ADD8701 [ADI]

12-Channel Gamma Buffers with VCOM Buffer; 12通道伽玛缓冲器,具有VCOM缓冲器
ADD8701
型号: ADD8701
厂家: ADI    ADI
描述:

12-Channel Gamma Buffers with VCOM Buffer
12通道伽玛缓冲器,具有VCOM缓冲器

文件: 总8页 (文件大小:266K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-Channel Gamma Buffers  
with VCOM Buffer  
ADD8701  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Single-Supply Operation: 7 V to 16 V  
Dual-Supply Operation: 3.5 V to 8 V  
Supply Current: 13 mA Max  
Upper/Lower Buffers Swing to VDD/GND  
Continuous Output Current: 10 mA  
VCOM Peak Output Current: 250 mA  
Offset Voltage: 15 mV Max  
Slew Rate: 6 V/s  
Fast Settling Time with Large C-Load  
32 31 30 26 28 27 26 25  
V
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
DD  
GND  
VCOM IN  
V
DD  
IN12  
IN11  
IN10  
V6  
V5  
V4  
APPLICATIONS  
TFT LCD Panels  
IN9  
IN8  
IN7  
19 V3  
18 V2  
17 V1  
9
10 11 12 13 14 15 16  
GENERAL DESCRIPTION  
The ADD8701 is a low cost, 12-channel buffer amplifier and  
VCOM driver that operates from a single supply. The part is  
designed for high resolution TFT LCD panels, and is built on  
an advanced, high voltage, CBCMOS process.  
The ADD8701 is specified over the –40ºC to +85ºC tempera-  
ture range and is available in a 32-lead lead frame chip scale  
package (LFCSP).  
The buffers have high slew rate, 10 mA continuous output current,  
and high capacitive load drive capability. The VCOM buffer has  
increased drive of 35 mA and can drive large capacitive loads. The  
ADD8701 offers wide supply range and offset voltages below 15 mV.  
All inputs and outputs incorporate internal ESD protection  
circuits.  
V
DD  
V12  
PANEL  
TIMING  
CONTROLLER  
TIMING AND CONTROL  
GAMMA  
REFERENCE  
VOLTAGES  
SCAN DRIVER CONTROL  
RESISTOR  
LADDER  
SOURCE DRIVER  
SOURCE DRIVER  
NO. 2  
SOURCE DRIVER  
ADD8701  
NO. 1  
NO. 8  
384  
384  
384  
R
G
B
VCOM OUT  
V1  
TFT COLOR PANEL  
SCAN  
DRIVERS  
768  
1024 
؋
 768  
GND  
VCOM IN  
V
DD  
Figure 1. Typical SVGA TFT-LCD Application  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
ADD8701–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS (7 V VDD 16 V, TA = 25°C, unless otherwise specified.)  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
Offset Voltage Drift  
Input Bias Current  
VOS  
VOS/T  
IB  
4
5
0.5  
15  
mV  
µV/°C  
µA  
µA  
V
–40°C TA +85°C  
–40°C TA +85°C  
1.1  
1.5  
VDD + 0.5  
Input Voltage Range  
Input Impedance  
Input Capacitance  
–0.5  
ZIN  
CIN  
400  
1
kΩ  
pF  
OUTPUT CHARACTERISTICS  
Output Voltage High (V11, V12)  
VOUT  
IL = 100 µA  
15.995  
15.9  
V
V
V
V
VDD = 16 V, IL = 5 mA  
–40°C TA +85°C  
15.85  
15.75  
6.75  
V
DD = 7 V, IL = 5 mA  
6.85  
–40°C TA +85°C  
IL = 5 mA, VDD = 16 V  
IL = 5 mA, VDD = 7 V  
IL = 100 µA  
VDD = 16 V, IL = 5 mA  
–40°C TA +85°C  
VDD = 7 V, IL = 5 mA  
–40°C TA +85°C  
6.65  
V
V
V
mV  
mV  
mV  
mV  
mV  
mA  
mA  
Output Swing (V3 to V10)  
Output Swing (V3 to V10)  
Output Voltage Low (V1, V2)  
VOUT  
VOUT  
VOUT  
14.6  
5.6  
5
85  
150  
250  
300  
400  
140  
Continuous Output Current  
Peak Output Current  
IOUT  
IPK  
10  
150  
VDD = 16 V  
VCOM CHARACTERISTICS  
Continuous Output Current  
Peak Output Current  
IOUT  
IPK  
35  
250  
mA  
mA  
VDD = 16 V  
TRANSFER CHARACTERISTICS  
Gain  
AVCL  
NL  
RL = 2 kΩ  
0.995  
0.995  
0.9985 1.005  
0.9980 1.005  
V/V  
V/V  
–40°C TA +85°C  
RL = 10 kΩ  
Gain Linearity  
VO = 0.5 to (VDD – 0.5 V)  
0.01  
%
V
SUPPLY CHARACTERISTICS  
Supply Voltage  
VDD  
7
16  
Power Supply Rejection Ratio  
PSRR  
VDD = 6 V to 17 V  
–40°C TA +85°C  
No Load  
70  
90  
10  
dB  
mA  
mA  
Supply Current  
ISYS  
13  
15  
–40°C TA +85°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Bandwidth  
Settling Time to 0.1% (Buffers)  
Settling Time to 0.1% (VCOM)  
Phase Margin  
SR  
BW  
tS  
tS  
fo  
RL = 10 k, CL = 200 pF  
4
6
V/µs  
MHz  
µs  
µs  
Degrees  
dB  
–3 dB, RL = 10 k, CL = 200 pF  
1 V, RL = 10 k, CL = 200 pF  
1 V, RL = 10 k, CL = 200 pF  
RL = 10 k, CL = 200 pF  
4.5  
1.1  
0.7  
55  
75  
Channel Separation  
NOISE PERFORMANCE  
Voltage Noise Density  
en  
en  
in  
f = 1 kHz  
f = 10 kHz  
f = 10 kHz  
26  
25  
0.8  
nV/Hz  
nV/Hz  
pA/Hz  
Current Noise Density  
Specifications subject to change without notice.  
–2–  
REV. 0  
ADD8701  
ABSOLUTE MAXIMUM RATINGS*  
Supply Voltage (VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
PIN CONFIGURATION  
)
Input Voltage . . . . . . . . . . . . . . . . . . . . . –0.5 V to VDD + 0.5 V  
Storage Temperature Range . . . . . . . . . . . . . –65°C to +150°C  
Operating Temperature Range . . . . . . . . . . . . –40°C to +85°C  
Junction Temperature Range . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300°C  
ESD Tolerance (HBM) . . . . . . . . . . . . . . . . . . . . . . . 1,000 V  
V
1
24 GND  
23 V  
PIN 1  
DD  
INDICATOR  
VCOM IN 2  
IN12 3  
IN11 4  
IN10 5  
IN9 6  
DD  
22 V6  
21 V5  
20 V4  
19 V3  
18 V2  
17 V1  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
ADD8701  
TOP VIEW  
IN8 7  
IN7 8  
1
2
Package Type  
JA  
JB  
Unit  
32-Lead LFCSP (CP)  
35  
13  
°C/W  
PIN FUNCTION DESCRIPTION  
NOTES  
1θJA is specified for worst-case conditions, i.e., θJA is specified for device soldered  
in circuit board for surface-mount packages.  
Pin No.  
1, 15, 23  
2
Mnemonic  
VDD  
Description  
Power (+)  
2ψJB is applied for calculating the junction temperature by reference to the board  
temperature.  
VCOM IN  
IN12–IN1  
GND  
VCOM Buffer Input  
Gamma Buffer Inputs  
Power (–)  
ORDERING GUIDE  
3–14  
16, 24, 31  
17–22, 25–30  
32  
Model  
Temperature  
Range  
Package  
Description  
Package  
Option  
V1–V12  
Gamma Buffer Outputs  
VCOM Buffer Output  
VCOM OUT  
ADD8701ACP –40°C to +85°C 32-Lead LFCSP CP-32  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
ADD8701 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
REV. 0  
–3–  
ADD8701–Typical Performance Characteristics  
1,400  
1,200  
1,000  
800  
7,000  
6,000  
5,000  
4,000  
3,000  
2,000  
1,000  
0
20  
15  
7V <V < 16V  
DD  
7V <V < 16V  
DD  
T
= 25C  
A
7V <V  
< 16V  
DD  
10  
VCOM  
5
BUFFER 1  
0
600  
–5  
BUFFER 12  
400  
–10  
–15  
–20  
200  
0
–40  
25  
TEMPERATURE C  
85  
–7 –5 –3 –1  
1
3
5
7
9
5
10  
15  
20  
25  
30  
35  
40  
TCVOS – V/C  
INPUT OFFSETVOLTAGE – mV  
TPC 3. Input Offset Voltage  
vs. Temperature  
TPC 1. Input Offset Voltage Distribution  
TPC 2. TCVOS Distribution  
0
8
8
6
VCOM AND BUFFERS 1TO 9  
V
= 8V  
V
= 8V  
DD  
DD  
–100  
–200  
–300  
–400  
–500  
–600  
–700  
–800  
–900  
6
4
BUFFERS 10TO 12  
VCOM, BUFFERS 1TO 9  
4
2
2
V
DD  
= 16V  
0
0
V
DD  
= 7V  
–2  
–4  
–6  
–8  
–10  
–2  
–4  
–6  
–8  
–10  
–40  
25  
TEMPERATURE C  
85  
–8  
–6  
–4  
–2  
0
2
4
6
8
–8  
–6  
–4  
–2  
0
2
4
6
8
COMMON-MODEVOLTAGE – V  
COMMON-MODEVOLTAGE – V  
TPC 4. Offset Voltage vs.  
Common-Mode Voltage  
TPC 5. Offset Voltage vs.  
Common-Mode Voltage  
TPC 6. Input Bias Current vs.  
Temperature  
350  
100  
10  
100  
10  
BUFFERS 10TO 12  
V
= 16V  
DD  
V
= 16V  
DD  
BUFFERS 1, 2  
BUFFERS 3TO 9  
300  
250  
200  
150  
100  
50  
SOURCE  
SOURCE  
V
= 7V  
DD  
1
1
V
= 16V  
DD  
SINK  
0.1  
0.1  
SINK  
0.01  
0.01  
0
0.001  
0.001  
0.01  
0.1  
1
10  
100  
–40  
25  
TEMPERATURE C  
85  
0.01  
0.1  
1
10  
100  
LOAD CURRENT – mA  
LOAD CURRENT – mA  
TPC 7. Input Bias Current vs.  
Temperature  
TPC 8. Output Voltage to  
Supply Rail vs. Load Current  
TPC 9. Output Voltage to  
Supply Rail vs. Load Current  
–4–  
REV. 0  
ADD8701  
100  
10  
100  
10  
10  
1
V
= 16V  
V
= 16V  
V
= 16V  
DD  
DD  
DD  
BUFFERS 11, 12  
VCOM  
BUFFER 10  
SOURCE  
SINK  
SINK  
1
0.1  
1
SOURCE  
SINK  
0.1  
0.01  
0.001  
0.0001  
0.1  
SOURCE  
0.01  
0.001  
0.01  
0.001  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
LOAD CURRENT – mA  
LOAD CURRENT – mA  
LOAD CURRENT – mA  
TPC 11. Output Voltage to  
Supply Rail vs. Load Current  
TPC 10. Output Voltage to  
Supply Rail vs. Load Current  
TPC 12. Output Voltage to  
Supply Rail vs. Load Current  
12  
10  
8
12  
10  
8
20  
10  
V
= 16V  
V
CM  
= 1/2V  
DD  
DD  
V
= 16V  
DD  
VCOM AND BUFFERS 1TO 9  
V
= 7V  
DD  
10kꢅ  
2kꢅ  
0
1kꢅ  
560ꢅ  
6
6
–10  
–20  
–30  
4
4
150ꢅ  
2
2
0
0
–40  
25  
TEMPERATURE C  
85  
1M  
10M  
30M  
0
4
8
12  
16  
100k  
SUPPLYVOLTAGE V  
FREQUENCY – Hz  
TPC 14. Supply Current vs.  
Temperature  
TPC15. FrequencyResponse  
vs. Resistive Loading  
TPC 13. Supply Current vs.  
Supply Voltage  
80  
60  
20  
10  
20  
10  
ALL CHANNELS  
8V  
V = 16V  
DD  
VCOM, BUFFERS 1TO 9  
V
= 16V  
DD  
V
=
DD  
BUFFERS 10TO 12  
T
A
= +25C  
40  
100pF  
50pF  
0
20  
10kꢅ  
2kꢅ  
1kꢅ  
0
0
–10  
–20  
–30  
–40  
–50  
–20  
–40  
–60  
–80  
–100  
–120  
540pF  
1040pF  
560ꢅ  
–10  
–20  
–30  
PSRR  
150ꢅ  
100  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
1M  
10M  
30M  
100k  
1M  
FREQUENCY – Hz  
10M  
30M  
100k  
FREQUENCY – Hz  
TPC18. FrequencyResponse  
vs. Capacitive Loading  
TPC16. FrequencyResponse  
vs. Resistive Loading  
TPC 17. Power Supply Rejection  
Ratio vs. Frequency  
REV. 0  
–5–  
ADD8701  
20  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
V
R
= 7V  
= 2kꢅ  
CHANNELS 11 AND 12  
DD  
V
R
= 16V  
= 2kꢅ  
DD  
V
DD  
= 16V  
CHANNEL 11  
CHANNEL 3  
L
BUFFERS 10TO 12  
L
10  
0
100pF  
50pF  
CHANNELS 3TO 9  
VCOM  
VCOM  
–10  
–20  
–30  
–40  
–50  
CHANNELS 1 AND 2  
CHANNEL 1  
540pF  
1040pF  
60  
60  
40  
40  
1M  
FREQUENCY – Hz  
10M  
30M  
100k  
0
200  
400  
600  
800 1,000 1,200  
0
200  
400  
600  
800 1,000 1,200  
CAPACITIVE LOAD – pF  
CAPACITIVE LOAD – pF  
TPC 19. Frequency Response  
vs. Capacitive Loading  
TPC 20. Input-Output Phase  
Shift vs. Capacitive Load  
TPC 21. Input-Output Phase  
Shift vs. Capacitive Load  
16  
14  
12  
10  
8
V
DD  
= 16V  
V
R
C
= 16V  
DD  
= 33ꢅ  
NULL  
= 100pF  
L
VCOM SLEW RATE FALLING  
VCOM SLEW RATE RISING  
6
4
7V <V < 16V  
DD  
R
SERIES = 33ꢅ  
= 0.1F  
OUT  
2
C
LOAD  
0
–40  
25  
85  
TIME – 2s/DIV  
TIME – 20s/DIV  
TEMPERATURE C  
TPC 22. Large-Signal Transient  
Response  
TPC 24. Small Signal Transient  
Response  
TPC 23. Slew Rate vs. Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
12  
V
=
=
= 2kꢅ  
= 25C  
8V  
50mV  
DD  
VCOM  
DD  
V
IN  
V
= 8V  
R
T
8
4
R
C
= 5kꢅ  
= 100pF  
L
L
L
A
+t (0.1%)  
S
R
NULL  
= 33ꢅ  
–OS  
T = 25C  
A
+OS  
0
–4  
–8  
–12  
–t (0.1%)  
S
10  
100  
1k  
10k  
400  
600  
800  
1,000  
1,200  
1,400  
CAPACITIVE LOAD – pF  
TIME – 40s/DIV  
SETTLINGTIME – ns  
TPC 25. Small-Signal Overshoot  
vs. Capacitive Load  
TPC 26. Settling Time vs. Step Size  
TPC 27. No Phase Reversal  
–6–  
REV. 0  
ADD8701  
70  
60  
70  
60  
V
= 16V  
V
= 16V  
DD  
DD  
VCOM AND BUFFERS 1TO 9  
MARKER SET @ 10kHz  
MARKER READING = 25.7nV/ Hz  
BUFFERS 10TO 12  
MARKER SET @ 10kHz  
MARKER READING = 36.6nV/ Hz  
50  
40  
30  
20  
50  
40  
30  
20  
10  
0
10  
0
–10  
–10  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC28. VoltageNoiseDensity  
vs. Frequency  
TPC29. VoltageNoiseDensity  
vs. Frequency  
APPLICATIONS  
LCD Gamma Reference Buffers  
GMA  
A12  
A11  
A10  
A9  
In high resolution TFT-LCD displays, gamma correction must  
be performed to correct the nonlinearity in the LCD panel’s  
transmission characteristics. A typical TFT-LCD panel consisting  
of 256 grayscale levels takes an 8-bit digital word to select an  
appropriate gamma reference voltage. An 8-bit source driver may  
use 12 analog voltages that match the characteristic gamma curve  
for optimum panel picture quality. The ADD8701 is specifically  
designed to generate analog reference voltages to meet the gamma  
characteristics of an LCD panel used by the source driver. The  
gamma reference buffers offer 10 mA drive capability.  
GMA  
GMA  
GMA  
GMA  
GMA  
GMA  
GMA  
GMA  
GMA  
GMA  
The ADD8701 is designed to meet the rail-to-rail capability  
needed by the application and yet offers a low cost-per-channel  
solution. The design maximizes the die area by offering channels  
to swing to the positive and negative rails. It is imperative that  
the channels swinging close to the supply rail be used for the  
positive gamma references and that the channels swinging close  
to GND be used for the negative gamma references. See Figure 2  
for an example of the application circuit.  
A8  
A7  
LCD VCOM Buffer  
The output of the VCOM buffer is designed to control the voltage  
on the back plate of the LCD display. The buffer must be capable  
of sinking and sourcing capacitive pulse current. The amplifier  
stability is designed for high load capacitance. A high quality  
ceramic capacitor is recommended to supply short duration current  
pulses at the output. The VCOM buffer of the ADD8701 can  
handle up to 35 mA of continuous output current and can drive  
up to 1,000 nF of pure capacitive load.  
A6  
A5  
A4  
Unused Buffers  
Inputs of any unused buffer should be tied to the ground plane.  
A3  
A2  
GMA  
A1  
ADD8701  
LCD SOURCE DRIVER  
Figure 2. Application Circuit  
REV. 0  
–7–  
ADD8701  
OUTLINE DIMENSIONS  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
(CP-32)  
Dimensions shown in millimeters  
5.00  
BSC SQ  
0.60 MAX  
PIN 1  
0.60 MAX  
INDICATOR  
25  
24  
32  
1
PIN 1  
INDICATOR  
0.50  
BSC  
3.25  
3.10  
2.95  
4.75  
BSC SQ  
TOP  
VIEW  
BOTTOM  
VIEW  
SQ  
0.50  
0.40  
0.30  
17  
16  
8
9
3.50  
REF  
0.80 MAX  
0.65 NOM  
12MAX  
0.05 MAX  
0.02 NOM  
1.00  
0.90  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2  
–8–  
REV. 0  

相关型号:

ADD8701ACP

12-Channel Gamma Buffers with VCOM Buffer
ADI

ADD8702

12-Channel Gamma Buffers with Vcom Buffer
ADI

ADD8702ACP-R2

12-Channel Gamma Buffers with Vcom Buffer
ADI

ADD8702ACP-REEL

12-Channel Gamma Buffers with Vcom Buffer
ADI

ADD8702ACP-REEL7

12-Channel Gamma Buffers with Vcom Buffer
ADI

ADD8704

16 V Quad Operational Amplifier
ADI

ADD8704ACPZ-R2

16 V Quad Operational Amplifier
ADI

ADD8704ACPZ-REEL7

16 V Quad Operational Amplifier
ADI

ADD8704ARU

16 V Quad Operational Amplifier
ADI

ADD8704ARU-REEL

16 V Quad Operational Amplifier
ADI

ADD8704ARUZ

16 V Quad Operational Amplifier
ADI

ADD8704ARUZ-REEL

16 V Quad Operational Amplifier
ADI