ADF4007BCP [ADI]

High Frequency Divider/PLL Synthesizer; 高频分频器/ PLL合成器
ADF4007BCP
型号: ADF4007BCP
厂家: ADI    ADI
描述:

High Frequency Divider/PLL Synthesizer
高频分频器/ PLL合成器

文件: 总16页 (文件大小:504K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Frequency Divider/PLL Synthesizer  
ADF4007  
FEATURES  
GENERAL DESCRIPTION  
7.5 GHz bandwidth  
The ADF4007 is a high frequency divider/PLL synthesizer that  
can be used in a variety of communications applications. It can  
operate to 7.5 GHz on the RF side and to 120 MHz at the PFD.  
It consists of a low noise digital PFD (phase frequency  
detector), a precision charge pump, and a divider/prescaler. The  
divider/ prescaler value can be set by two external control pins  
to one of four values (8, 16, 32, or 64). The reference divider is  
permanently set to 2, allowing an external REFIN frequency of  
up to 240 MHz.  
Maximum PFD frequency of 120 MHz  
Divide ratios of 8, 16, 32, or 64  
2.7 V to 3.3 V power supply  
Separate charge pump supply (VP) allows  
extended tuning voltage in 3 V systems  
R
SET contol of charge pump current  
Hardware power-down mode  
APPLICATIONS  
Satellite communications  
Broadband wireless access  
CATV  
Instrumentation  
Wireless LANs  
A complete PLL (phase-locked loop) can be implemented if the  
synthesizer is used with an external loop filter and a VCO  
(voltage controlled oscillator). Its very high bandwidth means  
that frequency doublers can be eliminated in many high  
frequency systems, simplifying system architecture and  
reducing cost.  
FUNCTIONAL BLOCK DIAGRAM  
V
V
CPGND  
R
SET  
P
DD  
REFERENCE  
ADF4007  
PHASE  
FREQUENCY  
DETECTOR  
REF  
R COUNTER  
CHARGE  
PUMP  
IN  
CP  
÷ 2  
MUXOUT  
MUX  
N COUNTER  
÷ 8, ÷ 16,  
÷ 32, ÷ 64  
RF  
RF  
A
B
IN  
IN  
N2  
N1  
GND  
M2  
M1  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
ADF4007  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
R Counter .......................................................................................9  
Phase Frequency Detector (PFD) and Charge Pump...............9  
MUXOUT ................................................................................... 10  
Applications..................................................................................... 11  
Fixed High Frequency Local Oscillator................................... 11  
Using the ADF4007 as a Divider.............................................. 12  
PCB Design Guidelines for Chip Scale Package......................... 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 14  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ........................................................................ 9  
Reference Input Section............................................................... 9  
RF Input Stage............................................................................... 9  
Prescaler P ..................................................................................... 9  
REVISION HISTORY  
Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
ADF4007  
SPECIFICATIONS  
AVDD = DVDD = 3 V 10ꢀ, AVDD VP 5.5 V, AGND = DGND = CPGND = 0 V, RSET = 5.1 kΩ, dBm referred to 50 Ω,  
TA = TMAX to TMIN, unless otherwise noted.  
Table 1.  
Parameter  
B Version1  
Unit  
Test Conditions/Comments  
RF CHARACTERISTICS  
RF Input Frequency (RFIN)  
RF Input Frequency  
1.0/7.0  
0.5/7.5  
GHz min/max  
GHz min/max  
RF input level: +5 dBm to −10 dBm  
RF input level: +5 dBm to −5 dBm  
For lower frequencies, ensure that slew rate (SR) > 560 V/µs  
REFIN CHARACTERISTICS  
REFIN Input Sensitivity  
REFIN Input Frequency  
REFIN Input Capacitance  
REFIN Input Current  
PHASE DETECTOR  
Phase Detector Frequency3  
MUXOUT  
0.8/VDD  
20/240  
10  
V p-p min/max  
MHz min/max  
pF max  
Biased at AVDD/22  
For f < 20 MHz, use square wave (slew rate > 50 V/µs)  
100  
µA max  
120  
200  
MHz max  
MHz max  
MUXOUT Frequency3  
CL = 15 pF  
CHARGE PUMP  
ICP Sink/Source  
Absolute Accuracy  
RSET Range  
ICP Three-State Leakage  
Sink and Source Current Matching  
ICP vs. VCP  
5.0  
2.5  
3.0/11  
10  
mA typ  
% typ  
kΩ typ  
nA max  
% typ  
With RSET = 5.1 kΩ  
With RSET = 5.1 kΩ  
TA = 85°C  
2
0.5 V VCP VP − 0.5 V  
0.5 V VCP VP − 0.5 V  
VCP = VP/2  
1.5  
2
% typ  
ICP vs. Temperature  
LOGIC INPUTS  
% typ  
VIH, Input High Voltage  
VIL, Input Low Voltage  
IINH, IINL, Input Current  
CIN, Input Capacitance  
LOGIC OUTPUTS  
1.4  
0.6  
1
V min  
V max  
µA max  
pF max  
TA = 25°C  
10  
VOH, Output High Voltage  
VOL, Output Low Voltage  
POWER SUPPLIES  
AVDD  
DVDD  
VP  
VDD − 0.4  
0.4  
V min  
V max  
IOH = 100 µA  
IOL = 500 µA  
2.7/3.3  
AVDD  
AVDD/5.5  
17  
V min/max  
V min/max  
mA max  
AVDD VP 5.5 V  
15 mA typ  
IDD4 (AIDD + DIDD  
)
IP  
2.0  
mA max  
TA = 25°C  
NOISE CHARACTERISTICS  
Normalized Phase Noise Floor5  
−219  
dBc/Hz typ  
1 Operating temperature range (B version) is −40°C to +85°C.  
2 AC coupling ensures AVDD/2 bias. See Figure 13 for typical circuit.  
3 Guaranteed by design. Characterized to ensure compliance.  
4 TA = 25°C; AVDD = DVDD = 3 V; N = 64; RFIN = 7.5 GHz.  
5 The synthesizer phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO, PNTOT, and subtracting 20logN (where N is the N divider  
value) and 10logFPFD. PNSYNTH = PNTOT − 10logFPFD − 20logN. The in-band phase noise (PNTOT) is measured using the HP8562E Spectrum Analyzer from Agilent.  
Rev. 0 | Page 3 of 16  
 
 
 
 
 
 
ADF4007  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Rating  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
AVDD to GND1  
−0.3 V to +3.6 V  
−0.3 V to +0.3 V  
−0.3 V to +5.8 V  
−0.3 V to +5.8 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VP + 0.3 V  
−0.3 V to VDD + 0.3 V  
AVDD to DVDD  
VP to GND  
VP to AVDD  
Digital I/O Voltage to GND  
Analog I/O Voltage to GND  
REFIN, RFINA, RFINB to GND  
Operating Temperature Range  
Industrial (B Version)  
Storage Temperature Range  
Maximum Junction Temperature  
CSP θJA Thermal Impedance  
Lead Temperature, Soldering  
Vapor Phase (60 s)  
Infrared (15 s)  
This device is a high performance RF integrated circuit with an  
ESD rating of <2 kV, and it is ESD sensitive. Proper precautions  
should be taken for handling and assembly.  
−40°C to +85°C  
−65°C to +125°C  
150°C  
122°C/W  
215°C  
220°C  
Transistor Count  
CMOS  
Bipolar  
6425  
303  
1 GND = AGND = DGND = 0 V.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 4 of 16  
 
ADF4007  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN1  
15 MUXOUT  
14 M1  
13 M2  
12 N1  
11 N2  
CPGND 1  
AGND 2  
AGND 3  
INDICATOR  
ADF4007  
TOPVIEW  
RF B 4  
IN  
RF A 5  
IN  
Figure 2. Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No. Mnemonic Function  
1
2, 3  
4
CPGND  
AGND  
RFINB  
Charge Pump Ground. The ground return path of the charge pump.  
Analog Ground. The ground return path of the prescaler.  
Complementary Input to the RF Prescaler. This point must be decoupled to the ground plane with a small bypass  
capacitor, typically 100 pF.  
5
6, 7  
RFINA  
AVDD  
Input to the RF Prescaler. This small signal input is ac-coupled to the external VCO.  
Analog Power Supply. This pin can range from 2.7 V to 3.3 V. Decoupling capacitors to the analog ground plane  
should be placed as close as possible to this pin. AVDD must be the same value as DVDD  
.
8
REFIN  
Reference Input. A CMOS input with a nominal threshold of VDD/2 and a dc equivalent input resistance of 100 kΩ.  
This input can be driven from a TTL or CMOS crystal oscillator, or it can be ac-coupled.  
9, 10  
11, 12  
13, 14  
15  
DGND  
N2, N1  
M2, M1  
MUXOUT  
DVDD  
Digital Ground.  
These two bits set the N value. See Table 4.  
These two bits set the status of MUXOUT and PFD polarity. See Table 5.  
This multiplexer output allows either the N divider output or the R divider output to be accessed externally.  
Digital Power Supply. This pin can range from 2.7 V to 3.3 V. Decoupling capacitors to the digital ground plane  
16, 17  
should be placed as close as possible to this pin. DVDD must be the same value as AVDD  
.
18  
19  
VP  
Charge Pump Power Supply. This pin should be greater than or equal to VDD. In systems where VDD is 3 V, it can be  
set to 5 V and used to drive a VCO with a tuning range of up to 5 V.  
Connecting a resistor between this pin and CPGND sets the maximum charge pump output current. The nominal  
RSET  
voltage potential at the RSET pin is 0.66 V. The relationship between ICP and RSET is  
25.5  
RSET  
ICPMAX  
=
Therefore, if RSET = 5.1 kΩ, then ICP = 5 mA.  
20  
CP  
Charge Pump Output. When enabled, this pin provides ICP to the external loop filter, which in turn drives the  
external VCO.  
Rev. 0 | Page 5 of 16  
 
ADF4007  
Table 4. N Truth Table  
Table 5. M Truth Table  
N2  
N1  
N Value  
M2  
M1  
Operation  
0
0
8
0
0
CP:  
Active  
0
1
1
1
0
1
16  
32  
64  
MUXOUT:  
PFD polarity:  
CP:  
MUXOUT:  
PFD polarity:  
CP:  
MUXOUT:  
PFD polarity:  
CP:  
VDD  
+ve  
0
1
1
1
0
1
Three-state  
R divider output  
+ve  
Active  
N divider output  
+ve  
Active  
MUXOUT:  
PFD polarity:  
GND  
−ve  
Rev. 0 | Page 6 of 16  
 
ADF4007  
TYPICAL PERFORMANCE CHARACTERISTICS  
Table 6. S-Parameter Data for the RF Input  
Frequency1  
0.60000  
0.70000  
0.80000  
0.90000  
1.00000  
1.10000  
1.20000  
1.30000  
1.40000  
1.50000  
1.60000  
1.70000  
1.80000  
1.90000  
2.00000  
2.10000  
2.20000  
2.30000  
2.40000  
2.50000  
2.60000  
2.70000  
2.80000  
2.90000  
3.00000  
3.10000  
3.20000  
3.30000  
3.40000  
3.50000  
3.60000  
3.70000  
3.80000  
3.90000  
4.00000  
4.10000  
MagS11  
0.87693  
0.85834  
0.85044  
0.83494  
0.81718  
0.80229  
0.78917  
0.77598  
0.75578  
0.74437  
0.73821  
0.72530  
0.71365  
0.70699  
0.70380  
0.69284  
0.67717  
0.67107  
0.66556  
0.65640  
0.63330  
0.61406  
0.59770  
0.56550  
0.54280  
0.51733  
0.49909  
0.47309  
0.45694  
0.44698  
0.43589  
0.42472  
0.41175  
0.41055  
0.40983  
0.40182  
AngS11  
Frequency1  
4.20000  
4.30000  
4.40000  
4.50000  
4.60000  
4.70000  
4.80000  
4.90000  
5.00000  
5.10000  
5.20000  
5.30000  
5.40000  
5.50000  
5.60000  
5.70000  
5.80000  
5.90000  
6.00000  
6.10000  
6.20000  
6.30000  
6.40000  
6.50000  
6.60000  
6.70000  
6.80000  
6.90000  
7.00000  
7.10000  
7.20000  
7.30000  
7.40000  
7.50000  
MagS11  
0.41036  
0.41731  
0.43126  
0.42959  
0.42687  
0.43450  
0.42275  
0.40662  
0.39103  
0.37761  
0.34263  
0.30124  
0.27073  
0.23590  
0.17550  
0.12739  
0.09058  
0.06824  
0.04465  
0.04376  
0.06621  
0.08498  
0.10862  
0.12161  
0.12917  
0.12716  
0.11678  
0.10533  
0.09643  
0.08919  
0.08774  
0.09289  
0.10803  
0.13956  
AngS11  
−19.9279  
−23.5610  
−26.9578  
−30.8201  
−34.9499  
−39.0436  
−42.3623  
−46.3220  
−50.3484  
−54.3545  
−57.3785  
−60.6950  
−63.9152  
−66.4365  
−68.4453  
−70.7986  
−73.7038  
−75.8206  
−77.6851  
−80.3101  
−82.5082  
−85.5623  
−87.3513  
−89.7605  
−93.0239  
−95.9754  
−99.1291  
−102.208  
−106.794  
−111.659  
−117.986  
125.620  
133.291  
140.585  
147.970  
155.978  
162.939  
168.232  
174.663  
179.797  
174.379  
171.537  
167.201  
163.534  
159.829  
157.633  
152.815  
147.632  
144.304  
138.324  
131.087  
124.568  
119.823  
114.960  
84.4391  
34.2210  
4.70571  
12.6228  
26.6069  
38.5860  
47.1990  
55.8515  
63.0234  
66.9967  
75.4961  
89.2055  
103.786  
127.153  
150.582  
170.971  
1Frequency unit: GHz; parameter type: s; data format: MA; keyword: R;  
impedance: 50.  
Rev. 0 | Page 7 of 16  
 
ADF4007  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
V
V
= 3V  
= 3V  
DD  
REF LEVEL = –14.0dBm  
V
= 3V, V = 5V  
P
P
DD  
= 5mA  
–5  
I
CP  
PFD FREQUENCY = 106MHz  
LOOP BANDWIDTH = 1MHz  
RES BANDWIDTH = 1kHz  
VIDEO BANDWIDTH = 1kHz  
SWEEP = 2.5s  
–10  
–15  
–20  
AVERAGES = 30  
TA = +85°C  
–25  
–30  
T
= –40°C  
A
T
= +25°C  
A
–91.0dBc/Hz  
–35  
–40  
–90  
–100  
–212  
–106  
6780  
106  
212  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5  
RF INPUT FREQUENCY (GHz)  
FREQUENCY (MHz)  
Figure 6. Reference Spurs (6.78 GHz RFOUT, 106 MHz PFD,  
and 1 MHz Loop Bandwidth)  
Figure 3. Input Sensitivity  
0
–120  
V
V
= 3V  
REF LEVEL = –14.3dBm  
DD  
= 5V  
V
= 3V, V = 5V  
P
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
DD  
= 5mA  
P
I
CP  
–130  
–140  
–150  
–160  
–170  
–180  
PFD FREQUENCY = 106kHz  
LOOP BANDWIDTH = 1MHz  
RES BANDWIDTH = 10Hz  
VIDEO BANDWIDTH = 10Hz  
SWEEP = 1.9s  
AVERAGES = 10  
–99dBc/Hz  
–90  
–100  
–2k  
–1k  
6780M  
1k  
2k  
10k  
100k  
1M  
10M  
120M  
FREQUENCY (Hz)  
PHASE DETECTOR FREQUENCY (Hz)  
Figure 7. Phase Noise (Referred to CP Output) vs. PFD Frequency  
Figure 4. Phase Noise (6.78 GHz RFOUT, 106 MHz PFD,  
and 1 MHz Loop Bandwidth)  
–40  
–50  
–6  
–5  
10dB/DIV  
R
= –40dBc/Hz  
L
RMS NOISE = 4.2°  
V
I
= 5V  
= 5mA  
–4  
–3  
–2  
–1  
0
P
–60  
CP  
–70  
–80  
–90  
1
–100  
–110  
–120  
2
3
4
–130  
–140  
5
6
0
0.5  
1.0  
1.5  
2.0  
2.5  
(V)  
3.0  
3.5  
4.0  
4.5 5.0  
10k  
100k  
1M  
10M  
100M  
V
CP  
FREQUENCY OFFSET FROM CARRIER (Hz)  
Figure 8. Charge Pump Output Characteristics  
Figure 5. Integrated Phase Noise (6.78 GHz RFOUT, 106 MHz PFD,  
and 1 MHz Loop Bandwidth)  
Rev. 0 | Page 8 of 16  
ADF4007  
THEORY OF OPERATION  
REFERENCE INPUT SECTION  
PRESCALER P  
The reference input stage is shown in Figure 9. SW1 and SW2  
are normally closed switches. SW3 is normally open. When  
power-down is initiated, SW3 is closed and SW1 and SW2 are  
opened. This ensures that there is no loading of the REFIN pin  
on power-down.  
The prescaler, operating at CML levels, takes the clock from the  
RF input stage and divides it down to a manageable frequency  
for the PFD. The prescaler can be selected to be either 8, 16, 32,  
or 64, and is effectively the N value in the PLL synthesizer. The  
terms N and P are used interchangeably in this data sheet. N1  
and N2 set the prescaler values. The prescaler value should be  
chosen so that the prescaler output frequency is always less than  
or equal to 120 MHz, the maximum specified PFD frequency.  
Thus, with an RF frequency of 4 GHz, a prescaler value of 64 is  
valid, but a value of 32 or less is not valid.  
POWER-DOWN  
CONTROL  
100k  
NC  
SW2  
TO R COUNTER  
REF  
IN  
fREFIN  
2
NC  
SW1  
BUFFER  
fVCO =[N]×  
R COUNTER  
SW3  
NO  
The R counter is permanently set to 2. It allows the input  
reference frequency to be divided down by 2 to produce the  
reference clock to the phase frequency detector (PFD).  
Figure 9. Reference Input Stage  
RF INPUT STAGE  
PHASE FREQUENCY DETECTOR (PFD) AND  
CHARGE PUMP  
The RF input stage is shown in Figure 10 . It is followed by a  
2-stage limiting amplifier to generate the CML clock levels  
needed for the prescaler.  
The PFD takes inputs from the R counter and the N counter  
(prescaler, P) and produces an output proportional to the phase  
and frequency difference between them. Figure 11 is a  
simplified schematic. The PFD includes a fixed, 3 ns delay  
element that controls the width of the antibacklash pulse. This  
pulse ensures that there is no dead zone in the PFD transfer  
function and minimizes phase noise and reference spurs.  
BIAS  
1.6V  
GENERATOR  
AV  
DD  
500  
500Ω  
RF  
RF  
A
B
IN  
V
P
CHARGE  
PUMP  
IN  
UP  
Q1  
U1  
D1  
LOGIC HI  
R DIVIDER  
CLR1  
AGND  
3ns  
DELAY  
U3  
Figure 10. RF Input Stage  
CP  
CLR2  
D2 Q2  
DOWN  
LOGIC HI  
U2  
N DIVIDER  
CPGND  
Figure 11. PFD Simplified Schematic and Timing (In Lock)  
Rev. 0 | Page 9 of 16  
 
 
 
 
ADF4007  
MUXOUT  
PFD Polarity  
The output multiplexer on the ADF4007 allows the user to  
access various internal points on the chip. The state of  
MUXOUT is controlled by the M2 and M1 pins. Figure 12  
shows the MUXOUT section in block diagram form.  
The PFD polarity is set by the state of M2 and M1 pins as given  
in the Table 5. The ability to set the polarity allows the use of  
VCOs with either positive or negative tuning characteristics. For  
standard VCOs with positive characteristics (output frequency  
increases with increasing tuning voltage), the polarity should be  
set to positive. This is accomplished by tying M2 and M1 to a  
logic low state.  
DV  
DD  
DV  
DD  
CP Output  
R COUNTER OUTPUT  
N COUNTER OUTPUT  
DGND  
MUX  
CONTROL  
MUXOUT  
The CP output state is also controlled by the state of M2 and  
M1. It can be set either to active (so that the loop can be locked)  
or to three-state (open the loop). The normal state is CP output  
active.  
DGND  
Figure 12. MUXOUT Circuit  
Rev. 0 | Page 10 of 16  
 
 
ADF4007  
APPLICATIONS  
FIXED HIGH FREQUENCY LOCAL OSCILLATOR  
Figure 13 shows the ADF4007 being used with the  
HMC358MS8G VCO from Hittite Microwave Corporation to  
produce a fixed-frequency LO (local oscillator), which could be  
used in satellite or CATV applications. In this case, the desired  
LO is 6.7 GHz.  
Other PLL system specifications are as follows:  
KD = 5 mA  
KV = 100 MHz/V  
Loop Bandwidth = 300 kHz  
FPFD = 106 MHz  
N = 64  
The reference input signal is applied to the circuit at FREFIN  
and, in this case, is terminated in 50 Ω. Many systems would  
have either a TCXO or an OCXO driving the reference input  
without any 50 Ω termination. To bias the REFIN pin at AVDD/2,  
ac coupling is used. The value of the coupling capacitor used  
depends on the input frequency. The equivalent impedance at  
the input frequency should be less than 10 Ω. Given that the dc  
input impedance at the REFIN pin is 100 kΩ, less than 0.1ꢀ of  
the signal is lost.  
All these specifications are needed and used with the  
ADIsimPLL to derive the loop filter component values shown in  
Figure 13.  
The circuit in Figure 13 gives a typical phase noise performance  
of 100 dBc/Hz at 10 kHz offset from the carrier. Spurs are  
heavily attenuated by the loop filter and are below 90 dBc.  
The loop filter output drives the VCO, which, in turn, is fed  
back to the RF input of the PLL synthesizer and also drives the  
RF output terminal. A T-circuit configuration provides 50 Ω  
matching between the VCO output, the RF output, and the RFIN  
terminal of the synthesizer.  
The charge pump output of the ADF4007 drives the loop filter.  
In calculating the loop filter component values, a number of  
items need to be considered. In this example, the loop filter was  
designed so that the overall phase margin for the system is 45°.  
AV = 3.3V  
DD  
V
= 3.3V  
CC  
18k  
18Ω  
18Ω  
V
= 12V  
CC  
6
7
16  
17  
18  
1kΩ  
V
100pF  
100pF  
AV  
DD  
AV  
DD  
DV  
DV  
P
1kΩ  
18Ω  
DD  
DD  
HMC358MS8G  
RF  
5
4
OUT  
RF  
RF  
A
IN  
IN  
20  
10pF  
CP  
AD820  
B
VCO  
100MHz/V  
22Ω  
5.6nF  
47nF  
ADF4007  
100pF  
100pF  
FREF  
8
REF  
IN  
IN  
51Ω  
11  
12  
13  
14  
LOGIC HI  
N2  
N1  
M2  
M1  
MUXOUT  
15  
10  
LOGIC HI  
LOGIC LO  
LOGIC LO  
19  
R
SET  
GND  
9
R
SET  
5.1kΩ  
100pF  
2
3
NOTE  
DECOUPLING CAPACITORS (0.1mF/10pF) ON AV , DV , AND V OF THE ADF4007 AND ON  
DD DD  
P
V
OF THE AD820 AND THE HMC358MS8G HAVE BEEN OMITTED FROM THE DIAGRAM  
CC  
TO AID CLARITY.  
Figure 13. 6.78 GHz Local Oscillator Using the ADF4007  
Rev. 0 | Page 11 of 16  
 
 
ADF4007  
USING THE ADF4007 AS A DIVIDER  
In addition to its use as a standard PLL synthesizer, the  
ADF4007 can also be used as a high frequency counter/divider  
with a value of 8, 16, 32, or 64.This can prove useful in a wide  
variety of applications where a higher frequency signal is readily  
available. Figure 14 shows the ADF4007 used in this manner  
with the ADF4360-7.  
This part is an integrated synthesizer and VCO, in this case  
operating over a range of 1200 MHz to 1500 MHz. With divide-  
by-8 chosen in the ADF4007 (N2 = 0, N1 = 0), the output range  
is 150 MHz to 187.50 MHz.  
V
DD  
V
LOCK  
DETECT  
V
DD  
VCO  
4.7k  
M2 M1  
R
CP  
V
AV  
DV  
DD  
DD  
SET  
P
6
21  
DV  
2
20  
23  
10µF  
V
V
7
AV  
DD  
CE MUXOUT  
TUNE  
CP  
VCO  
DD  
14  
16  
C
N
13kΩ  
CMOS OUTPUT  
PHASE  
FREQUENCY  
DETECTOR  
MUXOUT  
24  
CHARGE  
PUMP  
1nF  
1nF  
MUX  
FREF  
IN  
REF  
IN  
6.8nF  
470pF  
VCO  
220pF  
51Ω  
17  
6.2kΩ  
CLK  
ADF4360-7  
18  
19  
DATA  
LE  
V
REF  
IN  
R COUNTER  
12  
÷2  
C
C
51Ω  
51Ω  
RF  
A
IN  
13  
R
1nF  
SET  
4
5
RF  
RF  
A
OUT  
OUT  
N COUNTER  
÷8, ÷16  
÷32, ÷64  
4.7kΩ  
100pF  
100pF  
RF  
B
IN  
CPGND AGND  
DGND  
L1 L2  
10  
B
15  
1
3
8
11  
22  
9
CPGND GND  
N1  
N2  
ADF4007  
2.2nH  
2.2nH  
Figure 14. Using the ADF4007 to Divide-Down the Output of the ADF4360-7  
Rev. 0 | Page 12 of 16  
 
 
ADF4007  
PCB DESIGN GUIDELINES FOR CHIP SCALE PACKAGE  
The lands on the chip scale package (CP-20) are rectangular.  
The printed circuit board pad for these should be 0.1 mm  
longer than the package land length and 0.05 mm wider than  
the package land width. The land should be centered on the pad  
to ensure that the solder joint size is maximized.  
Thermal vias may be used on the printed circuit board thermal  
pad to improve thermal performance of the package. If vias are  
used, they should be incorporated in the thermal pad at 1.2 mm  
pitch grid. The via diameter should be between 0.30 mm and  
0.33 mm, and the via barrel should be plated with 1 oz. copper  
to plug the via.  
The bottom of the chip scale package has a central thermal pad.  
The thermal pad on the printed circuit board should be at least  
as large as this exposed pad. The printed circuit board should  
have a clearance of at least 0.25 mm between the thermal pad  
and the inner edges of the pad pattern to ensure that shorting is  
avoided.  
The user should connect the printed circuit board thermal pad  
to AGND.  
Rev. 0 | Page 13 of 16  
 
ADF4007  
OUTLINE DIMENSIONS  
0.60  
MAX  
4.0  
BSC SQ  
0.60  
MAX  
16  
15  
20  
1
PIN 1  
INDICATOR  
2.25  
2.10 SQ  
1.95  
3.75  
BSC SQ  
TOP  
VIEW  
BOTTOM  
VIEW  
11  
10  
5
0.75  
0.55  
0.35  
6
0.25 MIN  
0.80 MAX  
0.65 TYP  
0.30  
0.23  
0.18  
12° MAX  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
0.20  
REF  
COPLANARITY  
0.08  
SEATING  
PLANE  
0.50  
BSC  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-1  
Figure 15. 20-Lead Frame Chip Scale Package [LFCSP]  
(CP-20)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADF4007BCP  
ADF4007BCP–REEL  
ADF4007BCP–REEL7  
Temperature Range  
−40°C to + 85°C  
−40°C to + 85°C  
−40°C to + 85°C  
Package Description  
Package Option  
CP-20  
CP-20  
20-lead frame chip scale package (LFCSP)  
20-lead frame chip scale package (LFCSP)  
20-lead frame chip scale package (LFCSP)  
CP-20  
CP = chip scale package.  
Rev. 0 | Page 14 of 16  
 
ADF4007  
NOTES  
Rev. 0 | Page 15 of 16  
ADF4007  
NOTES  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04537–0–2/04(0)  
Rev. 0 | Page 16 of 16  

相关型号:

ADF4007BCP-REEL

High Frequency Divider/PLL Synthesizer
ADI

ADF4007BCP-REEL7

High Frequency Divider/PLL Synthesizer
ADI

ADF4007BCPZ

High Frequency Divider/PLL Synthesizer
ADI

ADF4007BCPZ

PLL FREQUENCY SYNTHESIZER, 7500 MHz, QCC20, MO-220-VGGD-1, LFCSP-20
ROCHESTER

ADF4007BCPZ-REEL7

PLL FREQUENCY SYNTHESIZER, 7500MHz, QCC20, MO-220-VGGD-1, LFCSP-20
ADI

ADF4007BCPZ-RL7

High Frequency Divider/PLL Synthesizer
ADI

ADF41020

The ADF41020 frequency synthesizer can be used to implement local oscillators as high as 18 GHz in the up conversion and down conversion sections of wireless receivers and transmitters.
ADI

ADF41020BCPZ

The ADF41020 frequency synthesizer can be used to implement local oscillators as high as 18 GHz in the up conversion and down conversion sections of wireless receivers and transmitters.
ADI

ADF41020BCPZ-RL7

The ADF41020 frequency synthesizer can be used to implement local oscillators as high as 18 GHz in the up conversion and down conversion sections of wireless receivers and transmitters.
ADI

ADF4106

PLL Frequency Synthesizer
ADI

ADF4106-SCPZ-EP

PLL FREQUENCY SYNTHESIZER, 6000MHz, QCC16, 4 X 4 MM, ROHS COMPLIANT, MO-220VGGD1, LFCSP-16
ADI

ADF4106-SCPZ-EP-R7

PLL FREQUENCY SYNTHESIZER, 6000MHz, QCC16, 4 X 4 MM, ROHS COMPLIANT, MO-220VGGD1, LFCSP-16
ADI