ADA4938-1ACPZ-RL [ADI]

Ultra-Low Distortion Differential ADC Driver; 超低失真差分ADC驱动器
ADA4938-1ACPZ-RL
型号: ADA4938-1ACPZ-RL
厂家: ADI    ADI
描述:

Ultra-Low Distortion Differential ADC Driver
超低失真差分ADC驱动器

线路驱动器或接收器 驱动程序和接口 接口集成电路
文件: 总14页 (文件大小:298K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultra-Low Distortion  
Differential ADC Driver  
Preliminary Technical Data  
ADA4938-1  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Extremely low harmonic distortion  
−112 dBc HD2 @ 10 MHz  
−79 dBc HD2 @ 50 MHz  
−102 dBc HD3 @ 10 MHz  
−81 dBc HD3 @ 50 MHz  
Low input voltage noise: 2.2 nV/√Hz  
High speed  
−3 dB bandwidth of 1.5 GHz, G = 1  
Slew rate: 4700 V/μs  
0.1 dB gain flatness to 125 MHz  
Fast overdrive recovery of 4 ns  
1 mV typical offset voltage  
Externally adjustable gain  
+
Differential to differential or single-ended to differential  
operation  
Adjustable output common-mode voltage  
Wide Supply Voltage Range: +5 V & 5 V  
Pb-free 3 mm x 3 mm LFCSP package  
Figure 1.  
APPLICATIONS  
ADC drivers  
Single-ended-to-differential converters  
IF and baseband gain blocks  
Differential buffers  
Line drivers  
GENERAL DESCRIPTION  
The ADA4938-1 is a low noise, ultra-low distortion, high speed  
differential amplifier. It is an ideal choice for driving high  
performance ADCs with resolutions up to 16 bits from dc to 70  
MHz. The output common mode voltage is adjustable over a  
wide range, allowing the ADA4938-1 to match the input of the  
ADC. The internal common mode feedback loop also provides  
exceptional output balance as well as suppression of even-order  
harmonic distortion products.  
The ADA4938-1 is fabricated using ADIs proprietary third  
generation high-voltage XFCB process, enabling it to achieve  
very low levels of distortion with input voltage noise of only 2.2  
nV/√Hz. The low dc offset and excellent dynamic performance  
of the ADA4938-1 make it well suited for a wide variety of data  
acquisition and signal processing and applications.  
The ADA4938-1 is available in a Pb-free, 3 mm x 3mm lead  
frame chip scale package (LFCSP). Pinout has been optimized  
to facilitate layout and minimize distortion. The part is  
specified to operate over the extended industrial temperature  
range of −40°C to +85°C.  
Full differential and single-ended to differential gain  
configurations are easily realized with the ADA4938-1. A  
simple external feedback network of four resistors determines  
the amplifiers closed-loop gain.  
Rev. PrD  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
ADA4938-1  
Preliminary Technical Data  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Definition of Terms.......................................................................9  
Theory of Operation ...................................................................... 10  
Analyzing an Application Circuit ............................................ 10  
Setting the Closed-Loop Gain .................................................. 10  
Estimating the Output Noise Voltage...................................... 10  
The Impact of Mismatches in the Feedback Networks......... 11  
Calculating the Input Impedance of an Application Circuit 11  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Dual Supply Operation................................................................ 3  
Single Supply Operation.............................................................. 5  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Operational Description.................................................................. 9  
Input Common-Mode Voltage Range in Single-Supply  
Applications ................................................................................ 11  
Setting the Output Common-Mode Voltage.......................... 11  
Layout, Grounding, and Bypassing.............................................. 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 14  
REVISION HISTORY  
05/07—Rev. PrC to Rev. PrD  
Changes to Features.......................................................................... 1  
Changes to Figure 1.......................................................................... 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 5  
Changes to Figure 3.......................................................................... 8  
Changes to Table 5 ........................................................................... 8  
Added to Operational Description Section .................................. 9  
Added to Theory of Operation Section....................................... 10  
Added to Layout, Grounding, and Bypassing Section............... 13  
04/07—Rev. PrB to Rev. PrC  
Changes to Features.......................................................................... 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 5  
Changes to Table 3............................................................................ 7  
Changes to Table 4............................................................................ 7  
Added Figure 2 ................................................................................. 7  
Changes to Figure 4.......................................................................... 9  
Changes to Ordering Guide ............................................................ 9  
01/07—Rev. PrA to Rev. PrB  
Changes to Features.......................................................................... 1  
Changes to General Description .................................................... 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 5  
12/06—Revision PrA: Initial Version  
Rev. PrD | Page 2 of 14  
Preliminary Technical Data  
ADA4938-1  
SPECIFICATIONS  
DUAL SUPPLY OPERATION  
TA = 25°C, +VS = 5 V, VS = -5 V, VOCM = 0 V, RT = 61.9 Ω, RG = RF = 200 Ω, G = 1, RL, dm = 1 kꢀ, unless otherwise noted.  
All specifications refer to single-ended input and differential outputs, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
DIN TO OꢀT PERFORMANCE  
DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
Bandwidth for 0.1 dB Flatness  
Large Signal Bandwidth  
VOꢀT = 0.1 V p-p, Differential Input  
VOꢀT = 2 V p-p, Differential Input  
VOꢀT = 2 V p-p, Differential Input  
VOꢀT = 4 V p-p, Differential Input  
VOꢀT = 2 V p-p  
1500  
125  
1300  
800  
4700  
4
MHz  
MHz  
MHz  
MHz  
V/μs  
ns  
Slew Rate  
Overdrive Recovery Time  
NOISE/HARMONIC PERFORMANCE  
Second Harmonic  
VIN = 5 V to 0 V step, G = +2  
VOꢀT = 2 V p-p, 10 MHz  
VOꢀT = 2 V p-p, 50 MHz  
VOꢀT = 2 V p-p, 10 MHz  
VOꢀT = 2 V p-p, 50 MHz  
50 MHz  
−112  
−79  
−102  
−81  
dBc  
dBc  
dBc  
dBc  
Third Harmonic  
IMD  
dBc  
IP3  
50 MHz  
dBm  
nV/√Hz  
dB  
Voltage Noise (RTI)  
Noise Figure  
Input Current Noise  
INPꢀT CHARACTERISTICS  
Offset Voltage  
2.2  
21  
2
G = +2  
pA/√Hz  
VOS, dm = VOꢀT, dm/2; VDIN+ = VDIN− = 0 V  
TMIN to TMAX variation  
1
4
3.5  
−0.01  
6
3
1
mV  
μV/°C  
μA  
μA/°C  
MΩ  
MΩ  
pF  
Input Bias Current  
Input Resistance  
TMIN to TMAX variation  
Differential  
Common mode  
Input Capacitance  
Input Common-Mode Voltage  
CMRR  
−4.7 to 3.4  
−77  
V
dB  
∆VOꢀT, dm/∆VIN, cm; ∆VIN, cm = 1 V  
OꢀTPꢀT CHARACTERISTICS  
Output Voltage Swing  
Linear Output Current  
Output Balance Error  
VOCM to OꢀT PERFORMANCE  
VOCM DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
Maximum ∆VOꢀT; single-ended output  
∆VOꢀT, cm/∆VOꢀT, dm; ∆VOꢀT, dm = 1 V; 10 MHz  
-3.9  
3.9  
V
mA  
dB  
95  
−66  
400  
1700  
7.5  
MHz  
V/μs  
nV/√Hz  
Slew Rate  
Input Voltage Noise (RTI)  
VOCM INPꢀT CHARACTERISTICS  
Input Voltage Range  
Input Resistance  
Input Offset Voltage  
Input Bias Current  
VOCM CMRR  
−3.8  
3.8  
3.5  
V
200  
1
0.5  
−75  
1
kΩ  
mV  
μA  
dB  
V/V  
VOS, cm = VOꢀT, cm; VDIN+ = VDIN– = 0 V  
∆VOꢀT, dm/∆VOCM; ∆VOCM = 1 V  
∆VOꢀT, cm/∆VOCM; ∆VOCM = 1 V  
Gain  
POWER SꢀPPLY  
Operating Range  
4.5  
11  
V
Rev. PrD | Page 3 of 14  
ADA4938-1  
Preliminary Technical Data  
Parameter  
Conditions  
Min  
Typ  
40  
Max Unit  
Quiescent Current  
mA  
TMIN to TMAX variation  
Powered down  
∆VOꢀT, dm/∆VS; ∆VS = 1 V  
40  
< 1  
−90  
μA/°C  
mA  
dB  
Power Supply Rejection Ratio  
PD  
POWER DOWN (  
)
PD  
Powered down  
Enabled  
≤ 1  
≥ 2  
1
V
Input Voltage  
V
μs  
ns  
Turn-Off Time  
Turn-On Time  
200  
PD  
Bias Current  
Enabled  
Disabled  
PD  
PD  
40  
μA  
μA  
= 5 V  
= 0 V  
200  
OPERATING TEMPERATꢀRE RANGE  
−40  
+85  
°C  
Rev. PrD | Page 4 of 14  
Preliminary Technical Data  
ADA4938-1  
SINGLE SUPPLY OPERATION  
TA = 25°C, +VS = 5 V, VS = 0 V, VOCM = +VS/2, RT = 61.9 Ω, RG = RF = 200 Ω, G = 1, RL, dm = 1 kꢀ, unless otherwise noted.  
All specifications refer to single-ended input and differential outputs, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
DIN TO OꢀT PERFORMANCE  
DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
Bandwidth for 0.1 dB Flatness  
Large Signal Bandwidth  
Slew Rate  
Overdrive Recovery Time  
NOISE/HARMONIC PERFORMANCE  
Second Harmonic  
VOꢀT = 0.1 V p-p, Differential Input  
VOꢀT = 2 V p-p, Differential Input  
VOꢀT = 2 V p-p, Differential Input  
VOꢀT = 2 V p-p  
1500  
125  
1100  
3900  
4
MHz  
MHz  
MHz  
V/μs  
ns  
VIN = 2.5 V to 0 V step, G = +2  
VOꢀT = 2 V p-p, 10 MHz  
VOꢀT = 2 V p-p, 50 MHz  
VOꢀT = 2 V p-p, 10 MHz  
VOꢀT = 2 V p-p, 50 MHz  
50 MHz  
−110  
−79  
−100  
−79  
dBc  
dBc  
dBc  
dBc  
dBc  
dBm  
Third Harmonic  
IMD  
IP3  
50 MHz  
Voltage Noise (RTI)  
Noise Figure  
Input Current Noise  
INPꢀT CHARACTERISTICS  
Offset Voltage  
2.2  
21  
2
nV/√Hz  
dB  
pA/√Hz  
G = +2  
VOS, dm = VOꢀT, dm/2; VDIN+ = VDIN− = VOCM = 2.5 V  
TMIN to TMAX variation  
1
4
3.5  
−0.01  
6
3
1
mV  
μV/°C  
μA  
μA/°C  
MΩ  
MΩ  
pF  
Input Bias Current  
Input Resistance  
TMIN to TMAX variation  
Differential  
Common mode  
Input Capacitance  
Input Common-Mode Voltage  
CMRR  
0.3 to 3.4  
−77  
V
dB  
∆VOꢀT, dm/∆VIN, cm; ∆VIN, cm = 1 V  
OꢀTPꢀT CHARACTERISTICS  
Output Voltage Swing  
Output Current  
Output Balance Error  
VOCM TO OꢀT PERFORMANCE  
VOCM DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
Maximum ∆VOꢀT; single-ended output  
∆VOꢀT, cm/∆VOꢀT, dm; ∆VOꢀT, dm = 1 V  
1.1  
3.9  
V
mA  
dB  
95  
−66  
400  
1700  
7.5  
MHz  
V/μs  
nV/√Hz  
Slew Rate  
V = 0.5 V  
Input Voltage Noise (RTI)  
VOCM INPꢀT CHARACTERISTICS  
Input Voltage Range  
Input Resistance  
Input Offset Voltage  
Input Bias Current  
VOCM CMRR  
1.2  
4.5  
3.8  
V
200  
1
0.5  
−75  
1
kΩ  
mV  
μA  
dB  
V/V  
VOS, cm = VOꢀT, cm; VDIN+ = VDIN– = VOCM = 2.5 V  
∆VOꢀT, dm/∆VOCM; ∆VOCM = 1 V  
∆VOꢀT, cm/∆VOCM; ∆VOCM = 1 V  
Gain  
POWER SꢀPPLY  
Operating Range  
11  
V
Quiescent Current  
36  
40  
< 1  
mA  
μA/°C  
mA  
TMIN to TMAX variation  
Powered down  
Rev. PrD | Page 5 of 14  
ADA4938-1  
Preliminary Technical Data  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Power Supply Rejection Ratio  
∆VOꢀT, dm/∆VS; ∆VS = 1 V  
−90  
dB  
PD  
POWER DOWN (  
)
PD  
Powered down  
Enabled  
≤ 1  
≥ 2  
1
V
Input Voltage  
V
μs  
ns  
Turn-Off Time  
Turn-On Time  
PD Bias Current  
Enabled  
200  
PD  
PD  
20  
μA  
μA  
= 5 V  
Disabled  
−120  
= 0 V  
OPERATING TEMPERATꢀRE RANGE  
−40  
+85  
°C  
Rev. PrD | Page 6 of 14  
Preliminary Technical Data  
ADA4938-1  
ABSOLUTE MAXIMUM RATINGS  
The power dissipated in the package (PD) is the sum of the  
Table 3.  
Parameter  
quiescent power dissipation and the power dissipated in the  
package due to the load drive. The quiescent power is the  
voltage between the supply pins (VS) times the quiescent  
current (IS). The power dissipated due to the load drive depends  
upon the particular application. The power due to load drive is  
calculated by multiplying the load current by the associated  
voltage drop across the device. RMS voltages and currents must  
be used in these calculations.  
Rating  
Supply Voltage  
Power Dissipation  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (Soldering, 10 sec)  
Junction Temperature  
12 V  
See Figure 2  
−65°C to +125°C  
−40°C to +85°C  
300°C  
150°C  
Airflow increases heat dissipation, effectively reducing θJA. In  
addition, more metal directly in contact with the package  
leads/exposed pad from metal traces, through-holes, ground,  
and power planes reduces the θJA.  
Stresses above those listed under Absolute Maximum  
Rating may cause permanent damage to the device. This is  
a stress rating only; functional operation of the device at  
these or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Figure 2 shows the maximum safe power dissipation in the  
package vs. the ambient temperature for the 16-lead LFCSP  
(95 °C/W) on a JEDEC standard 4-layer board.  
THERMAL RESISTANCE  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
θJA is specified for the device (including exposed pad)  
soldered to a high thermal conductivity 2s2p circuit board,  
as described in EIA/JESD 51-7.  
Table 4. Thermal Resistance  
Package Type  
θJA  
Unit  
16-Lead LFCSP (Exposed Pad)  
95  
°C/W  
Maximum Power Dissipation  
The maximum safe power dissipation in the ADA4938-1  
package is limited by the associated rise in junction  
temperature (TJ) on the die. At approximately 150°C, which  
is the glass transition temperature, the plastic changes its  
properties. Even temporarily exceeding this temperature  
limit can change the stresses that the package exerts on the  
die, permanently shifting the parametric performance of  
the ADA4938-1. Exceeding a junction temperature of 150°C  
for an extended period can result in changes in the silicon  
devices, potentially causing failure.  
–45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75 85 95 105  
AMBIENT TEMPERATURE (°C)  
Figure 2. Maximum Power Dissipation vs. Temperature for a 4-Layer Board  
ESD CAUTION  
Rev. PrD | Page 7 of 14  
ADA4938-1  
Preliminary Technical Data  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
Figure 3. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
−FB  
+IN  
Negative Output for Feedback Component Connection  
Positive Input Summing Node  
3
4
−IN  
+FB  
+VS  
VOCM  
+OꢀT  
−OꢀT  
PD  
Negative Input Summing Node  
Positive Output for Feedback Component Connection  
Positive Supply Voltage  
Output Common-Mode Voltage  
Positive Output for Load Connection  
Negative Output for Load Connection  
Power-Down Pin  
5 to 8  
9
10  
11  
12  
13 to 16  
−VS  
Negative Supply Voltage  
Rev. PrD | Page 8 of 14  
Preliminary Technical Data  
ADA4938-1  
OPERATIONAL DESCRIPTION  
Common-Mode Voltage  
DEFINITION OF TERMS  
This refers to the average of two node voltages. The output  
common-mode voltage is defined as  
V
OUT, cm = (V+OUT + V−OUT)/2  
Balance  
Balance is a measure of how well differential signals are  
matched in amplitude and are exactly 180° apart in phase.  
Balance is most easily determined by placing a well-matched  
resistor divider between the differential voltage nodes and  
comparing the magnitude of the signal at the dividers midpoint  
with the magnitude of the differential signal. By this definition,  
output balance is the magnitude of the output common-mode  
voltage divided by the magnitude of the output differential  
mode voltage.  
Figure 4. Circuit Definitions  
Differential Voltage  
This refers to the difference between two node voltages. For  
example, the output differential voltage (or equivalently, output  
differential-mode voltage) is defined as  
VOUT, cm  
Output Balance Error =  
VOUT, dm  
V
OUT, dm = (V+OUT V−OUT)  
where V+OUT and V−OUT refer to the voltages at the +OUT and  
−OUT terminals with respect to a common reference.  
Rev. PrD | Page 9 of 14  
ADA4938-1  
Preliminary Technical Data  
THEORY OF OPERATION  
The ADA4938-1 differs from conventional op amps in that it  
has two outputs whose voltages move in opposite directions.  
Like an op amp, it relies on open-loop gain and negative  
feedback to force these outputs to the desired voltages. The  
ADA4938-1 behaves much like a standard voltage feedback op  
amp and makes it easier to perform single-ended-to-differential  
conversions, common-mode level shifting, and amplifications  
of differential signals. Also like an op amp, the ADA4938-1 has  
high input impedance and low output impedance.  
SETTING THE CLOSED-LOOP GAIN  
The differential-mode gain of the circuit in Figure 4 can be  
determined by  
VOUT, dm  
RF  
RG  
=
VIN, dm  
This assumes the input resistors (RG) and feedback resistors (RF)  
on each side are equal.  
Two feedback loops are employed to control the differential and  
common-mode output voltages. The differential feedback, set  
with external resistors, controls only the differential output  
voltage. The common-mode feedback controls only the common-  
mode output voltage. This architecture makes it easy to set the  
output common-mode level to any arbitrary value. It is forced,  
by internal common-mode feedback, to be equal to the voltage  
applied to the VOCM input, without affecting the differential  
output voltage.  
ESTIMATING THE OUTPUT NOISE VOLTAGE  
The differential output noise of the ADA4938-1 can be  
estimated using the noise model in Figure 5. The input-referred  
noise voltage density, vnIN, is modeled as a differential input, and  
the noise currents, inIN− and inIN+, appear between each input and  
ground. The noise currents are assumed to be equal and  
produce a voltage across the parallel combination of the gain  
and feedback resistances. vnCM is the noise voltage density at the  
VOCM pin. Each of the four resistors contributes (4kTRx)1/2. Table  
6 summarizes the input noise sources, the multiplication factors,  
and the output-referred noise density terms.  
The ADA4938-1 architecture results in outputs that are highly  
balanced over a wide frequency range without requiring tightly  
matched external components. The common-mode feedback  
loop forces the signal component of the output common-  
mode voltage to zero. This results in nearly perfectly balanced  
differential outputs that are identical in amplitude and are  
exactly 180° apart in phase.  
VnRG1  
VnRF1  
RG1  
RF1  
inIN+  
+
VnIN  
VnOD  
inIN–  
ADA4938-1  
ANALYZING AN APPLICATION CIRCUIT  
The ADA4938-1 uses open-loop gain and negative feedback to  
force its differential and common-mode output voltages in such  
a way as to minimize the differential and common-mode error  
voltages. The differential error voltage is defined as the voltage  
between the differential inputs labeled +IN and −IN (see  
Figure 4). For most purposes, this voltage can be assumed to be  
zero. Similarly, the difference between the actual output  
common-mode voltage and the voltage applied to VOCM can also  
be assumed to be zero. Starting from these two assumptions,  
any application circuit can be analyzed.  
VOCM  
VnCM  
RG2  
RF2  
VnRG2  
VnRF2  
Figure 5. ADA4938-1 Noise Model  
Table 6. Output Noise Voltage Density Calculations  
Input Noise  
Voltage Density  
Output  
Multiplication Factor  
Output Noise  
Voltage Density Term  
vnO1 = GN(vnIN  
vnO2 = GN[inIN− × (RG2||RF2)]  
vnO3 = GN[inIN+ × (RG1||RF1)]  
Input Noise Contribution  
Differential Input  
Inverting Input  
Noninverting Input  
VOCM Input  
Gain Resistor RG1  
Gain Resistor RG2  
Feedback Resistor RF1  
Feedback Resistor RF2  
Input Noise Term  
vnIN  
inIN−  
inIN+  
vnCM  
vnRG1  
vnRG2  
vnRF1  
vnRF2  
vnIN  
GN  
GN  
GN  
)
inIN− × (RG2||RF2)  
inIN+ × (RG1||RF1)  
vnCM  
(4kTRG1)1/2  
(4kTRG2)1/2  
(4kTRF1)1/2  
(4kTRF2)1/2  
GN1 − β2)  
GN(1 − β2)  
GN(1 − β1)  
1
1
vnO4 = GN1 − β2)(vnCM)  
vnO5 = GN(1 − β2)(4kTRG1)1/2  
vnO6 = GN(1 − β1)(4kTRG2)1/2  
vnO7 = (4kTRF1)1/2  
vnO8 = (4kTRF2)1/2  
Rev. PrD | Page 10 of 14  
Preliminary Technical Data  
ADA4938-1  
Similar to the case of a conventional op amp, the output noise  
voltage densities can be estimated by multiplying the input-  
referred terms at +IN and −IN by the appropriate output factor,  
where:  
2
GN  
=
is the circuit noise gain.  
(
β1 + β2  
RG1  
F1 + RG1  
)
RG2  
β1 =  
and β2 =  
are the feedback factors.  
R
RF2 + RG2  
Figure 6. ADA4938-1 Configured for Balanced (Differential) Inputs  
When RF1/RG1 = RF2/RG2, then β1 = β2 = β, and the noise gain  
becomes  
For an unbalanced, single-ended input signal (see Figure 7), the  
input impedance is  
1
β
RF  
RG  
GN = =1+  
RG  
RF  
RG + RF  
Note that the output noise from VOCM goes to zero in this case.  
The total differential output noise density, vnOD, is the root-sum-  
square of the individual output noise terms.  
RIN, cm =  
1−  
2×  
(
)
8
vnOD  
=
v2  
nOi  
i=1  
THE IMPACT OF MISMATCHES IN THE FEEDBACK  
NETWORKS  
As previously mentioned, even if the external feedback networks  
(RF/RG) are mismatched, the internal common-mode feedback  
loop still forces the outputs to remain balanced. The amplitudes  
of the signals at each output remain equal and 180° out of phase.  
The input-to-output, differential mode gain varies proportionately  
to the feedback mismatch, but the output balance is unaffected.  
Figure 7. ADA4938-1 Configured for Unbalanced (Single-Ended) Input  
The input impedance of the circuit is effectively higher than it  
would be for a conventional op amp connected as an inverter  
because a fraction of the differential output voltage appears at  
the inputs as a common-mode signal, partially bootstrapping  
the voltage across the input resistor RG.  
As well as causing a noise contribution from VOCM, ratio  
matching errors in the external resistors result in a degradation  
of the ability of the circuit to reject input common-mode signals,  
much the same as for a four-resistor difference amplifier made  
from a conventional op amp.  
INPUT COMMON-MODE VOLTAGE RANGE IN  
SINGLE-SUPPLY APPLICATIONS  
In addition, if the dc levels of the input and output common-  
mode voltages are different, matching errors result in a small  
differential-mode output offset voltage. When G = 1, with a  
ground referenced input signal and the output common-mode  
level set to 2.5 V, an output offset of as much as 25 mV (1% of  
the difference in common-mode levels) can result if 1% tolerance  
resistors are used. Resistors of 1% tolerance result in a worst-  
case input CMRR of about 40 dB, a worst-case differential-  
mode output offset of 25 mV due to 2.5 V level-shift, and no  
significant degradation in output balance error.  
The ADA4938-1 is optimized for level-shifting, ground-referenced  
input signals. As such, the center of the input common-mode  
range is shifted approximately 1 V down from midsupply. For  
5 V single-supply operation, the input common-mode range at  
the summing nodes of the amplifier is 0.3 V to 3.0 V. To avoid  
clipping at the outputs, the voltage swing at the +IN and –IN  
terminals must be confined to these ranges.  
SETTING THE OUTPUT COMMON-MODE VOLTAGE  
The VOCM pin of the ADA4938-1 is internally biased at a voltage  
approximately equal to the midsupply point (average value of  
the voltages on V+ and V−). Relying on this internal bias results  
in an output common-mode voltage that is within about 100 mV of  
the expected value.  
CALCULATING THE INPUT IMPEDANCE OF AN  
APPLICATION CIRCUIT  
The effective input impedance of a circuit depends on whether  
the amplifier is being driven by a single-ended or differential  
signal source. For balanced differential input signals, as shown  
in Figure 6, the input impedance (RIN, dm) between the inputs  
(+DIN and −DIN) is simply RIN, dm = 2 × RG.  
In cases where more accurate control of the output common-  
mode level is required, it is recommended that an external  
source, or resistor divider (10 kꢀ or greater resistors), be used.  
It is also possible to connect the VOCM input to a common-mode  
level (CML) output of an ADC. However, care must be taken to  
Rev. PrD | Page 11 of 14  
ADA4938-1  
Preliminary Technical Data  
assure that the output has sufficient drive capability. The input  
impedance of the VOCM pin is approximately 10 kꢀ. If multiple  
ADA4938-1 devices share one reference output, it is  
recommended that a buffer be used.  
Table 7 and Table 8 list several common gain settings,  
associated resistor values, input impedance, output noise  
density, and approximate large signal bandwidth for both balanced  
and unbalanced input configurations. Also shown are the input  
common-mode voltage swings under the given conditions for  
different VOCM settings with both dual and single 5 V supplies.  
Table 7. Differential Ground-Referenced Input, DC-Coupled; See Figure 6  
Common-Mode Swing at +IN, −IN (V)  
Differential  
Output  
Noise Density Bandwidth (MHz)  
Approximate  
Large-Signal  
+VS = 5 V, -VS = -5 V  
VOUT, dm = 2.0 V p-p  
VOCM = 0 V  
+VS =5 V  
VOUT, dm = 2.0 V p-p  
Nominal  
Gain (dB) RF (Ω) RG (Ω) RIN, dm(Ω) (nV/√Hz)  
VOCM = 3.5 V VOCM = 2.5 V  
VOCM = 3.2 V  
0
200  
348  
280  
348  
200  
348  
316  
348  
402  
348  
499  
348  
200  
348  
200  
249  
100  
174  
100  
110  
100  
86.6  
100  
69.8  
400  
696  
400  
498  
200  
348  
200  
220  
200  
173  
200  
140  
5.8  
6.7  
7.2  
7.6  
8.0  
9.0  
11  
12  
14  
13  
17  
-0.50 to 0.50 1.25 to 2.25  
-0.35 to 0.35 1.10 to 1.82  
-0.25 to 0.25 0.92 to 1.42  
-0.16 to 0.16 0.68 to 1.00  
-0.13 to 0.13 0.57 to 0.82  
-0.10 to 0.10 0.48 to 0.68  
0.75 to 1.75  
0.69 to 1.40  
0.58 to 1.08  
0.44 to 0.76  
0.37 to 0.62  
0.32 to 0.52  
1.10 to 2.10  
0.98 to 1.69  
0.82 to 1.32  
0.61 to 0.92  
0.51 to 0.76  
0.43 to 0.63  
3
6
10  
12  
14  
16  
Table 8. Single-Ended Ground-Referenced Input, DC-Coupled, RS = 50 Ω; See Figure 7  
Differential  
Output  
Noise  
Density  
(nV/√Hz)  
Common-Mode Swing at +IN, -IN (V)  
Approximate  
Large-Signal  
Bandwidth  
(MHz)  
+VS = 5 V, -VS = -5 V  
VOUT,dm = 2.0 V p-p  
VOCM = 0 V  
+VS =5 V  
VOUT, dm = 2.0 V p-p  
Nominal  
Gain (dB) (Ω) (Ω)  
RF  
RG1  
RT  
(Ω)  
RIN,cm RG2  
(Ω)  
(Ω)1  
VOCM = 3.5 V VOCM = 2.5 V VOCM = 3.2 V  
0
200 200 61.9 267  
348 348 56.2 464  
280 200 60.4 282  
348 249 59.0 351  
200 100 75.0 150  
348 174 61.9 261  
316 100 73.2 161  
348 110 69.8 177  
402 100 71.5 167  
348 86.6 76.8 144  
499 100 71.5 171  
348 69.8 86.6 120  
226 5.5  
374 6.5  
226 6.8  
274 7.3  
130 7.0  
200 8.4  
130 9.7  
140 10  
130 12  
118 11  
130 14  
100 12  
-0.56 to 0.56 1.29 to 2.42  
-0.40 to 0.40 1.16 to 1.97  
-0.33 to 0.33 1.05 to 1.70  
-0.21 to 0.21 0.82 to 1.23  
-0.16 to 0.16 0.70 to 1.02  
-0.13 to 0.13 0.59 to 0.85  
0.75 to 1.75  
0.71 to 1.52  
0.66 to 1.31  
0.52 to 0.93  
0.45 to 0.77  
0.39 to 0.65  
1.13 to 2.26  
1.03 to 1.83  
0.94 to 1.59  
0.73 to 1.14  
0.62 to 0.94  
0.53 to 0.79  
3
6
10  
12  
14  
1 RG2 = RG1 + (RS||RT)  
Rev. PrD | Page 12 of 14  
Preliminary Technical Data  
ADA4938-1  
LAYOUT, GROUNDING, AND BYPASSING  
As a high speed device, the ADA4938-1 is sensitive to the  
PCB environment in which it operates. Realizing its superior  
performance requires attention to the details of high speed  
PCB design.  
The power supply pins should be bypassed as close to the device  
as possible and directly to a nearby ground plane. High frequency  
ceramic chip capacitors should be used. It is recommended that  
two parallel bypass capacitors (1000 pF and 0.1 μF) be used for  
each supply. The 1000 pF capacitor should be placed closer to  
the device. Further away, low frequency bypassing should be  
provided, using 10 μF tantalum capacitors from each supply  
to ground.  
The first requirement is a solid ground plane that covers as  
much of the board area around the ADA4938-1 as possible.  
However, the area near the feedback resistors (RF), gain resistors  
(RG), and the input summing nodes (Pin 2 and Pin 3) should be  
cleared of all ground and power planes (see Figure 8). This  
minimizes any stray capacitance at these nodes and prevents  
peaking of the response of the amplifier at high frequencies.  
Signal routing should be short and direct to avoid parasitic  
effects. Wherever complementary signals exist, a symmetrical  
layout should be provided to maximize balanced performance.  
When routing differential signals over a long distance, PCB  
traces should be close together, and any differential wiring  
should be twisted such that loop area is minimized. This  
reduces radiated energy and makes the circuit less susceptible  
to interference.  
Figure 8. Ground and Power Plane Voiding in Vicinity of RF and RG  
Rev. PrD | Page 13 of 14  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
ADA4938-1  
0.50  
0.40  
0.30  
3.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
*
1.45  
1.30 SQ  
1.15  
13  
12  
16  
1
0.45  
PIN 1  
INDICATOR  
2.75  
BSC SQ  
TOP  
VIEW  
EXPOSED  
PAD  
9 (BOTTOM VIEW)  
4
0.50  
BSC  
8
5
0.25 MIN  
1.50 REF  
0.80 MAX  
12° MAX  
0.65 TYP  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
0.30  
0.23  
0.18  
0.20 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VEED-2  
EXCEPT FOR EXPOSED PAD DIMENSION.  
Figure 9. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
3 mm × 3 mm Body  
(CP-16-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Ordering Quantity Temperature Range  
Package Description  
Package Option  
Branding  
TBD  
TBD  
ADA4938-1ACPZ-R2 5,000  
ADA4938-1ACPZ-RL 1,500  
ADA4938-1ACPZ-R7 250  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
16-Lead 3 mm × 3 mm LFCSP CP-16-2  
16-Lead 3 mm × 3 mm LFCSP CP-16-2  
16-Lead 3 mm × 3 mm LFCSP CP-16-2  
TBD  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR06592-0-6/07(PrD)  

相关型号:

ADA4938-1YCPZ-R2

Ultra-Low Distortion Differential ADC Driver
ADI

ADA4938-1YCPZ-R7

Ultra-Low Distortion Differential ADC Driver
ADI

ADA4938-1YCPZ-RL

Ultra-Low Distortion Differential ADC Driver
ADI

ADA4938-1_06

Ultra-Low Distortion Differential ADC Driver
ADI

ADA4938-1_07

Ultra-Low Distortion Differential ADC Driver
ADI

ADA4938-1_15

Ultralow Distortion Differential ADC Driver
ADI

ADA4938-1_16

Ultralow Distortion Differential ADC Driver
ADI

ADA4938-2

Operational Amplifiers Selection Guide
ADI

ADA4938-2ACPZ-R2

Ultralow Distortion Differential ADC Driver
ADI

ADA4938-2ACPZ-R7

Ultralow Distortion Differential ADC Driver
ADI

ADA4938-2ACPZ-RL

Ultralow Distortion Differential ADC Driver
ADI

ADA4938-2_15

Ultralow Distortion Differential ADC Driver
ADI