ADATE304 [ADI]

200 MHz Dual Integrated DCL with Level Setting DACs, Per Pin PMU, and Per Chip VHH; 200 MHz双通道集成DCL与电平设置的DAC ,每个引脚PMU和每个芯片VHH
ADATE304
型号: ADATE304
厂家: ADI    ADI
描述:

200 MHz Dual Integrated DCL with Level Setting DACs, Per Pin PMU, and Per Chip VHH
200 MHz双通道集成DCL与电平设置的DAC ,每个引脚PMU和每个芯片VHH

文件: 总52页 (文件大小:1202K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
200 MHz Dual Integrated DCL with Level  
Setting DACs, Per Pin PMU, and Per Chip VHH  
ADATE304  
FEATURES  
GENERAL DESCRIPTION  
Driver  
The ADATE304 is a complete, single-chip solution that performs  
3-level driver with high-Z mode and built-in clamps  
Precision trimmed output resistance  
Low leakage mode (typically <10 nA)  
Voltage range: up to −2.0 V to +6.0 V  
2.4 ns minimum pulse width, 2 V terminated  
Comparator  
Window and differential comparator  
500 MHz input equivalent bandwidth  
Load  
12 mA maximum current capability  
Per pin PMU  
Force voltage range: up to −2.0 V to +6.0 V  
5 current ranges: 32 mA, 2 mA, 200 μA, 20 μA, 2 μA  
Levels  
the pin electronic functions of the driver, the comparator, and  
the active load (DCL), per pin PMU, and dc levels for ATE appli-  
cations. The device also contains an HVOUT driver with a VHH  
buffer capable of generating up to 13.5 V.  
The driver features three active states: data high mode, data low  
mode, and term mode, as well as an inhibit state. The inhibit  
state, in conjunction with the integrated dynamic clamp, facili-  
tates the implementation of a high speed active termination.  
The ADATE304 supports two output voltage ranges: −2.0 V  
to +6.0 V and −1.25 V to +6.75 V by adjusting the positive and  
negative supply voltages.  
Each channel of the ADATE304 features a high speed window  
comparator per pin for functional testing, as well as a per pin  
PMU with FV, or FI and MV, or MI functions. All necessary dc  
levels for DCL functions are generated by on-chip 14-bit DACs.  
The per pin PMU features an on-chip 16-bit DAC for high  
accuracy and contains integrated range resistors to minimize  
external component counts.  
14-bit DAC for DCL levels  
Typically < 5 mV INL (calibrated)  
16-bit DAC for PMU levels  
Typically < 1.5 mV INL (calibrated) linearity in FV mode  
HVOUT output buffer  
0 V to 13.5 V output range  
84-lead, 9 mm × 9 mm, CSP_BGA package  
900 mW per channel with no load  
The ADATE304 uses a serial bus to program all functional blocks  
and has an on-board temperature sensor for monitoring the  
device temperature.  
APPLICATIONS  
Automatic test equipment  
Semiconductor test systems  
Board test systems  
Instrumentation and characterization equipment  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
ADATE304  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Thermal Resistance.................................................................... 19  
Explanation of Test Levels......................................................... 19  
ESD Caution................................................................................ 19  
Pin Configuration and Function Descriptions........................... 20  
Typical Performance Characteristics ........................................... 23  
SPI Details ....................................................................................... 33  
Definition of SPI Word.............................................................. 34  
Write Operation.......................................................................... 35  
Read Operation........................................................................... 36  
Reset Operation.......................................................................... 37  
Register Map ................................................................................... 38  
Details of Registers......................................................................... 39  
User Information............................................................................ 41  
Power Supply Considerations................................................... 41  
Truth Tables................................................................................. 41  
Details of DACs vs. Levels......................................................... 43  
Recommended PMU Mode Switching Sequences................. 45  
Block Diagrams............................................................................... 47  
Outline Dimensions....................................................................... 51  
Ordering Guide .......................................................................... 51  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
Total Function............................................................................... 4  
Driver ............................................................................................. 5  
Reflection Clamp.......................................................................... 7  
Normal Window Comparator .................................................... 7  
Differential Comparator.............................................................. 9  
Active Load.................................................................................. 10  
PMU............................................................................................. 11  
External Sense (PMUS_CHx)................................................... 16  
DUTGND Input ......................................................................... 16  
Serial Peripheral Interface......................................................... 16  
HVOUT Driver........................................................................... 17  
Overvoltage Detector (OVD) ................................................... 18  
16-Bit DAC Monitor MUX ....................................................... 18  
Absolute Maximum Ratings.......................................................... 19  
REVISION HISTORY  
10/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 52  
 
ADATE304  
FUNCTIONAL BLOCK DIAGRAM  
CH1  
PMU_FLAG  
PMU  
16-BIT DAC  
*
MUX  
MUX  
DAC16_MON  
*
OVD  
OVD_CH0  
MUX  
MEASOUT01  
PMUS_CH0  
CH1  
VCLAMPH  
VCLAMPL  
VH  
VT  
VL  
R
OUT  
(TRIMMED)  
DATA0P  
100  
DRV  
DUT0  
DATA0N  
RCV0P  
*
100Ω  
WINDOW  
DIFF.  
C
RCV0N  
OTHER CHANNEL  
DUT1  
*
COMP_VTT0  
VHH  
HVOUT  
50Ω  
COMP_QH0P  
COMP_QH0N  
C
C
VOH  
VOL  
COMP_QL0P  
COMP_QL0N  
*
G
IOL  
ADATE304  
SDIN  
*
RST  
SCLK  
CS  
VCOM  
*
14-BIT DAC  
SPI  
TEMPERATURE  
SENSOR  
TEMPSENSE  
IOH  
SDOUT  
*
ONE PER DEVICE.  
Figure 1. One of Two Channels  
Rev. 0 | Page 3 of 52  
 
ADATE304  
SPECIFICATIONS  
Characterization and production tests performed using Power Supply Range 1 (see Table 37). VDD = +10.75 V, VCC = +3.3 V, VSS = −5.00 V,  
VPLUS = +16.75 V, VCOMP_VTT = +3.3 V, VREF = +5.0 V, VREF_GND = 0.0 V. All default test conditions are as defined in Table 38. All specified  
values are at TJ = 55°C, where TJ corresponds to the internal temperature sensor and the temperature coefficients are measured at TJ =  
55°C ꢀ0°C, unless otherwise noted. Typical values are based on design, simulation analyses, and/or limited bench evaluations. Typical  
values are not tested or guaranteed. Test levels are specified in the Explanation of Test Levels section.  
TOTAL FUNCTION  
Table 1.  
Test  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Level Test Conditions/Comments  
TOTAL FUNCTION  
Output Leakage Current  
PE Disable Range E  
−20.0 +5.3  
5.3  
+20.0 nA  
nA  
P
−1.25 V < VDUTx < +6.0 V; PMU and PE disabled  
via SPI; PMU Range E, VCH = 7.0 V, VCL = −2.5 V  
−1.25 V < VDUTx < +6.0 V; PMU and PE disabled via  
SPI; PMU Range A, PMU Range B, PMU Range C,  
and PMU Range D, VCH = +7.0 V, VCL = −2.5 V  
−1.25 V < VDUTx < +6.0 V; PMU disabled and PE  
enabled via SPI; RCV active, VCH = +7.0 V, VCL =  
−2.5 V  
PE Disable Range A to Range D  
High-Z Mode  
CT  
−400  
−1.25  
+5.4  
4
+400  
nA  
P
Output Capacitance  
DUT Pin Range  
pF  
V
S
D
VTERM mode operation  
+6.0  
POWER SUPPLIES  
Total Supply Range, VPLUS to VSS  
VPLUS Supply  
Positive Supply  
Negative Supply  
Logic Supply  
Comparator Termination  
VPLUS Supply Current  
22.5  
23.25  
V
V
V
V
V
V
mA  
mA  
mA  
mA  
mA  
mA  
W
mA  
mA  
W
D
D
D
D
D
D
P
P
P
P
P
P
P
P
P
P
Defines PSRR conditions  
Defines PSRR conditions  
Defines PSRR conditions  
Defines PSRR conditions  
Defines PSRR conditions  
VPLUS  
VDD  
VSS  
16.25 16.75 17.25  
10.25 10.75 11.25  
−5.25 −5.00 −4.75  
VCC  
3.1  
3.3  
3.5  
5.0  
VCOMP_VTT 3.3  
IPLUS  
−1.0  
4.0  
1.0  
10.0  
72  
100  
1.0  
102  
130  
1.8  
+1.3  
12.7  
2.7  
+3.0  
16.0  
4.0  
26.0  
97  
126  
1.82  
152  
181  
2.5  
HVOUT disabled  
HVOUT enabled, RCV active, no load, VHH = 12 V  
Quiescent (SPI is static)  
Logic Supply Current  
Comparator Termination Current  
Positive Supply Current  
Negative Supply Current  
Total Power Dissipation  
Positive Supply Current  
Negative Supply Current  
Total Power Dissipation  
TEMPERATURE MONITORS  
Temperature Sensor Gain  
ICC  
ICOMP_VTT  
IDD  
17  
90.5  
116  
1.6  
120  
146  
2.2  
Load power down (IOH = IOL = 0 mA)  
Load power down (IOH = IOL = 0 mA)  
Load power down (IOH = IOL = 0 mA)  
Load active off (IOH = IOL = 12 mA)  
Load active off (IOH = IOL = 12 mA)  
Load active off (IOH = IOL = 12 mA)  
ISS  
IDD  
ISS  
10  
6
mV/K CT  
°C  
Temperature Sensor Accuracy Without  
Calibration over 25°C to 100°C  
CT  
Temperature voltage available on Pin A1 at all  
times and on Pin K1 (MEASOUT01/TEMPSENSE)  
when selected (see Table 24 and Table 36)  
VREF INPUT  
Reference Input Voltage Range for  
DACs (VREF Pin)  
Input Bias Current  
4.95  
5
5.05  
100  
V
D
P
Referenced to VREF_GND; not referenced to VDUTGND  
Tested with 5 V applied  
0.1  
μA  
Rev. 0 | Page 4 of 52  
 
ADATE304  
DRIVER  
VH − VL ≥ 200 mV (to meet dc and ac specifications).  
Table 2.  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Test Conditions/Comments  
DC SPECIFICATIONS  
High Speed Differential Logic Input  
Characteristics (DATAxx, RCVxx)  
Input Termination Resistance  
Push 6 mA into xP pins1, force 1.3 V on xN pins1; measure  
92  
100  
108  
Ω
P
voltage from xP to xN1, calculate resistance (ΔV/ΔI)  
Input Voltage Differential  
Common-Mode Voltage  
0.2  
0.85  
0.85  
1.0  
2.35  
3.5  
V
V
V
PF  
PF  
D
P
Input Bias Current  
−20.0 +2.2  
+20.0 μA  
Each pin tested at 2.85 V and 0.35 V while the other high speed  
pin remains open  
Pin Output Characteristics  
Output High Range, VH  
Output Low Range, VL  
Output Term Range, VT  
Functional Amplitude (VH − VL)  
−1.15  
−1.25  
−1.25  
+6.75  
+6.65  
+6.75  
V
V
V
V
D
D
D
D
0.0  
8.0  
Amplitude can be programmed to VH = VL, accuracy specifica-  
tions apply when VH − VL ≥ 200 mV  
DC Output Current Limit Source  
DC Output Current Limit Sink  
Output Resistance, 50 mA  
ABSOLUTE ACCURACY  
75  
100  
120  
mA  
mA  
Ω
P
P
P
Driver high, VH = 6.75 V, short DUTx pin to −1.25 V, measure  
current  
Driver low, VL = −1.25 V, short DUTx pin to +6.75 V, measure  
current  
Source: driver high, VH = +3.0 V, IDUTx = +1 mA and +50 mA;  
sink: driver low, VL = 0.0 V, IDUTx = −1 mA and −50 mA; ΔVDUT/ΔIDUT  
−120 −100 −75  
45.0  
47.0  
49.0  
VH tests done with VL = −2.5 V and VT= −2.5 V;  
VL tests done with VH = +7.5 V and VT = +7.5 V;  
VT tests done with VL = −2.5 V and VH = +7.5 V; unless  
otherwise specified  
VH, VL, VT Uncalibrated Accuracy  
VH, VL, VT Offset Tempco  
VH, VL, VT DNL  
−250  
−10  
75  
450  
1
2.5  
+250 mV  
P
Error measured at calibration points of 0 V and 5 V  
Measured at calibration points  
After two-point gain/offset calibration  
After two-point gain/offset calibration; measured over driver  
output ranges  
After two-point gain/offset calibration; range/number of DAC  
bits as measured at calibration points of 0 V and 5 V  
μV/°C CT  
mV  
mV  
CT  
P
VH, VL, VT INL  
+10  
+1  
VH, VL, VT Resolution  
DUTGND Voltage Accuracy  
VH, VL, VT Crosstalk  
0.6  
mV  
mV  
mV  
PF  
P
−7  
1.3  
2
+7  
Over 0.1 V range; measured at endpoints of VH, VL, and VT  
functional range  
CT  
VL = −1.25 V: VH = −1.15 V +6.75 V, VT = −1.25 V +6.75 V;  
VH = +6.75 V: VL = −1.25 V +6.65 V, VT = −1.25 V +6.75 V;  
VT = +1.25 V: VL = −1.25 V +6.65 V, VH = −1.15 V +6.75 V;  
dc crosstalk on VL, VH, VT output level when other driver DACs  
are varied  
Overall Voltage Accuracy  
10  
15  
mV  
CT  
Sum of INL, crosstalk, DUTGND, and tempco over 5°C, after  
gain/offset calibration  
Measured at calibration points  
VH, VL, VT DC PSRR  
AC SPECIFICATIONS  
mV/V CT  
Rise/Fall Times  
Toggle DATAxx  
0.2 V Programmed Swing  
1.0 V Programmed Swing  
2.0 V Programmed Swing  
3.0 V Programmed Swing  
3.0 V Programmed Swing  
5.0 V Programmed Swing  
Rise-to-Fall Matching  
950  
850  
1150 1350  
1500  
2000  
3100  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
CB  
CB  
CB  
P/CB  
CB  
VH = 0.2 V, VL = 0.0 V, terminated; 20% to 80%  
VH = 1.0 V, VL = 0.0 V, terminated; 20% to 80%  
VH = 3.0 V, VL = 0.0 V, terminated; 20% to 80%  
VH = 3.0 V, VL = 0.0 V, terminated; 20% to 80%  
VH = 3.0 V, VL = 0.0 V, unterminated; 10% to 90%  
VH = 5.0V, VL = 0.0 V, unterminated; 10% to 90%  
VH = 3.0 V, VL = 0.0 V, terminated; rise-to-fall within one channel  
850  
CB  
CB  
40  
Rev. 0 | Page 5 of 52  
 
ADATE304  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Test Conditions/Comments  
Minimum Pulse Width  
1.0 V Programmed Swing  
Toggle DATAxx  
VH = 1.0 V, VL = 0.0 V, terminated; timing error 75 ps  
VH = 1.0 V, VL = 0.0 V, terminated; less than 10% amplitude  
degradation  
1.7  
1.7  
ns  
ns  
CB  
CB  
2.0 V Programmed Swing  
3.0 V Programmed Swing  
2.0  
2.2  
ns  
ns  
CB  
CB  
VH = 2.0 V, VL = 0.0 V, terminated; timing error 75 ps  
VH = 2.0 V, VL = 0.0 V, terminated; less than 10% amplitude  
degradation  
VH = 3.0 V, VL = 0.0 V, terminated; timing error 75 ps  
VH = 3.0 V, VL = 0.0 V, terminated; less than 10% amplitude  
degradation  
2.7  
2.7  
ns  
ns  
CB  
CB  
Maximum Toggle Rate  
2.0 V Programmed Swing  
Dynamic Performance, Drive  
(VH to VL and VL to VH)  
200  
MHz  
CB  
VH = 2.0 V, VH = 0.0 V, terminated, 10% amplitude degradation  
Toggle DATAxx  
Propagation Delay Time  
Propagation Delay Tempco  
Delay Matching  
Edge to Edge  
Channel to Channel  
3.0  
3.0  
ns  
CB  
VH = 2.0 V, VL = 0.0 V, terminated  
VH = 2.0 V, VL = 0.0 V, terminated  
VH = 2.0 V, VL = 0.0 V, terminated  
Rising vs. falling  
Rising vs. rising, falling vs. falling  
VH = 3.0 V, VL = 0.0 V, terminated; 5% to 95% duty cycle; 1 MHz  
VH = 3.0 V, VL = 0.0 V, terminated  
Toggle DATAxx  
ps/°C CT  
80  
30  
30  
30  
ps  
ps  
ps  
mV  
CB  
CB  
CB  
CB  
Delay Change vs. Duty Cycle  
Overshoot and Undershoot  
Settling Time (VH to VL)  
To Within 3% of Final Value  
To Within 1% of Final Value  
Dynamic Performance, VT  
(VH or VL to VT and VT to VH or VL)  
Propagation Delay Time  
Delay Matching, Edge to Edge  
Propagation Delay Tempco  
4
25  
ns  
ns  
CB  
CB  
VH = 3.0 V, VL = 0.0 V, terminated  
VH = 3.0 V, VL = 0.0 V, terminated  
Toggle RCVxx  
3.7  
150  
4.0  
1.0  
ns  
ps  
CB  
CB  
VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated  
VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated; rising vs. falling  
VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated  
ps/°C CT  
ns  
Transition Time, Active to VT  
and VT to Active  
CB  
VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated; 20% to 80%  
Dynamic Performance, Inhibit  
(VH or VL to/from Inhibit)  
Propagation Delay Time  
Toggle RCVxx  
VH = +1.0 V, VL = −1.0 V, terminated  
Active to Inhibit  
Inhibit to Active  
Transition Time  
Active to Inhibit  
Inhibit to Active  
I/O Spike  
4.5  
7.9  
ns  
ns  
CB  
CB  
VH =+1.0 V, VL = −1.0 V, terminated; 20% to 80%  
2.9  
0.65  
190  
ns  
ns  
mV  
CB  
CB  
CB  
VH = 0.0 V, VL = 0.0 V, terminated  
1 The xP pins include DATA0P, DATA1P, RCV0P, and RCV1P; the xN pins include DATA0N, DATA1N, RCV0N, and RCV1N. For example, push 6 mA into the DATA0P pin,  
force 1.3 V into DATA0N, and measure the voltage from DATA0P to DATA0N.  
Rev. 0 | Page 6 of 52  
 
 
ADATE304  
REFLECTION CLAMP  
Clamp accuracy specifications apply when VCH > VCL.  
Table 3.  
Test  
Parameter  
VCH  
Min  
Typ  
Max  
Unit  
Level Test Conditions/Comments  
Range  
Uncalibrated Accuracy  
−1.0  
−200  
+6.75  
+200  
V
mV  
D
P
50  
Driver high-Z, sinking 1 mA; VCH error measured at the  
calibration points of 0.0 V and 5.0 V  
Resolution  
0.6  
0.75  
mV  
PF  
Driver high-Z, sinking 1 mA; after two-point gain/offset  
calibration; range/number of DAC bits as measured at  
the calibration points of 0.0 V and 5.0 V  
DNL  
INL  
1
2
mV  
CT  
P
Driver high-Z, sinking 1 mA; after two-point gain/offset  
calibration  
Driver high-Z, sinking 1 mA; after two-point gain/offset  
calibration; measured over VCH range of −1.0 V to +6.75 V  
−40  
+40  
mV  
Tempco  
−0.3  
mV/°C  
CT  
Measured at calibration points  
VCL  
Range  
Uncalibrated Accuracy  
−1.25  
−200  
+5.75  
+200  
V
mV  
D
P
50  
Driver high-Z, sourcing 1 mA; VCL error measured at the  
calibration points of 0.0 V and 5.0 V  
Resolution  
0.6  
0.75  
mV  
PF  
Driver high-Z, sourcing 1 mA; after two-point gain/offset  
calibration; range/number of DAC bits as measured at  
the calibration points of 0.0 V and 5.0 V  
DNL  
INL  
1
2
mV  
CT  
P
Driver high-Z, sourcing 1 mA; after two-point gain/offset  
calibration  
Driver high-Z, sourcing 1 mA; after two-point gain/offset  
calibration; measured over VCL range of −1.0 V to +5.75 V  
−40  
+40  
mV  
Tempco  
0.5  
mV/°C  
CT  
Measured at calibration points  
DC CLAMP CURRENT LIMIT  
VCH  
VCL  
−120  
60  
−85  
85  
1
−60  
120  
+7  
mA  
mA  
mV  
P
P
P
Driver high-Z, VCH = 0 V, VCL = −1.0 V, VDUTx = +5 V  
Driver high-Z, VCH = 6.75 V, VCL= 5.0 V, VDUTx = 0.0 V  
DUTGND VOLTAGE ACCURACY  
−7  
Over 0.1 V range; measured at the endpoints of VCH  
and VCL functional range  
NORMAL WINDOW COMPARATOR  
VOH tests done with VOL = −1.25 V; VOL tests done with VOH = 6.0 V, unless otherwise specified.  
Table 4.  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Test Conditions/Comments  
DC SPECIFICATIONS  
Input Voltage Range  
Differential Voltage Range  
−1.25  
0.1  
+6.75  
8.0  
V
D
D
V
Comparator Input Offset Voltage  
Accuracy, Uncalibrated  
−150  
30  
+150  
mV  
P
Offset measured at the calibration points  
of 0.0 V and 5.0 V  
Comparator Threshold Resolution  
0.6  
1
mV  
PF  
After two-point gain/offset calibration;  
range/number of DAC bits as measured at  
the calibration points of 0 V and 5 V  
Comparator Threshold DNL  
Comparator Threshold INL  
1
mV  
mV  
CT  
P
After two-point gain/offset calibration  
−7  
−7  
1.3  
+7  
After two-point gain/offset calibration;  
measured over VOH, VOL range of −1.25 V  
to +6.75 V  
Comparator Input Offset Voltage  
Tempco  
100  
0.5  
ꢀV/°C CT  
mV  
Measured at calibration points  
DUTGND Voltage Accuracy  
+7  
P
Over 0.1 V range; measured at endpoints  
of VOH and VOL functional range  
Rev. 0 | Page 7 of 52  
 
ADATE304  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Test Conditions/Comments  
Comparator Uncertainty Range  
6.0  
mV  
CB  
VDUTx = 0 V, sweep comparator threshold to  
determine uncertainty region  
DC Hysteresis  
0.5  
5
mV  
CB  
VDUTx = 0 V  
DC PSRR  
mV/V CT  
Measured at calibration points  
Digital Output Characteristics  
Internal Pull-Up Resistance to  
Comparator, COMP_VTT Pin  
40  
50  
60  
Ω
P
Pull 1 mA and 10 mA from Logic 1 leg and  
measure ΔV to calculate resistance; measured  
ΔV/9 mA; done for both comparator logic  
states  
VCOMP_VTT Range  
3.3  
5.0  
V
D
CT  
P
Common-Mode Voltage  
VCOMP_VTT − 1.88  
V
Measured with 100 Ω differential termination  
Measured with no external termination  
Measured with 100 Ω differential termination  
Measured with no external termination  
VCOMP_VTT − 2.075  
400  
VCOMP_VTT − 1.675  
600  
V
Differential Voltage  
250  
500  
450  
mV  
mV  
ps  
CT  
P
Rise/Fall Time, 20% to 80%  
AC SPECIFICATIONS  
CB  
Measured with each comparator leg  
terminated 50 Ω to GND  
Input transition time = 800 ps, 10% to 90%;  
measured with each comparator leg  
terminated 50 Ω to GND, unless otherwise  
specified  
Propagation Delay, Input to  
Output  
1.75  
5
ns  
CB  
CT  
VDUTx = 0 V to 1.0 V swing, Driver VTERM  
mode, VT = 0.0 V; high-side measurement:  
VOH = +0.50 V, VOL = −1.25 V; low-side  
measurement: VOH = +6.75 V, VOL = +0.50 V  
Propagation Delay Tempco  
Propagation Delay Matching  
ps/°C  
VDUTx = 0 V to 1.0 V swing, Driver VTERM  
mode, VT = 0.0 V; high-side measurement:  
VOH = +0.50 V, VOL = −1.25 V; low-side  
measurement: VOH = +6.75 V, VOL = +0.50 V  
VDUTx = 0 V to 1.0 V swing, Driver VTERM  
mode, VT = 0.0 V; high-side measurement:  
VOH = +0.50 V, VOL = −1.25 V; low-side  
measurement: VOH = +6.75 V, VOL = +0.50 V  
High Transition to Low  
Transition  
200  
50  
ps  
ps  
CB  
CB  
High to Low Comparator  
Propagation Delay Change (with  
Respect To)  
Slew Rate, 800 ps, 1 ns, 1.2 ns,  
and 2.2 ns (10% to 90%)  
50  
75  
ps  
ps  
CB  
CB  
VDUTx = 0 V to 1.0 V swing, Driver VTERM  
mode, VT = 0.0 V; high-side measurement:  
VOH = +0.50 V, VOL = −1.25 V; low-side  
measurement: VOH = +6.75V, VOL = +0.50 V  
Overdrive, 250 mV and 1.0 V  
For 250 mV: VDUTx = 0 V to 0.5 V swing; for  
1.0 V: VDUTx = 0 V to 1.25 V swing; Driver  
VTERM mode, VT = 0.0 V; high-side  
measurement: VOH = +0.25 V, VOL = −1.25  
V; low-side measurement: VOH = +6.75 V,  
VOL = +0.25 V  
Pulse Width, Sweep 1.6 ns to  
10 ns  
75  
50  
2.0  
ps  
ps  
ns  
CB  
CB  
CB  
VDUTx = 0 V to 1.0 V swing @ 32.0 MHz,  
Driver VTERM mode, VT = 0.0 V; high-side  
measurement: VOH = +0.5 V, VOL = −1.25 V;  
low-side measurement: VOH = +6.75 V,  
VOL = +0.5 V  
Duty Cycle, 5% to 95%  
Minimum Pulse Width  
VDUTx = 0 V to 1.0 V swing @ 1.0 MHz, Driver  
VTERM mode, VT =0.0 V; high-side  
measurement: VOH = +0.50 V, VOL = −1.25  
V; low-side measurement: VOH = +6.75 V,  
VOL = +0.50 V  
VDUTx = 0 V to 1.0 V swing, Driver VTERM  
mode, VT = 0.0 V; less than 12% amplitude  
degradation measured by shmoo  
Input Equivalent Bandwidth,  
Terminated  
500  
2.5  
MHz  
ns  
CB  
CB  
VDUTx = 0 V to 1.0 V swing, Driver VTERM  
mode, VT = 0.0 V; as measured by shmoo  
ERT High-Z Mode, 3 V, 20%  
to 80%  
VDUTx = 0 V to 3.0 V swing, driver high-Z; as  
measured by shmoo; input transition time of  
~2000 ps, 10% to 90%  
Rev. 0 | Page 8 of 52  
ADATE304  
DIFFERENTIAL COMPARATOR  
VOH tests done with VOL = −1.1 V, VOL tests done with VOH = +1.1 V, unless otherwise specified.  
Table 5.  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Test Conditions/Comments  
DC SPECIFICATIONS  
Input Voltage Range  
Operational Differential Voltage  
Range  
−1.25  
0.05  
+4.5  
1.1  
V
V
D
D
Maximum Differential Voltage Range  
8
V
D
Comparator Input Offset Voltage  
Accuracy, Uncalibrated  
VOH, VOL Resolution  
−150  
−15  
35  
+150  
mV  
P/CT  
Offset measured at differential calibration points +1.0 V  
and −1.0 V, with common mode = 0.0 V  
After two-point gain/offset calibration; range/number of  
DAC bits as measured at differential calibration points  
+1.0 V and −1.0 V, with common mode = 0.0 V  
After two-point gain/offset calibration; common  
mode = 0.0 V  
After two-point gain/offset calibration; measured over VOH,  
VOL range of −1.1 V to +1.1 V, common mode = 0.0 V  
0.6  
1
mV  
PF  
VOH, VOL DNL  
VOH, VOL INL  
1
mV  
mV  
CT  
P
2.0  
+15  
VOH, VOL Offset Voltage Tempco  
Comparator Uncertainty Range  
200  
18  
ꢀV/°C CT  
Measured at calibration points  
VDUTx = 0 V, sweep comparator threshold to determine  
uncertainty region  
mV  
CB  
DC Hysteresis  
CMRR  
0.5  
0.15  
mV  
mV/V  
CB  
P
VDUTx = 0 V  
1
Offset measured at common-mode voltage points of  
−1.5 V and +4.5 V, with differential voltage = 0.0 V  
DC PSRR  
1.5  
1.7  
mV/V CT  
Measured at calibration points  
AC SPECIFICATIONS  
Input transition time = 800 ps, 10% to 90%, measured  
with each comparator leg terminated 50 Ω to GND  
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM  
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V,  
VOL = −1.1 V; low-side measurement: VOH = +1.1 V,  
VOL = 0.0 V; repeat for other DUT channel  
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM  
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V,  
VOL = −1.1 V; low-side measurement: VOH = +1.1 V,  
VOL = 0.0 V; repeat for other DUT channel  
Propagation Delay, Input to Output  
Propagation Delay Tempco  
ns  
CB  
5
ps/°C CT  
Propagation Delay Matching  
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM  
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V,  
VOL = −1.1 V; low-side measurement: VOH = +1.1 V,  
VOL = 0.0 V; repeat for other DUT channel  
High Transition to Low Transition  
High-to-Low Comparator  
100  
50  
ps  
ps  
CB  
CB  
Propagation Delay Change (with  
Respect To)  
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM  
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V,  
VOL = −1.1 V; low-side measurement: VOH = +1.1 V,  
VOL = 0.0 V; repeat for other DUT channel  
Slew Rate, 800 ps, 1 ns, 1.2 ns, and  
2.2 ns (10% to 90%)  
60  
ps  
ps  
ps  
ps  
CB  
CB  
CB  
CB  
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM  
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V,  
VOL = −1.1 V; low-side measurement: VOH = +1.1 V,  
VOL = 0.0 V; repeat for other DUT channel  
VDUT0 = 0 V, for 250 mV: VDUT1 = 0 V to 0.5 V swing; for  
750 mV: VDUT1 = 0 V to 1.0 V swing, Driver VTERM mode,  
VT = 0.0 V; VOH = −0.25 V; repeat for other DUT channel  
with comparator threshold = +0.25 V  
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing @ 32 MHz, Driver  
VTERM mode, VT = 0.0 V; high-side measurement: VOH =  
0.0 V, VOL = −1.1 V; low-side measurement: VOH = +1.1 V,  
VOL = 0.0 V; repeat for other DUT channel  
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing @ 1 MHz, Driver  
VTERM mode, VT = 0.0 V; high-side measurement: VOH =  
0.0 V, VOL = −1.1 V; low-side measurement: VOH = +1.1 V,  
VOL = 0.0 V; repeat for other DUT channel  
Overdrive, 250 mV and 750 mV  
100  
75  
Pulse Width, Sweep from 1.6 ns to  
10 ns  
Duty Cycle, 5% to 95%  
60  
Rev. 0 | Page 9 of 52  
 
ADATE304  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Test Conditions/Comments  
Minimum Pulse Width  
2.5  
ns  
CB  
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM  
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V,  
VOL = −1.1 V; low-side measurement: VOH = +1.1 V, VOL  
= 0.0 V; less than 10% amplitude degradation measured  
by shmoo; repeat for other DUT channel  
Input Equivalent Bandwidth,  
Terminated  
400  
MHz  
CB  
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM  
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V,  
VOL = −1.1 V; low-side measurement: VOH = +1.1 V, VOL  
= 0.0 V; less than 22% amplitude degradation measured  
by shmoo; repeat for other DUT channel  
ACTIVE LOAD  
See the Truth Tables section and Table 29 for load control information.  
Table 6.  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Test Conditions/Comments  
DC SPECIFICATIONS  
Input Characteristics  
VCOM Voltage Range  
VDUT Range  
Load active on, RCV active, unless otherwise noted  
−1.00  
−1.25  
−200  
+6.50  
+6.75  
+200 mV  
V
V
D
D
P
VCOM Accuracy, Uncalibrated  
30  
IOH = IOL = 6 mA, VCOM error measured at the calibration points  
of 0.0 V and 5.0 V  
VCOM Resolution  
0.6  
1
mV  
PF  
IOH = IOL = 6 mA, after two-point gain/offset calibration;  
range/number of DAC bits as measured at the calibration points  
of 0.0 V and 5.0 V  
VCOM DNL  
VCOM INL  
1
2
mV  
mV  
CT  
P
IOH = IOL = 6 mA, after two-point gain/offset calibration  
IOH = IOL = 6 mA, after two-point gain/offset calibration;  
measured over VCOM range of −1.00 V to +6.50 V  
Over 0.1 V range; measured at end points of VCOM functional  
range  
−7  
−7  
+7  
+7  
DUTGND Voltage Accuracy  
1
mV  
P
Output Characteristics  
IOL  
Maximum Source Current  
Uncalibrated Offset  
12  
−600  
mA  
D
P
100 +600 ꢀA  
IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, IOL offset calculated from  
the calibration points of 1 mA and 11 mA  
Uncalibrated Gain  
Resolution  
−12  
4
+12  
2
%
P
IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, IOL gain calculated from  
the calibration points of 1 mA and 11 mA  
IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, after two-point gain/  
offset calibration; range/number of DAC bits as measured at the  
calibration points of 1 mA and 11 mA  
1.5  
ꢀA  
PF  
DNL  
3.0  
20  
ꢀA  
ꢀA  
V
CT  
P
IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, after two-point  
gain/offset calibration  
IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, after two-point gain/  
offset calibration; measured over IOL range of 0 mA to 12 mA  
IOH = IOL = 12 mA, VCOM = 2.0 V, measure IOL reference at  
VDUTx = −1.0 V, measure IOL current at VDUTx = +1.75 V, ensure > 90%  
of reference current  
INL  
−80  
+80  
0.25  
90% Commutation Voltage  
P
IOH  
Maximum Sink Current  
Uncalibrated Offset  
12  
−600  
mA  
D
P
100 +600 ꢀA  
IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, IOH offset calculated from  
the calibration points of 1 mA and 11 mA  
Uncalibrated Gain  
Resolution  
−12  
4
+12  
2
%
P
IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, IOH gain calculated from  
the calibration points of 1 mA and 11 mA  
IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, after two-point  
gain/offset calibration; range/number of DAC bits as measured at  
the calibration points of 1 mA and 11 mA  
1.5  
ꢀA  
PF  
DNL  
3.0  
ꢀA  
CT  
IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, after two-point  
gain/offset calibration  
Rev. 0 | Page 10 of 52  
 
ADATE304  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Test Conditions/Comments  
INL  
−80  
20  
+80  
ꢀA  
P
IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, after two-point gain/  
offset calibration; measured over IOH range of 0 mA to 12 mA  
90% Commutation Voltage  
0.25  
V
P
IOH = IOL =12 mA, VCOM = 2.0 V, measure IOH reference at VDUTx  
= 5.0 V, measure IOH current at VDUTx = 2.25 V, ensure > 90% of  
reference current  
Output Current Tempco  
AC SPECIFICATIONS  
Dynamic Performance  
Propagation Delay, Load Active  
On to Load Active Off;  
50%,90%  
1.5  
7.3  
ꢀA/°C CT  
Measured at calibration points  
Load active on, unless otherwise noted  
ns  
ns  
CB  
CB  
Toggle RCV, DUTx terminated 50 Ω to GND, IOH = IOL = 12 mA,  
VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for  
IOH; measured from 50% point of RCVxP − RCVxN to 90% point of  
final output, repeat for drive low and high  
Toggle RCV, DUTx terminated 50 Ω to GND, IOH = IOL = 12 mA,  
VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for  
IOH; measured from 50% point of RCVxP − RCVxN to 90% point of  
final output, repeat for drive low and high  
Propagation Delay, Load Active  
Off to Load Active On;  
50%, 90%  
10.3  
Propagation Delay Matching  
Load Spike  
3.0  
190  
1.9  
ns  
CB  
CB  
CB  
Toggle RCV, DUTx terminated 50 Ω to GND, IOH = IOL = 12 mA,  
VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for  
IOH; active on vs. active off, repeat for drive low and high  
Toggle RCV, DUTx terminated 50 Ω to GND, IOH = IOL = 0 mA, VH  
= VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for IOH;  
repeat for drive low and high  
Toggle RCV, DUTx terminated 50 Ω to GND, IOH = IOL = 12 mA,  
VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for IOH;  
measured at 90% of final value  
mV  
ns  
Settling Time to 90%  
PMU  
FV is the force voltage, MV is the measure voltage, FI is the force current, MI is the measure current, FN is force nothing.  
Table 7.  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Test Conditions/Comments  
FORCE VOLTAGE (FV)  
Current Range A  
Current Range B  
Current Range C  
Current Range D  
Current Range E  
32  
2
200  
20  
2
−1.25  
mA  
mA  
ꢀA  
ꢀA  
ꢀA  
V
D
D
D
D
D
D
Force Input Voltage Range at  
Output for All Ranges  
+6.75  
Force Voltage Uncalibrated  
Accuracy for Range C  
Force Voltage Uncalibrated  
Accuracy for All Ranges  
Force Voltage Offset Tempco  
for All Ranges  
Force Voltage Gain Tempco  
for All Ranges  
−100  
25  
25  
25  
10  
2
+100 mV  
mV  
P
PMU enabled, FV, Range C, PE disabled, error measured at  
calibration points of 0.0 V and 5.0 V  
PMU enabled, FV, PE disabled, error measured at calibration  
points of 0.0 V and 5.0 V; repeat for each PMU current range  
CT  
CT  
ꢀV/°C  
Measured at calibration points for each PMU current range  
ppm/°C CT  
Measured at calibration points for each PMU current range  
Forced Voltage INL  
−7  
+7  
mV  
P
PMU enabled, FV, Range C, PE disabled, after two-point gain/offset  
calibration; measured over output range of −1.25 V to +6.75 V  
Force Voltage Compliance vs.  
Current Load  
PMU enabled, FV, PE disabled, force −1.25 V, measure voltage  
while PMU sinking zero and full-scale current; measure ∆V;  
force 6.75 V, measure voltage while PMU sourcing zero and  
full-scale current; measure ∆V; repeat for each PMU current  
range  
Range A  
Range B to Range E  
4
1
mV  
mV  
CT  
CT  
Rev. 0 | Page 11 of 52  
 
ADATE304  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Test Conditions/Comments  
Current Limit, Source, and Sink  
Range A  
108  
140  
180  
%FS  
P
P
PMU enabled, FV, PE disabled; sink: force 2.5 V, short DUTx  
to 6.0 V; source: force 2.5 V, short DUTx to −1.0 V; Range A FS =  
32 mA, 108% FS = 35 mA, 180% FS = 58 mA  
PMU enabled, FV, PE disabled; sink: force 2.5 V, short DUTx to  
6.0 V; source: force 2.5 V, short DUTx to −1.0 V; repeat for each  
PMU current range; example: Range B FS = 2 mA, 120 % FS =  
2.4 mA, 180% FS = 3.6 mA  
Range B to Range E  
120  
−7  
145  
1
180  
+7  
%FS  
mV  
DUTGND Voltage Accuracy  
MEASURE CURRENT (MI)  
P
Over 0.1 V range; measured at endpoints of FV functional  
range  
VDUTx externally forced to 0.0V, unless otherwise specified; ideal  
MEASOUT transfer functions: VMEASOUT01 [V] = (IMEASOUT01 × 5/FSR) +  
2.5 + VDUTGND I(VMEASOUT01) [A] = (VMEASOUT01 − VDUTGND − 2.5) × FSR/5  
Measure Current, Pin DUTx  
Voltage Range for All Ranges  
−1.5  
+6.0  
V
D
Measure Current Uncalibrated  
Accuracy  
Range A  
Range B  
Range C  
Range D  
Range E  
500  
ꢀA  
CT  
P
PMU enabled, FIMI, Range A, PE disabled, error at calibration  
points −25 mA and +25 mA, error = (I(VMEASOUT01) − IDUTx  
PMU enabled, FIMI, Range B, PE disabled, error at calibration  
points −1.6 mA and +1.6 mA, error = (I(VMEASOUT01) − IDUTx  
PMU enabled, FIMI, PE disabled, error at calibration points of  
80% FS, error = (I(VMEASOUT01)1 − IDUTx  
PMU enabled, FIMI, PE disabled, error at calibration points of  
80% FS, error = (I(VMEASOUT01) − IDUTx  
PMU enabled, FIMI, PE disabled, error at calibration points of  
)
−400  
3.0  
+400 ꢀA  
)
2.00  
0.30  
0.08  
ꢀA  
ꢀA  
ꢀA  
CT  
CT  
CT  
)
)
80% FS, error = (I(VMEASOUT01) − IDUTx  
)
Measure Current Offset Tempco  
Range A  
Range B  
Range C  
Range D and Range E  
2
25  
5
ꢀA/°C  
CT  
CT  
CT  
CT  
Measured at calibration points  
Measured at calibration points  
Measured at calibration points  
Measured at calibration points  
nA/°C  
nA/°C  
nA/°C  
1
Measure Current Gain Error,  
Nominal Gain = 1  
Range A  
2.5  
2
%
%
%
CT  
P
PMU enabled, FIMI, PE disabled, gain error from calibration  
points 80% FS  
PMU enabled, FIMI, Range B, PE disabled, gain error from  
calibration points 1.6 mA  
PMU enabled, FIMI, PE disabled, gain error from calibration  
points 80% FS  
Range B  
−20  
+20  
Range C to Range E  
4
CT  
Measure Current Gain Tempco  
Range A  
Range B to Range E  
Measure Current INL  
Range A  
Measured at calibration points  
300  
50  
ppm/°C CT  
ppm/°C CT  
0.05  
%FSR  
CT  
PMU enabled, FIMI, Range A, PE disabled, after two-point  
gain/offset calibration, measured over FSR output of −32 mA  
to +32 mA  
Range B  
−0.02  
−0.01  
+0.02 %FSR  
%FSR  
P
PMU enabled, FIM,I Range B, PE disabled, after two-point gain/  
offset calibration measured over FSR output of −2 mA to +2 mA  
PMU enabled, FIMI, PE disabled, after two-point gain/offset  
calibration; measured over FSR output  
PMU enabled, FVMI, Range B, PE disabled, force −1 V and +5 V  
into load of 1 mA; measure ∆I reported at MEASOUT01  
Over 0.1 V range; measured at endpoints of MI functional range  
Range B to Range E  
0.01  
2.5  
CT  
P
FVMI DUT Pin Voltage Rejection  
DUTGND Voltage Accuracy  
+0.01 %FSR/V  
mV  
CT  
Rev. 0 | Page 12 of 52  
ADATE304  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Test Conditions/Comments  
FORCE CURRENT (FI)  
VDUTx externally forced to 0.0V, unless otherwise specified, ideal  
force current transfer function: IFORCE = (PMUDAC − 2.5) × (FSR/5)  
Force Current, DUTx Pin Voltage −1.25  
Range for All Ranges  
+6.75  
V
D
Force Current Uncalibrated  
Accuracy  
Range A  
Range B  
Range C  
Range D  
Range E  
−5.0  
−400  
−40  
−4  
0.5  
40  
4
+5.0  
mA  
P
P
P
P
P
PMU enabled, FIMI, Range A, PE disabled, error at calibration  
points of −25 mA and +25 mA  
PMU enabled, FIMI, Range B, PE disabled, error at calibration  
points of −1.6 mA and 1.6 mA  
PMU enabled, FIMI, Range C, PE disabled, error at calibration  
points of 80% FS  
PMU enabled, FIMI, Range D, PE disabled, error at calibration  
points of 80% FS  
+400 ꢀA  
+40  
+4  
ꢀA  
ꢀA  
0.4  
75  
−400  
+400 nA  
PMU enabled, FIMI, Range E, PE disabled, error at calibration  
points of 80% FS  
Force Current Offset Tempco  
Range A  
Range B  
Range C to Range E  
Forced Current Gain Error,  
Nominal Gain = 1  
1
80  
4
ꢀA/°C  
CT  
CT  
CT  
P
Measured at calibration points  
Measured at calibration points  
Measured at calibration points  
PMU enabled, FIMI, PE disabled, gain error from calibration  
points of 80% FS  
nA/°C  
nA/°C  
%
−20  
4
+20  
Forced Current Gain Tempco  
Range A  
Range B to Range E  
Force Current INL  
Range A  
Measured at calibration points  
−500  
75  
ppm/°C CT  
ppm/°C CT  
−0.3  
−0.2  
0.05  
+0.3  
%FSR  
%FSR  
P
P
PMU enabled, FIMI, Range A, PE disabled, after two-point  
gain/offset calibration; measured over FSR output of −32 mA  
to +32 mA  
PMU enabled, FIMI, PE disabled, after two-point gain/offset  
calibration; measured over FSR output  
Range B to Range E  
0.015 +0.2  
Force Current Compliance vs.  
Voltage Load  
PMU enabled, FIMV, PE disabled; force positive full-scale  
current driving −1.5 V and +6.0 V, measure ∆I @ DUTx pin;  
force negative full-scale current driving −1.25 V and +6.75 V,  
measure ∆I @ DUTx pin  
Range A to Range D  
Range E  
−0.6  
−1.0  
0.06  
0.1  
+0.6  
+1.0  
%FSR  
%FSR  
P
P
MEASURE VOLTAGE  
Measure Voltage Range  
Measure Voltage Uncalibrated  
Accuracy  
−1.5  
−25  
+6.0  
+25  
V
mV  
D
P
2.0  
PMU enabled, FVMV, Range B, PE disabled, error at calibration  
points of 0 V and 5 V, error = (VMEASOUT01 − VDUTx  
)
Measure Voltage Offset Tempco  
Measure Voltage Gain Error  
10  
0.01  
ꢀV/°C  
%
CT  
P
Measured at calibration points  
PMU enabled, FVMV, Range B, PE disabled, gain error from  
calibration points of 0 V and 5 V  
−0.2  
+0.2  
Measure Voltage Gain Tempco  
Measure Voltage INL  
25  
1
ppm/°C CT  
Measured at calibration points  
−7  
+7  
mV  
P
PMU enabled, FVMV, Range B, PE disabled, after two-point  
gain/offset calibration; measured over output range of −1.25 V  
to +6.75 V  
Rejection of Measure V vs. IDUTx  
−1.5  
0.1  
+1.5  
mV  
P
PMU enabled, FVMV, Range D, PE disabled, force 0 V into load  
of −10 ꢀA and +10 ꢀA; measure ∆V reported at MEASOUT01  
Rev. 0 | Page 13 of 52  
ADATE304  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Test Conditions/Comments  
MEASOUT01 DC CHARACTERISTICS  
MEASOUT01 Voltage Range  
DC Output Current  
MEASOUT01 Pin Output  
Impedance  
−1.5  
+6.0  
4
200  
V
mA  
Ω
D
D
P
25  
PMU enabled, FVMV, PE disabled; source resistance: PMU force  
+6.75 V and load with 0 mA and +4 mA; sink resistance: PMU  
force −1.25 V and load with 0 mA and −4 mA; resistance =  
∆V/∆I at MEASOUT01 pin  
Output Leakage Current when  
Tristated  
Output Short-Circuit Current  
−1  
+1  
ꢀA  
P
P
Tested at −1.25 V and +6.75 V  
−25  
+25  
mA  
PMU enabled, FVMV, PE disabled; source: PMU force +6.75 V,  
short MEASOUT01 to −1.25 V; sink: PMU force −1.25 V, short  
MEASOUT01 to +6.75 V  
VOLTAGE CLAMPS  
Low Clamp Range (VCL)  
High Clamp Range (VCH)  
Positive Clamp Voltage Droop  
−1.25  
0.75  
−300 +10  
+4.75  
6.75  
V
V
D
D
P
+300 mV  
+300 mV  
+250 mV  
PMU enabled, FIMI, Range A, PE disabled, PMU clamps  
enabled, VCH = +5.0 V, VCL = −1.0 V, PMU force 2.0 mA and  
32 mA into open; ∆V seen at DUTx pin  
PMU enabled, FIMI, Range A, PE disabled, PMU clamps  
enabled, VCH = +5.0 V, VCL = −1.0 V, PMU force −2.0 mA and  
−32 mA into open; ∆V seen at DUTx pin  
PMU enabled, FIMI, Range B, PE disabled, PMU clamps enabled,  
PMU force 1 mA into open; VCH errors at calibration points  
1.0 V and 5.0 V; VCL errors at the calibration points 0.0 V and  
4.0 V  
PMU enabled, FIMI, Range B, PE disabled, PMU clamps enabled,  
PMU force 1 mA into open; after two-point gain/offset  
calibration; measured over PMU clamp range  
Negative Clamp Voltage Droop  
Uncalibrated Accuracy  
−300 −10  
P
P
−250  
−70  
100  
INL  
5
1
+70  
mV  
mV  
P
DUTGND Voltage Accuracy  
SETTLING/SWITCHING TIMES  
CT  
Over 0.1 V range; measured at endpoints of PMU clamp  
functional range  
SCAP = 330 pF, FFCAP = 220 pF  
Voltage Force Settling Time to  
0.1% of Final Value  
PMU enabled, FV, PE disabled, program PMUDAC steps of  
500 mV and 5.0 V; simulation of worst case, 2000 pF load,  
PMUDAC step of 5.0 V  
Range A, 200 pF and  
2000 pF Load  
Range B, 200 pF and  
2000 pF Load  
Range C, 200 pF and  
2000 pF Load  
Range D, 200 pF and  
2000 pF Load  
15  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
S
S
S
S
S
20  
124  
1015  
3455  
Range E, 200 pF and  
2000 pF Load  
Voltage Force Settling Time to  
1.0% of Final Value  
PMU enabled, FV, PE disabled, start with PMUDAC  
programmed to 0.0 V, program PMUDAC to 500 mV  
Range A, 200 pF and  
2000 pF Load  
Range B, 200 pF and  
2000 pF Load  
Range C, 200 pF and  
2000 pF Load  
14  
14  
14  
ꢀs  
ꢀs  
ꢀs  
CB  
CB  
CB  
Range D, 200 pF Load  
Range D, 2000 pF Load  
Range E, 200 pF Load  
Range E, 2000 pF Load  
45  
45  
45  
225  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
CB  
CB  
CB  
CB  
Rev. 0 | Page 14 of 52  
ADATE304  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Test Conditions/Comments  
Voltage Force Settling Time to  
1.0% of Final Value  
PMU enabled, FV, PE disabled, start with PMUDAC  
programmed to 0.0 V, program PMUDAC to 5.0 V  
Range A, 200 pF and  
2000 pF Load  
4.0  
ꢀs  
CB  
Range B, 200 pF Load  
Range B, 2000 pF Load  
Range C, 200 pF Load  
Range C, 2000 pF Load  
Range D, 200 pF Load  
Range D, 2000 pF Load  
Range E, 200 pF Load  
Range E, 2000 pF Load  
4.2  
4.2  
5.8  
19  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
CB  
CB  
CB  
CB  
CB  
CB  
CB  
CB  
50  
210  
360  
610  
Current Force Settling Time to  
0.1% of Final Value  
PMU enabled, FI, PE disabled, start with PMUDAC  
programmed to 0 current, program PMUDAC to FS current  
Range A, 200 pF in Parallel  
with 120 Ω  
Range B, 200 pF in Parallel  
with 1.5 kΩ  
Range C, 200 pF in Parallel  
with 15.0 kΩ  
Range D, 200 pF in Parallel  
with 150 kΩ  
8.2  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
S
S
S
S
S
9.4  
30  
281  
2668  
Range E, 200 pF in Parallel  
with 1.5 MΩ  
Current Force Settling Time to  
1.0% of Final Value  
PMU enabled, FI, PE disabled, start with PMUDAC  
programmed to 0 current, program PMUDAC to FS current  
Range A, 200 pF in Parallel  
with 120 Ω  
Range B, 200 pF in Parallel  
with 1.5 kΩ  
Range C, 200 pF in Parallel  
with 15.0 kΩ  
Range D, 200 pF in Parallel  
with 150 kΩ  
4.2  
4.3  
8.1  
205  
505  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
ꢀs  
CB  
CB  
CB  
CB  
CB  
Range E, 200 pF in Parallel  
with 1.5 MΩ  
INTERACTION AND CROSSTALK  
Measure Voltage Channel-to-  
Channel Crosstalk  
0.125  
%FSR  
%FSR  
CT  
CT  
PMU enabled, FIMV, PE disabled, Range B, forcing 0 mA into  
0 V load; other channel: Range A, forcing a step of 0 mA to 25 mA  
into 0 V load; report ∆V of MEASOUT01 pin under test;  
0.125% × 8.0 V = 10 mV  
PMU enabled, FVMI, PE disabled, Range E, forcing 0 V into  
0 mA current load; other channel: Range E, forcing a step of 0 V  
to 5 V into 0 mA current load; report ∆V of MEASOUT01 pin  
under test; 0.01% × 5.0 V = 0.5 mV  
Measure Current Channel-to-  
Channel Crosstalk  
0.01  
Rev. 0 | Page 15 of 52  
ADATE304  
EXTERNAL SENSE (PMUS_CHx)  
Table 8.  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Test Conditions/Comments  
EXTERNAL SENSE (PMUS_CHX)  
Voltage Range  
Input Leakage Current  
−1.25  
−20  
+6.75  
+20  
V
nA  
D
P
Tested at −1.25 V and +6.75 V  
DUTGND INPUT  
Table 9.  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Test Conditions/Comments  
DUTGND INPUT  
Input Voltage Range, Referenced to GND  
Input Bias Current  
−0.1  
+0.1  
100  
V
μA  
D
P
1
Tested at −100 mV and +100 mV  
SERIAL PERIPHERAL INTERFACE  
Table 10.  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Level Test Conditions/Comments  
SERIAL PERIPHERAL INTERFACE  
Serial Input Logic High  
Serial Input Logic Low  
Input Bias Current  
SCLK Clock Rate  
SCLK Pulse Width  
1.8  
0
−10  
VCC  
0.7  
+10  
V
V
PF  
PF  
P
PF  
CT  
CB  
PF  
1
50  
9
μA  
MHz  
ns  
mV  
V
Tested at 0.0 V and 3.3 V  
SCLK Crosstalk on DUTx Pin  
Serial Output Logic High  
8
PE disabled, PMU FV enabled and forcing 0 V  
Sourcing 2 mA  
VCC − 0.4  
0
VCC  
0.8  
Serial Output Logic Low  
Update Time  
V
μs  
PF  
D
Sinking 2 mA  
Maximum delay time required for the part to  
enter a stable state after a serial bus  
10  
Rev. 0 | Page 16 of 52  
 
ADATE304  
HVOUT DRIVER  
Table 11.  
Test  
Level  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
VHH BUFFER  
Voltage Range  
Output High  
VHH = (VT + 1 V) × 2 + DUTGND  
VPLUS = 16.75 V nominal; in this condition, VHVOUT max = 13.5 V  
VHH mode enabled, RCV active, VHH level = full scale,  
sourcing 15 mA  
5.9  
13.5  
VPLUS − 3.25  
V
V
D
P
Output Low  
5.9  
V
P
P
VHH mode enabled, RCV active, VHH level = zero scale,  
sinking 15 mA  
VHH mode enabled, RCV active, VHVOUT error measured at  
the calibration points of 7 V and 12 V  
Accuracy Uncalibrated  
−500  
−30  
100  
+500  
mV  
Offset Tempco  
Resolution  
1
mV/°C  
mV  
CT  
PF  
Measured at calibration points  
1.21  
1.5  
VHH mode enabled, RCV active, after two-point gain/offset  
calibration; range/number of DAC bits as measured at the  
calibration points of 7 V and 12 V  
VHH mode enabled, RCV active, after two-point gain/offset  
calibration; measured over VHH range of 5.9 V to 13.5 V  
Over 0.1 V range; measured at endpoints of VHH  
functional range  
VHH mode enabled, RCV active, source: VHH = 10.0 V,  
IHVOUT = 0 mA and 15 mA; sink: VHH = 6.5 V, IHVOUT = 0 mA and  
−15 mA; ∆V/∆I  
INL  
15  
1
+30  
mV  
mV  
Ω
P
DUTGND Voltage Accuracy  
Output Resistance  
CT  
P
1
10  
DC Output Current Limit  
Source  
DC Output Current Limit Sink  
60  
100  
−60  
mA  
mA  
ns  
P
VHH mode enabled, RCV active, VHH = 10.0 V, short HVOUT  
pin to 5.9 V, measure current  
VHH mode enabled, RCV active, VHH = 6.5 V, short HVOUT  
pin to 14.1 V, measure current  
VHH mode enabled, toggle RCV, VHH = 13.5 V, VL = VH =  
3.0 V; 20% to 80%, for DATA = high and DATA = low  
VHH mode enabled, toggle RCV, VHH = 13.5 V, VL = VH =  
3.0 V; 20% to 80%, for DATA = high and DATA = low  
−100  
P
Rise Time (From VL or VH to  
VHH)  
Fall Time (From VHH to VL or  
VH)  
Preshoot, Overshoot, and  
Undershoot  
200  
26  
CB  
CB  
CB  
ns  
125  
mV  
VHH mode enabled, toggle RCV, VHH = 13.5 V, VL = VH =  
3.0 V; for DATA = high and DATA = low  
VL/VH BUFFER  
Voltage Range  
Accuracy Uncalibrated  
−0.1  
−500  
+6.0  
+500  
V
mV  
D
P
100  
VHH mode enabled, RCV inactive, error measured at the  
calibration points 0 V and 5 V  
Offset Tempco  
Resolution  
1
0.61  
mV/°C  
mV  
CT  
PF  
Measured at calibration points  
0.75  
+20  
VHH mode enabled, RCV inactive, after two-point  
gain/offset calibration; range/number of DAC bits as  
measured at the calibration points 0 V and 5 V  
VHH mode enabled, RCV inactive, after two-point  
gain/offset calibration; measured over range of −0.1 V to  
+6.0 V  
Over 0.1 V range; measured at endpoints of VH and VL,  
functional range  
VHH mode enabled, RCV inactive, source: VH = 3.0 V, IHVOUT  
= +1 mA and +50 mA; sink: VL = 2.0 V, IHVOUT = −1 mA and  
−50 mA; ∆V/∆I  
INL  
−20  
45  
4
mV  
P
DUTGND Voltage Accuracy  
Output Resistance  
2
mV  
Ω
CT  
P
48  
50  
DC Output Current Limit  
Source  
DC Output Current Limit Sink  
60  
100  
−60  
mA  
mA  
ns  
P
VHH mode enabled, RCV inactive, VH = +6.0 V, short  
HVOUT pin to −0.1 V, DATA high, measure current  
VHH mode enabled, RCV inactive, VL = −0.1 V, short HVOUT  
pin to +6.0 V, DATA low, measure current  
VHH mode enabled, RCV inactive, VL = 0.0 V, VH = 3.0 V,  
toggle DATA; 20% to 80%  
VHH mode enabled, RCV inactive, VL = 0.0 V, VH = 3.0 V,  
toggle DATA; 20% to 80%  
−100  
P
Rise Time (VL to VH)  
11  
CB  
CB  
CB  
Fall Time (VH to VL)  
11.3  
54  
ns  
Preshoot, Overshoot, and  
Undershoot  
mV  
VHH mode enabled, RCV inactive, VL = 0.0 V, VH = 3.0 V,  
toggle DATA  
Rev. 0 | Page 17 of 52  
 
ADATE304  
OVERVOLTAGE DETECTOR (OVD)  
Table 12.  
Test  
Level  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC CHARACTERISTICS  
Programmable Voltage Range  
Accuracy Uncalibrated  
−2.25  
−200  
+7.0  
+200  
V
mV  
D
P
OVD offset errors measured at programmed levels of +7.0 V  
and −2.25 V  
Hysteresis  
112  
mV  
CB  
LOGIC OUTPUT CHARACTERISTICS  
Off State Leakage  
10  
1000  
0.7  
nA  
V
P
Disable OVD alarm, apply 3.3 V to OVD pin, measure  
leakage current  
Activate alarm, force 100 μA into OVD pin, measure active  
alarm voltage  
For OVD high: DUTx = 0 V to +6 V swing, OVD high = +3.0 V,  
OVD low = −2.25 V; for OVD low: DUTx = 0 V to +6 V swing,  
OVD high = +7.0 V, OVD low = +3.0 V  
Maximum On Voltage @ 100 μA  
Propagation Delay  
0.2  
1.9  
P
μs  
CB  
16-BIT DAC MONITOR MUX  
Table 13.  
Test  
Level  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC CHARACTERISTICS  
Programmable Voltage Range  
Output Resistance  
−2.5  
+7.5  
V
kΩ  
D
CT  
16  
PMUDAC = 0.0 V, FV, I = 0, 200 μA; ∆V/∆I  
Rev. 0 | Page 18 of 52  
 
ADATE304  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 14.  
Parameter  
Rating  
Table 15. Thermal Resistance  
Package Type  
Supply Voltages  
θJA  
θJC  
Positive Supply Voltage (VDD to GND)  
Positive VCC Supply Voltage (VCC to GND)  
Negative Supply Voltage (VSS to GND)  
Supply Voltage Difference (VDD to VSS)  
Reference Ground (DUTGND to GND)  
AGND to DGND  
−0.5 V to +11.5 V  
−0.5 V to +4.0 V  
−6.25 V to +0.5 V  
−1.0 V to +16.5 V  
−0.5 V to +0.5 V  
−0.5 V to +0.5 V  
−0.5 V to +17.5 V  
84-Ball CSP_BGA  
31.1  
0.51  
EXPLANATION OF TEST LEVELS  
D
Definition  
S
Design verification simulation  
100% production tested  
VPLUS Supply Voltage (VPLUS to GND)  
Input Voltages  
P
Input Common-Mode Voltage  
Short-Circuit Voltage1  
High Speed Input Voltage2  
High Speed Differential Input Voltage3  
VREF  
VSS to VDD  
−3.0 V to +8.0 V  
0.0 V to VCC  
0.0 V to VCC  
−0.5 V to +5.5 V  
PF  
Functionally checked during production test  
CT Characterized on tester  
CB Characterized on bench  
DUTx I/O Pin Current  
DCL Maximum Short-Circuit Current4  
Temperature  
140 mA  
ESD CAUTION  
Operating Temperature, Junction  
Storage Temperature Range  
125°C  
−65°C to +150°C  
1 RL = 0 Ω, VDUT continuous short-circuit condition (VH, VL, VT, high-Z, VCOM,  
clamp modes).  
2 DATAxP, DATAxN, RCVxP, RCVxN, under source RL = 0 Ω.  
3 DATAxP to DATAxN, RCVxP, RCVxN.  
4 RL = 0 Ω, VDUTx = –3 V to +8 V; DCL current limit. Continuous short-circuit  
condition. ADATE304 must current limit and survive continuous short circuit.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 19 of 52  
 
 
 
 
ADATE304  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
10  
9
8
7
6
5
4
3
2
1
VSSO_0  
(DRIVE)  
VDDO_0  
(DRIVE)  
VDDO_1  
(DRIVE)  
VSSO_1  
(DRIVE)  
HVOUT  
PMUS_CH0  
DUT0  
DUT1  
PMUS_CH1 TEMPSENSE  
A
B
C
D
E
F
VDD/VDD_  
TMPSNS  
VSS  
AGND  
VSS  
VDD  
VDD  
VDD  
VDD  
AGND  
VSS  
VSS  
SCAP1  
VPLUS  
FFCAP_0B  
OVD_CH0  
FFCAP_0A  
AGND  
SCAP0  
AGND  
VDD  
DATA0N  
DATA0P  
RCV0N  
RCV0P  
DATA1N  
DATA1P  
RCV1N  
RCV1P  
AGND  
VDD  
FFCAP_1B  
OVD_CH1  
FFCAP_1A  
AGND  
VSS  
VSS  
AGND  
AGND  
COMP_VTT1 COMP_QL1N COMP_QL1P  
COMP_QL0P COMP_QL0N COMP_VTT0  
G
H
J
VSS  
RST  
VCC  
VDD  
SDIN  
SCLK  
VDD  
DGND  
SDOUT  
VSS  
DAC16_MON  
CS  
AGND  
AGND  
AGND  
COMP_QH1N COMP_QH1P  
COMP_QH0P COMP_QH0N  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
VREF  
MEASOUT01/  
TEMPSENSE  
K
VREF_GND  
AGND  
DUTGND  
Figure 2. Pin Configuration  
Rev. 0 | Page 20 of 52  
 
ADATE304  
Table 16. Pin Function Descriptions  
Pin No.  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
B1  
Mnemonic  
TEMPSENSE  
PMUS_CH1  
VSSO_1 (Drive)  
DUT1  
VDDO_1 (Drive)  
VDDO_0 (Drive)  
DUT0  
VSSO_0 (Drive)  
PMUS_CH0  
HVOUT  
VDD/VDD_TMPSNS  
SCAP1  
Description  
Temperature Sense Output  
PMU External Sense Path Channel 1  
Driver Output Supply (−5.0 V) Channel 1  
Device Under Test Channel 1  
Driver Output Supply (+10.75 V) Channel 1  
Driver Output Supply (+10.75 V) Channel 0  
Device Under Test Channel 0  
Driver Output Supply (−5.0 V) Channel 0  
PMU External Sense Path Channel 0  
High Voltage Driver Output  
Temperature Sense Supply (+10.75 V)  
PMU Stability Capacitor Connection Channel 1 (330 pF)  
Supply (−5.0 V)  
B2  
B3  
VSS  
B4  
AGND  
Analog Ground  
B5  
VDD  
Supply (+10.75 V)  
B6  
VDD  
Supply (+10.75 V)  
B7  
AGND  
Analog Ground  
B8  
VSS  
Supply (−5.0 V)  
B9  
SCAP0  
VPLUS  
PMU Stability Capacitor Connection Channel 0 (330 pF)  
Supply (+16.75 V)  
B10  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
D1  
D2  
D3  
D8  
D9  
D10  
E1  
FFCAP_1B  
AGND  
DATA1N  
VSS  
VDD  
VDD  
VSS  
DATA0N  
AGND  
FFCAP_0B  
OVD_CH1  
VDD  
DATA1P  
DATA0P  
VDD  
PMU Feedforward Capacitor Connection B Channel 1 (220 pF)  
Analog Ground  
Driver Data Input (Negative) Channel 1  
Supply (−5.0 V)  
Supply (+10.75 V)  
Supply (+10.75 V)  
Supply (−5.0 V)  
Driver Data Input (Negative) Channel 0  
Analog Ground  
PMU Feedforward Capacitor Connection B Channel 0 (220 pF)  
Overvoltage Detection Flag Output Channel 1  
Supply (+10.75 V)  
Driver Data Input (Positive) Channel 1  
Driver Data Input (Positive) Channel 0  
Supply (+10.75 V)  
OVD_CH0  
FFCAP_1A  
VSS  
Overvoltage Detection Flag Output Channel 0  
PMU Feedforward Capacitor Connection A Channel 1 (220 pF)  
Supply (−5.0 V)  
E2  
E3  
E8  
E9  
RCV1N  
RCV0N  
VSS  
Receive Data Input (Negative) Channel 1  
Receive Data Input (Negative) Channel 0  
Supply (−5.0 V)  
E10  
F1  
FFCAP_0A  
AGND  
PMU Feedforward Capacitor Connection A Channel 0 (220 pF)  
Analog Ground  
F2  
AGND  
Analog Ground  
F3  
F8  
F9  
RCV1P  
RCV0P  
AGND  
Receive Data Input (Positive) Channel 1  
Receive Data Input (Positive) Channel 0  
Analog Ground  
F10  
G1  
G2  
G3  
G8  
AGND  
Analog Ground  
COMP_QL1P  
COMP_QL1N  
COMP_VTT1  
COMP_VTT0  
Low-Side Comparator Output (Positive) Channel 1  
Low-Side Comparator Output (Negative) Channel 1  
Comparator Supply Termination Channel 1  
Comparator Supply Termination Channel 0  
Rev. 0 | Page 21 of 52  
ADATE304  
Pin No.  
G9  
G10  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
J1  
Mnemonic  
COMP_QL0N  
COMP_QL0P  
COMP_QH1P  
COMP_QH1N  
AGND  
VSS  
VDD  
VDD  
VSS  
Description  
Low-Side Comparator Output (Negative) Channel 0  
Low-Side Comparator Output (Positive) Channel 0  
High-Side Comparator Output (Positive) Channel 1  
High-Side Comparator Output (Negative) Channel 1  
Analog Ground  
Supply (−5.0 V)  
Supply (+10.75 V)  
Supply (+10.75 V)  
Supply (−5.0 V)  
AGND  
Analog Ground  
COMP_QH0N  
COMP_QH0P  
AGND  
High-Side Comparator Output (Negative) Channel 0  
High-Side Comparator Output (Positive) Channel 0  
Analog Ground  
J2  
AGND  
Analog Ground  
J3  
AGND  
Analog Ground  
J4  
J5  
DAC16_MON  
DGND  
16-Bit DAC Monitor Mux Output  
Digital Ground  
J6  
J7  
SDIN  
RST  
Serial Peripheral Interface (SPI) Data In  
Serial Peripheral Interface (SPI) Reset  
Analog Ground  
J8  
AGND  
J9  
AGND  
Analog Ground  
J10  
K1  
AGND  
Analog Ground  
MEASOUT01/TEMPSENSE  
Muxed Output Shared by PMU MEASOUT Channel 0, PMU MEASOUT Channel 1/  
Temperature Sense and Temperature Sense GND Reference  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
DUTGND  
AGND  
CS  
DUT Ground Reference  
Analog Ground  
Serial Peripheral Interface (SPI) Chip Select  
Serial Peripheral Interface (SPI) Data Out  
Serial Peripheral Interface (SPI) Clock  
Supply (+3.3 V)  
Analog Ground  
+5 V DAC Reference Voltage  
DAC Ground Reference  
SDOUT  
SCLK  
VCC  
AGND  
VREF  
VREF_GND  
Rev. 0 | Page 22 of 52  
ADATE304  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.30  
0.5V  
0.25  
3V  
2V  
0.20  
0.15  
0.2V  
0.10  
1V  
0.05  
0
–0.2  
–0.05  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TIME (ns)  
TIME (ns)  
Figure 3. Driver Small Signal Response; VH = 0.2 V, 0.5 V;  
VL = 0.0 V; 50 Ω Termination  
Figure 6. 50 MHz Driver Response; VH = 1.0 V, 2.0 V, 3.0 V;  
VL = 0.0 V, 50 Ω Termination  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
3V  
2V  
1V  
3V  
2V  
1V  
–0.2  
–0.2  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
TIME (ns)  
TIME (ns)  
Figure 7. 100 MHz Driver Response; VH = 1.0 V, 2.0 V, 3.0 V;  
VL = 0.0 V; 50 Ω Termination  
Figure 4. Driver Large Signal Response; VH = 1.0 V, 2.0 V, 3.0 V;  
VL = 0.0 V; 50 Ω Termination  
1.6  
6
3V  
2V  
5V  
1.4  
1.2  
1.0  
0.8  
0.6  
5
4
3V  
3
2
1V  
1V  
1
0.4  
0.2  
0
0
–1  
0
1
2
3
4
5
6
7
8
9
10  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TIME (ns)  
TIME (ns)  
Figure 8. Response at 200 MH; VH = 1.0 V, 2.0 V, 3.0 V;  
VL = 0.0 V; 50 Ω Termination  
Figure 5. Driver Large Signal Response; VH = 1.0 V, 3.0 V, 5.0 V;  
VL = 0.0 V; 500 Ω Termination  
Rev. 0 | Page 23 of 52  
 
ADATE304  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.6  
3V  
2V  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1V  
0.5V  
–0.1  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
0
1
2
3
4
5
6
7
8
9
10  
TIME (ns)  
TIME (ns)  
Figure 9. 300 MHz Driver Response; VH = 0.5 V, 1.0 V, 2.0 V, 3.0 V;  
VL = 0.0 V; 50 Ω Termination  
Figure 12. Driver Active (VH and VL) to and from VTERM Transition;  
VH = 1.0 V, VT = 0.5 V, VL = 0.0 V  
1.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2V  
0.9  
0.8  
0.7  
0.6  
0.5  
1V  
0.4  
0.3  
0.5V  
0.2  
0.1  
0
–0.2  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5 5.0  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
TIME (ns)  
TIME (ns)  
Figure 10. 400 MHz Driver Response; VH = 0.5 V, 1.0 V, 2.0 V,  
VL = 0.0 V; 50 Ω Termination  
Figure 13. Driver Active (VH and VL) to and from VTERM Transition;  
VH = 2.0 V, VT = 1.0 V, VL = 0.0 V  
1.2  
1.6  
1.4  
1.2  
1.0  
1.0  
0.8  
0.6  
0.8  
0.6  
0.4  
0.4  
0.2  
0
0.2  
0
–0.2  
200  
250  
300  
350  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (MHz)  
TIME (ns)  
Figure 11. Driver Toggle Rate, VH = 2.0 V, VL = 0.0 V, 50 Ω Termination  
Figure 14. Driver Active (VH and VL) to and from VTERM Transition;  
VH = 3.0 V, VT = 1.5 V, VL = 0.0 V  
Rev. 0 | Page 24 of 52  
ADATE304  
20  
20  
0
2V POS  
0.2V NEG  
0.2V POS  
0
2V NEG  
–20  
–40  
–60  
–80  
–100  
–20  
–40  
–60  
–80  
1
2
3
4
5
6
7
8 9 10  
1
2
3
4
5
6
7
8 9 10  
PULSEWIDTH (ns)  
PULSEWIDTH (ns)  
Figure 15. Driver Minimum Pulse Width; VH = 0.2 V, VL = 0.0 V  
Figure 18. Driver Minimum Pulse Width; VH = 2.0 V, VL = 0.0 V  
20  
20  
0
3V POS  
0
0.5V NEG  
–20  
0.5V POS  
3V NEG  
–20  
–40  
–60  
–80  
–40  
–60  
–80  
–100  
1
2
3
4
5
6
7
8 9 10  
1
2
3
4
5
6
7
8 9 10  
PULSEWIDTH (ns)  
PULSE WIDTH (ns)  
Figure 16. Driver Minimum Pulse Width; VH = 0.5 V, VL = 0.0 V  
Figure 19. Driver Minimum Pulse Width; VH = 3.0 V, VL = 0.0 V  
20  
1.0  
1V NEG  
0.5  
0
0
1V POS  
–20  
–0.5  
–1.0  
–1.5  
–2.0  
–40  
–60  
–80  
–100  
1
2
3
4
5
6
7
8
9 10  
–2  
–1  
0
1
2
3
4
5
6
7
PULSEWIDTH (ns)  
DRIVER OUTPUT VOLTAGE (V)  
Figure 20. Driver VH Linearity Error  
Figure 17. Driver Minimum Pulse Width; VH = 1.0 V, VL = 0.0 V  
Rev. 0 | Page 25 of 52  
ADATE304  
1.0  
120  
100  
80  
0.5  
0
60  
40  
–0.5  
–1.0  
–1.5  
20  
0
–20  
–2  
–2  
–1  
0
1
2
3
4
5
6
–1  
0
1
2
3
4
5
6
7
DRIVER OUTPUT VOLTAGE (V)  
V
(V)  
DUTx  
Figure 24. Driver Output Current Limit; Driver Programmed to −1.25 V;  
VDUTx Swept from −1.25 V to +6.75 V  
Figure 21. Driver VL Linearity Error  
20  
0.8  
0.6  
0.4  
0
–20  
–40  
–60  
–80  
–100  
–120  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–2  
–1  
0
1
2
3
4
5
6
7
–2  
–1  
0
1
2
3
4
5
6
7
V
(V)  
DUTx  
DRIVER OUTPUT VOLTAGE (V)  
Figure 22. Driver VT Linearity Error  
Figure 25. Driver Output Current Limit; Driver Programmed to 6.75 V;  
DUTx Swept from −1.25 V to +6.75 V  
V
48.0  
47.8  
47.6  
47.4  
47.2  
47.0  
46.8  
46.6  
46.4  
46.2  
8
7
6
5
4
3
2
1
0
–1  
–2  
–3  
–60  
–40  
–20  
0
20  
40  
60  
–1  
0
1
2
3
4
5
6
DRIVER OUTPUT CURRENT (mA)  
VL PROGRAMMED VOLTAGE (V)  
Figure 26. HVOUT VL Linearity Error  
Figure 23. Driver Output Resistance vs. Output Current  
Rev. 0 | Page 26 of 52  
ADATE304  
1.0  
0.8  
0.6  
3
2
RISE INPUT  
1
0
RISE SHMOO  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
0.4  
0.2  
0
FALL SHMOO  
FALL INPUT  
1.2  
0
0.6  
1.8  
2.4  
3.0  
5
6
7
8
9
10  
11  
12  
13  
14  
TIME (ns)  
VL PROGRAMMED VOLTAGE (V)  
Figure 27. HVOUT VHH Linearity Error  
Figure 30. Comparator Shmoo, 1.0 V Input, 0.7 ns (10% to 90%) Input,  
50 Ω Terminated  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.0  
RISE INPUT  
0.8  
RISE SHMOO  
0.6  
0.4  
FALL SHMOO  
0.2  
FALL INPUT  
1.8  
0
–10  
–1  
0
1
2
3
4
5
6
0
0.6  
1.2  
2.4  
3.0  
V
(V)  
TIME (ns)  
HVOUT  
Figure 28. HVOUT VH Current Limit; VH = −0.1 V;  
VHVOUT Swept from −0.1 V to +6.0 V  
Figure 31. Comparator Shmoo, 1.5 V Input, 1.0 ns (10% to 90%) Input,  
50 Ω Terminated  
80  
1.6  
RISE INPUT  
60  
40  
20  
0
1.2  
RISE SHMOO  
0.8  
–20  
–40  
–60  
–80  
0.4  
0
FALL SHMOO  
FALL INPUT  
5
6
7
8
9
10  
11  
(V)  
12  
13  
14  
15  
0
0.6  
1.2  
TIME (ns)  
1.8  
2.4  
3.0  
V
HVOUT  
Figure 29. HVOUT VHH Current Limit; VHH = 10.0 V;  
HVOUT Swept from −5.9 V to +14.1 V  
Figure 32. Comparator Shmoo, 1.5 V Input, 1.0 ns (10% to 90%) Input,  
50 Ω Terminated  
V
Rev. 0 | Page 27 of 52  
ADATE304  
10  
0.6  
0.4  
0.2  
0
0
–10  
–20  
–30  
–40  
–0.2  
–0.4  
–0.6  
1V POS  
–0.8  
–1.0  
–50  
–60  
–70  
1V NEG  
–1.2  
–1.4  
–1.6  
1
2
3
4
5
6
7
8
9 10  
–2  
–1  
0
1
2
3
4
5
6
7
PULSEWIDTH (ns)  
PROGRAMMED THRESHOLD VOLTAGE (V)  
Figure 33. Comparator Minimum Pulse Width, 1.0 V  
Figure 36. Comparator Threshold Linearity  
100  
75  
–2.5  
–2.6  
–2.7  
–2.8  
–2.9  
–3.0  
–3.1  
–3.2  
TOTAL  
50  
25  
0
RISING  
FALLING  
–25  
–50  
0.5  
1.0  
1.5  
2.0  
2.5  
–2  
–1  
0
1
2
3
4
5
INPUT SLEWRATE (10%-90%) (ns)  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 34. Comparator Slew Rate Dispersion, Input Swing = 1.5 V,  
Comparator Threshold = 0.75 V  
Figure 37. Differential Comparator CMRR  
15  
10  
5
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
–5  
–10  
–15  
–2  
–1  
0
1
2
3
4
5
6
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
V
(V)  
DUTx  
TIME (ns)  
Figure 38. Active Load Commutation Response; VCOM = 2.0 V;  
IOH = IOL = 12 mA  
Figure 35. Comparator Output Waveform, COMP_QH0P, COMP_QH0N  
Rev. 0 | Page 28 of 52  
ADATE304  
6
4
6
5
4
3
2
1
0
2
0
–2  
–4  
–6  
0
2
4
6
8
10  
12  
–2  
–1  
0
1
2
3
4
5
6
7
ACTIVE LOAD CURRENT (mA)  
V
(V)  
DUTx  
Figure 39. Active Load Current Linearity  
Figure 42. DUTx Pin Leakage in High-Z Mode  
40  
20  
0.8  
0.6  
0.4  
0
0.2  
0
–20  
–40  
–60  
–80  
–100  
–120  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
–1  
0
1
2
3
4
5
6
7
PMU OUTPUT CURRENT (mA)  
VCOM VOLTAGE (V)  
Figure 43. PMU Force Current Range A Linearity  
Figure 40. Active Load VCOM Linearity  
0.8  
0.6  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
–2  
–1  
0
1
2
3
4
5
6
7
PMU OUTPUT CURRENT (mA)  
V
(V)  
DUTx  
Figure 44. PMU Force Current Range B Linearity  
Figure 41. DUTx Pin Leakage in Low Leakage Mode  
Rev. 0 | Page 29 of 52  
ADATE304  
4
3
0.06  
0.04  
0.02  
0
2
1
0
–1  
–2  
–3  
–4  
–0.02  
–0.04  
–0.06  
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
–0.20 –0.15 –0.10 –0.05  
0
0.05  
0.10  
0.15  
0.20  
I
(mA)  
PMU OUTPUT CURRENT (mA)  
DUTx  
Figure 45. PMU Force Current Range C Linearity  
Figure 48. PMU Force Voltage Range A Output Voltage Error at  
6.75 V vs. Output Current  
0.006  
0.004  
0.002  
0
4
3
2
1
0
–1  
–2  
–3  
–4  
–0.002  
–0.004  
–0.006  
–0.020 –0.015 –0.010 –0.005  
0
0.005 0.010 0.015 0.020  
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
PMU OUTPUT CURRENT (mA)  
I
(mA)  
DUTx  
Figure 46. PMU Force Current Range D Linearity  
Figure 49. PMU FV Range A Output Voltage Error at −1.25 V  
vs. Output Current  
0.6  
0.0006  
0.0004  
0.0002  
0
0.4  
0.2  
0
–0.0002  
–0.0004  
–0.0006  
–0.0008  
–0.2  
–0.4  
–0.6  
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
–0.0020 –0.0015 –0.0010 –0.0050  
0
0.0050 0.0010 0.0015 0.0020  
I
(mA)  
PMU OUTPUT CURRENT (mA)  
DUTx  
Figure 47. PMU Force Current Range E Linearity  
Figure 50. PMU FV Range B Output Voltage Error at 6.75 V vs. Output Current  
Rev. 0 | Page 30 of 52  
ADATE304  
0.6  
0.4  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.2  
0
–0.2  
–0.4  
–0.6  
–0.1  
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
–2  
–1  
0
1
2
3
4
5
6
7
I
(mA)  
V
(V)  
DUTx  
DUTx  
Figure 51. PMU FV Range B Output Voltage Error at −1.25 V  
vs. Output Current  
Figure 54. PMU FI Range B Output Current Error at −2 mA vs. Output Voltage;  
Output Voltage Is Pulled Externally  
5
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
–5  
–10  
–15  
–20  
–25  
–30  
–0.1  
–0.2  
–0.3  
–2  
–1  
0
1
2
3
4
5
6
7
–2  
–1  
0
1
2
3
4
5
6
7
V
(V)  
V
(V)  
DUTx  
DUTx  
Figure 52. PMU FI Range A Output Current Error at −32 mA vs. Output  
Voltage; Output Voltage Is Pulled Externally  
Figure 55. PMU FI Range B Output Current Error at +2 mA vs. Output Voltage;  
Output Voltage Is Pulled Externally  
10  
0
0.0025  
0.0020  
0.0015  
0.0010  
0.0005  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–0.0005  
–0.0010  
–2  
–1  
0
1
2
3
4
5
6
7
–2  
–1  
0
1
2
3
4
5
6
7
V
(V)  
V
(V)  
DUTx  
DUTx  
Figure 56. PMU FI Range E Output Current Error at −2 μA vs. Output Voltage;  
Output Voltage Is Pulled Externally  
Figure 53. PMU FI Range A Output Current Error at +32 mA vs. Output  
Voltage; Output Voltage Is Pulled Externally  
Rev. 0 | Page 31 of 52  
ADATE304  
0.0020  
0.0015  
0.0010  
0.0005  
0
C1  
–0.0005  
–2  
–1  
0
1
2
3
4
5
6
7
(500ps/DIV)  
V
(V)  
DUTx  
Figure 57. PMU FI Range E Output Current Error at +2 μA vs. Output Voltage;  
Output Voltage Is Pulled Externally  
Figure 60. Eye Diagram, 400 Mbps, PRBS31; VH = 1.0 V, VL = 0.0 V  
0.5  
0.4  
0.3  
0.2  
0.1  
0
C1  
–0.1  
(200ps/DIV)  
–2  
–1  
0
1
2
3
4
5
V
(V)  
DUTx  
Figure 61. Eye Diagram, 600 Mbps, PRBS31; VH = 1.0 V, VL = 0.0 V  
Figure 58. PMU Measure Current Range B CMRR,  
Externally Pulling 1 mA, FVMI  
C1  
C1  
(500ps/DIV)  
(1ns/DIV)  
Figure 59. Eye Diagram, 200 Mbps, PRBS31; VH = 1.0 V, VL = 0.0 V  
Figure 62. Eye Diagram, 400 Mbps, PRBS31; VH = 2.0 V, VL = 0.0 V  
Rev. 0 | Page 32 of 52  
ADATE304  
SPI DETAILS  
tCH  
SCLK  
tCL  
tCSSA  
tCSSD  
tCSHA  
tCSHD  
CS  
tCSW  
tDH  
tDS  
DATA[15]  
DATA[14]  
ADDR[1]  
ADDR[0]  
CH[1]  
R/W  
LAST  
SDIN  
DO_15  
DO_14  
DO_13  
DO_12  
DO_2  
DO_1  
DO_0  
LAST  
SDOUT  
LAST  
LAST  
LAST  
LAST  
LAST  
t
DO  
Figure 63. SPI Timing Diagram  
Table 17. Serial Peripheral Interface Timing Requirements  
Symbol  
Parameter  
Min  
9.0  
9.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
Max  
Unit  
tCH  
tCL  
SCLK minimum high  
SCLK minimum low  
CS assert hold  
ns  
ns  
ns  
tCSHA  
tCSSA  
tCSHD  
tCSSD  
tDH  
CS assert setup  
ns  
CS deassert hold  
ns  
CS deassert setup  
SDIN hold  
SDIN setup  
ns  
ns  
ns  
tDS  
tDO  
tCSW  
SDOUT data out  
15.0  
ns  
CS minimum between assertions1  
2
SCLK cycles  
SCLK cycles  
SCLK cycles  
CS minimum directly after a read request  
3
tCSTP  
Minimum delay after CS is deasserted before SCLK can be  
stopped (not shown in Figure 63); this allows any internal  
operations to complete  
16  
1 An extra cycle is needed after a read request to prime the read data into the SPI shift register.  
Rev. 0 | Page 33 of 52  
 
 
 
ADATE304  
DEFINITION OF SPI WORD  
Table 18. Channel Selection  
The SPI can accept variable length words, depending on the  
operation. At most, the word length equals 24 bits: 16 bits of  
data, two channel selects, one read/write (R/W) selector, and a  
5-bit address.  
Channel 1 Channel 0 Channel Selected  
0
0
NOP (no channel selected, no register  
changes)  
0
1
1
1
0
1
Channel 0 selected  
Channel 1 selected  
Channel 0 and Channel 1 selected  
Depending on the operation, the data can be smaller or, in the  
case of a read operation, nonexistent.  
Table 19. R/W Definition  
R/W  
Description  
0
Current register specified by address shifts out of  
SDOUT on next shift operation  
1
Current data written to the register specified by  
address and channel select  
Example 1: 16-Bit Write  
Write 16 bits of data to a register or DAC; ignore unused MSBs. For example, Bit 15 and Bit 14 are ignored, and Bit 13 through Bit 0 are  
applied to the 14-bit DAC.  
DATA[15:0]  
DATA[13:0]  
DATA[1:0]  
CH[1:0]  
R/W  
ADDR[4:0]  
Figure 64. 16-Bit Write  
Example 2: 14-Bit Write  
Write 14 bits of data to the DAC.  
CH[1:0]  
R/W  
ADDR[4:0]  
Figure 65. 14-Bit Write  
Example 3a: 2-Bit Write  
Write two bits of data to the 2-bit register.  
CH[1:0]  
R/W  
ADDR[4:0]  
Figure 66. 2-Bit Write  
Example 3b: 2-Bit Write  
Write two bits of data to the 2-bit register. Bit 15 through Bit 2 are ignored and Bit 1 through Bit 0 are applied to the register.  
DATA[15:0]  
CH[1:0]  
R/W  
ADDR[4:0]  
Figure 67. 2-Bit Write  
Example 4: Read Request  
Read request and follow with a second instruction (could be NOP) to clock out the data.  
CH[1:0]  
CH[1:0]  
R/W = 0  
R/W  
ADDR[4:0]  
ADDR[4:0]  
DATA[15:0]  
Figure 68. Read Request  
Rev. 0 | Page 34 of 52  
 
ADATE304  
WRITE OPERATION  
CS  
INPUT  
SCLK  
INPUT  
DATA[15] DATA[14] DATA[13]  
DATA[2] DATA[1] DATA[0] CH[1]  
CH[0]  
17  
R/W  
18  
ADDR[4] ADDR[3] ADDR[2] ADDR[1] ADDR[0]  
X
SDIN  
INPUT  
0
1
2
13  
14  
15  
16  
19  
20  
21  
22  
23  
24  
25  
SDOUT  
OUTPUT  
X
NOTES  
1. R/W = 1.  
2. X = DON’T CARE.  
Figure 69. 16-Bit SPI Write  
CS  
INPUT  
SCLK  
INPUT  
DATA[1] DATA[0] CH[1]  
CH[0]  
3
R/W  
4
ADDR[4] ADDR[3] ADDR[2] ADDR[1] ADDR[0]  
X
SDIN  
INPUT  
0
1
2
5
6
7
8
9
10  
11  
SDOUT  
OUTPUT  
X
NOTES  
1. R/W = 1.  
2. X = DON’T CARE.  
Figure 70. 2-Bit SPI Write  
Rev. 0 | Page 35 of 52  
 
ADATE304  
the previous specified data. The NOP address can be used for  
this read if there is no need to read/write another register. To  
maintain the clarity of the operation, it is strongly recommended  
that the NOP address be used for all reads.  
READ OPERATION  
The read operation is a two-stage operation. First, a word is  
shifted in, specifying which register to read.  
for three clock cycles, and then a second word is shifted in to  
obtain the readback data. This second word can be either  
another operation or an NOP address. If another operation is  
shifted in, it must shift in at least eight bits of data to read back  
CS  
is deasserted  
Any register read that is fewer than 16 bits has zeros filled in the  
top bits to make it a 16-bit word.  
CS  
INPUT  
SCLK  
INPUT  
SDIN  
INPUT  
READ INSTRUCTION  
X
NOP  
X
SDOUT  
OUTPUT  
X
READ DATA  
X
NOTES  
1. X = DON’T CARE.  
Figure 71. SPI Read Overview  
CS  
INPUT  
SCLK  
INPUT  
SDIN  
INPUT  
ADDR[4] ADDR[3] ADDR[2] ADDR[1] ADDR[0]  
19 20 21 22 23  
DATA[15:0], VALUE IS A DON’T CARE  
13 14  
CH[1]  
16  
CH[0]  
17  
R/W  
18  
X
0
1
2
15  
24  
25  
SDOUT  
OUTPUT  
X
NOTES  
1. X = DON’T CARE.  
Figure 72. SPI Read—Details of Read Request  
CS  
INPUT  
SCLK  
INPUT  
SDIN  
DATA[15:0], VALUE IS A DON’T CARE  
13 14  
CH[1]  
16  
CH[0]  
17  
R/W = 1  
18  
ADDR[4:0] = 0x00 (NOP)  
X
INPUT  
0
1
2
15  
19  
20  
21  
X
22  
23  
24  
25  
SDOUT  
OUTPUT  
RDATA[15] RDATA[14]  
RDATA[2] RDATA[1] RDATA[0]  
NOTES  
1. RDATA IS THE REGISTER VALUE BEING READ.  
2. X = DON’T CARE.  
Figure 73. SPI Read—Details of Read Out  
Rev. 0 | Page 36 of 52  
 
ADATE304  
RST  
by utilizing the  
pin. To initiate the reset operation, deassert  
RESET OPERATION  
RST  
CS  
pin  
the  
pin for a minimum of 100 ns and deassert the  
The ADATE304 contains an asynchronous reset feature. The  
ADATE304 can be reset to the default values shown in Table 20  
for a minimum of two SCLK cycles.  
100ns  
MINIMUM  
RST  
CS  
SCLK  
MINIMUM OF TWO SCLK EDGES AFTER ASSERTING RST BEFORE RESUMING NORMAL OPERATION.  
Figure 74. Reset Operation  
Rev. 0 | Page 37 of 52  
 
ADATE304  
REGISTER MAP  
The ADDR[4:0] bits determine the destination register of the data being written to the ADATE304.  
Table 20. Register Selection  
DATA[15:0]  
N/A1  
CH[1:0]  
R/W  
N/A  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
ADDR[4:0]  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
Register Selected  
NOP  
VH DAC level  
VL DAC level  
VT/VCOM DAC level  
VOL DAC level  
VOH DAC level  
VCH DAC level  
VCL DAC level  
V(IOH ) DAC level  
V(IOL ) DAC level  
OVD high level  
OVD low level  
Reset State  
N/A  
N/A  
DATA[13:0]  
DATA[13:0]  
DATA[13:0]  
DATA[13:0]  
DATA[13:0]  
DATA[13:0]  
DATA[13:0]  
DATA[13:0]  
DATA[13:0]  
DATA[13:0]  
DATA[13:0]  
DATA[15:0]  
DATA[2:0]  
DATA[2:0]  
DATA[9:0]  
DATA[2:0]  
DATA[0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1]  
4096d  
4096d  
4096d  
4096d  
4096d  
4096d  
4096d  
4096d  
4096d  
4096d  
4096d  
16384d  
000b  
000b  
0d  
000b  
0b  
00b  
01b  
N/A  
N/A  
CH[0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
CH[1:0]  
N/A  
PMUDAC level  
PE/PMU enable  
Channel state  
PMU state  
PMU measure enable  
Differential comparator enable  
16-bit DAC monitor  
OVD_CHx alarm mask  
OVD_CHx alarm state  
Reserved  
DATA[1:0]  
DATA[1:0]  
DATA[2:0]  
N/A  
0x11  
0x12  
0x13  
0x14 to 0x1F  
N/A  
1 N/A means not applicable.  
Rev. 0 | Page 38 of 52  
 
 
 
ADATE304  
DETAILS OF REGISTERS  
Table 21. PE/PMU Enable (ADDR[4:0] = 0x0C)  
Bit  
Name  
Description  
DATA[2]  
PMU enable  
0 = disable PMU force output and clamps, place PMU in MV mode  
1 = enable PMU force output  
When set to 0, the PMU state bits are ignored, except for the PMU sense path (DATA[7])  
0 = normal driver operation  
1 = force driver to VT  
See Table 29 for complete functionality of this bit  
0 = enable driver functions  
DATA[1]  
DATA[0]  
Force VT  
PE disable  
1 = disable driver (low leakage)  
See Table 29 for complete functionality of this bit  
Table 22. Channel State (ADDR[4:0] = 0x0D)  
Bit  
Name  
Description  
DATA[2]  
HV mode select  
0 = HV driver in low impedance.  
1 = enable HV driver.  
This bit affects Channel 0 only. Ensure that the Channel 0 bit in SPI write is active.  
Channel 1 bit in SPI write is don’t care.  
DATA[1]  
DATA[0]  
Load enable  
0 = disable load.  
1 = enable load.  
See Table 29 for complete functionality of this bit.  
0 = enable Driver high-Z function.  
1 = enable Driver VTERM function.  
See Table 29 for complete functionality of this bit.  
Driver high-Z or VT  
Table 23. PMU State (ADDR[4:0] = 0x0E)1, 2  
Bit  
Name  
Description  
DATA[9:8]  
PMU input selection  
00 = VDUTGND (calibrated for 0.0 V voltage reference)  
01 = 2.5 V + VDUTGND (calibrated for 0.0 A current reference)  
1X = PMUDAC  
DATA[7]  
PMU sense path  
0 = internal sense  
1 = external sense  
DATA[6]  
DATA[5]  
Reserved  
PMU clamp enable  
0 = disable clamps  
1 = enable clamps  
DATA[4]  
DATA[3]  
DATA[2:0]  
PMU measure voltage or current  
PMU force voltage or current  
PMU range  
0 = measure voltage mode  
1 = measure current mode  
0 = force voltage mode  
1 = force current mode  
0XX = 2 μA range  
100 = 20 μA range  
101 = 200 μA range  
110 = 2 mA range  
111 = 32 mA range  
1 Note that when ADDR[4:0] = 0x0C, the PMU enable bit (DATA[2]) = 0, PMU force outputs and clamps are disabled, and the PMU is placed into measure voltage mode.  
PMU State DATA[9:8] and DATA[6:0] are ignored, and only the DATA[7] PMU sense path is valid.  
2 X means don’t care.  
Rev. 0 | Page 39 of 52  
 
 
ADATE304  
Table 24. PMU Measure Enable (ADDR[4:0] = 0x0F)1  
Bit  
Name  
Description  
DATA[2:1]  
MEASOUT01 select  
00 = PMU MEASOUT Channel 0  
01 = PMU MEASOUT Channel 1  
10 = Temperature sensor ground reference  
11 = Temperature sensor  
DATA[0]  
MEASOUT01 output enable  
0 = MEASOUT01 is tristated  
1 = MEASOUT01 is enabled  
1 This register is written to or read from when either of the CH[1:0] bits is 1.  
Table 25. Differential Comparator Enable (ADDR[4:0] = 0x10)1  
Bit  
Name  
Description  
DATA[0]  
Differential Comparator Enable  
0 = differential comparator is disabled; the Channel 0 normal window  
comparator (NWC) outputs are located on Channel 0  
1 = differential comparator is enabled; the differential comparator outputs  
are located on Channel 0  
1 This register is written to or read from when either of the CH[1:0] bits is 1.  
Table 26. DAC16_MON (16-Bit DAC Monitor) (ADDR[4:0] = 0x11)1  
Bit  
Name  
Description  
DATA[1]  
16-Bit DAC mux enable  
0 = 16-bit DAC mux is tristated  
1 = 16-bit DAC mux is enabled  
0 = 16-bit DAC Channel 0  
1 = 16-bit DAC Channel 1  
DATA[0]  
16-Bit DAC mux select  
1 This register is written to or read from when either of the CH[1:0] bits is 1.  
Table 27. OVD_CHx Alarm Mask (ADDR[4:0] = 0x12)  
Bit  
Name  
Description  
DATA[1]  
PMU mask  
0 = disable PMU alarm flag  
1 = enable PMU alarm flag  
0 = disable OVD alarm flag  
1 = enable OVD alarm flag  
DATA[0]  
OVD mask  
Table 28. OVD_CHx Alarm State (ADDR[4:0] = 0x13)1  
Bit  
Name  
Description  
DATA[2]  
PMU clamp flag  
0 = PMU is not clamped  
1 = PMU is clamped  
DATA[1]  
DATA[0]  
OVD high flag  
OVD low flag  
0 = DUT voltage < OVD high voltage  
1 = DUT voltage > OVD high voltage  
0 = DUT voltage > OVD low voltage  
1 = DUT voltage < OVD low voltage  
1 This register is a read-only register.  
Rev. 0 | Page 40 of 52  
 
 
 
 
 
ADATE304  
USER INFORMATION  
Power Supply Decoupling  
POWER SUPPLY CONSIDERATIONS  
Power Supply Sequencing  
The ADATE304 is a high performance device that requires  
close attention to power supply decoupling to deliver the best  
performance. The use of full power planes with low inductance  
capacitors placed as close to the power pins as possible is recom-  
mended. The following power connections are the most important:  
It is recommended that the power supplies be brought up in the  
following order:  
1. Grounds (DGND, AGND, VREF_GND)  
2. VSS  
VPLUS to AGND (for the HVOUT driver)  
VDD to VSS near the DUTx pin (for the driver)  
VDD and VSS to AGND near the DUTx pin (for the  
comparators)  
3.  
VCC, VCOMP_VTT, and VREF  
4. VDD  
5. VPLUS  
If the HVOUT pin is not used, the VPLUS supply can be  
VCC to DGND (for the digital)  
connected to VDD  
.
Additionally, large bulk capacitors (that is, 10 μF) should be  
used on every power supply on the printed circuit board (PCB).  
TRUTH TABLES  
Table 29. Driver and Load Truth Table1  
Registers  
Load Enable  
DATA[1]  
Signals  
PE Disable  
DATA[0]  
Force VT  
DATA[1]  
Driver High-Z/VT  
DATA[0]  
ADDR[4:0] = 0x0C ADDR[4:0] = 0x0C ADDR[4:0] = 0x0D ADDR[4:0] = 0x0D DATAx RCVx Driver State  
Load State  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X
X
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
X
X
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
X
X
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
X
X
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
High-Z without clamps Power-down  
VT  
Power-down  
Power-down  
Power-down  
Power-down  
Power-down  
Power-down  
Power-down  
Power-down  
Power-down  
Active off  
VL  
High-Z with clamps  
VH  
High-Z with clamps  
VL  
VT  
VH  
VT  
VL  
High-Z with clamps  
Active on  
VH  
Active off  
High-Z with clamps  
VL  
Active on  
Active on  
High-Z with clamps  
VH  
Active on  
Active on  
High-Z with clamps  
Active on  
1 X means don’t care.  
Table 30. HVOUT Truth Table1  
HVOUT Mode Select  
DATA[2]  
ADDR[4:0] =0x0D  
Channel 0  
RCV  
Channel 0  
DATA  
HVOUT Driver Output  
1
1
1
0
1
0
0
X
X
0
1
X
VHH mode; VHH = (VT + 1 V) × 2 + DUTGND (Channel 0 VT DAC)  
VL (Channel 0 VL DAC)  
VH (Channel 0 VH DAC)  
Disabled (HVOUT pin set to 0 V low impedance)  
1 X means don’t care.  
Rev. 0 | Page 41 of 52  
 
 
 
 
 
ADATE304  
Table 31. Comparator Truth Table  
Differential  
Comparator Enable  
DATA[0]  
ADDR[4:0] = 0x10  
COMP_QH0  
COMP_QL0  
COMP_QH1  
COMP_QL1  
0
Normal window mode  
Logic high: VOH0 < VDUT0  
Logic low: VOH0 > VDUT0  
Normal window mode  
Logic high: VOL0 < VDUT0  
Logic low: VOL0 > VDUT0  
Normal window mode  
Normal window mode  
Logic high: VOH1 < VDUT1 Logic high: VOL1 < VDUT1  
Logic low: VOH1 > VDUT1 Logic low: VOL1 > VDUT1  
1
Differential comparator mode Differential comparator mode Normal window mode  
Normal window mode  
Logic high: VOH0 < VDUT0 − VDUT1 Logic high: VOL0 < VDUT0 − VDUT1 Logic high: VOH1 < VDUT1 Logic high: VOL1 < VDUT1  
Logic low: VOH0 > VDUT0 − VDUT1  
Logic low: VOL0 > VDUT0 − VDUT1  
Logic low: VOH1 > VDUT1 Logic low: VOL1 > VDUT1  
Rev. 0 | Page 42 of 52  
ADATE304  
−3.0 V to +7.0 V and tracks DUTGND. Controls the  
OVD levels.  
−2.5 V to +7.5 V and does not track DUTGND. Controls  
the IOH and IOL levels.  
DETAILS OF DACS vs. LEVELS  
There are ten 14-bit DACs per channel. These DACs provide  
levels for the driver, comparator, load currents, VHH buffer, OVD,  
and clamp levels. There are three versions of output levels as  
follows:  
There is one 16-bit DAC per channel. This DAC provides the  
levels for the PMU. The output level is as follows:  
−2.5 V to +7.5 V and tracks DUTGND. Controls the VH,  
VL, VT/VCOM/VHH, VOH, VOL, VCH, and VCL levels.  
−2.5 V to +7.5 V and tracks DUTGND; controls the  
PMU levels.  
Table 32. Level Transfer Functions  
Programmable Range1  
DAC Transfer Function  
(All 0s to All 1s)  
Levels  
VOUT = 2.0 × (VREF VREF_GND) × (Code/(214)) − 0.5 × (VREF VREF_GND) + VDUTGND  
−2.5 V to +7.5 V  
VH, VL, VT/VCOM,  
VOL, VOH, VCH, VCL  
Code = [VOUT VDUTGND + 0.5 × (VREF VREF_GND)] × [(214)/(2.0 × (VREF VREF_GND))]  
VOUT = 4.0 × (VREF − VREF_GND) × (Code/(214)) − 1.0 × (VREF VREF_GND) + 2.0 + VDUTGND  
Code = [VOUT VDUTGND − 2.0 + 1.0 × (VREF − VREF_GND)] × [(214)/(4.0 × (VREF VREF_GND))]  
−3.0 V to +17.0 V  
−3.0 V to +7.0 V  
VHH  
VOUT = 2.0 × (VREF VREF_GND) × (Code/(214)) − 0.6 × (VREF VREF_GND) + VDUTGND  
OVD  
Code = [VOUT VDUTGND + 0.6 × (VREF VREF_GND)] × [(214)/(2.0 × (VREF VREF_GND))]  
IOUT = [2.0 × (VREF VREF_GND) × (Code/(214)) − 0.5 × (VREF VREF_GND)] × (0.012/5.0)  
Code = [(IOUT × (5.0/0.012)) + 0.5 × (VREF VREF_GND)] × [(214)/(2.0 × (VREF VREF_GND))]  
−6 mA to +18 mA  
−2.5 V to +7.5 V  
IOH, IOL  
PMUDAC  
VOUT = 2.0 × (VREF VREF_GND) × (Code/(216)) − 0.5 × (VREF VREF_GND) + VDUTGND  
Code = [VOUT VDUTGND + 0.5 × (VREF VREF_GND)] × [(216)/(2.0 × (VREF VREF_GND))]  
IOUT = [2.0 × (VREF VREF_GND) × (Code/(216)) − 0.5 × (VREF VREF_GND) − 2.5] × (0.050/5.0)  
Code = [(IOUT × (5.0/0.050)) + 2.5 + 0.5 × (VREF VREF_GND)] × [(216)/(2.0 × (VREF VREF_GND))]  
−50 mA to +50 mA  
−4 mA to +4 mA  
−400 μA to +400 μA  
−40 μA to +40 μA  
−4 μA to +4 μA  
PMUDAC  
(PMU FI Range A)  
PMUDAC  
(PMU FI Range B)  
PMUDAC  
(PMU FI Range C)  
PMUDAC  
(PMU FI Range D)  
IOUT = [2.0 × (VREF VREF_GND) × (Code/(216)) − 0.5 × (VREF VREF_GND) − 2.5] × (0.004/5.0)  
Code = [(IOUT × (5.0/0.004)) + 2.5 + 0.5 × (VREF VREF_GND)] × [(216)/(2.0 × (VREF VREF_GND))]  
IOUT = [2.0 × (VREF VREF_GND) × (Code/(216)) − 0.5 × (VREF VREF_GND) − 2.5] × (0.0004/5.0)  
Code = [(IOUT × (5.0/0.0004)) + 2.5 + 0.5 × (VREF VREF_GND)] × [(216)/(2.0 × (VREF VREF_GND))]  
IOUT = [2.0 × (VREF VREF_GND) × (Code/(216)) − 0.5 × (VREF VREF_GND) − 2.5] × (0.00004/5.0)  
Code = [(IOUT × (5.0/0.00004)) + 2.5 + 0.5 × (VREF VREF_GND)] × [(216)/(2.0 × (VREF VREF_GND))]  
IOUT = [2.0 × (VREF VREF_GND) × (Code/(216)) − 0.5 × (VREF VREF_GND) − 2.5] × (0.000004/5.0)  
Code = [(IOUT × (5.0/0.000004)) + 2.5 + 0.5 × (VREF VREF_GND)] × [(216)/(2.0 × (VREF VREF_GND))]  
PMUDAC  
(PMU FI Range E)  
1 Programmable range includes a margin outside the specified part performance, allowing for offset/gain calibration.  
Table 33. Load Transfer Functions  
Load Level  
IOL  
Transfer Function1  
V(IOL)/5 V × 12 mA  
V(IOH)/5 V × 12 mA  
IOH  
1 V(IOH)and V(IOL) DAC levels are not referenced to DUTGND.  
Table 34. PMU Transfer Functions  
PMU Mode  
Transfer Functions  
Force Voltage  
VOUT = PMUDAC  
Measure Voltage  
Force Current  
VMEASOUT01 = VDUTx (internal sense) or VMEASOUT01 = VPMUS_CHx (external sense)  
IOUT = [PMUDAC − (VREF/2)]/(R1 × 5)  
VMEASOUT01 = (VREF/2) + VDUTGND + (IDUTx × 5 × R1)  
Measure Current  
1 R = 15.5 Ω for Range A; 250 Ω for Range B; 2.5 kΩ for Range C; 25 kΩ for Range D; 250 kΩ for Range E.  
Table 35. PMU User Required Capacitors  
Capacitor  
Location  
220 pF  
Across Pin C10 (FFCAP_0B) and Pin E10 (FFCAP_0A)  
Across Pin C1 (FFCAP _1B) and Pin E1 (FFCAP_1A)  
Between GND and Pin B9 (SCAP0)  
Between GND and Pin B2 (SCAP1)  
220 pF  
330 pF  
330 pF  
Rev. 0 | Page 43 of 52  
 
 
 
 
ADATE304  
Table 36. Temperature Sensor  
Temperature  
Output  
0 K  
0 V  
300 K  
x K  
3 V  
(x K) × 10 mV/K  
Table 37. Power Supply Ranges  
Parameter  
Range 1  
+10.75 V  
−5.00 V  
Range 2  
+10.0 V  
−5.75 V  
Nominal VDD  
Nominal VSS  
Driver  
VH range  
−1.15 V to +6.75 V  
−1.25 V to +6.65 V  
−1.25 V to +6.75 V  
8.0 V  
−1.9 V to +6.0 V  
−2.0 V to +5.9 V  
−2.0 V to +6.0 V  
8.0 V  
VL range  
VT range  
Functional Amplitude  
Reflection Clamp  
VCH Range  
−1.0 V to +6.75 V  
−1.25 V to +5.75 V  
−1.25 V to +6.75 V  
−1.00 V to +6.50 V  
−1.0 V to +6.0 V  
−2.0 V to +5.0 V  
−2.0 V to +6.0 V  
−1.75 V to +5.75 V  
VCL Range  
Comparator Input Voltage Range  
Active Load VCOM Range  
PMU  
Force Voltage Range  
Measure Voltage Range  
Force Current Voltage Range  
Measure Current Voltage Range  
Low Clamp Range  
High Clamp Range  
OVD  
−1.25 V to +6.75 V  
−1.25 V to +6.75 V  
−1.25 V to +6.75 V  
−1.25 V to +6.75 V  
−1.25 V to +4.75 V  
0.75 V to 6.75 V  
−2.0 V to +6.0 V  
−2.0 V to +6.0 V  
−2.0 V to +6.0 V  
−2.0 V to +6.0 V  
−2.0 V to +4.0 V  
0.0 V to 6.0 V  
−2.25 V to +7.0 V  
−3.0 V to +7.0 V  
Table 38. Default Test Conditions (Range 1)  
Name  
Default Test Condition  
VH DAC Level  
VL DAC Level  
VT/VCOM DAC Level  
VOL DAC Level  
VOH DAC Level  
VCH DAC Level  
VCL DAC Level  
IOH DAC Level  
+2.0 V  
+0.0 V  
+1.0 V  
−1.0 V  
+6.0 V  
+7.5 V  
−2.5 V  
0.0 A  
IOL DAC Level  
0.0 A  
OVD Low DAC Level  
OVD High DAC Level  
PMUDAC DAC Level  
PE/PMU Enable  
Channel State  
PMU State  
PMU Measure Enable  
Differential Comparator Enable  
16-Bit DAC Monitor  
OVD_CHx Alarm Mask  
Data Input  
−2.5 V  
+6.5 V  
0.0 V  
0x0000: PMU disabled, VT not forced through driver, PE enabled  
0x0000: HV mode disabled, load disabled, VTERM inactive  
0x0000: input of DUTGND, internal sense, clamps disabled, FVMV, Range E  
0x0000: MEASOUT01 pin tristated  
0x0000: normal window comparator mode  
0x0000: DAC16_MON tristated  
0x0000: disable alarm functions  
Logic low  
Receive Input  
Logic low  
DUTx Pin  
Unterminated  
Comparator Output  
Unterminated  
Rev. 0 | Page 44 of 52  
 
 
 
ADATE304  
PMU Force Voltage Mode to PMU Force Current Mode  
RECOMMENDED PMU MODE SWITCHING  
SEQUENCES  
Step 1. Table 42 lists the state of registers in force voltage mode.  
To minimize any possible aberrations and voltage spikes on the  
DUT output, specific mode switching sequences are recommended  
for the following transitions:  
Table 42.  
Register  
Bits  
Setting  
PE/PMU Enable  
Register, ADDR[4:0]  
= 0x0C  
DATA[2]  
1
PMU disable to PMU enable.  
PMU force voltage mode to PMU force current mode.  
PMU force current mode to PMU force voltage mode.  
PMU State Register, DATA[9:8] XX  
ADDR[4:0] = 0x0E  
DATA[7]  
DATA[6]  
DATA[5]  
DATA[4]  
DATA[3]  
X
X
X
X
0
PMU Disable to PMU Enable  
Note that, in Table 39 through Table 49, X indicates the don’t  
care bit.  
Step 1. Table 39 lists the state of the registers in PMU disabled  
mode.  
DATA[2:0] XXX  
Table 39.  
Step 2. Write to Register ADDR[4:0] = 0x0E (see Table 43).  
Register  
Bits  
Setting  
Table 43.  
Register  
PE/PMU Enable  
Register, ADDR[4:0]  
= 0x0C  
DATA[2]  
0
Bits  
Setting Comments  
PMU State Register,  
ADDR[4:0] = 0x0E  
DATA[9:8] 01  
Set 2.5 V +  
DUTGND input  
selection  
PMU State  
DATA[9:8] XX  
Register, ADDR[4:0]  
= 0x0E  
DATA[7]  
DATA[6]  
DATA[5]  
DATA[4]  
DATA[3]  
X
X
X
X
X
DATA[7]  
DATA[6]  
DATA[5]  
DATA[4]  
DATA[3]  
X
X
X
X
1
Set to force  
current mode  
DATA[2:0] XXX  
DATA[2:0] 0XX  
The 2 μA range  
has the  
Step 2. Write to Register ADDR[4:0] = 0x0E (see Table 40).  
minimum offset  
current  
Table 40.  
Register  
Bits  
Setting Comments  
PMU State  
Register,  
ADDR[4:0] =  
0x0E  
DATA[9:8] 1X or  
00  
Set desired input  
selection  
Step 3. Write to Register ADDR[4:0] = 0x0B (see Table 44).  
Table 44.  
DATA[7]  
DATA[6]  
DATA[5]  
DATA[4]  
DATA[3]  
X
X
X
X
0
Register  
Bits  
Setting Comments  
VIN 16-Bit DAC,  
ADDR[4:0] = 0x0B  
DATA[15:0]  
X
Update the VIN  
16-Bit DAC  
register to the  
desired value  
This bit must be set  
to force voltage mode  
to reduce aberrations  
Step 4. Write to Register ADDR[4:0] = 0x0E (see Table 45).  
DATA[2:0] XXX  
Set desired range  
Table 45.  
Register  
Step 3. Write to Register ADDR[4:0] = 0x0C (see Table 41).  
Bits  
Setting Comments  
Table 41.  
Register  
PMU State Register,  
ADDR[4:0] = 0x0E  
DATA[9:8] 1X  
Set VIN input  
selection  
Bits  
Setting Comments  
1
PMU is now enabled  
DATA[7]  
DATA[6]  
DATA[5]  
DATA[4]  
DATA[3]  
X
X
X
X
1
PE/PMU Enable  
Register,  
ADDR[4:0] = 0x0C  
DATA[2]  
in force voltage  
mode  
DATA[2:0] XXX  
Set to the  
desired current  
range  
Rev. 0 | Page 45 of 52  
 
 
 
 
 
 
 
 
ADATE304  
Transition from PMU Force Current Mode to PMU Force  
Voltage Mode  
Step 3. Write to Register ADDR[4:0] = 0x0B (see Table 48).  
Table 48.  
Step 1. Table 46 lists the state of the registers in force current mode.  
Register  
Bits  
Setting Comments  
VIN 16-Bit DAC,  
ADDR[4:0] = 0x0B  
DATA[15:0]  
X
Update the VIN  
16-Bit DAC  
register to the  
desired value  
Table 46.  
Register  
Bits  
Setting  
PE/PMU Enable Register, ADDR[4:0] = 0x0C  
PMU State Register, ADDR[4:0] = 0x0E  
DATA[2]  
1
DATA[9:8] XX  
Step 4. Write to Register ADDR[4:0] = 0x0E (see Table 49).  
DATA[7]  
DATA[6]  
DATA[5]  
DATA[4]  
DATA[3]  
X
X
X
X
1
Table 49.  
Register  
Bits  
Setting Comments  
PMU State Register,  
ADDR[4:0] = 0x0E  
DATA[9:8] 1X  
Set VIN input  
selection  
DATA[2:0] XXX  
DATA[7]  
DATA[6]  
DATA[5]  
DATA[4]  
DATA[3]  
X
X
X
X
0
Step 2. Write to Register ADDR[4:0] = 0x0E (see Table 47).  
Table 47.  
Register  
Bits  
Setting Comments  
Force voltage  
mode  
PMU State Register, DATA[9:8] 00  
ADDR[4:0] = 0x0E  
Set DUTGND input  
selection  
DATA[2:0] XXX  
DATA[7]  
DATA[6]  
DATA[5]  
DATA[4]  
DATA[3]  
X
X
X
X
0
Set to force  
voltage mode  
DATA[2:0] XXX  
Set to the desired  
current range  
Rev. 0 | Page 46 of 52  
 
 
 
 
ADATE304  
BLOCK DIAGRAMS  
VCL VCH  
PE DISABLE DATA[0] (ADDR[4:0] = 0x0C)  
FORCES SWITCH OPEN WHEN 1  
VH  
VL  
R
= 47ꢀ  
OUT  
(TRIMMED)  
DUT  
DRIVER  
DATA  
VT  
DRIVER HIGH-Z/VT DATA[0]  
(ADDR[4:0] = 0x0D)  
VT BUFFER WHEN 1  
HIGH-Z BUFFER WHEN 0  
V(IOH)  
RCV  
VCOM  
FORCE VT DATA[1] (ADDR[4:0] = 0x0C)  
OVERRIDES THE RCV PIN AND FORCES  
VTERM MODE ON THE DRIVER AND LOAD  
POWER-DOWN MODE  
V(IOL)  
LOAD ENABLE DATA[1] (ADDR[4:0] = 0x0D)  
FORCES SWITCHES OPEN AND POWERS  
DOWN LOAD WHEN 0  
Figure 75. Driver and Load Block Diagram  
~5ꢀ  
VHH = (VT + 1V) × 2 + DUTGND  
HVOUT  
VH  
VL  
48ꢀ  
DATA  
RCV (SHOWN IN  
RCV = 0 STATE)  
HV MODE SELECT DATA[2]  
(ADDR [4:0] = 0x0D) DISABLES  
HV DRIVER AND FORCES  
0V ON HVOUT WHEN 0  
Figure 76. HVOUT Driver Output Stage  
Rev. 0 | Page 47 of 52  
 
ADATE304  
VOH0  
VOH  
NWC  
+
DUT0  
COMP_QH0  
2:1  
MUX  
+
VOL  
NWC  
VOL0  
VOH0  
DIFFERENTIAL  
COMPARATOR ENABLE  
DATA[0] (ADDR[4:0] = 0x10)  
VOH  
DMC  
COMP_QL0  
2:1  
MUX  
+
DUT0–  
DUT1  
DUT1  
DIFFERENTIAL  
BUFFER  
+
VOL  
DMC  
VOL0  
NOTES  
1. DIFFERENTIAL COMPARATOR ONLY ON CHANNEL 0.  
Figure 77. Comparator Block Diagram  
COMPARATOR  
OUTPUT (AB)  
VTT = 3.3V  
RECEIVER  
OUT HIGH = 1.55V  
OUT CM = 1.42V  
OUT LOW = 1.30V  
50ꢀ  
50ꢀ  
100ꢀ  
GND  
Figure 78. Comparator Output Scheme  
Rev. 0 | Page 48 of 52  
ADATE304  
PMU SENSE PATH DATA[7]  
(ADDR[4:0] = 0x0E)  
PMU MEASURE V/I DATA[4]  
(ADDR[4:0] = 0x0E)  
EXTERNAL DUT  
SENSE PIN  
MEASURE V  
MEASURE I  
MEASOUT01 SELECT DATA[2:1]  
(ADDR[4:0] = 0x0F)  
MUX  
MUX  
PMU FORCE V/I DATA[3]  
(ADDR[4:0] = 0x0E)  
MEASURE  
OUT  
CH[1] PMU V/I  
IN-AMP G = 5  
10kꢀ  
TEMP SENSE  
GND REF  
TEMP SENSE  
REF  
2.5 + DUTGND  
MUX  
MUX  
MEASOUT01 OUTPUT  
ENABLE DATA[0]  
(ADDR[4:0] = 0x0F)  
ONE PER DEVICE  
DUTx  
225kꢀ  
22.5kꢀ  
2.25kꢀ  
250ꢀ  
15.5ꢀ  
2µA  
20µA  
200µA  
32mA BUFFER  
32mA  
2mA  
PMU INPUT SELECTION DATA[9:8]  
(ADDR[4:0] = 0x0E)  
MV  
VIN  
2.5V + DUTGND  
DUTGND  
FFCAP_xA  
FFCAP_xB  
330pF  
SCAPx  
(EXTERNAL)  
MUX  
PMU CLAMP ENABLE DATA[5]  
(ADDR[4:0] = 0x0E)  
CRA = 220pF  
VCH  
MEASURE V  
(AT OUTPUT OF  
SENSE MUX)  
VCL  
NOTES  
1. SWITCHES CONNECTED WITH DOTTED LINES REPRESENT PMU RANGE DATA[2:0] (ADDR[4:0] = 0x0E); WHEN PMU ENABLE DATA[2] = 0 (ADDR[4:0] = 0x0C), ALL  
SWITCHES OPEN AND PMU POWERS DOWN.  
2. THE EXTERNAL SENSE PATH MUST CLOSE THE LOOP TO ENABLE THE CLAMPS TO OPERATE CORRECTLY.  
3. 32mA RANGE HAS ITS OWN OUTPUT BUFFER.  
4. 32mA BUFFER TRISTATES WHEN NOT IN USE.  
Figure 79. PMU Block Diagram  
Rev. 0 | Page 49 of 52  
ADATE304  
(ADDR[4:0] = 0x12) DATA[0]  
OVD MASK ENABLES OVD  
FLAGS TO ALARM OVD_CHx PIN  
1
6.5V  
OVD HIGH LEVEL  
DAC (ADDR[4:0] = 0x0A, CH[1])  
OVD_CHx  
SHORT-CIRCUIT  
CURRENT = 100µA  
DUT  
ADATE304  
1
–2.5V  
OVD LOW LEVEL  
DAC (ADDR[4:0] = 0x0A, CH[0])  
PMU  
V/I CLAMP  
FLAG  
(ADDR[4:0] = 0x12) DATA[1]  
PMU MASK ENABLES PMU V/I  
FLAG TO ALARM OVD_CHx PIN  
2
(ADDR[4:0] = 0x13) DATA[2] DATA[1] DATA[0]  
1
THE OVD HIGH/LOW LEVEL DAC IS SHARED BY EACH CHANNEL; THEREFORE, ONLY ONE OVD HIGH/LOW VOLTAGE  
LEVEL CAN BE SET PER CHIP. THE OVD DACs PROVIDE A VOLTAGE RANGE OF –3V TO +7V. THE RECOMMENDED  
HIGH/LOW SETTINGS ARE +6.5V/–2.5V. (THESE VALUES NEED TO BE PROGRAMMED BY THE USER UPON STARTUP/RESET.)  
THIS IS A READ ONLY REGISTER THAT ALLOWS THE USER TO DETERMINE THE CAUSE OF THE ACTIVE OVD FLAG.  
2
Figure 80. OVD Block Diagram  
Rev. 0 | Page 50 of 52  
ADATE304  
OUTLINE DIMENSIONS  
9.10  
9.00 SQ  
8.90  
A1 BALL  
CORNER  
A1 BALL  
CORNER  
10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
6.731  
REF SQ  
7.20  
BSC SQ  
0.80  
BSC  
G
H
J
K
TOP VIEW  
DETAIL A  
BOTTOM VIEW  
0.305 REF  
0.90 REF  
0.83  
0.76  
0.69  
*
1.20  
1.09  
1.00  
DETAIL A  
0.36  
REF  
0.38  
0.33  
0.28  
0.53  
0.48  
0.43  
COPLANARITY  
0.12  
SEATING  
PLANE  
BALL DIAMETER  
*
COMPLIANT TO JEDEC STANDARDS MO-219 WITH  
EXCEPTION TO PACKAGE HEIGHT.  
Figure 81. 84-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-84-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADATE304BBCZ1  
Temperature Range  
−40°C to +85°C  
Package Description  
Package Option  
84-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
BC-84-2  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 51 of 52  
 
 
ADATE304  
NOTES  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07279-0-10/08(0)  
Rev. 0 | Page 52 of 52  

相关型号:

ADATE304BBCZ

200 MHz Dual Integrated DCL with Level Setting DACs, Per Pin PMU, and Per Chip VHH
ADI

ADATE305

250 MHz Dual Integrated DCL with Level Setting DACs, Per Pin PMU, and Per Chip VHH
ADI

ADATE305BSVZ

250 MHz Dual Integrated DCL with Level Setting DACs, Per Pin PMU, and Per Chip VHH
ADI

ADATE318

600 MHz Dual Integrated DCL with PPMU, VHH Drive Capability, Level Setting DACs, and On-Chip
ADI

ADATE318BCPZ

600 MHz Dual Integrated DCL with PPMU, VHH Drive Capability, Level Setting DACs, and On-Chip
ADI

ADATE320

1.25 GHz Dual Integrated DCL
ADI

ADATE320-1KCPZ

1.25 GHz Dual Integrated DCL
ADI

ADATE320KCPZ

1.25 GHz Dual Integrated DCL
ADI

ADAU1301

Tape and Reel Packaging
ADI

ADAU1328

2 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec
ADI

ADAU1328BSTZ

2 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec
ADI

ADAU1328BSTZ-RL

2 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec
ADI