ADF4116BCPZ [ADI]

IC PLL FREQUENCY SYNTHESIZER, 550 MHz, CQCC20, CSP-20, PLL or Frequency Synthesis Circuit;
ADF4116BCPZ
型号: ADF4116BCPZ
厂家: ADI    ADI
描述:

IC PLL FREQUENCY SYNTHESIZER, 550 MHz, CQCC20, CSP-20, PLL or Frequency Synthesis Circuit

文件: 总14页 (文件大小:129K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
a
Preliminary Technical Data  
PLLFrequencySynthesizer  
ADF4116/ADF4117/ADF4118  
FEATURES  
G E NE R AL D E S C R IP T IO N  
ADF4116:  
ADF4117:  
ADF4118:  
550 MHz  
1.2 GHz  
2.8 GHz  
T he ADF4116 family of frequency synthesizers can  
be used to implement local oscillators in the up-con-  
version and down-conversion sections of wireless  
receivers and transmitters. T hey consist of a low-  
noise digital PFD (Phase Frequency Detector), a  
precision charge pump, a programmable reference  
divider, programmable A and B counters and a dual-  
modulus prescaler (P/P+1). T he A (5-bit) and B  
(13-bit) counters, in conjunction with the dual modu-  
lus prescaler (P/P+1), implement an N divider (N=  
BP+A). In addition, the 14-bit reference counter (R  
Counter), allows selectable REFIN frequencies at the  
PFD input. A complete PLL (Phase-Locked Loop)  
can be implemented if the synthesizer is used with an  
external loop filter and VCO (Voltage Controlled  
O scillator)  
+2.7 V to +5.5 V Pow er Supply  
Separate Vp Allow s Extended Tuning Voltage in  
3V System s  
Selectable Charge Pum p Currents  
Dual Modulus Prescaler  
ADF4116:  
8/ 9  
32/33  
ADF4117/ ADF4118:  
3-Wire Serial Interface  
Digital Lock Detect  
Pow er Dow n Mode  
Fastlock Mode  
APPLICATIONS  
Control of all the on-chip registers is via a simple 3-  
wire interface. T he devices operate with a power sup-  
ply ranging from 2.7V to 5.5V and can be powered  
down when not in use.  
Base Stations for Wireless Radio (GSM, PCS, DCS,  
WCDMA)  
Wireless Handsets (GSM, PCS, DCS, WCDMA)  
Wireless LANS  
Com m unications Test Equipm ent  
CATV Equipm ent  
FUNCTIO NAL BLO CK D IAGRAM  
AVDD  
DVDD  
VP  
CPG N D  
REF ERENCE  
14-BIT  
COUNT ER  
REF IN  
R
PHAS E  
CHARGE  
FRE QUENCY  
C P  
PUM P  
DET ECTOR  
14  
R
COUNTER  
LA TCH  
LOCK DETECT  
CLK  
21-BIT  
INPUT RE GISTE R  
FUNCTION  
LA TC H  
DATA  
LE  
19  
SDO  
U T  
A,  
B
COUNTE  
LATCH  
High  
Z
FROM  
FUNCTION  
LA TCH  
AVDD  
18  
M UX  
13  
MU XOUT  
N
= BP + A  
13-BIT  
COUNTER  
SDO  
U T  
B
L OA D  
+
-
RFIN  
A
PR ESCA LER  
P/P+1  
RFINB  
M3 M2 M1  
L OA D  
5-BIT  
CO UNTER  
A
FLo  
FLo  
Switch  
5
ADF4116/ADF4117/ADF4118  
REV.PrH 12/99  
DG ND  
CE  
AG ND  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/ 329-470 0  
Fa x: 781/ 326-8703  
World Wide Web Site: http:/ / w w w.analog.com  
Analog Devices, Inc., 1999  
(AV = AV = +3V ± 10%, +5 V ± 10% V = AV +5  
DD  
DD  
P
DD,  
V ± 10%, ; AGND = DGND = 0 V; T = TMIN to TMAX un-  
less otherwise noted)  
A
1
ADF4116/7/8 – SPECIFICATIONS  
P ar am eter  
B Version  
BChips2  
Units  
Test Conditions/Com m ents  
(Typical)  
RF C H ARAC T ERIST IC S  
RF Input Frequency  
AD F 4116  
See Figure 3 for input circuit.  
25/550  
0.1/1.2  
0.1/2.8  
0/150  
25/550  
0.1/1.2  
0.1/2.8  
0/150  
M H z min/max  
G H z min/max  
G H z min/max  
M H z min/max  
AD F 4117  
AD F 4118  
Reference Input Frequency  
M aximum Allowable  
Prescaler Output Frequency3  
Phase Detector Frequency4  
RF Input Sensitivity  
200  
55  
-15/0  
-10/0  
-5  
200  
55  
-15/0  
-10/0  
-5  
M H z max  
M H z max  
dBm min/max AVDD = 3V  
dBm min/max AVDD = 5V  
Reference Input Sensitivity  
dBm min  
ac coupled. Max when dc  
coupled: 0 to VDD (CMOS  
C ompatible)  
C H ARG E PU M P  
IC P sink/source  
H igh Value  
1
250  
2
1
250  
2
mA typ  
µA typ  
%typ  
Low Value  
Absolute Accuracy  
5
1
2
5
1
2
% m ax  
nA max  
% typ  
IC P T hree State Current  
Sink and Source Current Matching  
IC P vs. VC P  
See Figure 28  
0.5V < VC P < VP - 0.5  
0.5V < VC P < VP - 0.5  
VC P = VP/2  
2
2
2
2
% typ  
% typ  
IC P vs. T emperature  
LO G IC IN PU T S  
VINH, Input High Voltage  
0.8*D VD D  
0.2*D VD D  
± 1  
10  
± 100  
0.8*D VD D  
0.2*D VD D  
± 1  
10  
± 100  
V min  
V max  
µA max  
pF max  
µA max  
V
I
C
INL, Input Low Voltage  
INH/IINL, Input Current  
IN, Input Capacitance  
Reference Input Current  
LO G IC O U T P U T S  
VOH, Output High Voltage  
VOL, Output Low Voltage  
DVDD - 0.4 DVDD - 0.4 V min  
IOH = 1mA  
IOL = 1mA  
0.4  
0.4  
V max  
PO WER SU PPLIES  
AVDD  
DVDD  
2.7/5.5  
AVDD  
AVD D/6.0  
2.7/5.5  
AVDD  
AVD D/6.0  
V min/V max  
V min/V max  
VP  
5
IDD (AIDD + DIDD  
AD F 4116  
)
See Figure 26 and 27  
2.0  
4.2  
6.5  
1
2.0  
4.2  
6.5  
1
mA max  
mA max  
mA max  
µA typ  
AD F 4117  
AD F 4118  
Low Power Sleep Mode  
NOTES  
1. Operating temperature range is as follows: B Version: –40°C to +85°C.  
2. T he BChip specifications are given as typical values.  
3. T his is the maximum operating frequency of the CMOS counters. T he prescaler value should be chosen to ensure that the RF input is divided down to a frequency  
which is less than this value.  
4. Guaranteed by deign. Sample tested to ensure compliance.  
5. AVDD = AVDD = 3V; RFIN for ADF4116 = 540MHz; RFIN for ADF4117, ADF4118 = 900MHz.  
REV.PrH 12/99  
–2–  
(AV = AV = +3V ± 10%, +5 V ± 10% V = AV  
DD,  
DD  
DD  
P
+5 V ± 10%, ; AGND = DGND = 0 V; T = TMIN to T  
unless otherwise noted)  
1
A
MAX  
ADF4116/7/8 – SPECIFICATIONS  
P ar am eter  
B Version  
BChips  
Units  
Test Conditions/Com m ents  
N O ISE C H ARAC T ERIST IC S  
AD F4118 Phase N oise Floor2  
-170  
-162  
-170  
-162  
dBc/H z typ  
dBc/H z typ  
@ 25kH z PFD Frequency  
@ 200kH z PFD Frequency  
@ VCO Output  
Phase Noise Performance3  
AD F 41164  
-93  
-89  
-90  
-82  
-83  
-68  
-83  
-93  
-89  
-90  
-82  
-83  
-68  
-83  
dBc/H z typ  
dBc/H z typ  
dBc/H z typ  
dBc/H z typ  
dBc/H z typ  
dBc/H z typ  
dBc/H z typ  
AD F 41175  
AD F 41185  
AD F 41176  
AD F 41187  
AD F 41188  
AD F 41189  
Spurious Signals  
Measured at offset of fPFD/2fPFD  
AD F 41164  
-80/-84  
-80/-84  
-80/-84  
-80/-84  
-80/-84  
-78/-82  
-78/-82  
-80/-84  
-80/-84  
-80/-84  
-80/-84  
-80/-84  
-78/-82  
-78/-82  
dB typ  
dB typ  
dB typ  
dB typ  
dB typ  
dB typ  
dB typ  
AD F 41175  
AD F 41185  
AD F 41176  
AD F 41187  
AD F 41188  
AD F 41189  
NOTES  
1. Operating temperature range is as follows: B Version: –40°C to +85°C.  
2. T he synthesizer phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO and subtracting 20logN (where N is the divider value).  
3. T he phase noise is measured with the EVAL-ADF411XEB Evaluation Board and the HP8562E Spectrum Analyzer. T he spectrum analyzer provides the REFIN for  
the synthesizer. (fREFOUT = 10MHz @ 0dBm)  
4. f REFIN = 10 MHz; fPFD = 200 kHz; Offset frequency = 1 kHz; fRF = 540MHz; N = 2700; Loop B/W = 20kHz  
5. f REFIN = 10 MHz; fPFD = 200 kHz; Offset frequency = 1 kHz; fRF = 900MHz; N = 4500; Loop B/W = 20kHz  
6. f REFIN = 10 MHz; fPFD = 30kHz; Offset frequency = 300 Hz; fRF = 836MHz; N = 27867; Loop B/W = 3kHz  
7. f REFIN = 10 MHz; fPFD = 200kHz; Offset frequency = 1 kHz; fRF = 1750MHz; N = 8750; Loop B/W = 20kHz  
8. f REFIN = 10 MHz; fPFD = 10kHz; Offset frequency = 200 Hz; fRF = 1750MHz; N = 175000; Loop B/W = 1kHz  
9. f REFIN = 10 MHz; fPFD = 200kHz; Offset frequency = 1 kHz; fRF = 1960MHz; N = 9800; Loop B/W = 20kHz  
Specifications subject to change without notice.  
O R D E R ING G U ID E  
Model  
Tem perature Range P ackage O ption*  
AD F 4116BRU  
AD F 4116BC P  
AD F 4117BRU  
AD F 4117BC P  
AD F 4118BRU  
AD F 4118BC P  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
RU -16  
C P-24  
RU -16  
C P-24  
RU -16  
C P-24  
*
RU = T hin Shrink Small Outline Package (T SSOP)  
CP = Chip Scale Package  
Contact the factoryfor chip availability  
REV.PrH 12/99  
–3–  
ADF4116/ADF4117/ADF4118  
Preliminary Technical Data  
(V = +5 V 10%, +3 V ± 10%; AGND = DGND = 0 V, unless otherwise noted)  
DD  
TIMINGCHARACTERISTICS  
Lim it at  
TMIN to TMAX  
P ar am eter  
(B Version)  
Units  
Test Conditions/Com m ents  
t1  
t2  
t3  
t4  
t5  
t6  
10  
10  
25  
25  
10  
20  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
DAT A to CLOCK Set Up T ime  
DAT A to CLOCK H old T ime  
C LOC K H igh D uration  
C LOC K Low D uration  
CLOCK to LE Set Up T ime  
LE Pulse Width  
NOTE  
Guaranteed by Design but not Production T ested.  
t3  
t4  
CLOCK  
t1  
t2  
DB20  
DATA  
DB19  
DB2  
DB1  
DB0 (LSB)  
(CONTROL BIT C1)  
(MSB)  
(CONTROL BIT C2)  
t6  
LE  
LE  
t5  
Figure 1. Tim ing Diagram  
2
ABSO LUT E MAXIMUM RAT INGS1,  
M aximum Junction T emperature . . . . . . . . . . . . . + 150°C  
T SSOP θJA T hermal Impedance . . . . . . . . . . . 150.4°C /W  
CSP θJA T hermal Impedance . . . . . . . . . . . . . . T BD °C /W  
Lead T emperature, Soldering  
(
T A = +25°C unless otherwise noted)  
AVDD to GND3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–0.3 V to +7 V  
AVDD to DVDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–0.3 V to +0.3 V  
VP to GND . . . . . . . . . . . . . . . . . . . . . . . . .–0.3 V to +7 V  
VP to AVDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–0.3 V to +5.5 V  
D igital I/O Voltage to GN D . . . . . –0.3 V to VDD + 0.3 V  
Analog I/O Voltage to GND . . . . . . 0.3 V to Vp + 0.3 V  
Operating T emperature Range  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . + 215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . + 220°C  
1. Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. Thisisa stressratingonlyand functionaloperation  
of the device at these or any other conditions above those listed in the operational  
sections ofthis specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods mayaffect device reliability.  
2. T his device is a high-performance RF integrated circuit with an ESD rating of <  
2kV and it is ESD sensitive. Proper precautions should be taken for handling and  
assembly.  
Industrial (B Version) . . . . . . . . . . . . . . –40°C to +85°C  
Storage T emperature Range . . . . . . . . . –65°C to +150°C  
3. AGND = DGND = GND = 0V.  
C AUT IO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V  
readily accumulate on the human body and test equipment and can discharge without  
detection. Although this device features proprietary ESD protection circuitry, perma-  
nent damage may occur on devices subjected to high energy electrostatic discharges.  
T herefore, proper ESD precautions are recommended to avoid performance degrada-  
tion or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV.PrH 12/99  
–4 –  
Preliminary Technical Data  
ADF4116/ADF4117/ADF4118  
P IN D E S C R IP T IO N  
Mnem onic  
Function  
F LO  
Fast Lock Switch Output. T his can be used to switch an external resistor to change the loop filter band-  
width. T his will speed up locking of the PLL.  
C P  
Charge Pump Output. T his is normally connected to a loop filter which drives the input to an external  
VC O .  
C P G N D  
AG N D  
RF IN B  
Charge Pump Ground  
Analog Ground  
Complementary Input to the RF Prescaler. T his point should be decoupled to the ground plane with a  
small bypass capacitor.  
RF IN A  
AVDD  
Input to the RF Prescaler. T his small signal input is normally ac coupled from the VCO.  
Analog Power Supply. T his may range from 2.7V to 5.5V. Decoupling capacitors to the analog ground  
plane should be placed as close as possible to this pin. AVDD must be the same value as DVDD  
.
REF IN  
Reference Input. T his is a CMOS input with a nominal threshold of AVDD /2 and an equivalent input  
resistance of 100kΩ. See Figure 2. T he oscillator input can be driven from a T T L or CMOS crystal  
oscillator or it can be ac coupled.  
D G N D  
C E  
D igital G round.  
Chip Enable. A logic low on this pin powers down the device and puts the charge pump output into  
three-state mode. T aking the pin high will power up the device depending on the status of the power-  
down bit F2.  
C L K  
Serial Clock Input. T his serial clock is used to clock in the serial data to the registers. T he data is  
latched into the 21-bit shift register on the CLK rising edge. T his input is a high impedance CMOS  
input.  
D AT A  
L E  
Serial Data Input. T he serial data is loaded MSB first with the two LSBs being the control bits. T his  
input is a high impedance CMOS input.  
Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is loaded into  
one of the four latches, the latch being selected using the control bits.  
M U X O U T 1  
DVDD  
T his multiplexer output allows either the Lock Detect, the scaled RF or the scaled Reference Frequency  
to be accessed externally.  
Digital Power Supply. T his may range from 2.7V to 5.5V. Decoupling capacitors to the digital ground  
plane should be placed as close as possible to this pin. DVDD must be the same value as AVDD  
.
VP  
Charge Pump Power Supply. T his should be greater than or equal to VDD. In systems where VDD is 3V, it  
can be set to 5V and used to drive a VCO with a tuning range of up to 5V  
NOTES  
1. MUXOUT is also used for T est Modes on the devices. T hese T est modes will be detailed in T NXXX available from Analog Devices Inc.  
P IN C O NF IG U R AT IO N  
T O P VIE W  
T O P VIE W  
CP FL  
V
DV  
DV  
D D D D  
o
P
VP  
FLO  
CP  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
20 19 18  
17 16  
DVDD  
TSSOP  
CPGND  
AGND  
AGND  
1
2
3
4
5
MUXOUT  
LE  
15  
14  
13  
12  
11  
Chip Scale Package  
CPGND  
AGND  
RFINB  
MUXOUT  
LE  
ADF4116  
ADF4117  
ADF4118  
DATA  
CLK  
ADF4116  
ADF4117  
ADF4118  
DATA  
CLK  
RF  
RF  
B
A
IN  
RFIN  
A
CE  
IN  
AVDD  
10 CE  
6
7
8
9
10  
DGND  
REFIN  
9
AV AV REF DGND DGND  
D D  
D D  
IN  
TRANSISTO R CO UNT:  
6425 (CMOS) and 303 (Bi-  
polar).  
REV.PrH 12/99  
–5 –  
ADF4116/ADF4117/ADF4118  
Preliminary Technical Data  
C IR C U IT D E S C R IP T IO N  
P R E S C ALE R  
R E F E R E NC E INP U T SE C T IO N  
T he Reference Input stage is shown below in Figure 2.  
SW1 and SW2 are normally-closed switches. SW3 is  
T he dual-modulus prescaler takes the CML clock from  
the RF input stage and divides it down to a manageable  
frequency for the CMOS A and B counters. T he  
prescaler is set to 8/9 for the ADF4116, and set to 32/33  
for the ADF4117 & ADF4118. It is based on a synchro-  
nous 4/5 core.  
Powerdown  
Control  
A AND B C O UNTE RS  
T he A and B CMOS counters combine with the dual  
modulus prescaler to allow a wide ranging division ratio  
in the PLL feedback counter. T he counters are guaranteed  
to work when the prescaler output is 200MHz or less.  
T ypically, they will work with 250MHz output from the  
prescaler.  
100k  
NC  
SW2  
REFIN  
To R Counter  
NC  
SW1  
Buffer  
SW3  
NO  
P u lse Swallow F u n ction  
T he A and B counters, in conjunction with the dual modu-  
lus prescaler make it possible to generate output frequen-  
cies which are spaced only by the Reference Frequency  
divided by R . T he equation for the VCO frequency is as  
follows:  
Figure 2. Reference Input Stage  
fVCO = [(P x B) + A] x fREFIN /R  
normally-open. When Powerdown is initiated, SW3 is  
closed and SW1 and SW2 are opened. T his ensures that  
there is no loading of the REFIN pin on powerdown.  
fVCO  
:
Ouput Frequency of external voltage controlled  
oscillator (VC O).  
P :  
Preset modulus of dual modulus prescaler.  
RF INP UT STAGE  
B :  
Preset Divide Ratio of binary 13-bit counter (3 to  
8191).  
T he RF input stage is shown in Figure 3. It is followed  
by a 2-stage limiting amplifier to generate the CML clock  
levels needed for the prescaler.  
A:  
Preset Divide Ratio of binary 5-bit swallow  
counter (0 to 31).  
fREFIN: Ouput frequency of the external reference  
frequency oscillator.  
1.6V  
Bias  
Generator  
R :  
Preset divide ratio of binary 14-bit  
programmable reference counter (1 to 16383)  
AV  
DD  
500 Ω  
500 Ω  
R C O U N T ER  
T he 14-bit R counter allows the input reference frequency  
to be divided down to produce the input clock to the phase  
frequency detector (PFD). Division ratios from 1 to  
16,383 are allowed.  
RF  
RF  
A
B
IN  
IN  
N = BP + A  
13-BIT B  
COUNTER  
To PFD  
From RF  
Input Stage  
LOAD  
AGND  
PRESCALER  
P/P+1  
LOAD  
5-BIT A  
COUNTER  
Figure 3. RF Input Stage  
Modulus  
Control  
Figure 4. A and B Counters  
REV.PrH 12/99  
–6 –  
Preliminary Technical Data  
ADF4116/ADF4117/ADF4118  
P H ASE F RE Q UE NC Y D E T E C T O R (P F D ) AND  
C H AR G E P U M P  
DVDD  
T he PFD takes inputs from the R counter and N counter  
and produces an output proportional to the phase and  
frequency difference between them. Figure 5 is a simpli-  
fied schematic. T he PFD includes a fixed delay element  
Analog Lock Detect  
Digital Lock Detect  
R
N
Counter Output  
Counter Output  
M UX  
UP  
CONTROL  
MUXOUT  
HI  
D1  
Q1  
SDOUT  
U1  
+ IN  
CLR1  
DGND  
CHARGE  
PUMP  
U3  
CP  
Figure 6. MUXOUT Circuit  
INP UT SH IF T RE G IST E R  
CLR2  
U2  
T he ADF4116 family digital section includes a 21-bit  
input shift register, a 14-bit R counter and a 18-bit N  
counter, comprising a 5-bit A counter and a 13-bit B  
counter. Data is clocked into the 21-bit shift register on  
each rising edge of CLK. T he data is clocked in MSB  
first. Data is transferred from the shift register to one of  
four latches on the rising edge of LE. T he destination  
latch is determined by the state of the two control bits  
(C2, C1) in the shift register. T hese are the two lsb's  
DB1, DB0 as shown in the timing diagram of Figure 1.  
T he truth table for these bits is shown in T able 6. T able 1  
shows a summary of how the latches are programmed.  
DOWN  
HI  
D2  
Q2  
- IN  
Figure 5. PFD Sim plified Schem atic  
which sets the width of the anti-backlash pulse. T his is  
typically 3ns. T his pulse ensures that there is no deadzone  
in the PFD transfer function and gives a consistent refer-  
ence spur level.  
M UXO UT AND LO C K D E T E C T  
T he output multiplexer on the ADF4116 family allows  
the user to access various internal points on the chip. T he  
state of MUXOUT is controlled by M3, M2 and M1 in  
the Function Latch. T able 5 shows the full truth table.  
Figure 6 shows the MUXOUT section in block diagram  
form.  
Table 1. C2, C1 Tr uth Table  
C on tr ol Bits  
C 2  
C 1  
D a ta La tch  
0
0
1
1
0
1
0
1
R Counter  
N Counter (A and B)  
Function Latch  
Initialization Latch  
Lock D etect  
MUXOUT can be programmed for two types of lock  
detect:  
Digital Lock Detect and Analog Lock Detect  
Digital Lock Detect is active high. It is set high when the  
phase error on three consecutive Phase Detector cycles is  
less than 15ns. It will stay set high until a phase error of  
greater than 25ns is detected on any subsequent PD cycle.  
T he N-channel open-drain analog lock detect should be  
operated with an external pull-up resistor of 10k nominal.  
When lock has been detected it is high with narrow low-  
going pulses.  
REV.PrH 12/99  
–7 –  
ADF4116/ADF4117/ADF4118  
Preliminary Technical Data  
Table 2. AD F4116 Fam ily Latch Sum m ar y  
Reference Counter Latch  
Test  
Mode Bits  
Control  
Bits  
14-Bit Reference Counter  
DB20 DB19 DB18 DB17 DB16  
DB15 DB14 DB13 DB12 DB11 DB10  
R14 R13 R12 R11 R10 R9  
DB9  
R8  
DB8  
R7  
DB7  
R6  
DB6  
R5  
DB5  
R4  
DB4  
R3  
DB3  
R2  
DB2  
R1  
DB1  
DB0  
LDP  
T4  
T3  
T2  
T1  
C2 (0) C1 (0)  
N Counter Latch  
Control  
Bits  
13-Bit B Counter  
5-Bit A Counter  
DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12  
B13 B12 B11 B10 B9 B8 B7 B6  
DB11 DB10 DB9  
B5 B4 B3  
DB8  
B2  
DB7  
B1  
DB6  
A5  
DB5  
A4  
DB4  
A3  
DB3  
A2  
DB2  
A1  
DB1  
DB0  
DB20  
G1  
C2 (0) C1 (1)  
Function Latch  
Timer Counter  
Control  
MUXOUT  
Control  
Control  
Bits  
DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12  
TC4  
DB11 DB10 DB9  
F6  
DB8  
F3  
DB7  
F2  
DB6  
M3  
DB5  
M2  
DB4  
M1  
DB3  
PD1  
DB2  
F1  
DB1  
DB0  
F4  
PD2  
F5  
TC3  
TC2  
TC1  
C2 (1) C1 (0)  
Initialization Latch  
Timer Counter  
Control  
MUXOUT  
Control  
Control  
Bits  
DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12  
TC4  
DB11 DB10 DB9  
F6  
DB8  
F3  
DB7  
F2  
DB6  
M3  
DB5  
M2  
DB4  
M1  
DB3  
PD1  
DB2  
F1  
DB1  
DB0  
PD2  
TC3  
TC2  
TC1  
F5  
F4  
C2 (1) C1 (1)  
REV.PrH 12/99  
–8 –  
Preliminary Technical Data  
ADF4116/ADF4117/ADF4118  
R E F E R E NC E C O U NT E R LAT C H  
Table 3. Refer ence Counter Latch Map  
Test  
Mode Bits  
Control  
Bits  
14-Bit Reference Counter  
DB20 DB19 DB18 DB17 DB16  
LDP T4 T3 T2 T1  
DB15 DB14 DB13 DB12 DB11 DB10  
R14 R13 R12 R11 R10 R9  
DB9  
R8  
DB8  
R7  
DB7  
R6  
DB6  
R5  
DB5  
R4  
DB4  
R3  
DB3  
R2  
DB2  
R1  
DB1  
DB0  
C2 (0) C1 (0)  
R14  
R13  
R12  
..........  
R3  
R2  
0
1
1
0
.
R1  
Divide Ratio  
0
0
0
0
.
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
0
0
1
.
1
0
1
0
.
1
2
3
4
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
0
0
16380  
1
1
1
1
1
1
1
1
1
..........  
..........  
..........  
1
1
1
0
1
1
1
0
1
16381  
16382  
16383  
Test M ode Bits should  
be set to 0000 for  
Normal Operation  
LDP  
0
Operation  
3 consecutive cycles of phase delay less than  
15ns must occur before lock detect is set.  
5 consecutive cycles of phase delay less than  
15ns must occur before lock detect is set.  
1
REV.PrH 12/99  
–9 –  
ADF4116/ADF4117/ADF4118  
Preliminary Technical Data  
N C O U NT E R LAT C H  
Table 4. N Counter Latch Map  
Control  
Bits  
13-Bit B Counter  
5-Bit A Counter  
DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12  
DB11 DB10 DB9  
DB8  
B2  
DB7  
B1  
DB6  
A5  
DB5  
A4  
DB4  
A3  
DB3  
A2  
DB2  
A1  
DB1  
DB0  
DB20  
G1  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
C2 (0) C1 (1)  
A5  
A4  
A3  
A2  
A1  
A Counter  
Divide Ratio  
X
X
.
X
X
.
0
0
.
0
0
.
0
1
.
0
1
.
ADF4116  
.
.
.
.
.
.
X
X
X
X
1
1
1
1
0
1
6
7
A5  
A4  
A3  
A2  
A1  
A Counter  
Divide Ratio  
0
0
0
.
0
0
0
.
0
0
0
.
0
0
1
.
0
1
0
.
0
1
2
.
ADF4117 / ADF4118  
.
.
.
.
.
.
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
29  
30  
31  
B13  
B12  
B11  
B3  
0
0
0
1
.
B2  
0
1
1
0
.
B1  
B Counter Divide Ratio  
0
0
0
0
.
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
1
0
1
0
.
1
2
3
4
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
0
0
8188  
1
1
1
1
1
1
1
1
1
..........  
..........  
..........  
1
1
1
0
1
1
1
0
1
8189  
8190  
8191  
G1  
0
Current Setting  
250uA  
1
1mA  
N = BP + A, P is prescaler value set in the Function Latch  
B must be greater than or equal to A  
For contiguous values of N, NM IN is (P2 - P)  
REV.PrH 12/99  
–1 0 –  
Preliminary Technical Data  
ADF4116/ADF4117/ADF4118  
F U NC T IO N LAT C H  
Table 5. Function Latch Map  
Timer Counter  
Control  
MUXOUT  
Control  
Control  
Bits  
DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
F3  
DB7  
F2  
DB6  
M3  
DB5  
M2  
DB4  
M1  
DB3  
PD1  
DB2  
F1  
DB1  
DB0  
F6  
TC4  
PD2  
TC3  
TC2  
TC1  
F5  
F4  
C2 (1) C1 (0)  
F1  
Counter  
Operation  
Normal  
0
1
R, A,  
B Counter  
Held in Reset  
CE Pin  
PD2  
PD1  
M ode  
0
1
1
1
X
X
0
1
X
0
1
1
Asynchronous P ower-Down  
Normal O peration  
M 3  
0
M 2  
0
M 1  
0
Output  
3-State Outp ut  
Digital Lock Detect  
(Active High)  
Asynchronous P ower-Down  
Synchronous P ow er-Down  
0
0
1
0
0
1
1
1
1
0
0
0
1
0
1
N
Divider Output  
AVDD  
R
Divider Output  
N-Channel O pen-Drain  
Lock Detect  
Serial Data Output  
DGN D  
1
1
1
1
0
1
F3  
PD Polarity  
0
1
Negative  
Positive  
F3  
Charge Pump  
Output  
0
1
Normal  
3-State  
F4  
0
F6  
X
Fastlock M ode  
Fastlock Disabled  
1
0
Fastlock M ode  
Fastlock M ode  
1
2
1
1
TC4  
TC3  
TC2  
TC1  
Tim eout  
(P FD Cycles)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
3
7
11  
15  
19  
23  
27  
31  
35  
39  
43  
47  
51  
55  
59  
63  
REV.PrH 12/99  
–1 1 –  
ADF4116/ADF4117/ADF4118  
Preliminary Technical Data  
INIT IALIZAT IO N LAT C H  
Table 6. Initialization Latch Map  
Timer Counter  
Control  
M UXO UT  
Control  
Control  
Bits  
DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
F3  
DB7  
F2  
DB6  
M3  
DB5  
M2  
DB4  
M1  
DB3  
PD1  
DB2  
F1  
DB1  
DB0  
F6  
TC4  
F5  
F4  
PD2  
TC3  
TC2  
TC1  
C2 (1) C1 (1)  
F1  
Counter  
Operation  
Normal  
0
1
R, A,  
B Counters  
Held in Reset  
CE Pi  
PD2  
PD1  
M ode  
M 3  
0
M 2  
0
M 1  
0
Output  
0
1
1
1
X
X
0
1
X
0
1
1
Asynchronous Power-Down  
Normal Operation  
3-S tate Output  
Digital Lock Detect  
(Active High)  
0
0
1
Asynchronous Power-Down  
Synchronous Power-Down  
0
0
1
1
0
1
N
Divider Output  
AVDD  
1
1
0
0
0
1
R
Divider Output  
N-Channel Open-Drain  
Lock Detect  
Serial Data Output  
DGN D  
1
1
1
1
0
1
F3  
PD Polarity  
0
1
Negative  
Positive  
F3  
Charge Pump  
Output  
0
1
Normal  
3-S tate  
F4  
0
F6  
X
Fastlock Mode  
Fastlock Disabled  
1
0
Fastlock Mode  
Fastlock Mode  
1
2
1
1
TC4  
TC3  
TC2  
TC1  
Timeout  
(PFD Cycles)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
3
7
11  
15  
19  
23  
27  
31  
35  
39  
43  
47  
51  
55  
59  
63  
REV.PrH 12/99  
–1 2 –  
Preliminary Technical Data  
ADF4116/ADF4117/ADF4118  
F astlock E nable Bit  
T H E F UNC T IO N LAT C H  
DB9 of the Function Latch is the Fastlock Enable Bit.  
Only when this is “1” is Fastlock enabled.  
With C2, C1 set to 1,0, the on-chip function latch will be  
programmed. T able 5 shows the input data format for  
programming the Function Latch.  
Fastlock Mode Bit  
DB11 of the Function Latch is the Fastlock Mode bit.  
When Fastlock is enabled, this bit determines which  
Fastlock Mode is used. If the Fastlock Mode bit is “0”  
then Fastlock Mode 1 is selected and if the Fastlock  
Mode bit is “1”, then Fastlock Mode 2 is selected.  
If Fastlock is not enabled (DB9 = “0”), then DB11  
(ADF4116) determines the state of the FLO output. FLO  
state will be the same as that programmed to DB11.  
Counter Reset  
DB2 (F1) is the counter reset bit. When this is “1”, the  
R counter and the A,B counters are reset. For normal  
operation this bit should be “0”. Upon powering up, the F1 bit  
needs to be disabled, the N counter resumes counting in close” align-  
ment with the R counter. (The maximum error is one prescaler cycle).  
P ower D own  
DB3 (PD1) and DB19 (PD2) on the ADF4116, provide  
programmable power-down modes. T hey are enabled by  
the CE pin.  
When the CE pin is low, the device is immediately dis-  
abled regardless of the states of PD2, PD1.  
Fa stlock Mode 1  
In the ADF4116 family, the output level of FLO is pro-  
grammed to a low state and the charge pump current is  
switched to the high value (1mA). FLO is used to switch a  
resistor in the loop filter and ensure stability while in  
Fastlock by altering the loop bandwidth.  
In the programmed asynchronous power-down, the device  
powers down immediately after latching a “1” into bit  
PD1, with the condition that PD2 has been loaded with a  
0” .  
T he device enters Fastlock by having a “1” written to the  
CP Gain bit in the N register. T he device exits Fastlock  
by having a “0” written to the CP Gain bit in the N regis-  
ter.  
In the programmed synchronous power-down, the device  
power down is gated by the charge pump to prevent un-  
wanted frequency jumps. Once the power-down is enabled  
by writing a “1” into bit PD1 (on condition that a “1” has  
also been loaded to PD2), then the device will go into  
power-down after the first successive charge pump event.  
Fa stlock Mode 2  
In the ADF4116 family, the output level of FLO is pro-  
grammed to a low state and the charge pump current is  
switched to the high value (1mA). FLO is used to switch a  
resistor in the loop filter and ensure stability while in  
Fastlock by altering the loop bandwidth.  
When a power down is activated (either synchronous or  
asynchronous mode including CE-pin-activated power  
down), the following events occur:  
T he device enters Fastlock by having a “1” written to the  
CP Gain bit in the N register. T he device exits Fastlock  
under the control of the T imer Counter. After the  
timeout period determined by the value in T C4 - T C1,  
the CP Gain bit in the N register is automatically reset to  
“0” and the device reverts to normal mode instead of  
F astlock.  
All active DC current paths are removed.  
T he R, N and timeout counters are forced to their load  
state conditions.  
T he charge pump is forced into three-state mode.  
T he digital clock detect circuitry is reset.  
T he RFIN input is debiased.  
T he oscillator input buffer circuitry is disabled.  
T he input register remains active and capable of loading  
and latching data.  
M U XO U T C on t r ol  
T he on-chip multiplexer is controlled by M3, M2 and  
M1 on the an ADF4116 family. T able 5 shows the truth  
table.  
P h a se D etector P ola r ity  
DB7 (F2) of the function latch sets the Phase Detector  
Polarity. When the VCO characteristics are positive this  
should be set to “1”. When they are negative it should be  
set to “0”.  
C h a r ge P u m p T h r ee- Sta te  
T his bit puts the charge pump into three-state mode when  
programmed to a “1”. It should be set to “0” for normal  
operation.  
REV.PrH 12/99  
–1 3 –  
ADF4116/ADF4117/ADF4118  
Preliminary Technical Data  
In itia liza tion La tch Meth od .  
Tim er Counter Contr ol  
In the ADF4116 family, the user has the option of switch-  
ing between two charge pump current values to speed up  
locking to a new frequency.  
Apply VDD  
.
Program the Initialization Latch (“11” in 2 lsb’s of input  
word). Make sure that F1bit is programmed to “0”.  
T hen do an R load (“00” in 2 lsb’s).  
T hen do an N load (“01” in 2 lsb’s).  
When the Initialisation Latch is loaded, the following  
occurs:  
When using the Fastlock feature with the ADF4116 fam-  
ily, the normal sequence of events is as follows:  
T he user must make sure that Fastlock is enabled. Set  
DB9 of the ADF4116 family to “1”. T he user must also  
choose which Fastlock Mode to use. As discussed in the  
previous section, Fastlock Mode 2 uses the values in the  
T imer Counter to determine the timeout period before  
reverting to normal mode operation after Fastlock.  
Fastlock Mode 2 is chosen by setting DB11 of the  
ADF4116 family to “1”.  
1. T he function latch contents are loaded.  
2. An internal pulse resets the R, N and timeout counters  
to load state conditions and also tri-states the charge  
pump. Note that the prescaler bandgpap reference and  
the oscillator input buffer are unaffected by the internal  
reset pulse, allowing close phase alignment when counting  
resumes.  
3. Latching the first N counter data after the initialisation  
word will activate the same internal reset pulse. Succes-  
sive N loads will not trigger the internal reset pulse unless  
there is another initialisation.  
T he user must also decide how long they want the high  
current (1mA) to stay active before reverting to low cur-  
rent (250uA). T his is controlled by the T imer Counter  
Control Bits DB14 to DB11 (T C4 - T C1) in the Func-  
tion Latch. T he truth table is given in T able 5.  
The CE pin Method.  
Now, when the user wishes to program a new output fre-  
quency, they can simply program the A,B counter latch  
with new values for A and B. At the same time they can  
set the CP Gain bit to a “1” ,which sets the charge pump  
1mA for a period of time determined by T C4 - T C1.  
When this time is up, the charge pump current reverts to  
250uA. At the same time the CP Gain Bit in the A, B  
Counter latch is reset to 0 and is now ready for the next  
time that the user wishes to change the frequency again.  
Apply VDD  
.
Bring CE low to put the device into power-down. T his is  
an asychronous power-down in that it happens immedi-  
ately.  
Program the Function Latch (10).  
Program the R Counter Latch (00).  
Program the N Counter Latch (01).  
Bring CE high to take the device out of power-down.  
T he R and N counter will now resume counting in close  
alignment.  
Note that after CE goes high, a duration of 1us may be  
required for the prescaler bandgap voltage and oscillator  
input buffer bias to reach steady state.  
CE can be used to power the device up and down in order  
to check for channel activity. T he input register does not  
need to be reprogrammed each time the device is disabled  
and enabled as long as it has been programmed at least  
once after Vcc was initially applied.  
T h e In itia liza tion La tch  
When C2, C1 = 1, 1 then the Initialization Latch is pro-  
grammed. T his is essentially the same as the Function  
Latch (programmed when C2, C1 = 1, 0).  
H owever, when the Initialization Latch is programmed  
there is a additional internal reset pulse applied to the R  
and N counters. T his pulse ensures that the N counter is  
at load point when the N counter data is latched and the  
device will begin counting in close phase alignment.  
The Cou n ter Reset Method  
Apply VDD  
.
If the Latch is programmed for synchronous powerdown  
(CE pin is High; PD1 bit is High; PD2 bit is Low), the  
internal pulse also triggers this powerdown. T he prescaler  
reference and the oscillator input buffer are unaffected by  
the internal reset pulse and so close phase alignment is  
maintained when counting resumes.  
Do a Function Latch Load (“10” in 2 lsb’s). As part of  
this, load “1” to the F1 bit. T his enables the counter re-  
set.  
Do an R Counter Load (“00” in 2 lsbs).  
Do an N Counter Load (“01” in 2 lsbs).  
Do a Function Latch Load (“10” in 2 lsb’s). As part of  
this, load “0” to the F1 bit. T his disables the counter  
reset.  
T his sequence provides the same close alignment as the  
initialization method. It offers direct control over the  
internal reset. Note that counter reset holds the counters at  
load point and tri-states the charge pump, but does not  
trigger synchronous power-down. T he counter reset  
method requires an extra function latch load compared to  
the initialization latch method.  
When the first N counter data is latched after initializa-  
tion, the internal reset pulse is again activated. However,  
successive N counter loads after this will not trigger the  
internal reset pulse.  
D evice P r ogr am m in g After In itial P ower - Up.  
After initially powering up the device, there are three ways  
to program the device.  
REV.PrH 12/99  
–1 4 –  

相关型号:

ADF4116BRU

RF PLL Frequency Synthesizers
ADI

ADF4116BRU-REEL

RF PLL Frequency Synthesizers
ADI

ADF4116BRU-REEL7

RF PLL Frequency Synthesizers
ADI

ADF4116BRUZ

Single, Integer-N 550 MHz PLL
ADI

ADF4116BRUZ-REEL

Single, Integer-N 550 MHz PLL
ADI

ADF4116BRUZ-REEL1

RF PLL Frequency Synthesizers
ADI

ADF4116BRUZ-REEL7

Single, Integer-N 550 MHz PLL
ADI

ADF4116BRUZ-REEL71

RF PLL Frequency Synthesizers
ADI

ADF4116BRUZ1

RF PLL Frequency Synthesizers
ADI

ADF4116_07

RF PLL Frequency Synthesizers
ADI

ADF4116_15

RF PLL Frequency Synthesizers
ADI

ADF4117

RF PLL Frequency Synthesizers
ADI