees  
dB  
Current Noise (RTI)  
Differential Gain  
Differential Phase  
Crosstalk  
f = 100 kHz, +IN  
Amplifier 1 driven, Amplifier 2 output  
measured, f = 1 MHz  
DC PERFORMANCE  
Offset Voltage (RTO)  
+Input Bias Current  
Gain Accuracy  
−25  
−2.5  
1.9  
+2  
−0.6  
2
+25  
+1  
2.1  
mV  
μA  
V/V  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
POWER DOWN PIN  
Input Voltage  
+IN  
+IN  
G = +1  
14  
2
MΩ  
pF  
V
−3.7 to +3.8  
Enabled  
Power down  
Enabled  
−4.4  
−3.2  
−3  
250  
3.5  
V
V
μA  
μA  
μs  
ns  
Bias Current  
Power down  
Turn-On Time  
Turn-Off Time  
200  
OUTPUT CHARACTERISTICS  
Output Overdrive Recovery Time (Rise/Fall)  
Output Voltage Swing  
Output Voltage Swing  
Short-Circuit Current  
POWER SUPPLY  
VIN = 3.0 V  
RL = 150 Ω  
RL = 1 kΩ  
Sinking or sourcing  
85/40  
ns  
V
V
−3.5 to +3.5  
−3.9 to +3.9  
115  
mA  
Operating Range  
5
12  
V
Total Quiescent Current  
Quiescent Current/Amplifier  
Power Supply Rejection Ratio (RTO)  
+PSR  
Enabled  
Power down = +VS  
14.5  
17.9  
0.3  
20.5  
0.5  
mA  
mA  
dB  
dB  
dB  
+VS = 4 V to 6 V, −VS = −5 V  
+VS = 5 V, −VS = −4 V to −6 V,  
Power Down pin = −VS  
−54  
+50.5  
−57  
−54  
−PSR  
Rev. A | Page 4 of 16  
ADA4862-3  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Parameter  
The power dissipated in the package (PD) is the sum of the  
Rating  
quiescent power dissipation and the power dissipated in the die due  
to the amplifiers drive at the output. The quiescent power is the  
voltage between the supply pins (VS) × the quiescent current (IS).  
Supply Voltage  
Power Dissipation  
Common-Mode Input Voltage  
Storage Temperature  
Operating Temperature Range  
Lead Temperature  
12.6 V  
See Figure 3  
±VS  
PD = Quiescent Power + (Total Drive Power Load Power)  
−65°C to +125°C  
−40°C to +105°C  
JEDEC J-STD-20  
150°C  
2
V
2
VOUT  
RL  
VOUT  
RL  
S
PD =  
(VS ×IS  
)
+
×
Junction Temperature  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
RMS output voltages should be considered.  
Airflow increases heat dissipation, effectively reducing θJA.  
In addition, more metal directly in contact with the package  
leads and through holes under the device reduces θJA.  
Figure 3 shows the maximum safe power dissipation in the  
package vs. the ambient temperature for the 14-lead SOIC  
(90°C/W) on a JEDEC standard 4-layer board. θJA values are  
approximations.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, θJA is  
specified for device soldered in circuit board for surface-mount  
packages.  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Table 4. Thermal Resistance  
Package Type  
θJA  
Unit  
14-lead SOIC  
90  
°C/W  
Maximum Power Dissipation  
The maximum safe power dissipation for the ADA4862-3 is  
limited by the associated rise in junction temperature (TJ) on  
the die. At approximately 150°C, which is the glass transition  
temperature, the plastic changes its properties. Even  
temporarily exceeding this temperature limit may change the  
stresses that the package exerts on the die, permanently shifting  
the parametric performance of the amplifiers. Exceeding a  
junction temperature of 150°C for an extended period can  
result in changes in silicon devices, potentially causing  
degradation or loss of functionality.  
–55 –45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
AMBIENT TEMPERATURE (°C)  
Figure 3. Maximum Power Dissipation vs. Temperature for a 4-Layer Board  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 5 of 16  
 
 
ADA4862-3  
TYPICAL PERFORMANCE CHARACTERISTICS  
8
G = +2  
200  
100  
0
2.7  
2.6  
2.5  
2.4  
2.3  
R
C
= 150Ω  
L
L
7
6
5
4
3
2
1
0
= 4pF  
= 0.2V p-p  
V
OUT  
V
= +5V  
S
V
V
= +5V  
S
V
= ±5V  
= ±5V  
S
S
G = +2  
–100  
–200  
R
C
= 150Ω  
= 4pF  
= 0.2V p-p  
TIME = 5ns/DIV  
L
L
V
OUT  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
Figure 4. Small Signal Frequency Response for Various Supplies  
Figure 7. Small Signal Transient Response for Various Supplies  
8
G = +2  
200  
R
C
= 150Ω  
L
L
7
6
5
4
3
2
1
0
= 4pF  
= 2V p-p  
V
OUT  
C
= 9pF  
150  
100  
50  
L
V
= ±5V  
S
C
= 4pF  
L
V
= +5V  
S
C
= 6pF  
0
L
–50  
–100  
–150  
–200  
G = +2  
= 150Ω  
= 4pF  
R
C
L
L
V
V
= 0.2V p-p  
OUT  
= ±5V  
TIME = 5ns/DIV  
S
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
Figure 5. Large Signal Frequency Response for Various Supplies  
Figure 8. Small Signal Transient Response for Various Capacitor Loads  
6.1  
6.0  
2.7  
V
= +5V  
C
= 9pF  
S
L
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
5.2  
5.1  
C
= 6pF  
L
G = +2  
V
= ±5V  
S
R
C
= 150Ω  
L
L
2.6  
2.5  
2.4  
2.3  
= 4pF  
= 2V p-p  
V
OUT  
C
= 4pF  
L
G = +2  
R
= 150Ω  
L
V
V
= 0.2V p-p  
OUT  
= 5V  
S
TIME = 5ns/DIV  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
Figure 9. Small Signal Transient Response for Various Capacitor Loads  
Figure 6. Large Signal 0.1 dB Bandwidth for Various Supplies  
Rev. A | Page 6 of 16  
 
ADA4862-3  
6
5
V
= ±5V  
S
1.5  
1.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
G = +2  
R
C
INPUT VOLTAGE × 2  
= 150Ω  
= 4pF  
L
4
L
f = 1MHz  
3
V
OUT  
2
V
= +5V  
S
0.5  
1
0
V
= ±5V  
S
0
–1  
–2  
–3  
–4  
–5  
–6  
–0.5  
–1.0  
–1.5  
G = +2  
= 150Ω  
= 4pF  
= 2V p-p  
TIME = 5ns/DIV  
R
C
L
L
V
OUT  
0
100 200 300 400 500 600 700 800 900 1000  
TIME (ns)  
Figure 10. Large Signal Transient Response for Various Supplies  
Figure 13. Input Overdrive Recovery  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
S
1.5  
G = +2  
R
C
INPUT VOLTAGE × 2  
C
= 9pF  
= 6pF  
= 150Ω  
= 4pF  
L
L
L
C
L
f = 1MHz  
1.0  
0.5  
V
OUT  
C
= 4pF  
L
0
G = +2  
= 150Ω  
= 4pF  
–0.5  
–1.0  
–1.5  
R
C
L
L
V
V
= 2V p-p  
OUT  
= ±5V  
S
TIME = 5ns/DIV  
–0.5  
0
100 200 300 400 500 600 700 800 900 1000  
TIME (ns)  
Figure 11. Large Signal Transient Response for Various Capacitor Loads  
Figure 14. Output Overdrive Recovery  
4.0  
C
= 9pF  
L
C
= 6pF  
L
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
C
= 4pF  
L
G = +2  
R
C
= 150Ω  
= 4pF  
L
L
V
V
= 2V p-p  
OUT  
= 5V  
S
TIME = 5ns/DIV  
Figure 12. Large Signal Transient Response for Various Capacitor Loads  
Rev. A | Page 7 of 16  
ADA4862-3  
20  
15  
10  
5
20  
15  
10  
5
1.5  
1.5  
1.0  
V
= ±5V, +5V  
S
V
G = +2  
= 2V p-p  
OUT  
V
OUT  
=150Ω  
= 4pF  
1.0  
R
C
L
L
V
OUT  
V
IN  
0.5  
0.5  
V
OUT  
EXPANDED  
V
IN  
0
0
0
0
–5  
–10  
–15  
–20  
–5  
–10  
–15  
–20  
V
–0.5  
–1.0  
–1.5  
OUT  
EXPANDED  
–0.5  
–1.0  
–1.5  
V
= ±5V, +5V  
S
G = +2  
V
= 2V p-p  
= 150Ω  
= 4pF  
OUT  
R
C
L
L
0
5
10  
15  
20  
25  
TIME (ns)  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
TIME (ns)  
Figure 15. Settling Time Falling Edge  
Figure 18. Settling Time Rising Edge  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
G = +2  
G = +2  
V
= ±5V  
= 150Ω  
= 4pF  
V
= 5V  
S
L
L
S
POSITIVE SLEW RATE  
POSITIVE SLEW RATE  
NEGATIVE SLEW RATE  
R
C
R
C
= 150Ω  
= 4pF  
L
L
NEGATIVE SLEW RATE  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
OUTPUT VOLTAGE STEP (V p-p)  
OUTPUT VOLTAGE STEP (V p-p)  
Figure 16. Slew Rate vs. Output Voltage  
Figure 19. Slew Rate vs. Output Voltage  
100  
10  
1
0
–20  
–40  
–60  
–80  
G = +2  
G = +2  
R
C
V
S
S
= 150Ω  
R
C
V
= 150Ω  
L
L
OUT  
L
L
OUT  
= 4pF  
= 2V p-p  
= 4pF  
= 2V p-p  
V
V
= ±5V  
V
V
= ±5V  
S
S
= +5V  
= +5V  
–100  
–120  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
0.1  
1
10  
100  
1000  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
Figure 17. Voltage Noise vs. Frequency Referred to Output (RTO)  
Figure 20. Large Signal Crosstalk  
Rev. A | Page 8 of 16  
ADA4862-3  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
19  
18  
17  
16  
15  
V
= ±5V  
S
–PSR  
+PSR  
0.01  
0.1  
1
10  
100  
1000  
4
5
6
7
8
9
10  
11  
12  
FREQUENCY (MHz)  
SUPPLY VOLTAGE (V)  
Figure 23. Power Supply Rejection vs. Frequency  
Figure 21. Total Supply Current vs. VSUPPLY  
0
20  
19  
18  
17  
16  
15  
14  
13  
12  
V
= ±2.5V  
S
–10  
–20  
–30  
–40  
–50  
–60  
V
V
= ±5V  
S
S
–PSR  
= +5V  
+PSR  
0.01  
0.1  
1
10  
100  
1000  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
Figure 22. Total Supply Current at Various Supplies vs. Temperature  
Figure 24. Power Supply Rejection vs. Frequency  
Rev. A | Page 9 of 16  
ADA4862-3  
–50  
–50  
–60  
G = +2  
G = +2  
f = 20MHz  
O
R
C
HD3  
= 150Ω  
R
C
= 150Ω  
= 4pF  
L
L
L
L
f
= 10MHz  
f
= 10MHz  
O
O
= 4pF  
–60  
–70  
f
= 20MHz  
O
HD2  
V
= ±5V  
–70  
V
= ±5V  
S
S
–80  
f
= 5MHz  
O
–80  
–90  
f
= 5MHz  
O
–100  
–110  
–120  
–130  
f
= 2MHz  
O
–90  
f
= 1MHz  
f
= 2MHz  
O
O
–100  
–110  
f
= 1MHz  
O
0
1
2
3
4
0
1
2
OUTPUT VOLTAGE (V p-p)  
3
4
OUTPUT VOLTAGE (V p-p)  
Figure 25. HD2 vs. Frequency vs. Output Voltage  
Figure 27. HD3 vs. Frequency vs. Output Voltage  
–50  
–60  
–50  
–60  
G = +2  
f
= 20MHz  
O
R
C
= 150Ω  
= 4pF  
L
L
f
= 10MHz  
O
f
= 20MHz  
O
HD2  
V
= 5V  
–70  
f
= 10MHz  
S
O
–70  
–80  
f
= 5MHz  
O
–90  
–80  
f
= 5MHz  
O
–100  
–110  
–120  
–130  
–90  
f
= 2MHz  
O
f
= 2MHz  
O
G = +2  
f
= 1MHz  
O
R
C
= 150Ω  
= 4pF  
f
= 1MHz  
L
L
O
–100  
–110  
HD3  
V
= +5V  
S
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
OUTPUT VOLTAGE (V p-p)  
OUTPUT VOLTAGE (V p-p)  
Figure 28. HD3 vs. Frequency vs. Output Voltage  
Figure 26. HD2 vs. Frequency vs. Output Voltage  
Rev. A | Page 10 of 16  
ADA4862-3  
APPLICATIONS  
4
3
USING THE ADA4862-3 IN GAINS = +1, −1  
G = +1  
R
C
= 150Ω  
= 4pF  
L
L
V
= +5V  
S
The ADA4862-3 was designed to offer outstanding video  
performance, simplify applications, and minimize board area.  
V
= 200mV p-p  
OUT  
2
The ADA4862-3 is a triple amplifier with on-chip feedback and  
gain set resistors. The gain is fixed internally at G = +2. The  
inclusion of the on-chip resistors not only simplifies the design  
of the application but also eliminates six surface-mount  
resistors, saving valuable board space and lowers assembly  
costs. A typical schematic is shown in Figure 29.  
1
V
= ±5V  
S
0
–1  
–2  
–3  
–4  
+V  
S
10μF  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.01μF  
Figure 31. Small Signal Unity Gain  
3
2
V
G = +1  
OUT  
V
R
C
= 150Ω  
= 4pF  
IN  
L
L
R
T
V
= 2V p-p  
OUT  
V
= ±5V  
1
0.01μF  
10μF  
S
0
–1  
–2  
–3  
–4  
–5  
–6  
–V  
S
V
= +5V  
S
GAIN OF +2  
Figure 29. Noninverting Configuration (G = +2)  
While the ADA4862-3 has a fixed gain of G = +2, it can be used  
in other gain configurations, such as G = −1 and G = +1, which  
are discussed next.  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
Unity-Gain Operation (Option 1)  
Figure 32. Large Signal Gain +1  
There are two options for obtaining unity gain (G = +1). The  
first is shown in Figure 30. In this configuration, the –IN input  
pin is left floating (feedback is provided via the internal 550 Ω),  
and the input is applied to the noninverting input. The noise  
gain for this configuration is 1. Frequency performance and  
transient response are shown in Figure 31 through Figure 33.  
2.0  
1.5  
C
= 9pF  
L
C
= 6pF  
L
C
= 4pF  
L
1.0  
0.5  
+V  
S
0
10μF  
–0.5  
–1.0  
–1.5  
–2.0  
G = +1  
0.01μF  
R
= 150Ω  
L
V
V
= 2V p-p  
= ±5V  
OUT  
S
TIME = 5ns/DIV  
V
OUT  
V
IN  
R
T
0.01μF  
10μF  
Figure 33. Large Signal Transient Response for Various Capacitor Loads  
–V  
S
GAIN OF +1  
Figure 30. Unity Gain of Option 1  
Rev. A | Page 11 of 16  
 
 
 
 
 
ADA4862-3  
200  
150  
100  
50  
Option 2  
G = +1  
V
R
= ±5V  
= 150Ω  
S
Another option exists for running the ADA4862-3 as a unity-  
gain amplifier. In this configuration, the noise gain is 2, see  
Figure 34. The frequency response and transient response for  
this configuration closely match the gain of +2 plots because the  
noise gains are equal. This method does have twice the noise  
gain of Option 1; however, in applications that do not require  
low noise, Option 2 offers less peaking and ringing. By tying the  
inputs together, the net gain of the amplifier becomes 1.  
Equation 1 shows the transfer characteristic for the schematic  
shown in Figure 34. Frequency and transient response are  
shown in Figure 35 and Figure 36.  
L
TIME = 2ns/DIV  
0
–50  
–100  
–150  
–200  
RF + RG  
RG  
RF  
RG  
VO = V i  
+V i  
(1)  
Figure 36. Small Signals Transient Response of Option 2  
+V  
S
10μF  
which simplifies to VO = Vi.  
+V  
S
0.01μF  
10μF  
V
IN  
0.01μF  
V
OUT  
R
T
R
F
R
G
0.01μF  
10μF  
V
OUT  
V
IN  
R
T
–V  
S
0.01μF  
10μF  
GAIN OF –1  
Figure 37. Inverting Configuration (G = −1)  
–V  
S
2.0  
1.5  
GAIN OF +1  
C
= 9pF  
L
Figure 34. Unity Gain of Option 2  
C
= 6pF  
L
1.0  
1
0
C
= 4pF  
0.5  
L
G = +1  
= 150Ω  
0
R
–1  
–2  
–3  
–4  
–5  
–6  
–7  
L
–0.5  
–1.0  
–1.5  
–2.0  
G = –1  
= 150Ω  
R
L
V
V
= 2V p-p  
= ±5V  
OUT  
S
TIME = 5ns/DIV  
Figure 38. Large Signal Transient Response for Various Capacitor Loads  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 35. Frequency Response of Option 2  
Rev. A | Page 12 of 16  
 
 
 
ADA4862-3  
SINGLE-SUPPLY OPERATION  
VIDEO LINE DRIVER  
The ADA4862-3 can also operate in single-supply applications.  
Figure 42 shows the schematic for a single 5 V supply video  
driver. Resistors R2 and R4 establish the midsupply reference.  
Capacitor C2 is the bypass capacitor for the midsupply  
reference. Capacitor C1 is the input coupling capacitor, and C6  
is the output coupling capacitor. Capacitor C5 prevents constant  
current from being drawn through the internal gain set resistor.  
Resistor R3 sets the circuits ac input impedance.  
The ADA4862-3 was designed to excel in video driver  
applications. Figure 39 shows a typical schematic for a video  
driver operating on a bipolar supplies.  
+V  
S
10μF  
0.1μF  
75Ω  
CABLE  
75Ω  
V
ADA4862-3  
+
OUT  
0.1μF  
10μF  
75Ω  
For more information on single-supply operation of op amps,  
see www.analog.com/library/analogDialogue/archives/35-  
02/avoiding/.  
75Ω  
CABLE  
V
IN  
–V  
S
+5V  
75Ω  
C2  
1μF  
C3  
2.2μF  
Figure 39. Video Driver Schematic  
R4  
50kΩ  
R2  
C4  
0.01μF  
50kΩ  
+5V  
R1  
In applications that require two video loads be driven  
R3  
1kΩ  
simultaneously, the ADA4862-3 can deliver. Figure 40 shows  
the ADA4862-3 configured with dual video loads. Figure 41  
shows the dual video load performance.  
C6  
220μF  
V
IN  
C1  
22μF  
V
OUT  
50Ω  
R5  
75Ω  
R6  
75Ω  
75Ω  
CABLE  
+V  
S
10μF  
75Ω  
V
1
2
OUT  
75Ω  
75Ω  
ADA4862-3  
0.1μF  
C5  
22μF  
75Ω  
CABLE  
–V  
S
7
6
2
1
+
75Ω  
8
V
OUT  
Figure 42. Single-Supply Video Driver Schematic  
0.1μF  
10μF  
POWER DOWN  
75Ω  
CABLE  
The ADA4862-3 is equipped with an independent Power Down  
pin for each amplifier allowing the user to reduce the supply  
current when an amplifier is inactive. The voltage applied to the  
−VS pin is the logic reference, making single-supply applications  
useful with conventional logic levels. In a typical 5 V single-  
supply application, the −VS pin is connected to analog ground.  
The amplifiers are powered down when applied logic levels are  
greater than −VS + 1 V. The amplifiers are enabled whenever the  
disable pins are left either floating (disconnected) or the  
applied logic levels are lower than 1 V above −VS.  
V
IN  
–V  
S
75Ω  
Figure 40. Video Driver Schematic for Two Video Loads  
8
G = +2  
R
C
= 75Ω  
= 4pF  
L
L
7
6
5
4
3
2
1
0
V
= 2V p-p  
OUT  
V
= ±5V  
S
V
= +5V  
S
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
Figure 41. Large Signal Frequency Response for Various Supplies, RL = 75 Ω  
Rev. A | Page 13 of 16  
 
 
 
 
 
ADA4862-3  
POWER SUPPLY BYPASSING  
LAYOUT CONSIDERATIONS  
Careful attention must be paid to bypassing the power supply  
pins of the ADA4862-3. High quality capacitors with low  
equivalent series resistance (ESR), such as multilayer ceramic  
capacitors (MLCCs), should be used to minimize supply voltage  
ripple and power dissipation. A large, usually tantalum, 10 μF to  
47 μF capacitor located in proximity to the ADA4862-3 is  
required to provide good decoupling for lower frequency  
signals. In addition, 0.1 μF MLCC decoupling capacitors should  
be located as close to each of the power supply pins as is  
physically possible, no more than 1/8 inch away. The ground  
returns should terminate immediately into the ground plane.  
Locating the bypass capacitor return close to the load return  
minimizes ground loops and improves performance.  
As is the case with all high speed applications, careful attention  
to printed circuit board layout details prevents associated board  
parasitics from becoming problematic. Proper RF design  
technique is mandatory. The PCB should have a ground plane  
covering all unused portions of the component side of the  
board to provide a low impedance return path. Removing the  
ground plane on all layers from the area near the input and  
output pins reduces stray capacitance. Termination resistors and  
loads should be located as close as possible to their respective  
inputs and outputs. Input and output traces should be kept as  
far apart as possible to minimize coupling (crosstalk) though  
the board. Adherence to microstrip or stripline design  
techniques for long signal traces (greater than about 1 inch) is  
recommended.  
Rev. A | Page 14 of 16  
 
ADA4862-3  
OUTLINE DIMENSIONS  
8.75 (0.3445)  
8.55 (0.3366)  
14  
1
8
7
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
1.75 (0.0689)  
1.35 (0.0531)  
× 45°  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 43. 14-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-14)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
ADA4862-3YRZ1  
ADA4862-3YRZ-RL1  
ADA4862-3YRZ-RL71  
Temperature Range  
Package Description  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
Ordering Quantity  
Package Option  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
1
R-14  
R-14  
R-14  
2,500  
1,000  
1 Z = Pb-free part.  
Rev. A | Page 15 of 16  
 
 
ADA4862-3  
NOTES  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05600–0–8/05(A)  
Rev. A | Page 16 of 16  

相关型号:

ADA4870

Ideal for driving high capacitive or low resistive loads
ADI

ADA4870-KGD-DF

High Speed, High Voltage, 1 A Output Drive Amplifier
ADI

ADA4870-KGD-WP

High Speed, High Voltage, 1 A Output Drive Amplifier
ADI

ADA4870ARR-EBZ

Ideal for driving high capacitive or low resistive loads
ADI

ADA4870ARRZ

High Speed, High Voltage, 1 A Output Drive Amplifier
ADI

ADA4870ARRZ-RL

High Speed, High Voltage, 1 A Output Drive Amplifier
ADI

ADA4891-1

Low Cost CMOS, High Speed, Rail-to-Rail Amplifiers
ADI

ADA4891-1AR-EBZ

Low Cost CMOS, High Speed, Rail-to-Rail Amplifiers
ADI

ADA4891-1ARJ-EBZ

Low Cost CMOS, High Speed, Rail-to-Rail Amplifiers
ADI

ADA4891-1ARJZ

Low Cost CMOS, High Speed, Rail-to-Rail Amplifiers
ADI

ADA4891-1ARJZ-R7

Low Cost CMOS, High Speed, Rail-to-Rail Amplifiers
ADI

ADA4891-1ARJZ-RL

Low Cost CMOS, High Speed, Rail-to-Rail Amplifiers
ADI