ADDI7100BCPZRL [ADI]

Complete, 12-Bit, 45 MHz CCD Signal Processor; 完成后, 12位, 45 MHz的CCD信号处理器
ADDI7100BCPZRL
型号: ADDI7100BCPZRL
厂家: ADI    ADI
描述:

Complete, 12-Bit, 45 MHz CCD Signal Processor
完成后, 12位, 45 MHz的CCD信号处理器

消费电路 商用集成电路 CD
文件: 总20页 (文件大小:364K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Complete, 12-Bit, 45 MHz  
CCD Signal Processor  
ADDI7100  
FEATURES  
GENERAL DESCRIPTION  
Pin-compatible upgrade for the AD9945  
45 MHz correlated double sampler (CDS) with variable gain  
6 dB to 42 dB, 10-bit variable gain amplifier (VGA)  
Low noise optical black clamp circuit  
Preblanking function  
12-bit, 45 MHz ADC  
No missing codes guaranteed  
3-wire serial digital interface  
3 V single-supply operation  
The ADDI7100 is a complete analog signal processor for charge-  
coupled device (CCD) applications. It features a 45 MHz,  
single-channel architecture designed to sample and condition  
the outputs of interlaced and progressive scan area CCD arrays.  
The signal chain for the ADDI7100 consists of a correlated double  
sampler (CDS), a digitally controlled variable gain amplifier  
(VGA), a black level clamp, and a 12-bit ADC.  
The internal registers are programmed through a 3-wire serial  
digital interface. Programmable features include gain adjustment,  
black level adjustment, input clock polarity, and power-down  
modes. The ADDI7100 operates from a single 3 V power supply,  
typically dissipates 125 mW, and is packaged in a space-saving,  
32-lead LFCSP.  
Space-saving, 32-lead, 5 mm × 5 mm LFCSP  
APPLICATIONS  
Digital still cameras  
Digital video camcorders  
PC cameras  
Portable CCD imaging devices  
CCTV cameras  
FUNCTIONAL BLOCK DIAGRAM  
REFT REFB  
PBLK  
ADDI7100  
DRVDD  
DRVSS  
BAND GAP  
REFERENCE  
3dB, 0dB,  
+3dB, +6dB  
6dB TO 42dB  
VGA  
12  
12-BIT  
ADC  
DOUT  
D0 TO D11  
CCDIN  
CDS  
CLP  
10  
AVDD  
AVSS  
CLPOB  
CONTROL  
REGISTERS  
DVDD  
DVSS  
DIGITAL  
INTERFACE  
INTERNAL  
TIMING  
VD  
SL  
SCK  
SDATA  
SHP  
SHD DATACLK  
Figure 1.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2008–2010 Analog Devices, Inc. All rights reserved.  
 
 
 
ADDI7100  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Terminology.................................................................................... 11  
Circuit Description and Operation.............................................. 12  
DC Restore .................................................................................. 12  
Correlated Double Sampler (CDS) .......................................... 12  
Optical Black Clamp.................................................................. 12  
Analog-to-Digital Converter (ADC)....................................... 13  
Variable Gain Amplifier (VGA) ............................................... 13  
Digital Data Outputs.................................................................. 13  
Applications Information.............................................................. 14  
Initial Power-On Sequence ....................................................... 15  
Grounding and Decoupling Recommendations.................... 15  
Serial Interface Timing .................................................................. 16  
Complete Register Listing ............................................................. 17  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
General Specifications ................................................................. 3  
Digital Specifications ................................................................... 3  
System Specifications................................................................... 4  
Timing Specifications .................................................................. 5  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
Equivalent Input Circuits .............................................................. 10  
REVISION HISTORY  
6/10—Rev. B to Rev. C  
Changes to 0x0D Description and 0xFF Description in  
Table 8 .............................................................................................. 18  
9/09—Rev. A. to Rev. B  
Changes to Features Section............................................................ 1  
Changed Power-Down Mode to Full Standby Mode, Table 1 .... 3  
Moved Timing Diagrams Section .................................................. 5  
Changes to Table 4, Figure 3, and Figure 4 ................................... 5  
Changes to Figure 9 Caption......................................................... 10  
Changes to Optical Black Clamp Section.................................... 12  
Changes to Initial Power-On Sequence Section......................... 15  
Changes to Figure 16...................................................................... 16  
Changes to Table 8.......................................................................... 17  
2/09—Rev. 0 to Rev. A  
Changes to Serial Interface Timing Section................................ 16  
Changes to Figure 16 and Figure 17............................................. 16  
10/08—Revision 0: Initial Version  
Rev. C | Page 2 of 20  
 
ADDI7100  
SPECIFICATIONS  
GENERAL SPECIFICATIONS  
TMIN to TMAX, AVDD = DVDD = DRVDD = 3 V, fSAMP = 45 MHz, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
TEMPERATURE RANGE  
Operating  
Storage  
−25  
−65  
+85  
+150  
°C  
°C  
POWER SUPPLY VOLTAGE  
Analog, Digital, Digital Driver  
POWER CONSUMPTION  
Normal Operation  
Full Standby Mode  
MAXIMUM CLOCK RATE  
2.7  
3.6  
V
125  
1
mW  
mW  
MHz  
45  
DIGITAL SPECIFICATIONS  
DRVDD = DVDD = 2.7 V, CL = 20 pF, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
LOGIC INPUTS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
VIH  
VIL  
IIH  
IIL  
CIN  
2.1  
V
V
μA  
μA  
pF  
0.6  
10  
10  
10  
LOGIC OUTPUTS  
High Level Output Voltage, IOH = 2 mA  
Low Level Output Voltage, IOL = 2 mA  
VOH  
VOL  
2.2  
V
V
0.5  
Rev. C | Page 3 of 20  
 
 
 
ADDI7100  
SYSTEM SPECIFICATIONS  
TMIN to TMAX, AVDD = DVDD = DRVDD = 3 V, fSAMP = 45 MHz, unless otherwise noted.  
Table 3.  
Parameter  
Test Conditions/Comments  
Input characteristics definition1  
Min  
Typ  
Max  
Unit  
CDS  
Allowable CCD Reset Transient  
CDS Gain Accuracy  
−3 dB CDS Gain  
0 dB CDS Gain  
+3 dB CDS Gain  
0.5  
1.2  
V
VGA gain = 6 dB (Code 15, default value)  
Default setting  
−2.45  
5.40  
8.65  
−2.95  
5.90  
9.15  
−3.45  
6.40  
9.65  
dB  
dB  
dB  
dB  
+6 dB CDS Gain  
11.10  
11.60  
12.10  
Maximum Input Range Before Saturation  
0 dB CDS Gain  
−3 dB CDS Gain  
Default setting  
1.0  
1.4  
0.5  
V p-p  
V p-p  
V p-p  
+6 dB CDS Gain  
Maximum CCD Black Pixel Amplitude  
0 dB CDS Gain  
+6 dB CDS Gain  
Positive offset definition1  
Default setting  
−100  
−50  
+200  
+100  
mV  
mV  
VARIABLE GAIN AMPLIFIER (VGA)  
Gain Control Resolution  
Gain Monotonicity  
Gain Range  
1024  
Guaranteed  
Steps  
Minimum Gain (VGA Code 15)  
Maximum Gain (VGA Code 1023)  
See Figure 13 for VGA curve  
See Variable Gain Amplifier (VGA)  
section for VGA gain equation  
6.0  
42.0  
dB  
dB  
BLACK LEVEL CLAMP MEASURED AT ADC OUTPUT  
Clamp Level Resolution  
Clamp Level  
2048  
Steps  
Measured at ADC output  
Minimum Clamp Level (Code 0)  
Maximum Clamp Level (Code 1023)  
ADC  
0
511  
LSB  
LSB  
Resolution  
Differential Nonlinearity (DNL)  
No Missing Codes  
Full-Scale Input Voltage  
VOLTAGE REFERENCE  
12  
−1.0  
Bits  
LSB  
0.5  
Guaranteed  
2.0  
V
Reference Top Voltage (REFT)  
Reference Bottom Voltage (REFB)  
SYSTEM PERFORMANCE  
Gain Accuracy  
Low Gain (VGA Code 15)  
Maximum Gain (VGA Code 1023)  
Peak Nonlinearity, 1 V Input Signal  
Total Output Noise  
2.0  
1.0  
V
V
Specifications include entire signal chain  
6 dB total gain (default CDS, VGA)  
5.4  
41.4  
5.9  
41.9  
0.1  
0.8  
45  
6.4  
42.4  
dB  
dB  
%
LSB rms  
dB  
6 dB total gain (default CDS, VGA)  
AC grounded input, 6 dB total gain  
Measured with step change on supply  
Power Supply Rejection (PSR)  
1 Input signal characteristics are defined as shown in Figure 2.  
500mV TYP  
RESET TRANSIENT  
100mV TYP  
1V TYP  
INPUT SIGNAL RANGE  
OPTICAL BLACK PIXEL  
Figure 2.  
Rev. C | Page 4 of 20  
 
 
ADDI7100  
TIMING SPECIFICATIONS  
CL = 20 pF, fSAMP = 45 MHz, unless otherwise noted. See Figure 3, Figure 4, and Figure 16.  
Table 4.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
SAMPLE CLOCKS  
DATACLK, SHP, SHD Clock Period  
DATACLK High/Low Pulse Width  
SHP Pulse Width  
SHD Pulse Width  
CLPOB Pulse Width1  
SHP Rising Edge to SHD Falling Edge  
SHP Rising Edge to SHD Rising Edge  
SHD Rising Edge to SHP Rising Edge  
SHD Rising Edge to SHP Falling Edge  
Internal Clock Delay  
tCONV  
tADC  
tSHP  
22  
9
ns  
ns  
ns  
ns  
Pixels  
ns  
ns  
ns  
ns  
11  
5.5  
5.5  
20  
5.5  
11  
11  
5.5  
4
tSHD  
2
tS3  
tS1  
tS2  
tS4  
tID  
9
9
tCONV − tS2  
tCONV − tS1  
ns  
DATA OUTPUTS  
Output Delay  
Pipeline Delay  
tOD  
15  
15  
ns  
Cycles  
SERIAL INTERFACE  
Maximum SCK Frequency (Must Not Exceed Pixel Rate)  
SL to SCK Setup Time  
SCK to SL Hold Time  
SDATA Valid to SCK Rising Edge Setup  
SCK Rising Edge to SDATA Valid Hold  
fSCLK  
tLS  
tLH  
tDS  
tDH  
40  
10  
10  
10  
10  
MHz  
ns  
ns  
ns  
ns  
1 Minimum CLPOB pulse width is for functional operation only. Wider typical pulses are recommended to achieve low noise clamp performance.  
Timing Diagrams  
CCD  
SIGNAL  
(CCDIN)  
PIXEL N  
PIXEL  
N + 1  
PIXEL  
N + 2  
PIXEL  
N + 14  
PIXEL  
N + 15  
tID  
tID  
SHP  
tS4  
tS2  
tS3  
tS1  
tCONV  
SHD  
DATACLK  
tOD  
N – 15  
OUTPUT  
DATA  
N – 14  
N – 13  
N – 1  
N
NOTES  
1. RECOMMENDED PLACEMENT FOR DATACLK RISING (ACTIVE) EDGE IS NEAR THE SHP OR SHD RISING  
(ACTIVE) EDGE. THE BEST LOCATION FOR LOWEST NOISE WILL BE SYSTEM DEPENDENT.  
2. CCD SIGNAL IS SAMPLED AT SHP AND SHD RISING EDGES.  
Figure 3. CCD Sampling Timing (Default Polarity Settings)  
Rev. C | Page 5 of 20  
 
 
 
ADDI7100  
HORIZONTAL  
BLANKING  
EFFECTIVE PIXELS  
OPTICAL BLACK PIXELS  
DUMMY PIXELS  
EFFECTIVE PIXELS  
CCD  
SIGNAL  
(CCDIN)  
CLPOB  
PBLK  
ACTIVE  
ACTIVE  
OUTPUT  
DATA  
EFFECTIVE PIXEL DATA  
OB PIXEL DATA  
DUMMY BLACK  
EFFECTIVE DATA  
NOTES  
1. CLPOB AND PBLK SHOULD BE ALIGNED WITH THE CCD SIGNAL INPUT (CCDIN).  
CLPOB WILL OVERWRITE PBLK. PBLK WILL NOT AFFECT CLAMP OPERATION IF OVERLAPPING WITH CLPOB.  
2. PBLK SIGNAL IS OPTIONAL. KEEP THE PBLK PIN IN THE INACTIVE STATE IF NOT USED.  
3. DIGITAL OUTPUT DATA WILL BE ALL ZEROS DURING PBLK. OUTPUT DATA LATENCY IS FIFTEEN DATACLK CYCLES.  
Figure 4. Typical Clamp Timing (Default Polarity Settings)  
Rev. C | Page 6 of 20  
 
ADDI7100  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 5.  
θJA is specified for a device with the exposed bottom pad  
soldered to the circuit board ground.  
Parameter  
Rating  
AVDD to AVSS  
DVDD to DVSS  
DRVDD to DRVSS  
Digital Outputs to DRVSS  
SHP, SHD, DATACLK to DVSS  
CLPOB, PBLK to DVSS  
SCK, SL, SDATA to DVSS  
REFT, REFB, CCDIN to AVSS  
Junction Temperature  
Lead Temperature (10 sec)  
−0.3 V to +3.9 V  
−0.3 V to +3.9 V  
−0.3 V to +3.9 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DVDD + 0.3 V  
−0.3 V to DVDD + 0.3 V  
−0.3 V to DVDD + 0.3 V  
−0.3 V to AVDD + 0.3 V  
150°C  
Table 6. Thermal Resistance  
Package Type  
θJA  
Unit  
32-Lead LFCSP  
27.7  
°C/W  
ESD CAUTION  
300°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. C | Page 7 of 20  
 
 
 
ADDI7100  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
1
2
3
4
5
6
7
8
24 REFB  
23 REFT  
22 CCDIN  
21 AVSS  
20 AVDD  
19 SHD  
PIN 1  
INDICATOR  
ADDI7100  
TOP VIEW  
(Not to Scale)  
18 SHP  
17 CLPOB  
NOTES  
1. IT IS RECOMMENDED THAT THE EXPOSED  
PAD BE SOLDERED TO THE GROUND PLANE  
OF THE PCB.  
2. NC = NO CONNECT.  
Figure 5. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
1 to 10  
11  
Mnemonic  
D2 to D11  
DRVDD  
DRVSS  
DVDD  
DATACLK  
DVSS  
Type1  
DO  
P
P
P
Description  
Digital Data Outputs.  
Digital Output Driver Supply.  
Digital Output Driver Ground.  
Digital Supply.  
Digital Data Output Latch Clock.  
Digital Supply Ground.  
12  
13  
14  
15  
DI  
P
16  
17  
18  
19  
20  
21  
PBLK  
CLPOB  
SHP  
SHD  
AVDD  
AVSS  
DI  
DI  
DI  
DI  
P
Preblanking Clock Input.  
Black Level Clamp Clock Input.  
CDS Sampling Clock for CCD Reference Level.  
CDS Sampling Clock for CCD Data Level.  
Analog Supply.  
P
Analog Ground.  
22  
23  
24  
25  
26  
27  
28  
CCDIN  
REFT  
REFB  
SL  
SDATA  
SCK  
AI  
AO  
AO  
DI  
DI  
DI  
DI  
Analog Input for CCD Signal.  
ADC Top Reference Voltage Decoupling.  
ADC Bottom Reference Voltage Decoupling.  
Serial Digital Interface Load Pulse.  
Serial Digital Interface Data Input.  
Serial Digital Interface Clock Input.  
VD  
Vertical Sync Input. Controls the update time of VD-updated registers. If this pin is not  
needed, it should be tied to GND.  
29, 30  
31, 32  
NC  
D0, D1  
NC  
DO  
Not Internally Connected.  
Digital Data Output.  
1 AI = analog input, AO = analog output, DI = digital input, DO = digital output, P = power, and NC = no connect.  
Rev. C | Page 8 of 20  
 
 
ADDI7100  
TYPICAL PERFORMANCE CHARACTERISTICS  
3
2
200  
180  
160  
1
3.6V  
140  
120  
3.0V  
0
–1  
–2  
–3  
–4  
–5  
100  
2.7V  
80  
60  
40  
20  
0
1
523  
1045  
1567  
2089  
2611  
3133  
3655  
10  
22  
36  
45  
262  
784 1306  
1828  
2350  
2872  
3394  
3916  
SAMPLE RATE (MHz)  
CODE  
Figure 8. Typical INL Performance  
Figure 6. Power vs. Sample Rate  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
1
539  
1077  
808 1346  
1615  
2153  
2691  
3229  
3767  
4036  
270  
1884  
2422  
2960  
3498  
CODE  
Figure 7. Typical DNL Performance  
Rev. C | Page 9 of 20  
 
ADDI7100  
EQUIVALENT INPUT CIRCUITS  
DVDD  
AVDD  
330  
60  
INPUT  
DVSS  
AVSS  
AVSS  
Figure 11. CCDIN (Pin 22)  
Figure 9. Digital Inputs  
SHP, SHD, DATACLK, CLPOB, PBLK, SCK, SL, SDATA, and VD  
DRVDD  
DVDD  
DATA  
THREE-  
STATE  
D[0:11]  
DVSS  
DRVSS  
Figure 10. Data Outputs  
Rev. C | Page 10 of 20  
 
ADDI7100  
TERMINOLOGY  
Differential Nonlinearity (DNL)  
Power Supply Rejection (PSR)  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. Therefore,  
every code must have a finite width. No missing codes guaranteed  
to 12-bit resolution indicates that all 4096 codes, respectively,  
must be present over all operating conditions.  
PSR is measured with a step change applied to the supply pins.  
This represents a very high frequency disturbance on the power  
supply of the ADDI7100. The PSR specification is calculated  
from the change in the data outputs for a given step change in  
the supply voltage.  
Peak Nonlinearity  
Internal Delay for SHP/SHD  
Peak nonlinearity, a full signal chain specification, refers to the  
peak deviation of the output of the ADDI7100 from a true  
straight line. The point used as zero scale occurs 0.5 LSB before  
the first code transition. Positive full scale is defined as a level  
that is 1.5 LSB beyond the last code transition. The deviation is  
measured from the middle of each particular output code to the  
true straight line. The error is then expressed as a percentage of  
the 2 V ADC full-scale signal. The input signal is always gained  
appropriately to fill the full-scale range of the ADC.  
The internal delay (also called aperture delay) is the time delay  
that occurs from the time a sampling edge is applied to the  
ADDI7100 until the actual sample of the input signal is held.  
Both SHP and SHD sample the input signal during the transi-  
tion from low to high; therefore, the internal delay is measured  
from the rising edge of each clock to the instant that the actual  
internal sample is taken.  
Total Output Noise  
The rms output noise is measured using histogram techniques.  
The standard deviation of the ADC output codes is calculated  
in LSBs and represents the rms noise level of the total signal  
chain at the specified gain setting. The output noise can be  
converted to an equivalent voltage, using the relationship  
1 LSB = (ADC Full Scale/2N codes)  
where N is the bit resolution of the ADC. For example, 1 LSB of  
the ADDI7100 is 0.5 mV.  
Rev. C | Page 11 of 20  
 
ADDI7100  
CIRCUIT DESCRIPTION AND OPERATION  
DC RESTORE  
DATACLK  
SHP  
INTERNAL  
PBLK  
DCBYP  
V
REF  
–3dB, 0dB,  
+3dB, +6dB  
6dB TO 42dB  
VGA  
2V FULL SCALE  
0.1µF  
12  
CCDIN  
DATA  
OUTPUT  
LATCH  
DOUT  
D0 TO D11  
12-BIT  
ADC  
CDS  
CLPOB  
PBLK  
OPTICAL BLACK  
CLAMP  
SHP  
SHD  
DAC  
10  
CLPOB  
DIGITAL  
FILTERING  
BLANK TO  
ZERO OR  
CLAMP LEVEL  
VGA GAIN  
REGISTER  
11  
CLAMP LEVEL  
REGISTER  
Figure 12. CCD Mode Block Diagram  
The ADDI7100 signal processing chain is shown in Figure 12.  
Each processing step is essential for achieving a high quality  
image from the raw CCD pixel data.  
OPTICAL BLACK CLAMP  
The optical black clamp loop removes residual offsets in the  
signal chain and tracks low frequency variations in the CCD  
black level. During the optical black (shielded) pixel interval  
on each line, the ADC output is compared with the fixed black  
level reference selected by the user in the clamp level register  
(Address 0x04). The resulting error signal is filtered to reduce  
noise, and the correction value is applied to the ADC input  
through a DAC. Normally, the optical black clamp loop is turned  
on once per horizontal line, but this loop can be updated more  
slowly to suit a particular application. If external digital clamping  
is used during postprocessing, optical black clamping for the  
ADDI7100 can be disabled using Address 0x00, Bit 2. When the  
optical black clamp loop is disabled, the clamp level register can  
still be used to provide programmable offset adjustment.  
DC RESTORE  
To reduce the large dc offset of the CCD output signal, a dc  
restore circuit is used with an external 0.1 μF series coupling  
capacitor. This circuit restores the dc level of the CCD signal  
to approximately 1.5 V, which is compatible with the 3 V supply  
of the ADDI7100.  
CORRELATED DOUBLE SAMPLER (CDS)  
The CDS circuit samples each CCD pixel twice to extract video  
information and to reject low frequency noise. The timing  
shown in Figure 3 illustrates how the two CDS clocks, SHP and  
SHD, are used to sample the reference level and the data level,  
respectively, of the CCD signal. The CCD signal is sampled on  
the rising edges of SHP and SHD. Placement of these two clock  
signals is critical for achieving the best performance from the  
CCD. An internal SHP/SHD delay (tID) of 4 ns is caused by  
internal propagation delays.  
Note that if the CLPOB is disabled, higher VGA gain settings  
reduce the dynamic range because the uncorrected offset in the  
signal path is amplified.  
Horizontal timing is shown in Figure 4. Align the CLPOB pulse  
with the optical black pixels of the CCD. It is recommended that  
the CLPOB pulse be used during valid CCD dark pixels. It is  
recommended that the CLPOB pulse should be 20 pixels wide  
to minimize clamp noise. Shorter pulse widths can be used, but  
the ability of the loop to track low frequency variations in the  
black level is reduced.  
Rev. C | Page 12 of 20  
 
 
 
 
 
ADDI7100  
ANALOG-TO-DIGITAL CONVERTER (ADC)  
DIGITAL DATA OUTPUTS  
The ADDI7100 uses a high performance ADC architecture  
optimized for high speed and low power. Differential non-  
linearity (DNL) performance is typically better than 0.5 LSB.  
The ADC uses a 2 V full-scale input range.  
By default, the digital output data is latched by the rising edge of  
the DATACLK input. Output data timing is shown in Figure 3.  
It is also possible to make the output data latch transparent,  
immediately validating the data outputs from the ADC. Setting  
the DOUTLATCH register (Address 0x01[5]) to 1 configures  
the latch as transparent. The data outputs can also be disabled  
by setting the DOUT_OFF register (Address 0x01[4]) to 1.  
VARIABLE GAIN AMPLIFIER (VGA)  
The VGA stage provides a gain range of 6 dB to 42 dB, pro-  
grammable with 10-bit resolution through the serial digital  
interface. The minimum gain of 6 dB is needed to match a 1 V  
input signal with the ADC full-scale range of 2 V. A plot of the  
VGA gain curve is shown in Figure 13.  
VGA Gain (dB) = (VGA Code × 0.0358 dB) + 5.4 dB  
where Code is in the range of 0 to 1023.  
42  
36  
30  
24  
18  
12  
6
0
127  
383  
511  
639  
767  
895  
1023  
255  
VGA GAIN REGISTER MODE  
Figure 13. VGA Gain Curve  
Rev. C | Page 13 of 20  
 
 
 
 
ADDI7100  
APPLICATIONS INFORMATION  
The ADDI7100 is a complete analog front-end (AFE) product  
for digital still camera and camcorder applications. As shown in  
Figure 14, the CCD image (pixel) data is buffered and sent to  
the ADDI7100 analog input through a series input capacitor.  
The ADDI7100 performs the dc restoration, CDS sampling,  
gain adjustment, black level correction, and analog-to-digital  
conversion. The digital output data of the ADDI7100 is then  
processed by the image processing ASIC. The internal registers  
of the ADDI7100—used to control gain, offset level, and other  
functions—are programmed by the ASIC or by a microprocessor  
through a 3-wire serial digital interface. A system timing generator  
provides the clock signals for both the CCD and the AFE (see  
Figure 14).  
DIGITAL  
OUTPUTS  
ADDI7100  
CCD  
V
OUT  
ADC  
0.1µF  
OUT  
DIGITAL IMAGE  
PROCESSING  
ASIC  
CCDIN  
SERIAL  
INTERFACE  
REGISTER  
DATA  
BUFFER  
CDS/CLAMP  
TIMING  
V-DRIVER  
CCD  
TIMING  
TIMING  
GENERATOR  
Figure 14. System Applications Diagram  
3
SERIAL  
INTERFACE  
VD OUTPUT FROM ASIC/DSP  
(SHOULD BE GROUNDED IF NOT USED.)  
D0  
D1  
32 31 30 29 28 27 26 25  
1.0µF  
1.0µF  
24 REFB  
23 REFT  
22 CCDIN  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
1
2
3
4
5
6
7
8
PIN 1  
IDENTIFIER  
0.1µF  
CCDIN  
21 AVSS  
20 AVDD  
ADDI7100  
TOP VIEW  
(Not to Scale)  
3V  
ANALOG  
SUPPLY  
19 SHD  
0.1µF  
18 SHP  
17 CLPOB  
9
10 11 12 13 14 15 16  
12  
5
DATA  
OUTPUTS  
CLOCK  
INPUTS  
3V  
3V  
ANALOG  
SUPPLY  
DRIVER  
SUPPLY  
0.1µF  
0.1µF  
NC = NO CONNECT (NOT INTERNALLY CONNECTED, MAY BE TIED TO GROUND OR LEFT FLOATING).  
Figure 15. Recommended Circuit Configuration for CCD Mode  
Rev. C | Page 14 of 20  
 
 
 
ADDI7100  
A single clean power supply is recommended for the ADDI7100,  
but a separate digital driver supply can be used for DRVDD  
(Pin 11). Always decouple DRVDD to DRVSS (Pin 12), which  
should be connected to the analog ground plane. The advantages  
of using a separate digital driver supply include using a lower  
voltage (2.7 V) to match levels with a 2.7 V ASIC, and reducing  
digital power dissipation and potential noise coupling. If the  
digital outputs must drive a load larger than 20 pF, buffering is  
the recommended method to reduce digital code transition  
noise. Alternatively, placing series resistors close to the digital  
output pins may also help to reduce noise.  
INITIAL POWER-ON SEQUENCE  
After power-on, the ADDI7100 automatically resets all internal  
registers to default values. Settling of the internal voltage refer-  
ence takes approximately 1 ms to complete. During this time,  
normal clock signals and serial write operations can take place,  
but valid output data do not occur until the reference is fully  
settled. When loading the desired register settings, the STARTUP  
register (Address 0x05[1:0]) must be set to 0x3.  
GROUNDING AND DECOUPLING  
RECOMMENDATIONS  
As shown in Figure 15, a single ground plane is recommended  
for the ADDI7100. This ground plane should be as continuous  
as possible to ensure that all analog decoupling capacitors  
provide the lowest possible impedance path between the power  
and bypass pins and their respective ground pins. Place all  
decoupling capacitors as close as possible to the package pins.  
Note that the exposed pad on the bottom of the package should  
be soldered to the ground plane of the printed circuit board.  
Rev. C | Page 15 of 20  
 
 
ADDI7100  
SERIAL INTERFACE TIMING  
All ADDI7100 internal registers are accessed through a 3-wire  
serial interface. Each register consists of an 8-bit address and  
a 16-bit data-word. Both the address and the data-word are  
written starting with the LSB. To write to each register, a 24-bit  
operation is required, as shown in Figure 16. Although many  
data-words are fewer than 16 bits wide, all 16 bits must be written  
for each register. For example, if the data-word is only eight bits  
wide, the upper eight bits are don’t care bits and must be filled  
with zeros during the serial write operation. If fewer than 16 data  
bits are written, the register is not updated with new data.  
Figure 17 shows a more efficient way to write to the registers,  
using the ADDI7100 address autoincrement capability. Using  
this method, the lowest desired address is written first, followed  
by multiple 16-bit data-words. Each data-word is automatically  
written to the address of the next highest register. By eliminating  
the need to write each address, faster register loading is achieved.  
Continuous write operations can start with any register location.  
8-BIT ADDRESS  
16-BIT DATA  
SDATA  
SCK  
A0  
A1  
A2  
tDS  
A4  
A5  
A6  
A7  
D0  
D1  
D2  
D3  
D13 D14 D15  
A3  
tDH  
1
2
3
4
5
6
7
8
9
10  
11  
12  
22  
23  
tLH  
24  
tLS  
SL  
NOTES  
1. SDATA BITS ARE LATCHED ON SCK RISING EDGES. SCK CAN IDLE HIGH OR LOW BETWEEN WRITE OPERATIONS.  
2. ALL 24 BITS MUST BE WRITTEN: 8 BITS FOR ADDRESS AND 16 BITS FOR DATA.  
3. IF THE REGISTER LENGTH IS LESS THAN 16 BITS, THEN ZEROS MUST BE USED TO COMPLETE THE 16-BIT  
DATA LENGTH.  
4. NEW DATA VALUES ARE UPDATED IN THE SPECIFIED REGISTER LOCATION AT DIFFERENT TIMES, DEPENDING ON  
THE PARTICULAR REGISTER WRITTEN TO.  
Figure 16. Serial Write Operation  
DATA FOR STARTING  
REGISTER ADDRESS  
DATA FOR NEXT  
REGISTER ADDRESS  
SDATA  
SCK  
A0  
A1  
A2  
A6  
A7  
D0  
D1  
D14 D15 D0  
D1  
D14 D15 D0  
A3  
D1  
D2  
42  
43  
1
2
3
4
7
8
9
10  
23  
24  
25  
26  
39  
40  
41  
SL  
NOTES  
1. MULTIPLE SEQUENTIAL REGISTERS CAN BE LOADED CONTINUOUSLY.  
2. THE FIRST (LOWEST ADDRESS) REGISTER ADDRESS IS WRITTEN, FOLLOWED BY MULTIPLE 16-BIT DATA-WORDS.  
3. THE ADDRESS AUTOMATICALLY INCREMENTS WITH EACH 16-BIT DATA-WORD (ALL 16 BITS MUST BE WRITTEN).  
4. SL IS HELD LOW UNTIL THE LAST DESIRED REGISTER HAS BEEN LOADED.  
Figure 17. Continuous Serial Write Operation  
Rev. C | Page 16 of 20  
 
 
 
ADDI7100  
COMPLETE REGISTER LISTING  
Note that when an address contains fewer than 16 data bits, all remaining bits must be written as zeros.  
Table 8. AFE  
Data Default Update  
Address Bits  
Value  
Type1  
Name  
Description  
0x00  
[1:0]  
0
SCK  
STANDBY  
00: normal operation  
01: reference standby  
10: full standby  
11: full standby  
[2]  
0x1  
0
CLAMP_EN  
FASTCLAMP  
FASTUPDATE  
PBLK_LVL  
DCBYP  
1: enable black clamp  
0: disable black clamp  
0: normal CLPOB settling  
1: faster CLPOB settling  
1: enable very fast clamping when CDS gain is changed  
0: ignore CDS gain updates  
0: blank to 0  
[3]  
[4]  
0
[5]  
0
1: blank to clamp level  
0: normal dc restore operation  
[6]  
0
1: dc restore disabled during PBLK active  
[8:7]  
[10:9] 0x2  
0x2  
Test  
Test  
Test use only; must be set to 2  
Test use only; must be set to 2  
0x01  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
0
0
0
0
0
0
SCK  
SHPD_POL  
0: rising edge sample  
1: falling edge sample  
DATACLK_POL 0: rising edge triggered  
1: falling edge triggered  
CLP_POL  
0: active low  
1: active high  
0: active low  
1: active high  
0: data outputs are driven  
1: data outputs are disabled (high-Z)  
0: retime data outputs with output latch (using DATACLK)  
1: do not retime data outputs; output latch is transparent  
1: gray encode ADC outputs  
PBLK_POL  
DOUT_OFF  
DOUTLATCH  
GRAY_EN  
[6]  
0
0x02  
[2:0]  
0x1  
SCK/VD CDSGAIN  
CDS gain setting:  
0x0: −3 dB  
0x1: 0 dB  
0x2: +3 dB  
0x3: +6 dB  
0x03  
0x04  
0x05  
[9:0]  
0x0F  
SCK/VD VGAGAIN  
VGA gain, 6 dB to 42 dB (0.0358 dB per step)  
Optical black clamp level, 0 LSB to 511 LSB (0.25 LSB per step)  
Must be set to 0x3 after power-up  
[10:0] 0x1EC  
SCK/VD CLAMPLEVEL  
[1:0]  
[3:2]  
[2:0]  
[3]  
0
0
SCK  
STARTUP  
Test  
Test use only; must be set to 0  
0x06  
0x6  
0
SCK  
Test  
Test use only; must be set to 6  
Test use only; must be set to 0  
Test  
[5:4]  
[0]  
0
Test  
Test use only; must be set to 0  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0
SCK  
SCK  
SCK  
SCK  
SCK  
SCK  
Test  
Test use only; must be set to 0  
[11:0] 0xFFF  
[11:0] 0xFFF  
Test  
Test use only; must be set to 0xFFF  
Test use only; must be set to 0xFFF  
Test use only; must be set to 0  
Test  
[0]  
[0]  
[0]  
0
Test  
0
SW_RST  
1: software reset; automatically resets to 0 after software reset  
0x1  
OUTCONTROL Data output control:  
0: make all outputs dc inactive  
1: enable data outputs  
Rev. C | Page 17 of 20  
 
ADDI7100  
Data Default Update  
Address Bits  
Value  
Type1  
Name  
Description  
0x0D  
[0]  
0
SCK  
VD_POL  
0: falling edge triggered  
1: rising edge triggered  
0x0E  
[6:0]  
0
SCK  
REG_UPDATE  
Set the appropriate bits high to enable VD update of the selected registers:  
[0]: CDSGAIN (Register 0x02)  
[1]: VGAGAIN (Register 0x03)  
[2]: CLAMPLEVEL (Register 0x04)  
[3]: test use only; must be set to 0  
[4]: test use only; must be set to 0  
[5]: test use only; must be set to 0  
[6]: test use only; must be set to 0  
0xFF  
[0]  
0
SCK  
Test  
Test use only; do not access  
1 SCK = register is immediately updated when the 16th data bit (D15) is written. VD = register is updated at the VD falling edge.  
Rev. C | Page 18 of 20  
 
ADDI7100  
OUTLINE DIMENSIONS  
5.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
25  
24  
32  
1
PIN 1  
INDICATOR  
0.50  
BSC  
TOP  
VIEW  
3.25  
3.10 SQ  
2.95  
EXPOSED  
PAD  
(BOTTOM VIEW)  
4.75  
BSC SQ  
0.50  
0.40  
0.30  
17  
16  
8
9
0.25 MIN  
0.80 MAX  
0.65 TYP  
3.50 REF  
12° MAX  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2  
Figure 18. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
5 mm × 5 mm Body, Very Thin Quad  
(CP-32-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADDI7100BCPZ  
ADDI7100BCPZRL  
Temperature Range  
−25°C to +85°C  
−25°C to +85°C  
Package Description  
Package Option  
32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
CP-32-2  
CP-32-2  
1 Z = RoHS Compliant Part.  
Rev. C | Page 19 of 20  
 
 
 
ADDI7100  
NOTES  
©2008–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07608-0-6/10(C)  
Rev. C | Page 20 of 20  

相关型号:

ADDI9020

60 MHz CCD Signal Processor with V-Driver and Precision Timing Generator
ADI

ADDI9023

Vertical Driver for CCD Cameras
ADI

ADDI9023BBCZ

Vertical Driver for CCD Cameras
ADI

ADDI9023BBCZRL

Vertical Driver for CCD Cameras
ADI

ADDR1

Figure 1 shows the NS7520 modules. Dashed lines indicate shared pins
ETC

ADDR10

Figure 1 shows the NS7520 modules. Dashed lines indicate shared pins
ETC

ADDR11

Figure 1 shows the NS7520 modules. Dashed lines indicate shared pins
ETC

ADDR12

Figure 1 shows the NS7520 modules. Dashed lines indicate shared pins
ETC

ADDR13

Figure 1 shows the NS7520 modules. Dashed lines indicate shared pins
ETC

ADDR14

Figure 1 shows the NS7520 modules. Dashed lines indicate shared pins
ETC

ADDR15

Figure 1 shows the NS7520 modules. Dashed lines indicate shared pins
ETC

ADDR16

Figure 1 shows the NS7520 modules. Dashed lines indicate shared pins
ETC