ADF5355BCPZ [ADI]

Microwave Wideband Synthesizer with Integrated VCO;
ADF5355BCPZ
型号: ADF5355BCPZ
厂家: ADI    ADI
描述:

Microwave Wideband Synthesizer with Integrated VCO

文件: 总39页 (文件大小:831K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Microwave Wideband Synthesizer  
with Integrated VCO  
Data Sheet  
ADF5355  
FEATURES  
GENERAL DESCRIPTION  
RF output frequency range: 54 MHz to 13,600 MHz  
Fractional-N synthesizer and integer-N synthesizer  
High resolution 38-bit modulus  
The ADF5355 allows implementation of fractional-N or  
integer-N phase-locked loop (PLL) frequency synthesizers  
when used with an external loop filter and an external reference  
frequency. The wideband microwave VCO design permits  
frequency operation from 6.8 GHz to 13.6 GHz at one radio  
frequency (RF) output. A series of frequency dividers at another  
frequency output permits operation from 54 MHz to 6800 MHz.  
Phase frequency detector (PFD) operation to 125 MHz  
Reference frequency operation to 600 MHz  
Maintains frequency lock over −40°C to +85°C  
Low phase noise, voltage controlled oscillator (VCO)  
Programmable divide by 1, 2, 4, 8, 16, 32, or 64 output  
Analog and digital power supplies: 3.3 V  
Charge pump and VCO power supplies: 5.0 V, typical  
Logic compatibility: 1.8 V  
The ADF5355 has an integrated VCO with a fundamental  
output frequency ranging from 3400 MHz to 6800 MHz. In  
addition, the VCO frequency is connected to divide by 1, 2, 4, 8,  
16, 32, or 64 circuits that allow the user to generate RF output  
frequencies as low as 54 MHz. For applications that require  
isolation, the RF output stage can be muted. The mute function  
is both pin and software controllable.  
Programmable dual modulus prescaler of 4/5 or 8/9  
Programmable output power level  
RF output mute function  
Analog and digital lock detect  
Control of all on-chip registers is through a simple 3-wire interface.  
The ADF5355 operates with analog and digital power supplies  
ranging from 3.15 V to 3.45 V, with charge pump and VCO  
supplies from 4.75 V to 5.25 V. The ADF5355 also contains  
hardware and software power-down modes.  
Supported in the ADIsimPLL design tool  
APPLICATIONS  
Wireless infrastructure (W-CDMA, TD-SCDMA,  
WiMAX, GSM, PCS, DCS, DECT)  
Point to point/point to multipoint microwave links  
Satellites/VSATs  
Test equipment/instrumentation  
Clock generation  
FUNCTIONAL BLOCK DIAGRAM  
AV  
DV  
V
R
V
VCO  
AV  
V
RF  
CE  
DD  
DD  
P
SET  
DD  
MULTIPLEXER  
MUXOUT  
10-BIT R  
COUNTER  
÷2  
DIVIDER  
REF  
A
B
IN  
×2  
DOUBLER  
C
1
2
REG  
REG  
LOCK  
DETECT  
REF  
IN  
C
CLK  
DATA  
LE  
CHARGE  
PUMP  
CP  
OUT  
DATA REGISTER  
FUNCTION  
LATCH  
PHASE  
COMPARATOR  
V
V
TUNE  
REF  
V
VCO  
CORE  
BIAS  
×2  
INTEGER  
REG  
FRACTION  
REG  
MODULUS  
REG  
V
REGVCO  
OUTPUT  
STAGE  
RF  
B
THIRD-ORDER  
FRACTIONAL INTERPOLATOR  
OUT  
PDB  
RF  
RF  
÷ 1/2/4/8/  
16/32/64  
A+  
A–  
OUTPUT  
STAGE  
OUT  
N COUNTER  
RF  
OUT  
ADF5355  
MULTIPLEXER  
A
CP  
SD  
A
GNDVCO  
A
GND  
GND  
GND  
GNDRF  
Figure 1.  
4
Rev. D  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADF5355* PRODUCT PAGE QUICK LINKS  
Last Content Update: 10/03/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
REFERENCE MATERIALS  
Technical Articles  
Low Cost PLL with Integrated VCO Enables Compact LO  
Solutions  
EVALUATION KITS  
ADF5355 Evaluation Board  
DESIGN RESOURCES  
ADF5355 Material Declaration  
PCN-PDN Information  
DOCUMENTATION  
Application Notes  
Quality And Reliability  
Symbols and Footprints  
AN-1460: Upgrading from the ADF5355 to the ADF5356  
Data Sheet  
ADF5355: Microwave Wideband Synthesizer with  
DISCUSSIONS  
Integrated VCO Data Sheet  
User Guides  
View all ADF5355 EngineerZone Discussions.  
UG-802: Evaluating the ADF5355 Frequency Synthesizer  
for Phase-Locked Loops  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
TOOLS AND SIMULATIONS  
ADIsimFrequency Planner Tool  
• ADIsimPLL™  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
ADF5355  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Register 4 ..................................................................................... 26  
Register 5 ..................................................................................... 27  
Register 6 ..................................................................................... 28  
Register 7 ..................................................................................... 30  
Register 8 ..................................................................................... 31  
Register 9 ..................................................................................... 31  
Register 10................................................................................... 32  
Register 11................................................................................... 32  
Register 12................................................................................... 33  
Register Initialization Sequence ............................................... 33  
Frequency Update Sequence..................................................... 33  
RF Synthesizer—A Worked Example ...................................... 34  
Reference Doubler and Reference Divider ............................. 34  
Spurious Optimization and Fast Lock..................................... 34  
Optimizing Jitter......................................................................... 35  
Spur Mechanisms ....................................................................... 35  
Lock Time.................................................................................... 35  
Applications Information .............................................................. 36  
Power Supplies............................................................................ 36  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 3  
Specifications..................................................................................... 4  
Timing Characteristics ................................................................ 7  
Absolute Maximum Ratings............................................................ 8  
Transistor Count........................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 11  
Circuit Description......................................................................... 16  
Reference Input........................................................................... 16  
RF N Divider............................................................................... 16  
Phase Frequency Detector (PFD) and Charge Pump............ 17  
MUXOUT and Lock Detect...................................................... 17  
Input Shift Registers................................................................... 17  
Program Modes .......................................................................... 18  
VCO.............................................................................................. 18  
Output Stage................................................................................ 18  
Register Maps.................................................................................. 20  
Register 0 ..................................................................................... 22  
Register 1 ..................................................................................... 23  
Register 2 ..................................................................................... 24  
Register 3 ..................................................................................... 25  
Printed Circuit Board (PCB) Design Guidelines for a Chip-  
Scale Package .............................................................................. 36  
Output Matching........................................................................ 37  
Outline Dimensions....................................................................... 38  
Ordering Guide .......................................................................... 38  
Rev. D | Page 2 of 38  
Data Sheet  
ADF5355  
REVISION HISTORY  
8/2017—Rev. C to Rev D  
Changes to Table 4 ..........................................................................10  
Changes to Figure 4 to Figure 6 ....................................................11  
Added Figure 7 to Figure 9; Renumbered Sequentially.............11  
Changes to Figure 10 to Figure 18 ................................................12  
Changes to Figure 20 ......................................................................13  
Changes to Figure 23 and Figure 27.............................................14  
Changes to Figure 28 to Figure 30 and Figure 31 Caption........15  
Changes to Reference Input Section and INT, FRAC, MOD,  
and R Counter Relationship Section ............................................16  
Changes to Phase Frequency Detector (PFD) and Charge Pump  
Section ..............................................................................................17  
Changes to VCO Section and Output Stage Section..................18  
Changes to Automatic Calibration (AUTOCAL) Section.........22  
Changes to Figure 43 ......................................................................24  
Changes to MUXOUT Section......................................................26  
Changes to Reference Mode Section and Counter Reset  
Section ..............................................................................................27  
Changes to Negative Bleed Section...............................................28  
Changes to Charge Pump Bleed Current Section.......................29  
Changes to Register 9 Section, VCO Band Division Section,  
Timeout Section, Automatic Level Calibration Timeout Section,  
and Synthesizer Lock Timeout Section........................................31  
Changes to ADC Conversion Clock (ADC_CLK_DIV)  
Changes to Frequency Update Sequence Section.......................34  
Updated Outline Dimensions........................................................38  
Changes to Ordering Guide...........................................................38  
4/2017—Rev. B to Rev C  
Changes to Figure 55 and Power Supplies Section .....................36  
1/2017—Rev. A to Rev B  
Change to Features Section..............................................................1  
Changes to Doubler Enabled Parameter and Endnote 3, Table 1.....4  
Changes to Table 2 ............................................................................7  
Changes to Table 3 ............................................................................8  
Changes to Table 4 ............................................................................9  
Changes to Reference Input Section and Figure 32 Caption.....16  
Changes to Table 6 ..........................................................................19  
Changes to Phase Resync Section.................................................25  
Change to Reference Doubler Section..........................................26  
Changes to Power-Down Section..................................................27  
Changes to Negative Bleed Section...............................................28  
Changes to Loss of Lock (LOL) Mode Section............................30  
Changes to Register Initialization Sequence Section and Frequency  
Update Sequence Section .................................................................33  
Changes to Power Supplies Section and Figure 55 .....................36  
Section ..............................................................................................32  
Changes to Phase Resync Clock Divider Value Section and  
Frequency Update Sequence Section............................................33  
Changes to RF Synthesizer—A Worked Example Section ........34  
Changes to Lock Time Section and Automatic Level  
2/2015—Rev. 0 to Rev. A  
Changed Register 5, Bit DB5 Value from 0 to 1 ........ Throughout  
Changed Register 5 Default Value from 0x00800005 to  
0x00800025 .................................................................... Throughout  
Changed Register 8 Default Value from 0x102D4028 to  
0x102D0428 ................................................................... Throughout  
Changes to Table 1 ............................................................................4  
Changed Timing Diagram Section to Write Timing Diagram  
Section ................................................................................................7  
Calibration Timeout Section .........................................................35  
Added Lock Time—A Worked Example Section .......................35  
10/2014—Revision 0: Initial Version  
Rev. D | Page 3 of 38  
 
ADF5355  
Data Sheet  
SPECIFICATIONS  
AVDD = DVDD = VRF = 3.3 V 5%, 4.75 V ≤ VP = VVCO ≤ 5.25 V, AGND = CPGND = AGNDVCO = SDGND = AGNDRF = 0 V, R SET = 5.1 kΩ, dBm referred  
to 50 Ω, TA = TMIN to TMAX, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
REFINA/REFINB CHARACTERISTICS  
Input Frequency  
For f < 10 MHz, ensure slew rate >  
21 V/µs  
Single-Ended Mode  
Differential Mode  
Doubler Enabled  
Input Sensitivity  
10  
10  
250  
600  
100  
MHz  
MHz  
MHz  
Doubler is set in Register 4, Bit DB26  
Single-Ended Mode  
0.4  
0.4  
AVDD  
1.8  
V p-p  
V p-p  
REFINA biased at AVDD/2;  
ac coupling ensures AVDD/2 bias  
LVDS and LVPECL compatible,  
REFINA/REFINB biased at 2.1 V;  
ac coupling ensures 2.1 V bias  
Differential Mode  
Input Capacitance  
Single-Ended Mode  
Differential Mode  
Input Current  
6.9  
1.4  
pF  
pF  
µA  
µA  
MHz  
60  
250  
125  
Single-ended reference programmed  
Differential reference programmed  
Phase Detector Frequency  
CHARGE PUMP (CP)  
Charge Pump Current, Sink/Source  
High Value  
Low Value  
RSET Range  
Current Matching  
ICP vs. VCP  
ICP vs. Temperature  
LOGIC INPUTS  
ICP  
RSET = 5.1 kΩ  
4.8  
0.3  
5.1  
3
3
1.5  
mA  
mA  
kΩ  
%
%
%
Fixed  
0.5 V ≤ VCP1 ≤ VP − 0.5 V  
0.5 V ≤ VCP1 ≤ VP − 0.5 V  
VCP1 = 2.5 V  
Input High Voltage  
Input Low Voltage  
Input Current  
Input Capacitance  
LOGIC OUTPUTS  
Output High Voltage  
VINH  
VINL  
IINH/IINL  
CIN  
1.5  
V
V
µA  
pF  
0.6  
1
3.0  
1.8  
VOH  
DVDD  
0.4  
1.5  
V
V
1.8 V output selected  
Output High Current  
Output Low Voltage  
IOH  
VOL  
500  
0.4  
µA  
V
IOL2 = 500 µA  
See Table 6  
POWER SUPPLIES  
Analog Power  
AVDD  
3.15  
4.75  
3.45  
V
V
Digital Power and RF Supply Voltage  
Charge Pump and VCO Supply Voltage  
Charge Pump Supply Power Current  
DVDD, VRF  
VP, VVCO  
IP  
AVDD  
5.0  
8
62  
6 to  
36  
Voltages must equal AVDD  
VP must equal VVCO  
5.25  
9
69  
3
DIDD + AIDD  
mA  
mA  
Output Dividers  
Supply Current  
Each output divide by 2 consumes  
6 mA  
IVCO  
70  
85  
mA  
Rev. D | Page 4 of 38  
 
Data Sheet  
ADF5355  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
RFOUTA /RFOUTB Supply Current  
IRF  
OUTx  
RFOUTA output stage is  
programmable; enabling RFOUT  
B
draws negligible extra current  
16  
30  
42  
55  
500  
1000  
20  
35  
50  
70  
mA  
mA  
mA  
mA  
µA  
−4 dBm setting  
−1 dBm setting  
2 dBm setting  
5 dBm setting  
Hardware power-down selected  
Software power-down selected  
Low Power Sleep Mode  
µA  
RF OUTPUT CHARACTERISTICS  
VCO Frequency Range  
RFOUTB Output Frequency  
RFOUTA+/RFOUTA− Output Frequency  
VCO Sensitivity  
3400  
6800  
53.125  
6800  
13600  
6800  
MHz  
MHz  
MHz  
MHz/V  
MHz/V  
MHz  
Fundamental VCO range  
2× VCO output (RFOUTB)  
KV  
15  
15  
0.5  
Frequency Pushing (Open-Loop)  
Frequency Pulling (Open-Loop)  
Voltage standing wave ratio (VSWR) =  
2:1 RFOUTA+/RFOUTA−  
30  
MHz  
VSWR = 2:1 RFOUTB  
Harmonic Content  
Second  
−27  
−22  
−20  
−12  
−8  
dBc  
dBc  
dBc  
dBc  
dBm  
dBc  
Fundamental VCO output (RFOUTA+)  
Divided VCO output (RFOUTA+)  
Fundamental VCO output (RFOUTA+)  
Divided VCO output (RFOUTA+)  
RFOUTB = 10 GHz  
RFOUTA+/RFOUTA− = 1 GHz;  
VCO frequency = 4 GHz  
RFOUTA+ = 1 GHz; 7.5 nH inductor to VRF  
Third  
Fundamental VCO Feedthrough  
−55  
RF Output Power4  
+8  
−3  
dBm  
dBm  
RFOUTA+/RFOUTA− = 6.8 GHz;  
7.5 nH inductor to VRF  
1
−1  
1
dBm  
dBm  
dB  
RFOUTB = 6.8 GHz  
RFOUTB = 13.6 GHz  
RFOUTA+/RFOUTA− = 5 GHz  
RFOUTB = 10 GHz  
RF Output Power Variation  
1
dB  
RF Output Power Variation (over Frequency)  
Level of Signal with RF Output Disabled  
6
4
−60  
−30  
−15  
−17  
dB  
dB  
dBm  
dBm  
dBm  
dBm  
RFOUTA+/RFOUTA− = 1 GHz to 6.8 GHz  
RFOUTB = 6.8 GHz to 13.6 GHz  
RFOUTA+/RFOUTA− = 1 GHz  
RFOUTA+/RFOUTA− = 6.8 GHz  
RFOUTB = 6.8 GHz  
RFOUTB = 13.6 GHz  
NOISE CHARACTERISTICS  
Fundamental VCO Phase Noise Performance  
VCO noise in open-loop conditions  
100 kHz offset from 3.4 GHz carrier  
800 kHz offset from 3.4 GHz carrier  
1 MHz offset from 3.4 GHz carrier  
10 MHz offset from 3.4 GHz carrier  
100 kHz offset from 5.0 GHz carrier  
800 kHz offset from 5.0 GHz carrier  
1 MHz offset from 5.0 GHz carrier  
10 MHz offset from 5.0 GHz carrier  
100 kHz offset from 6.8 GHz carrier  
800 kHz offset from 6.8 GHz carrier  
1 MHz offset from 6.8 GHz carrier  
10 MHz offset from 6.8 GHz carrier  
−116  
−136  
−138  
−155  
−113  
−133  
−135  
−153  
−110  
−130  
−132  
−150  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Rev. D | Page 5 of 38  
ADF5355  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
VCO 2× Phase Noise Performance  
VCO noise in open-loop conditions  
100 kHz offset from 6.8 GHz carrier  
800 kHz offset from 6.8 GHz carrier  
1 MHz offset from 6.8 GHz carrier  
10 MHz offset from 6.8 GHz carrier  
100 kHz offset from 10 GHz carrier  
800 kHz offset from 10 GHz carrier  
1 MHz offset from 10 GHz carrier  
10 MHz offset from 10 GHz carrier  
100 kHz offset from 13.6 GHz carrier  
800 kHz offset from 13.6 GHz carrier  
1 MHz offset from 13.6 GHz carrier  
10 MHz offset from 13.6 GHz carrier  
−110  
−130  
−132  
−149  
−107  
−127  
−129  
−147  
−103  
−124  
−126  
−144  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Normalized In-Band Phase Noise Floor  
Fractional Channel5  
−221  
−223  
−116  
150  
dBc/Hz  
dBc/Hz  
dBc/Hz  
fs  
Integer Channel6  
7
Normalized 1/f Noise, PN1_f  
10 kHz offset; normalized to 1 GHz  
Integrated RMS Jitter  
Spurious Signals due to PFD Frequency  
−80  
dBc  
1 VCP is the voltage at the CPOUT pin.  
2 IOL is the output low current.  
3 TA = 25°C; AVDD = DVDD = VRF = 3.3 V; VVCO = VP = 5.0 V; prescaler = 4/5; fREF = 122.88 MHz; fPFD = 61.44 MHz; and fRF = 1650 MHz. For the nominal DIDD + AIDD (62 mA):  
IN  
DIDD = 15 mA (typical), AIDD (Pin 5) = 24 mA (typical), AIDD (Pin 16) = 23 mA (typical).  
4 RF output power using the EV-ADF5355SD1Z evaluation board measured into a spectrum analyzer, with board and cable losses de-embedded. Unused RF output pins  
are terminated in 50 Ω.  
5 Use this value to calculate the phase noise for any application. To calculate in-band phase noise performance as seen at the VCO output, use the following formula:  
−221 + 10log(fPFD) + 20logN. The value given is the lowest noise mode for the fractional channel.  
6 Use this value to calculate the phase noise for any application. To calculate in-band phase noise performance as seen at the VCO output, use the following formula:  
−223 + 10log(fPFD) + 20logN. The value given is the lowest noise mode for the integer channel.  
7 The PLL phase noise is composed of 1/f (flicker) noise plus the normalized PLL noise floor. The formula for calculating the 1/f noise contribution at an RF frequency (fRF)  
and at a frequency offset (f) is given by PN = P1_f + 10log(10 kHz/f) + 20log(fRF/1 GHz). Both the normalized phase noise floor and flicker noise are modeled in the  
ADIsimPLL design tool.  
Rev. D | Page 6 of 38  
Data Sheet  
ADF5355  
TIMING CHARACTERISTICS  
AVDD = DVDD =VRF = 3.3 V ꢀ%, 4.7ꢀ V ≤ VP = VVCO ≤ ꢀ.2ꢀ V, AGND = CPGND = AGNDVCO = SDGND = AGNDRF = 0 V, RSET = ꢀ.1 kΩ, dBm referred  
to ꢀ0 Ω, TA = TMIN to TMAX, unless otherwise noted.  
Table 2. Write Timing  
Parameter  
Limit  
Unit  
Description  
fCLK  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
50  
10  
5
5
10  
10  
5
MHz max  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
Serial peripheral interface CLK frequency  
LE setup time  
DATA to CLK setup time  
DATA to CLK hold time  
CLK high duration  
CLK low duration  
CLK to LE setup time  
LE pulse width  
20 (or 2/fPFD, whichever is longer)  
Write Timing Diagram  
t4  
t5  
CLK  
t2  
t3  
DB3  
DB2  
DB1  
DB0 (LSB)  
(CONTROL BIT C1)  
DB31 (MSB)  
DB30  
DATA  
LE  
(CONTROL BIT C4)  
(CONTROL BIT C3)  
(CONTROL BIT C2)  
t7  
t1  
t6  
Figure 2. Write Timing Diagram  
Rev. D | Page 7 of 38  
 
 
ADF5355  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 3.  
Parameter  
VRF, DVDD, AVDD to GND1, 2  
Rating  
−0.3 V to +3.6 V  
−0.3 V to +0.3 V  
−0.3 V to +5.8 V  
−0.3 V to VP + 0.3 V  
−0.3 V to DVDD + 0.3 V  
−0.3 V to AVDD + 0.3 V  
−0.3 V to AVDD + 0.3 V  
2.1 V  
AVDD to DVDD  
VP, VVCO to GND1  
CPOUT to GND1  
Digital Input/Output Voltage to GND1  
Analog Input/Output Voltage to GND1  
REFINA, REFINB to GND1  
REFINA to REFINB  
The ADF5355 is a high performance RF integrated circuit with  
an ESD rating of 2.5 kV and is ESD sensitive. Take proper  
precautions for handling and assembly.  
TRANSISTOR COUNT  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
−40°C to +85°C  
−65°C to +125°C  
150°C  
The transistor count for the ADF5355 is 103,665 (CMOS) and  
3214 (bipolar).  
ESD CAUTION  
θJA, Thermal Impedance Paddle  
Soldered to GND1  
27.3°C/W  
Reflow Soldering  
Peak Temperature  
260°C  
40 sec  
Time at Peak Temperature  
Electrostatic Discharge (ESD)  
Charged Device Model  
Human Body Model  
1000 V  
2500 V  
1 GND = AGND = SDGND = AGNDRF = AGNDVCO = CPGND = 0 V.  
2 Do not connect VRF to DVDD  
.
Rev. D | Page 8 of 38  
 
 
 
Data Sheet  
ADF5355  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
CLK  
DATA  
LE  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
V
V
R
A
V
BIAS  
REF  
SET  
ADF5355  
TOP VIEW  
(Not to Scale)  
CE  
GNDVCO  
AV  
DD  
TUNE  
V
A
V
V
P
REGVCO  
CP  
CP  
GNDVCO  
VCO  
OUT  
GND  
NOTES  
1. THE EXPOSED PAD MUST BE CONNECTED TO A  
.
GND  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
CLK  
Serial Clock Input. Data is clocked into the 32-bit shift register on the CLK rising edge. This input is a high  
impedance CMOS input.  
2
3
4
DATA  
LE  
Serial Data Input. The serial data is loaded most significant bit (MSB) first with the four least significant bits  
(LSBs) as the control bits. This input is a high impedance CMOS input.  
Load Enable, CMOS Input. When LE goes high, the data stored in the shift register is loaded into the register  
that is selected by the four LSBs.  
Chip Enable. A logic low on this pin powers down the device and puts the charge pump into three-state mode.  
A logic high (at levels equal to DVDD) on this pin powers up the device, depending on the status of the power-  
down bits. Register contents are retained unless the supply voltages are removed.  
CE  
5, 16  
AVDD  
VP  
Analog Power Supply. This pin ranges from 3.15 V to 3.45 V. Connect decoupling capacitors to the analog  
ground plane as close to this pin as possible. AVDD must have the same value as DVDD  
.
6
7
Charge Pump Power Supply. VP must have the same value as VVCO. Connect decoupling capacitors to the  
ground plane as close to this pin as possible.  
Charge Pump Output. When enabled, this output provides ICP to the external loop filter. The output of the  
loop filter is connected to VTUNE to drive the internal VCO.  
CPOUT  
8
9
10  
CPGND  
AGND  
VRF  
Charge Pump Ground. This output is the ground return pin for CPOUT  
Analog Ground. Ground return pin for AVDD  
Power Supply for the RF Output. Connect decoupling capacitors to the analog ground plane as close to this  
pin as possible. VRF must have the same value as AVDD. Do not connect VRF to DVDD  
.
.
.
11  
12  
RFOUTA+  
RFOUTA−  
AGNDRF  
VCO Output. The output level is programmable. The VCO fundamental output or a divided down version is  
available. This pin can be left floating if RFOUTA is disabled in Register 6 or by the PDBRF pin.  
Complementary VCO Output. The output level is programmable. The VCO fundamental output or a divided  
down version is available. This pin can be left floating if RFOUTA is disabled in Register 6 or by the PDBRF pin.  
RF Output Stage Ground. Ground return pins for the RF output stage.  
Auxiliary VCO Output. The 2× VCO output is available at this pin.  
Power Supply for the VCO. The voltage on this pin ranges from 4.75 V to 5.25 V. Place decoupling capacitors to  
the analog ground plane as close to this pin as possible. For best performance, this supply must be clean and  
have low noise.  
13, 15  
14  
17  
RFOUT  
VVCO  
B
18, 21  
19  
AGNDVCO  
VREGVCO  
VCO Ground. Ground return path for the VCO.  
VCO Compensation Node. Place decoupling capacitors to the ground plane as close to this pin as possible.  
Connect this pin directly to VVCO  
.
20  
22  
VTUNE  
RSET  
Control Input to the VCO. This voltage determines the output frequency and is derived from filtering the CPOUT  
output voltage. The input capacitance of this pin is 9 pF.  
No Connection. Charge pump bias resistance is internal.  
Rev. D | Page 9 of 38  
 
ADF5355  
Data Sheet  
Pin No.  
Mnemonic  
Description  
23  
VREF  
Internal Compensation Node. DC biased at half the tuning range. Connect decoupling capacitors to the  
ground plane as close to this pin as possible.  
24  
VBIAS  
Reference Voltage. Connect a 100 nF decoupling capacitor to the ground plane as close to this pin as possible.  
25, 32  
CREG1, CREG  
2
Outputs from the LDO Regulator. Pin 25 and Pin 32 are the supply voltages to the digital circuits. Nominal  
voltage of 1.8 V. Decoupling capacitors of 100 nF connected to AGND are required for these pins.  
26  
27  
PDBRF  
DVDD  
RFOUTA Power-Down. A logic low on this pin powers down the RFOUT  
is also software controllable. Do not leave this pin floating.  
Digital Power Supply. This pin must be at the same voltage as AVDD. Do not connect to VRF. Place decoupling  
capacitors to the ground plane as close to this pin as possible.  
A outputs only. This power-down function  
28  
29  
30  
REFINB  
REFINA  
MUXOUT  
Complementary Reference Input. If unused, ac couple this pin to AGND  
Reference Input.  
Multiplexer Output. The multiplexer output allows the digital lock detect, the analog lock detect, scaled RF, or  
the scaled reference frequency to be externally accessible.  
.
31  
SDGND  
EPAD  
Digital Σ-Δ Modulator Ground. Pin 31 is the ground return path for the Σ-Δ modulator.  
Exposed Pad. The exposed pad must be connected to AGND  
.
Rev. D | Page 10 of 38  
Data Sheet  
ADF5355  
TYPICAL PERFORMANCE CHARACTERISTICS  
–50  
–70  
–50  
–70  
–90  
–90  
–110  
–130  
–150  
–170  
–110  
–130  
–150  
–170  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY OFFSET FROM CARRIER (Hz)  
FREQUENCY OFFSET FROM CARRIER (Hz)  
Figure 4. Open-Loop VCO Phase Noise, 3.4 GHz  
Figure 7. Open-Loop VCO Phase Noise, 8.0 GHz  
–50  
–70  
–50  
–70  
–90  
–90  
–110  
–130  
–150  
–170  
–110  
–130  
–150  
–170  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY OFFSET FROM CARRIER (Hz)  
FREQUENCY OFFSET FROM CARRIER (Hz)  
Figure 8. Open-Loop VCO Phase Noise, 10.0 GHz  
Figure 5. Open-Loop VCO Phase Noise, 5.0 GHz  
–50  
–70  
–50  
–70  
–90  
–90  
–110  
–130  
–150  
–170  
–110  
–130  
–150  
–170  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY OFFSET FROM CARRIER (Hz)  
FREQUENCY OFFSET FROM CARRIER (Hz)  
Figure 9. Open-Loop VCO Phase Noise, 13.6 GHz  
Figure 6. Open-Loop VCO Phase Noise, 6.8 GHz  
Rev. D | Page 11 of 38  
 
ADF5355  
Data Sheet  
–50  
–70  
–50  
÷1  
÷2  
÷1  
÷2  
÷4  
÷8  
–70  
÷16  
÷32  
÷64  
–90  
–90  
–110  
–130  
–150  
–170  
–110  
–130  
–150  
–170  
1k  
1k  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
FREQUENCY OFFSET FROM CARRIER (Hz)  
FREQUENCY OFFSET FROM CARRIER (Hz)  
Figure 10. Closed-Loop Phase Noise, RFOUTA+, Fundamental VCO and  
Dividers, VCO = 3.4 GHz, fPFD = 61.44 MHz, Loop Bandwidth = 20 kHz  
Figure 13. Closed-Loop Phase Noise, RFOUTA+, Fundamental VCO and  
Divide by 2, VCO = 3.4 GHz, fPFD = 61.44 MHz, Loop Bandwidth = 2 kHz  
–50  
–50  
÷1  
÷1  
÷2  
÷2  
÷4  
–70  
–90  
÷8  
–70  
÷16  
÷32  
÷64  
–90  
–110  
–130  
–150  
–170  
–110  
–130  
–150  
–170  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY OFFSET FROM CARRIER (Hz)  
FREQUENCY OFFSET FROM CARRIER (Hz)  
Figure 11. Closed-Loop Phase Noise, RFOUTA+, Fundamental VCO and  
Dividers, VCO = 5.0 GHz, fPFD = 61.44 MHz, Loop Bandwidth = 20 kHz  
Figure 14. Closed-Loop Phase Noise, RFOUTA+, Fundamental VCO and  
Divide by 2, VCO = 5.0 GHz, fPFD = 61.44 MHz, Loop Bandwidth = 2 kHz  
–50  
–50  
÷1  
÷1  
÷2  
÷2  
÷4  
–70  
–90  
÷8  
–70  
÷16  
÷32  
÷64  
–90  
–110  
–130  
–150  
–170  
–110  
–130  
–150  
–170  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY OFFSET FROM CARRIER (Hz)  
FREQUENCY OFFSET FROM CARRIER (Hz)  
Figure 12. Closed-Loop Phase Noise, RFOUTA+, Fundamental VCO and  
Dividers, VCO = 6.8 GHz, fPFD = 61.44 MHz, Loop Bandwidth = 20 kHz  
Figure 15. Closed-Loop Phase Noise, RFOUTA+, Fundamental VCO and  
Divide by 2, VCO = 6.8 GHz, fPFD = 61.44 MHz, Loop Bandwidth = 2 kHz  
Rev. D | Page 12 of 38  
Data Sheet  
ADF5355  
10  
9
8
–50  
–40°C  
+25°C  
+85°C  
7
–70  
6
5
4
3
2
–90  
1
0
–110  
–130  
–150  
–170  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
1
2
3
4
5
6
7
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (GHz)  
FREQUENCY OFFSET FROM CARRIER (Hz)  
Figure 19. Output Power vs. Frequency, RFOUTA+/RFOUTA− (7.5 nH Inductors,  
10 pF Bypass Capacitors, Board Losses De-Embedded)  
Figure 16. Closed-Loop Phase Noise, RFOUTB = 6.8 GHz, 2× VCO,  
VCO = 3.4 GHz, fPFD = 61.44 MHz, Loop Bandwidth = 2 kHz  
0
–50  
SECOND HARMONIC (RF  
A × 2)  
OUT  
THIRD HARMONIC (RF  
A × 3)  
OUT  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–70  
–90  
–110  
–130  
–150  
–170  
1
2
3
4
5
6
7
1k  
10k  
100k  
1M  
10M  
100M  
RF  
A FREQUENCY (GHz)  
FREQUENCY OFFSET FROM CARRIER (Hz)  
OUT  
Figure 20. RFOUTA+/RFOUTA− Harmonics vs. Frequency (7.5 nH Inductors,  
10 pF Bypass Capacitors, Board Losses De-Embedded)  
Figure 17. Closed-Loop Phase Noise, RFOUTB = 10 GHz, 2× VCO,  
VCO = 5.0 GHz, fPFD = 61.44 MHz, Loop Bandwidth = 2 kHz  
10  
8
–50  
–70  
–90  
6
4
2
0
–110  
–130  
–150  
–170  
–2  
–4  
–6  
–8  
–10  
0
1
2
3
4
5
6
7
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (GHz)  
FREQUENCY OFFSET FROM CARRIER (Hz)  
Figure 21. RFOUTA+/RFOUTA− Power vs. Frequency (100 nH Inductors,  
100 pF Bypass Capacitors, Board Measurement)  
Figure 18. Closed-Loop Phase Noise, RFOUTB = 13.6 GHz, 2× VCO,  
VCO = 6.8 GHz, fPFD = 61.44 MHz, Loop Bandwidth = 2 kHz  
Rev. D | Page 13 of 38  
ADF5355  
Data Sheet  
10  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
–40°C  
RMS JITTER (ps) 1kHz TO 20MHz  
RMS JITTER (ps) 12kHz TO 20MHz  
+25°C  
+85°C  
8
6
4
2
0
–2  
–4  
–6  
–8  
–10  
6.7  
7.7  
8.7  
9.7  
10.7  
11.7  
12.7  
13.7  
0.8  
1.8  
2.8  
3.8  
4.8  
5.8  
6.8  
FREQUENCY (GHz)  
OUTPUT FREQUENCY (GHz)  
Figure 22. Output Power vs. Frequency, RFOUTB (10 pF Bypass Capacitor  
De-Embedded)  
Figure 25. RMS Jitter vs. Output Frequency, fPFD = 61.44 MHz, Loop Filter = 20 kHz  
0
–50  
–40°C  
PFD = 15.36MHz  
PFD = 30.72MHz  
PFD = 61.44MHz  
–60  
–1  
+25°C  
+85°C  
–2  
–3  
–4  
–5  
–70  
–80  
–6  
–7  
–8  
–9  
–10  
–11  
–12  
–13  
–14  
–15  
–90  
–100  
–110  
3.4  
3.9  
4.4  
4.9  
5.4  
5.9  
6.4  
6.9  
0
1
2
3
4
5
6
7
FREQUENCY (GHz)  
RF  
A+/RF  
A– OUTPUT FREQUENCY(GHz)  
OUT  
OUT  
Figure 26. PFD Spur Amplitude vs. RFOUTA+/RFOUTA− Output Frequency;  
PFD = 61.44 MHz, fPFD = 30.72 MHz, and fPFD = 15.36 MHz; Loop Filter = 20 kHz  
Figure 23. VCO Feedthrough at RFOUTB (De-Embedded) vs. Fundamental VCO  
Frequency  
f
–70  
–80  
0
–10  
–20  
–30  
–40  
–50  
–60  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
1k  
10k  
100k  
1M  
10M  
100M  
5
10  
15  
20  
FREQUENCY OFFSET FROM CARRIER (Hz)  
FREQUENCY (GHz)  
Figure 24. Wideband Spectrum, RFOUTB, VCO = 6.8 GHz, RFOUTB Enabled,  
RFOUTA+/RFOUTA− Disabled (Board Measurement)  
Figure 27. Fractional-N Spur Performance, GSM1800 Band, RFOUTA+ =  
1550.2 MHz, REFIN = 122.88 MHz, fPFD = 61.44 MHz, Output Divide by 4  
Selected, Loop Filter Bandwidth = 2 kHz, Channel Spacing = 20 kHz  
Rev. D | Page 14 of 38  
Data Sheet  
ADF5355  
–70  
–80  
–70  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
1k  
1k  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
FREQUENCY OFFSET FROM CARRIER (Hz)  
FREQUENCY OFFSET FROM CARRIER (Hz)  
Figure 28. Fractional-N Spur Performance, W-CDMA Band,  
RFOUTA+ = 2113.5 MHz, REFIN = 122.88 MHz, fPFD = 61.44 MHz,  
Output Divide by 2 Selected, Loop Filter Bandwidth = 2 kHz,  
Channel Spacing = 20 kHz  
Figure 30. Fractional-N Spur Performance, RFOUTA+ = 5.8 GHz,  
REFIN = 122.88 MHz, fPFD = 61.44 MHz, Output Divide by 2 Selected,  
Loop Filter Bandwidth = 2 kHz, Channel Spacing = 20 kHz  
–70  
4.65  
4.60  
–80  
–90  
4.55  
4.50  
4.45  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
1
4.40  
4.35  
4.30  
4.25  
4.20  
4.15  
1k  
10k  
100k  
1M  
10M  
100M  
–1  
0
1
2
3
4
TIME (ms)  
FREQUENCY OFFSET FROM CARRIER (Hz)  
Figure 31. Lock Time for 250 MHz Jump from 4150 MHz to 4400 MHz,  
Loop Bandwidth = 20 kHz  
Figure 29. Fractional-N Spur Performance, RFOUTA+ = 2.591 GHz,  
REFIN = 122.88 MHz, fPFD = 61.44 MHz, Output Divide by 2 Selected,  
Loop Filter Bandwidth = 2 kHz, Channel Spacing = 20 kHz  
Rev. D | Page 15 of 38  
ADF5355  
Data Sheet  
CIRCUIT DESCRIPTION  
INT, FRAC, MOD, and R Counter Relationship  
REFERENCE INPUT  
The INT, FRAC1, FRAC2, MOD1, and MOD2 values, in  
conjunction with the R counter, make it possible to generate  
output frequencies that are spaced by fractions of the PFD  
frequency (fPFD). For more information, see the RF Synthesizer—  
A Worked Example section.  
Figure 32 shows the reference input stage. The reference input  
can accept both single-ended and differential signals. Use the  
reference mode bit (Register 4, DB9) to select the signal. To use a  
differential signal on the reference input, program this bit high.  
In this case, SW1 and SW2 are open, SW3 and SW4 are closed,  
and the current source that drives the differential pair of  
transistors switches on (see Figure 32). The differential signal is  
buffered, and it is provided to an emitter coupled logic (ECL) to  
CMOS converter. When a single-ended signal is used as the  
reference, connect the reference signal to REFINA and program  
Bit DB9 in Register 4 to 0. In this case, SW1 and SW2 are  
closed, SW3 and SW4 are open, and the current source that  
drives the differential pair of transistors switches off. Single-  
ended mode results in lower integer boundary spurs.  
Calculate the VCO output frequency (VCOOUT) by  
VCOOUT = fPFD × N  
(1)  
where:  
VCOOUT is the output frequency of the external VCO voltage  
controlled oscillator (without using the output divider).  
fPFD is the frequency of the phase frequency detector.  
N is the desired value of the feedback counter, N.  
Calculate fPFD by  
REFERENCE  
INPUT MODE  
fPFD = REFIN × [(1 + D)/(R × (1 + T))]  
(2)  
where:  
85k  
REFIN is the reference input frequency.  
D is the REFIN doubler bit.  
SW2  
BUFFER  
SW1  
R is the preset divide ratio of the binary 10-bit programmable  
reference counter (1 to 1023).  
SW3  
TO  
R COUNTER  
MULTIPLEXER  
T is the REFIN divide by 2 bit (0 or 1)  
AV  
DD  
N comprises  
ECL TO CMOS  
BUFFER  
FRAC2  
MOD2  
MOD1  
FRAC1+  
REF  
REF  
A
N = INT +  
(3)  
IN  
where:  
B
IN  
INT is the 16-bit integer value (23 to 32,767 for 4/5 prescaler,  
75 to 65,535 for 8/9 prescaler).  
FRAC1 is the numerator of the primary modulus (0 to 16,777,215).  
FRAC2 is the numerator of the 14-bit auxiliary modulus  
(0 to 16,383).  
2.5kΩ  
2.5kΩ  
SW4  
BIAS  
GENERATOR  
Figure 32. Reference Input Stage  
MOD2 is the programmable, 14-bit auxiliary fractional  
modulus (2 to 16,383).  
RF N DIVIDER  
MOD1 is a 24-bit primary modulus with a fixed value of 224  
=
The RF N divider allows a division ratio in the PLL feedback  
path. Determine the division ratio by the INT, FRAC1, FRAC2,  
and MOD2 values that this divider comprises.  
16,777,216.  
This calculation results in a very fine frequency resolution with  
no residual frequency error. To apply this formula, take the  
following steps:  
FRAC2  
MOD2  
RF N COUNTER  
N = INT +  
FRAC1 +  
MOD1  
1. Calculate N by dividing VCOOUT/fPFD  
.
FROM  
VCO OUTPUT/  
OUTPUT DIVIDERS  
TO PFD  
N COUNTER  
2. The integer value of this number forms INT.  
3. Subtract this value from the full N value.  
4. Multiply the remainder by 224.  
THIRD-ORDER  
FRACTIONAL  
INTERPOLATOR  
5. The integer value of this number forms FRAC1.  
6. Calculate MOD2 based on the channel spacing (fCHSP) by  
INT  
REG  
FRAC1  
REG  
FRAC2  
VALUE  
MOD2  
VALUE  
MOD2 = fPFD/GCD(fPFD, fCHSP  
where:  
CHSP is the desired channel spacing frequency.  
)
(4)  
f
Figure 33. RF N Divider  
GCD(fPFD, fCHSP) is the greatest common divisor of the PFD  
frequency and the channel spacing frequency.  
Rev. D | Page 16 of 38  
 
 
 
 
 
Data Sheet  
ADF5355  
7. Calculate FRAC2 by the following equation:  
MUXOUT AND LOCK DETECT  
FRAC2 = [(N INT) × 224 FRAC1)] × MOD2  
(5)  
(6)  
The output multiplexer on the ADF5355 allows the user to access  
various internal points on the chip. The M3, M2, and M1 bits in  
Register 4 control the state of MUXOUT. Figure 35 shows the  
MUXOUT section in block diagram form.  
The FRAC2 and MOD2 fraction result in outputs with zero  
frequency error for channel spacings when  
fPFD/GCD(fPFD, fCHSP) = MOD2 < 16,383  
DV  
DD  
where:  
f
PFD is the frequency of the phase frequency detector.  
CHSP is the desired channel spacing.  
THREE-STATE OUTPUT  
DV  
f
DD  
GCD is a greatest common divisor function.  
DGND  
If zero frequency error is not required, the MOD1 and MOD2  
denominators operate together to create a 38-bit resolution  
modulus.  
R DIVIDER OUTPUT  
N DIVIDER OUTPUT  
MUX  
CONTROL  
MUXOUT  
ANALOG LOCK DETECT  
DIGITAL LOCK DETECT  
RESERVED  
INT N Mode  
When FRAC1 and FRAC2 are 0, the synthesizer operates in  
integer-N mode.  
DGND  
R Counter  
Figure 35. MUXOUT Schematic  
The 10-bit R counter allows the input reference frequency  
(REFIN) to be divided down to produce the reference clock to  
the PFD. Division ratios from 1 to 1023 are allowed.  
INPUT SHIFT REGISTERS  
The ADF5355 digital section includes a 10-bit R counter, a  
16-bit RF integer-N counter, a 24-bit FRAC1 counter, a 14-bit  
auxiliary fractional counter, and a 14-bit auxiliary modulus  
counter. Data clocks into the 32-bit shift register on each rising  
edge of CLK. The data clocks in MSB first. Data transfers from  
the shift register to one of 13 latches on the rising edge of LE.  
The state of the four control bits (C4, C3, C2, and C1) in the  
shift register determines the destination latch. As shown in  
Figure 2, the four LSBs are DB3, DB2, DB1, and DB0. The truth  
table for these bits is shown in Table 5. Figure 39 and Figure 40  
summarize the programming of the latches.  
PHASE FREQUENCY DETECTOR (PFD) AND  
CHARGE PUMP  
The PFD takes inputs from the R counter and N counter and  
produces an output proportional to the phase and frequency  
difference between them. Figure 34 is a simplified schematic of  
the phase frequency detector. The PFD includes a fixed delay  
element (INT = 1.6 ns, FRAC = 2.6 ns) that sets the width of the  
anti-backlash pulse. This pulse ensures that there is no dead  
zone in the PFD transfer function and provides a consistent  
reference spur level. Set the phase detector polarity to positive  
on this device because of the positive tuning of the VCO.  
Table 5. Truth Table for the C4, C3, C2, and C1 Control Bits  
Control Bits  
UP  
HIGH  
D1  
Q1  
C4  
0
0
0
0
0
0
0
0
1
1
1
1
1
C3  
0
0
0
0
1
1
1
1
0
0
0
0
1
C2  
0
0
1
1
0
0
1
1
0
0
1
1
0
C1  
0
1
0
1
0
1
0
1
0
1
0
1
0
Register  
U1  
CLR1  
Register 0  
Register 1  
Register 2  
Register 3  
Register 4  
Register 5  
Register 6  
Register 7  
Register 8  
Register 9  
Register 10  
Register 11  
Register 12  
+IN  
CHARGE  
PUMP  
CP  
U3  
DELAY  
DOWN  
CLR2  
D2 Q2  
HIGH  
U2  
–IN  
Figure 34. PFD Simplified Schematic  
Rev. D | Page 17 of 38  
 
 
 
 
 
 
ADF5355  
Data Sheet  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
PROGRAM MODES  
Table 5 and Figure 39 through Figure 53 show how the program  
modes must be set up in the ADF5355.  
The following settings in the ADF5355 are double buffered: main  
fractional value (FRAC1), auxiliary modulus value (MOD2),  
auxiliary fractional value (FRAC2), reference doubler, reference  
divide by 2 (RDIV2), R counter value, and charge pump current  
setting. Two events must occur before the ADF5355 uses a new  
value for any of the double buffered settings. First, the new value  
must latch into the device by writing to the appropriate register,  
and second, a new write to Register 0 must be performed.  
LINEAR  
TREND LINE  
AVERAGE  
VCO SENSITIVITY  
0
3.3  
3.8  
4.3  
4.8  
5.3  
5.8  
6.3  
6.8  
For example, to ensure that the modulus value loads correctly,  
every time that the modulus value updates, Register 0 must be  
written to. The RF divider select in Register 6 is also double  
buffered, but only if DB14 of Register 4 is high.  
FREQUENCY (GHz)  
Figure 36. VCO Sensitivity, KV vs. Frequency  
OUTPUT STAGE  
VCO  
The RFOUTA+ and RFOUTA− pins of the ADF5355 connect to  
the collectors of an NPN differential pair driven by buffered  
outputs of the VCO, as shown in Figure 37. In this scheme,  
the ADF5355 contains internal 50 Ω resistors connected to  
the VRF pin. To optimize the power dissipation vs. the output  
power requirements, the tail current of the differential pair is  
programmable using Bits[D2:D1] in Register 6. Four current  
levels can be set. These levels give approximate output power  
levels of −4 dBm, −1 dBm, +2 dBm, and +5 dBm, respectively.  
Levels of −4 dBm, −1 dBm, +2 dBm can be achieved using a  
50 Ω resistor to VRF and ac coupling into a 50 Ω load. A +5 dBm  
level requires an external shunt inductor to VRF. Note that an  
inductor has a narrower operating frequency than a 50 Ω  
resistor. For accurate power levels, refer to the Typical  
The VCO core in the ADF5355 consists of four separate VCOs,  
each of which uses 256 overlapping bands, which allows the  
device to cover a wide frequency range without large VCO  
sensitivity (KV) and without resultant poor phase noise and  
spurious performance.  
The correct VCO and band are chosen automatically by the  
VCO and band select logic whenever Register 0 is updated and  
automatic calibration is enabled. The VCO VTUNE is disconnected  
from the output of the loop filter and is connected to an internal  
reference voltage.  
The R counter output is used as the clock for the band select  
logic. After band selection, normal PLL action resumes. The  
nominal value of KV is 15 MHz/V when the N divider is driven  
from the VCO output, or the KV value is divided by D. D is  
the output divider value if the N divider is driven from the  
RF output divider (chosen by programming Bits[D23:D21] in  
Register 6).  
Performance Characteristics section. Add an external shunt  
inductor to provide higher power levels; however, this is less  
wideband than the internal bias only. Terminate the unused  
complementary output with a circuit similar to the used output.  
V
V
RF  
RF  
The VCO shows variation of KV as the tuning voltage, VTUNE  
,
50Ω  
A+  
50Ω  
RF  
RF  
A–  
varies within the band and from band to band. For wideband  
applications covering a wide frequency range (and changing  
output dividers), a value of 15 MHz/V provides the most accurate  
KV, because this value is closest to the average value. Figure 36  
shows how KV varies with fundamental VCO frequency along with  
an average value for the frequency band. Users may prefer this  
figure when using narrow-band designs.  
OUT  
OUT  
BUFFER/  
DIVIDE BY  
1/2/4/8/  
VCO  
16/32/64  
Figure 37. Output Stage  
The doubled VCO output (6.8 GHz to 13.6 GHz) is available on  
the RFOUTB pin, which can be ac-coupled to the next circuit.  
2× VCO  
MUX  
RF  
B
OUT  
Figure 38. Output Stage  
Rev. D | Page 18 of 38  
 
 
 
 
 
Data Sheet  
ADF5355  
Another feature of the ADF5355 is that the supply current to  
the RFOUTA+/RFOUTA− output stage can shut down until the  
ADF5355 achieves lock as measured by the digital lock detect  
circuitry. The mute till lock detect (MTLD) bit (Bit DB11) in  
Register 6 enables this function.  
RFOUTB directly connects to the VCO, and it can be muted but  
only by using the RFOUTB bit (Bit DB10) in Register 6.  
Table 6. Total IDD (RFOUTA Refers to RFOUTA+/RFOUTA−)  
Divide By  
RFOUTA  
Off  
RFOUTA  
= −4 dBm  
RFOUTA  
= −1 dBm  
RFOUTA  
= +2 dBm  
RFOUTA = +5 dBm  
5.0 V Supply (IVCO and IP)  
78 mA  
78 mA  
78 mA  
78 mA  
78 mA  
3.3 V Supply (AIDD, DIDD, IRF)1  
1
2
4
8
16  
32  
64  
79.8 mA  
87.8 mA  
97.1 mA  
104.9 mA  
109.8 mA  
113.6 mA  
115.9 mA  
101.3 mA  
110.1 mA  
119.3 mA  
127.1 mA  
131.8 mA  
135.5 mA  
137.8 mA  
111.9 mA  
120.6 mA  
130.1 mA  
137.8 mA  
142.7 mA  
146.5 mA  
148.9 mA  
122.7 mA  
131.9 mA  
141.6 mA  
149.2 mA  
154.1 mA  
157.8 mA  
160.1 mA  
132.8 mA  
141.9 mA  
152.1 mA  
159.7 mA  
164.6 mA  
168.4 mA  
170.8 mA  
1 For DIDD + AIDD (nominal 62 mA): DIDD = 15 mA (typical), AIDD (Pin 5) = 24 mA (typical), AIDD (Pin 16) = 23 mA (typical).  
Rev. D | Page 19 of 38  
 
ADF5355  
Data Sheet  
REGISTER MAPS  
REGISTER 0  
CONTROL  
BITS  
16-BIT INTEGER VALUE (INT)  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22  
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2  
DB1  
DB0  
N15 N14 N13 N12 N11 N10  
N9  
N8  
N7  
N6  
N5  
N4  
N3  
N2  
N1 C4(0) C3(0) C2(0) C1(0)  
0
0
0
0
0
0
0
0
0
0
AC1  
PR1  
N16  
REGISTER 1  
CONTROL  
BITS  
1
RESERVED  
24-BIT MAIN FRACTIONAL VALUE (FRAC1)  
DBR  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
F24  
F23  
F22  
F21  
F20  
F19  
F18  
F17  
F16  
F15  
F14  
F13  
F12  
F11  
F10  
F9  
F8  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
0
0
0
C3(0) C2(0) C1(1)  
C4(0)  
0
REGISTER 2  
CONTROL  
BITS  
1
1
DBR  
14-BIT AUXILIARY FRACTIONAL VALUE (FRAC2)  
DBR  
14-BIT AUXILIARY MODULUS VALUE (MOD2)  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
M14 M13 M12 M11 M10 M9  
M8  
M7  
M6  
M5  
M4  
M3  
M2  
M1  
F14  
F13  
F12  
F11  
F10  
F9  
F8  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
C3(0) C2(1) C1(0)  
C4(0)  
REGISTER 3  
CONTROL  
BITS  
1
24-BIT PHASE VALUE (PHASE)  
DBR  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C3(0) C2(1) C1(1)  
P1 C4(0)  
0
SD1  
PR1 PA1 P24  
P23 P22  
P21  
P20  
P19  
P18  
P17  
P16 P15  
P14 P13  
P12  
P11 P10  
P9  
P8  
P7  
P6  
P5  
P4  
P3  
P2  
REGISTER 4  
CONTROL  
BITS  
CURRENT  
SETTING  
1
DBR  
1
RESERVED  
MUXOUT  
10-BIT R COUNTER  
DBR  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C3(1) C2(0) C1(0)  
U1 C4(0)  
0
0
M3  
M2  
M1  
RD2 RD1  
R10  
R9  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
D1  
CP4  
CP3 CP2 CP1 U6  
U5  
U4  
U3  
U2  
REGISTER 5  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
C4(0) C3(1) C2(0)  
C1(1)  
REGISTER 6  
RF  
OUTPUT  
POWER  
RF  
DIVIDER SELECT  
CONTROL  
BITS  
2
RESERVED  
CHARGE PUMP BLEED CURRENT  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
BL10 BL9 D2 D1 C4(0) C3(1) C2(1) C1(0)  
0
1
0
1
0
D13  
D12  
D11  
D10 BL8 BL7 BL6 BL5 BL4 BL3 BL2 BL1  
0
D8  
D7  
0
0
0
D3  
1
2
DBR = DOUBLE BUFFERED REGISTER—BUFFERED BY THE WRITE TO REGISTER 0.  
DBB = DOUBLE BUFFERED BITS—BUFFERED BY A WRITE TO REGISTER 0 WHEN BIT DB14 OF REGISTER 4 IS HIGH.  
Figure 39. Register Summary (Register 0 to Register 6)  
Rev. D | Page 20 of 38  
 
 
Data Sheet  
ADF5355  
REGISTER 7  
LD  
CYCLE  
COUNT  
CONTROL  
BITS  
RESERVED  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
LD4  
LD3 LD2 LD1 C4(0) C3(1) C2(1) C1(1)  
0
0
0
1
0
0
LE  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LD5  
LOL  
REGISTER 8  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
1
0
0
0
0
0
1
0
1
1
0
1
0
0
0
1
0
0
0
1
0
0
0
C4(1) C3(0) C2(0) C1(0)  
REGISTER 9  
SYNTHESIZER  
LOCK TIMEOUT  
CONTROL  
BITS  
VCO BAND DIVISION  
TIMEOUT  
AUTOMATIC LEVEL TIMEOUT  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
VC8 VC7 VC6 VC5 VC4 VC3 VC2 VC1 TL10 TL9 TL8 TL7 TL6 TL5 TL4 TL3 TL2 TL1 AL5 AL4 AL3 AL2 AL1 SL5 SL4 SL3 SL2 SL1 C4(1) C3(0) C2(0) C1(1)  
REGISTER 10  
ADC  
CLOCK DIVIDER  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
AD8 AD7 AD6  
AD5 AD4 AD3 AD2 AD1 AE2 AE1 C4(1) C3(0) C2(1) C1(0)  
REGISTER 11  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
1
1
0
0
0
0
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
C4(1) C3(0) C2(1) C1(1)  
0
REGISTER 12  
CONTROL  
BITS  
RESERVED  
RESYNC CLOCK  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
P13 P12  
P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1  
0
0
0
0
0
1
0
0
0
0
0
1
P16 P15  
C4(1) C3(1) C2(0) C1(0)  
P14  
Figure 40. Register Summary (Register 7 to Register 12)  
Rev. D | Page 21 of 38  
 
ADF5355  
Data Sheet  
CONTROL  
BITS  
16-BIT INTEGER VALUE (INT)  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22  
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
N15 N14 N13 N12 N11 N10  
N9  
N8  
N7  
N6  
N5  
N4  
N3  
N2  
N1 C4(0) C3(0) C2(0) C1(0)  
0
0
0
0
0
0
0
0
0
0
AC1  
PR1  
N16  
N16  
0
N15  
0
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
N5  
N4  
N3  
N2  
N1  
0
1
0
.
INTEGER VALUE (INT)  
PR1 PRESCALER  
0
0
0
.
0
0
0
.
0
0
0
.
0
0
1
.
NOT ALLOWED  
0
1
4/5  
8/9  
0
0
NOT ALLOWED  
0
0
NOT ALLOWED  
.
.
...  
0
0
1
1
1
.
0
0
1
.
1
1
0
.
1
1
0
.
0
1
0
.
NOT ALLOWED  
0
0
23  
0
0
24  
VCO  
AUTOCAL  
AC1  
.
.
...  
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
65533  
65534  
65535  
0
1
DISABLED  
ENABLED  
1
1
1
1
INT  
= 75 WITH PRESCALER = 8/9  
MIN  
Figure 41. Register 0  
Prescaler Value  
REGISTER 0  
The dual modulus prescaler (P/P + 1), along with the INT,  
FRACx, and MODx counters, determines the overall division  
ratio from the VCO output to the PFD input. The PR1 bit  
(Bit DB20) in Register 0 sets the prescaler value.  
Control Bits  
With Bits[C4:C1] set to 0000, Register 0 is programmed. Figure 41  
shows the input data format for programming this register.  
Reserved  
Operating at CML levels, the prescaler takes the clock from the  
VCO output and divides it down for the counters. It is based on  
a synchronous 4/5 core. When the prescaler is set to 4/5, the  
maximum RF frequency allowed is 7 GHz. The prescaler limits  
the INT value; therefore, if P is 4/5, NMIN is 23, and if P is 8/9,  
Bits[DB31:DB22] are reserved and must be set to 0.  
Automatic Calibration (AUTOCAL)  
Write to Register 0 to enact (by default) the VCO automatic  
calibration, and to choose the appropriate VCO and VCO  
subband. Write 1 to the AC1 bit (Bit DB21) to enable the  
automatic calibration, which is the recommended mode of  
operation.  
N
MIN is 75.  
16-Bit Integer Value  
The 16 INT bits (Bits[DB19:DB4]) set the INT value, which  
determines the integer part of the feedback division factor. The  
INT value is used in Equation 3 (see the INT, FRAC, MOD, and  
R Counter Relationship section). All integer values from 23 to  
32,767 are allowed for the 4/5 prescaler. For the 8/9 prescaler,  
the minimum integer value is 75, and the maximum value is  
65,535.  
Set the AC1 bit (Bit DB21) to 0 to disable the automatic  
calibration, which leaves the ADF5355 in the same band it was  
already in when Register 0 is updated.  
Disable the automatic calibration only for fixed frequency  
applications, phase adjust applications, or very small (<10 kHz)  
frequency jumps.  
Toggling automatic calibration (AUTOCAL) is also required  
when changing frequency. See the Frequency Update Sequence  
section for more information.  
Rev. D | Page 22 of 38  
 
 
Data Sheet  
ADF5355  
CONTROL  
BITS  
1
RESERVED  
24-BIT MAIN FRACTIONAL VALUE (FRAC1)  
DBR  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
F24 F23 F22 F21 F20 F19 F18 F17 F16 F15 F14 F13 F12 F11 F10 F9 F8 F7 F6 F5 F4 F3 F2 F1  
0
0
0
C3(0) C2(0) C1(1)  
C4(0)  
0
F24  
F23  
.......... F2  
F1  
MAIN FRACTIONAL VALUE (FRAC1)  
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
.........  
0
0
1
1
.
0
1
0
1
.
0
1
2
3
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
16777212  
16777213  
16777214  
16777215  
1
DBR = DOUBLE BUFFERED REGISTER—BUFFERED BY THE WRITE TO REGISTER 0.  
Figure 42. Register 1  
24-Bit Main Fractional Value  
REGISTER 1  
The 24 FRAC1 bits (Bits[DB27:DB4]) set the numerator of the  
fraction that is input to the Σ-Δ modulator. This fraction, along  
with the INT value, specifies the new frequency channel that  
the synthesizer locks to, as shown in the RF Synthesizer—A  
Worked Example section. FRAC1 values from 0 to (MOD1 − 1)  
cover channels over a frequency range equal to the PFD  
reference frequency.  
Control Bits  
With Bits[C4:C1] set to 0001, Register 1 is programmed. Figure 42  
shows the input data format for programming this register.  
Reserved  
Bits[DB31:DB28] are reserved and must be set to 0.  
Rev. D | Page 23 of 38  
 
 
ADF5355  
Data Sheet  
CONTROL  
BITS  
1
1
14-BIT AUXILIARY FRACTIONAL VALUE (FRAC2) DBR  
14-BIT AUXILIARY MODULUS VALUE (MOD2) DBR  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
M14 M13 M12 M11 M10 M9  
M8  
M7  
M6  
M5  
M4  
M3  
M2  
M1  
F14  
F13  
F12  
F11  
F10  
F9  
F8  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
C3(0) C2(1) C1(0)  
C4(0)  
M14 M13 .......... M2  
M1  
0
1
0
1
.
MODULUS VALUE (MOD2)  
F14  
F13  
.......... F2  
F1  
0
1
0
1
.
FRAC2 WORD  
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
.........  
0
0
1
1
.
NOT ALLOWED  
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
.........  
0
0
1
1
.
0
NOT ALLOWED  
1
2
2
3
3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
16380  
16381  
16382  
16383  
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
16381  
16382  
16382  
16383  
1
DBR = DOUBLE BUFFERED REGISTER—BUFFERED BY THE WRITE TO REGISTER 0.  
Figure 43. Register 2  
14-Bit Auxiliary Modulus Value (MOD2)  
REGISTER 2  
The 14-bit auxiliary modulus value (Bits[DB17:DB4]) sets the  
auxiliary fractional modulus. Use MOD2 to correct any residual  
error due to the main fractional modulus.  
Control Bits  
With Bits[C4:C1] set to 0010, Register 2 is programmed. Figure 43  
shows the input data format for programming this register.  
14-Bit Auxiliary Fractional Value (FRAC2)  
The 14-bit auxiliary fractional value (Bits[DB31:DB18]) controls  
the auxiliary fractional word. FRAC2 must be less than the  
MOD2 value programmed in Register 2.  
Rev. D | Page 24 of 38  
 
 
Data Sheet  
ADF5355  
CONTROL  
BITS  
24-BIT PHASE VALUE (PHASE)  
DBR1  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C3(0) C2(1) C1(1)  
0
SD1  
PR1 PA1 P24  
P23 P22  
P21  
P20  
P19  
P18  
P17  
P16 P15  
P14 P13  
P12  
P11 P10  
P9  
P8  
P7  
P6  
P5  
P4  
P3  
P2  
P1 C4(0)  
PHASE  
ADJUST  
PA1  
P24  
P23  
0
0
0
0
.
.......... P2  
P1  
PHASE VALUE (PHASE)  
0
1
DISABLED  
ENABLED  
0
0
0
0
.
..........  
0
0
1
1
.
0
1
0
1
.
0
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
.........  
1
2
3
PHASE  
PR1  
.
RESYNC  
.
.
.
.
.
0
1
DISABLED  
ENABLED  
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
16777212  
16777213  
16777214  
16777215  
SD LOAD  
RESET  
SD1  
0
1
ON REGISTER0 UPDATE  
DISABLED  
1
DBR = DOUBLE BUFFERED REGISTER—BUFFERED BY THE WRITE TO REGISTER 0.  
Figure 44. Register 3  
This is achieved by programming the D13 bit (Bit DB24) in  
Register 6 to 0, which ensures divided feedback to the N divider.  
REGISTER 3  
Control Bits  
Phase resynchronization operates only when FRAC2 = 0.  
With Bits[C4:C1] set to 0011, Register 3 is programmed. Figure 44  
shows the input data format for programming this register.  
For resync applications, enable the SD load reset in Register 3  
by setting DB30 to 0.  
Reserved  
Phase Adjust  
Bit DB31 is reserved and must be set to 0.  
SD Load Reset  
To adjust the relative output phase of the ADF5355 on each  
Register 0 update, set the PA1 bit (Bit DB28) to 1. This feature  
differs from the resynchronization feature in that it is useful  
when adjustments to phase are made continually in an  
application. For this function, disable the VCO automatic  
calibration by setting the AC1 bit (Bit DB21) in Register 0 to 0,  
and disable the SD load reset by setting the SD1 bit (Bit DB30)  
in Register 3 to 1. Note that phase resync and phase adjust  
cannot be used simultaneously.  
When writing to Register 0, the Σ-Δ modulator resets. For  
applications in which the phase is continually adjusted, this may  
not be desirable; therefore, in these cases, the Σ-Δ reset can be  
disabled by writing a 1 to the SD1 bit (Bit DB30).  
Phase Resync  
To use the phase resynchronization feature, the PR1 bit (Bit DB29)  
must be set to 1. If unused, the bit can be programmed to 0. The  
phase resync timer must also be used in Register 12 to ensure  
that the resynchronization feature is applied after PLL has settled to  
the final frequency. If the PLL has not settled to the final frequency,  
phase resync may not function correctly. Resynchronization is  
useful in phased array and beam forming applications. It ensures  
repeatability of output phase when programming the same  
frequency. In phase critical applications that use frequencies  
requiring the output divider (<3400 MHz), it is necessary to  
feed the N divider with the divided VCO frequency as distinct  
from the fundamental VCO frequency.  
24-Bit Phase Value  
The phase of the RF output frequency can adjust in 24-bit steps,  
from 0° (0) to 360° (224 − 1). For phase adjust applications, the  
phase is set by  
(Phase Value/16,777,216) × 360°  
When the phase value is programmed to Register 3, each  
subsequent adjustment of Register 0 increments the phase by  
the value in this equation.  
Rev. D | Page 25 of 38  
 
 
ADF5355  
Data Sheet  
CURRENT  
SETTING  
CONTROL  
BITS  
1
1
DBR  
MUXOUT  
10-BIT R COUNTER  
DBR  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1  
DB0  
0
0
M3  
M2  
M1 RD2 RD1 R10  
R9  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
D1  
CP4 CP3 CP2 CP1 U6  
U5  
U4  
U3  
U2  
U1  
C3(1) C2(0) C1(0)  
C4(0)  
REFERENCE  
RD2  
COUNTER  
RESET  
DOUBLE BUFFERED  
REGISTER 6, BITS[DB23:DB21]  
U1  
DOUBLER  
D1  
U6  
0
REFIN  
SINGLE  
DIFF  
0
1
DISABLED  
ENABLED  
0
1
DISABLED  
ENABLED  
0
1
DISABLED  
1
ENABLED  
RD1 REFERENCE DIVIDE BY 2  
CP  
I
(mA)  
CP  
U2  
U5  
LDP  
1.8V  
3.3V  
THREE-STATE  
CP4  
CP3  
CP2  
CP1  
5.1k  
0
1
DISABLED  
ENABLED  
0
1
0
1
DISABLED  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.31  
0.63  
0.94  
1.25  
1.56  
1.88  
2.19  
2.50  
2.81  
3.13  
3.44  
3.75  
4.06  
4.38  
4.69  
5.00  
ENABLED  
R10  
R9  
..........  
R2  
R1  
R DIVIDER (R)  
U4  
0
PD POLARITY  
NEGATIVE  
POSITIVE  
U3  
POWER DOWN  
0
0
.
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
.
1
0
.
1
0
1
DISABLED  
ENABLED  
2
1
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
1020  
1021  
1022  
1023  
M3  
0
M2  
0
M1  
0
OUTPUT  
THREE-STATE OUTPUT  
0
0
1
DV  
DD  
0
1
0
DGND  
0
1
1
R DIVIDER OUTPUT  
N DIVIDER OUTPUT  
ANALOG LOCK DETECT  
DIGITAL LOCK DETECT  
RESERVED  
1
0
0
1
0
1
1
1
0
1
1
1
1
DBR = DOUBLE BUFFERED REGISTER—BUFFERED BY THE WRITE TO REGISTER 0.  
Figure 45. Register 4  
The maximum allowable reference frequency when the doubler  
is enabled is 100 MHz.  
REGISTER 4  
Control Bits  
RDIV2  
With Bits[C4:C1] set to 0100, Register 4 is programmed. Figure 45  
shows the input data format for programming this register.  
Setting the RDIV2 bit (Bit DB25) to 1 inserts a divide by 2,  
toggle flip-flop between the R counter and PFD, which extends  
the maximum reference frequency input rate. This function  
provides a 50% duty cycle signal at the PFD input.  
Reserved  
Bits[DB31:DB30] are reserved and must be set to 0.  
MUXOUT  
10-Bit R Counter  
The on-chip multiplexer (MUXOUT) is controlled by  
Bits[DB29:DB27]. For additional details, see Figure 45.  
The 10-bit R counter divides the input reference frequency  
(REFIN) to produce the reference clock to the PFD. Division  
ratios range from 1 to 1023.  
When changing frequency, that is, writing Register 0, MUXOUT  
must not be set to N divider output or R divider output. If needed,  
enable these functions after locking to the new frequency.  
Double Buffer  
The D1 bit (Bit DB14) enables or disables double buffering of  
the RF divider select bits (Bits[DB23:DB21]) in Register 6. The  
Program Modes section explains how double buffering works.  
Reference Doubler  
Setting the RD2 bit (Bit DB26) to 0 feeds the reference frequency  
signal directly to the 10-bit R counter, disabling the doubler.  
Setting this bit to 1 multiplies the reference frequency by a factor  
of 2 before feeding it into the 10-bit R counter. When the doubler  
is disabled, the REFIN falling edge is the active edge at the PFD  
input to the fractional synthesizer. When the doubler is enabled,  
both the rising and falling edges of the reference frequency become  
active edges at the PFD input.  
Charge Pump Current Setting  
The CP4 to CP1 bits (Bits[DB13:DB10]) set the charge pump  
current. Set this value to the charge pump current that the loop  
filter is designed with (see Figure 45). For the lowest spurs, the  
0.9 mA setting is recommended.  
Rev. D | Page 26 of 38  
 
 
Data Sheet  
ADF5355  
Reference Mode  
When power-down activates, the following events occur:  
The ADF5355 permits use of either differential or single-ended  
reference sources.  
The synthesizer counters are forced to their load state  
conditions.  
The VCO powers down.  
For optimum integer boundary spur performance, it is  
recommended to use the single-ended setting for all references  
up to 250 MHz (even if using a differential reference signal). Use  
the differential setting for reference frequencies above 250 MHz.  
The charge pump is forced into three-state mode.  
The digital lock detect circuitry resets.  
The RFOUTA+/RFOUTA− and RFOUTB output stages are  
disabled.  
The input registers remain active and capable of loading  
and latching data.  
Level Select  
To assist with logic compatibility, MUXOUT is programmable to  
two logic levels. Set the U5 bit (Bit DB8) to 0 to select 1.8 V  
logic, and set it to 1 to select 3.3 V logic.  
Charge Pump Three-State  
Setting the U2 bit (Bit DB5) to 1 puts the charge pump into  
three-state mode. Set DB5 to 0 for normal operation.  
Phase Detector Polarity  
The U4 bit (Bit DB7) sets the phase detector polarity. When a  
passive loop filter or a noninverting active loop filter is used, set  
DB7 to 1 (positive). If an active filter with an inverting  
characteristic is used, set this bit to 0 (negative).  
Counter Reset  
The U1 bit (Bit DB4) resets the R counter, N counter, and VCO  
band select of the ADF5355. When DB4 is set to 1, the RF  
synthesizer N counter, R counter, and VCO band select are reset.  
For normal operation, set DB4 to 0.  
Power-Down  
The U3 bit (Bit DB6) sets the programmable power-down mode.  
Setting DB6 to 1 performs a power-down. Setting DB6 to 0 returns  
the synthesizer to normal operation. In software or hardware  
power-down mode, the ADF5355 retains all information in its  
registers. The register contents are only lost if the supply voltages  
are removed.  
Toggling counter reset is also required when changing frequency.  
See the Frequency Update Sequence section for more information.  
REGISTER 5  
The bits in Register 5 are reserved and must be programmed as  
described in Figure 46, using a hexadecimal word of 0x00800025.  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C4(0) C3(1) C2(0)  
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
C1(1)  
Figure 46. Register 5 (0x00800025)  
Rev. D | Page 27 of 38  
 
 
ADF5355  
Data Sheet  
RF  
OUTPUT  
POWER  
RF DIVIDER  
CONTROL  
BITS  
1
RESERVED  
SELECT  
CHARGE PUMP BLEED CURRENT  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
BL10 BL9  
1
0
1
0
D2  
D1 C4(0) C3(1) C2(1) C1(0)  
D13 D12 D11 D10 BL8 BL7 BL6 BL5 BL4 BL3 BL2 BL1  
0
D8  
D7  
0
0
0
D3  
FEEDBACK  
SELECT  
D13  
D2  
D1  
0
OUTPUT POWER  
–4dBm  
0
0
1
1
0
1
DIVIDED  
1
–1dBm  
FUNDAMENTAL  
0
+2dBm  
1
+5dBm  
NEGATIVE BLEED  
BL9  
D12  
D11  
D10 RF DIVIDER SELECT  
RFOUTA+/RFOUTA–  
DISABLED  
D3  
0
0
1
DISABLED  
ENABLED  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
÷1  
÷2  
MUTE TILL  
LOCK DETECT  
1
ENABLED  
D8  
0
÷4  
MUTE DISABLED  
÷8  
GATED BLEED  
BL10  
1
MUTE ENABLED  
÷16  
÷32  
÷64  
0
1
DISABLED  
ENABLED  
RFOUT  
B
D7  
0
ON  
1
OFF  
BL8  
BL7  
..........  
BL2  
BL1 BLEED CURRENT  
0
0
.
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
.
1
0
.
1
2
.
(3.75µA)  
(7.5µA)  
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
252 (945µA)  
253 (948.75µA)  
254 (952.5µA)  
255 (956.25µA)  
1
BITS[DB23:DB21] ARE BUFFERED BY A WRITE TO REGISTER 0 WHEN THE DOUBLE BUFFER BIT, BIT DB14 OF REGISTER 4, IS ENABLED.  
Figure 47. Register 6  
Do not use negative bleed when operating in integer-N mode,  
that is, when FRAC1 = FRAC2 = 0, or when fPFD is greater than  
100 MHz.  
REGISTER 6  
Control Bits  
With Bits[C4:C1] set to 0110, Register 6 is programmed. Figure 47  
shows the input data format for programming this register.  
Reserved  
Bit DB28 is reserved and must be set to 1. Bits[DB27:DB25] are  
reserved and must be set to 010.  
Reserved  
Bit DB31 is reserved and must be set to 0.  
Gated Bleed  
Feedback Select  
D13 (Bit DB24) selects the feedback from the output of the  
VCO to the N counter. When D13 is set to 1, the signal is taken  
directly from the VCO. When this bit is set to 0, the signal is  
taken from the output of the output dividers. The dividers  
enable coverage of the wide frequency band (3.4 GHz to 6.8 GHz).  
When the divider is enabled and the feedback signal is taken  
from the output, the RF output signals of two separately  
configured PLLs are in phase. Divided feedback is useful in  
some applications where the positive interference of signals is  
required to increase the power.  
Bleed currents can be used for improving phase noise and spurs;  
however, due to a potential impact on lock time, the gated bleed  
bit, BL10 (Bit DB30), if set to 1, ensures bleed currents are not  
switched on until the digital lock detect asserts logic high. Note  
that this function requires digital lock detect to be enabled.  
Negative Bleed  
Use of constant negative bleed is recommended for most  
fractional-N applications because it improves the linearity of  
the charge pump, leading to lower noise and spurious signals than  
leaving it off. To enable negative bleed, write 1 to BL9 (Bit DB29),  
and to disable negative bleed, write 0 to BL9 (Bit DB29).  
Rev. D | Page 28 of 38  
 
 
Data Sheet  
ADF5355  
Divider Select  
Mute Till Lock Detect  
D12 to D10 (Bits[DB23:DB21]) select the value of the RF output  
divider (see Figure 47).  
When D8 (Bit DB11) is set to 1, the supply current to the RF  
output stage is shut down until the device achieves lock, as  
determined by the digital lock detect circuitry.  
Charge Pump Bleed Current  
RF Output B Enable  
BL8 to BL1 (Bits[DB20:DB13]) control the level of the bleed  
current added to the charge pump output. This current  
optimizes the phase noise and spurious levels from the device.  
D7 (Bit DB10) enables or disables the high frequency RF output  
(RFOUTB). If DB10 is set to 0, the auxiliary high frequency RF  
output is enabled. If DB10 is set to 1, the auxiliary RF output is  
disabled.  
Tests have shown that the optimal bleed set is the following:  
4/N < IBLEED/ICP < 10/N  
Reserved  
where:  
Bits[DB9:DB7] are reserved and must be set to 000.  
RF Output A Enable  
N is the value of the feedback counter from the VCO to the PFD.  
I
BLEED is the value of constant negative bleed applied to the  
charge pump, which is set by the contents of Bits[DB20:DB13].  
CP is the value of charge pump current setting, Bits[DB13:DB10] of  
D3 (Bit DB6) enables or disables the primary RF output  
(RFOUTA+/RFOUTA−). If DB6 is set to 0, the primary RF output  
is disabled. If DB6 is set to 1, the primary RF output is enabled.  
I
Register 4.  
Reserved  
Output Power  
Bit DB12 is reserved and must be set to 0.  
D2 and D1 (Bits[DB5:DB4]) set the value of the primary RF  
output power level (see Figure 47).  
Rev. D | Page 29 of 38  
ADF5355  
Data Sheet  
LD  
CYCLE  
COUNT  
CONTROL  
BITS  
RESERVED  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
LD4  
LD3 LD2 LD1 C4(0) C3(1) C2(1) C1(1)  
0
0
0
1
0
0
LE  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LD5  
LOL  
LOCK DETECT MODE  
LD1  
0
1
FRACTIONAL-N  
INTEGER-N (2.9ns)  
LD3  
0
LD2  
0
FRACTIONAL-N LD PRECISION  
5.0ns  
6.0ns  
8.0ns  
12.0ns  
0
1
1
0
1
1
LE SYNCHRONIZATION  
LOSS OF LOCK MODE  
LOL  
LE  
0
1
DISABLED  
0
1
DISABLED  
ENABLED  
LE SYNCED TO REFIN  
LD5  
0
LD4  
LOCK DETECT CYCLE COUNT  
0
1
0
1
1024  
2048  
4096  
8192  
0
1
1
Figure 48. Register 7  
Loss of Lock (LOL) Mode  
REGISTER 7  
Set the LOL mode bit (Bit DB7) to 1 when the application is a  
fixed frequency application in which the reference (REFIN) is  
likely to be removed, such as a clocking application. The standard  
lock detect circuit assumes that REFIN is always present; however,  
this may not be the case with clocking applications. To enable this  
functionality, set DB7 to 1. LOL mode does not function reliably  
when using differential REFIN mode.  
Control Bits  
With Bits[C4:C1] set to 0111, Register 7 is programmed. Figure 48  
shows the input data format for programming this register.  
Reserved  
Bits[DB31:DB29] are reserved and must be set to 0. Bit DB28 is  
reserved and must be set to 1. Bits[DB27:DB26] are reserved  
and must be set to 0.  
Fractional-N Lock Detect Precision (LDP)  
LE Sync  
LD3 and LD2 (Bits[DB6:DB5]) set the precision of the lock detect  
circuitry in fractional-N mode. LDP is available at 5 ns, 6 ns, 8 ns,  
or 12 ns. If bleed currents are used, use 12 ns.  
When set to 1, Bit DB25 ensures that the load enable (LE) edge  
is synchronized internally with the rising edge of reference  
input frequency. This synchronization prevents the rare event of  
reference and RF dividers loading at the same time as a falling edge  
of the reference frequency, which can lead to longer lock times.  
Lock Detect Mode (LDM)  
If LD1 (Bit DB4) is set to 0, each reference cycle is set by  
fractional-N lock detect precision as described in the  
Fractional-N Lock Detect Count (LDC) section. If DB4 is  
set to 1, each reference cycle is 2.9 ns long, which is more  
appropriate for integer-N applications.  
Reserved  
Bits[DB24:DB10] are reserved and must be set to 0.  
Fractional-N Lock Detect Count (LDC)  
LD5 and LD4 (Bits[DB9:DB8]) set the number of consecutive  
cycles counted by the lock detect circuitry before asserting lock  
detect high. See Figure 48 for details.  
Rev. D | Page 30 of 38  
 
 
 
Data Sheet  
ADF5355  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
1
0
0
0
0
0
1
0
1
1
0
1
0
0
0
0
1
0
0
0
1
0
0
0
C4(1) C3(0) C2(0) C1(0)  
Figure 49. Register 8 (0x102D0428)  
SYNTHESIZER  
LOCK TIMEOUT  
CONTROL  
BITS  
VCO BAND DIVISION  
TIMEOUT  
AUTOMATIC LEVEL TIMEOUT  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
VC8 VC7 VC6  
VC5 VC4 VC3 VC2 VC1 TL10 TL9  
TL8  
TL7  
TL6  
TL5  
TL4  
TL3  
TL2  
TL1 AL5 AL4  
AL3 AL2 AL1 SL5 SL4 SL3 SL2 SL1 C4(1) C3(0) C2(0) C1(1)  
SL5  
SL4  
..........  
SL2  
SL1 SLC WAIT  
0
0
.
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
.
1
0
.
1
TL10  
TL9  
..........  
TL2  
TL1 TIMEOUT  
2
0
0
.
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
.
1
0
.
1
.
2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
28  
29  
30  
31  
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
1020  
1021  
1022  
1023  
AL5  
AL4  
..........  
AL2  
AL1 ALC WAIT  
VC8  
VC7  
..........  
VC2  
VC1 VCO BAND DIV  
0
0
.
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
.
1
0
.
1
0
0
.
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
.
1
0
.
1
2
2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
28  
29  
30  
31  
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
252  
253  
254  
255  
Figure 50. Register 9  
Timeout  
REGISTER 8  
TL10 to TL1 (Bits[DB23:DB14]) set the timeout value for the  
VCO band select.  
The bits in this register are reserved and must be programmed as  
shown in Figure 49, using a hexadecimal word of 0x102D0428.  
Automatic Level Calibration (ALC) Timeout  
REGISTER 9  
AL5 to AL1 (Bits[DB13:DB9]) set the timer value used for the  
automatic level calibration of the VCO. This function combines  
the PFD frequency, the timeout variable, and ALC wait variable.  
Choose the ALC such that the following equation is always  
greater than 50 µs.  
For a worked example and more information, see the Lock  
Time section.  
Control Bits  
With Bits[C4:C1] set to 1001, Register 9 is programmed. Figure 50  
shows the input data format for programming this register.  
ALC Wait > (50 µs × fPFD)/Timeout  
VCO Band Division  
Synthesizer Lock Timeout  
VC8 to VC1 (Bits[DB31:DB24]) set the value of the VCO band  
division clock. Determine the value of this clock by  
SL5 to SL1 (Bits[DB8:DB4]) set the synthesizer lock timeout  
value. This value allows the VTUNE force to settle on the VTUNE  
pin. The value must be 20 µs. Calculate the value using the  
following equation:  
VCO Band Div = Ceiling(fPFD/2,400,000)  
Synthesizer Lock Timeout > (20 µs × fPFD)/Timeout  
Rev. D | Page 31 of 38  
 
 
 
 
ADF5355  
Data Sheet  
ADC  
CLOCK DIVIDER  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
AD8 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AE2 AE1 C4(1) C3(0) C2(1) C1(0)  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
AE1 ADC  
0
1
DISABLED  
ENABLED  
AE2 ADC CONVERSION  
0
1
DISABLED  
ENABLED  
AD8  
AD7  
..........  
AD2 AD1 ADC CLK DIV  
0
0
.
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
.
1
0
.
1
2
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
252  
253  
254  
255  
Figure 51. Register 10  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
1
1
0
0
0
0
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
C4(1) C3(0) C2(1) C1(1)  
0
Figure 52. Register 11  
Choose the value such that  
REGISTER 10  
Control Bits  
ADC_CLK_DIV = Ceiling(((fPFD/100,000) − 2)/4)  
With Bits[C4:C1] set to 1010, Register 10 is programmed.  
Figure 51 shows the input data format for programming this  
register.  
where Ceiling() rounds up to the nearest integer.  
For example, for fPFD = 61.44 MHz, set ALC_CLK_DIV = 154  
so that the ADC clock frequency is 99.417 kHz.  
Reserved  
If ADC_CLK_DIV is greater than 255, set it to 255.  
Bits[DB31:DB14] are reserved. Bits[DB23:DB22] must be set to  
11, and all other bits in this range must be set to 0.  
ADC Conversion Enable  
AE2 (Bit DB5) ensures that the ADC performs a conversion  
when a write to Register 10 is performed. It is recommended to  
enable this mode.  
ADC Conversion Clock (ADC_CLK_DIV)  
An on-board analog-to-digital converter (ADC) determines the  
V
TUNE setpoint relative to the ambient temperature of the  
ADC Enable  
ADF5355 environment. The ADC ensures that the initial tuning  
voltage in any application is chosen correctly to avoid any  
temperature drift issues.  
AE1 (Bit DB4), when set to 1, powers up the ADC for the  
temperature dependent VTUNE calibration. It is recommended to  
always use this function.  
The ADC uses a clock that is equal to the output of the R  
counter (or the PFD frequency) divided by ADC_CLK_DIV.  
REGISTER 11  
The bits in this register are reserved and must be programmed  
as described in Figure 52, using a hexadecimal word of  
0x0061300B.  
AD8 to AD1 (Bits[DB13:DB6]) set the value of this divider. On  
power-up, the R counter is not programmed; however, in these  
power-up cases, it defaults to R = 1.  
Rev. D | Page 32 of 38  
 
 
 
 
Data Sheet  
ADF5355  
CONTROL  
BITS  
RESERVED  
PHASE RESYNC CLOCK DIVIDER  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
P13 P12  
P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1  
0
0
0
0
0
1
0
0
0
0
0
1
P16 P15  
C4(1) C3(1) C2(0) C1(0)  
P14  
P16  
0
0
0
.
P15  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
P5  
P4  
P3  
P2  
P1  
PHASE RESYNC CLOCK DIVIDER  
0
0
0
.
0
0
0
.
0
0
0
.
0
0
0
.
0
0
1
.
0
1
0
.
NOT ALLOWED  
1/NORMAL OPERATION  
2
...  
0
0
0
.
0
0
0
.
1
1
1
.
0
0
1
.
1
1
0
.
1
1
0
.
0
1
0
.
22  
23  
24  
...  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
65533  
65534  
65535  
Figure 53. Register 12  
12. Register 1.  
REGISTER 12  
13. Wait >16 ADC clock cycles. For example, if the ADC clock =  
99.417 kHz, wait 16/99,417 sec = 161 μs. See the Register 10  
section for more information.  
Control Bits  
With Bits[C4:C1] set to 1100, Register 12 is programmed.  
Figure 53 shows the input data format for programming this  
register.  
14. Register 0.  
For fPFD > 75 MHz (initially locked with half fPFD), use the  
following sequence:  
Phase Resync Clock Divider Value  
P16 to P1 (Bits[DB31:DB16]) set the timeout counter for  
activation of phase resync. This value must be set such that  
a resync happens immediately after (and not before) the PLL  
has achieved lock after reprogramming.  
1. Register 12.  
2. Register 11.  
3. Register 10.  
4. Register 9.  
Calculate the timeout value using the following equation:  
5. Register 8.  
Time Out Value = Phase Resync Clock Divider/fPFD  
6. Register 7.  
7. Register 6.  
8. Register 5.  
When not using phase resync, set these bits to 1 for normal  
operation.  
9. Register 4 (with the R divider doubled to output half fPFD).  
10. Register 3.  
11. Register 2 (for halved fPFD).  
12. Register 1 (for halved fPFD).  
13. Wait >16 ADC clock cycles. For example, if the ADC clock =  
99.417 kHz, wait 16/99417 sec = 161 μs. See the Register 10  
section for more information.  
14. Register 0 (for halved fPFD; autocalibration enabled).  
15. Register 4 (with the R divider set for desired fPFD).  
16. Register 2 (for desired fPFD).  
17. Register 1 (for desired fPFD).  
18. Register 0 (for desired fPFD; autocalibration disabled).  
Reserved  
Bits[DB15:DB4] are reserved. Bit DB10 and Bit DB4 must be set  
to 1, and all other bits in this range must be set to 0.  
REGISTER INITIALIZATION SEQUENCE  
At initial power-up, after the correct application of voltages to  
the supply pins, the registers must be programmed in sequence.  
For fPFD ≤ 75 MHz, use the following sequence:  
1. Register 12.  
2. Register 11.  
3. Register 10.  
4. Register 9.  
5. Register 8.  
6. Register 7.  
7. Register 6.  
8. Register 5.  
9. Register 4.  
10. Register 3.  
11. Register 2.  
FREQUENCY UPDATE SEQUENCE  
Frequency updates require updating the auxiliary modulator  
(MOD2) in Register 2, the fractional value (FRAC1) in Register 1,  
and the integer value (INT) in Register 0. It is recommended to  
perform a temperature dependent VTUNE calibration by updating  
Register 10 first. Toggling the counter reset bit (Register 4) is also  
required. Therefore, for fPFD ≤ 75 MHz, use the following sequence:  
Rev. D | Page 33 of 38  
 
 
 
 
ADF5355  
Data Sheet  
1. Register 10.  
required, a 122.88 MHz reference frequency input (REFIN)  
2. Register 4 (counter reset enabled, DB4 = 1).  
3. Register 2 (new FRAC2 and MOD2).  
is available. Note that the ADF5355 VCO operates in the  
frequency range of 3.4 GHz to 6.8 GHz. Therefore, the RF divider  
4. Register 1 (new FRAC1).  
of 2 must be used (VCO frequency = 4225.6 MHz, RFOUT =  
5. Register 0 (new INT and AUTOCAL disabled, DB21 = 0).  
6. Register 4 (counter reset disabled, DB4 = 0).  
7. Wait >16 ADC clock cycles. For example, if the ADC clock =  
99.417 kHz, wait 16/99417 sec = 161 µs. See the Register 10  
section for more information.  
VCO frequency/RF divider = 4225.6 MHz/2 = 2112.8 MHz).  
The feedback path is also important. In this example, the VCO  
output is fed back before the output divider (see Figure 54).  
In this example, the 122.88 MHz reference signal is divided by 2  
to generate fPFD of 61.44 MHz. The desired channel spacing is  
200 kHz.  
8. Register 0 (new INT and AUTOCAL enabled, DB21 = 1).  
The frequency change occurs on the second write to Register 0.  
fPFD  
RF  
OUT  
PFD  
VCO  
÷2  
For fPFD > 75 MHz (initially locked with half fPFD), use the  
following sequence:  
N
1. Register 10.  
DIVIDER  
2. Register 4 (counter reset enabled, DB4 = 1).  
3. Register 2 (for halved fPFD).  
Figure 54. Loop Closed Before Output Divider  
4. Register 1 (for halved fPFD).  
The worked example follows:  
5. Register 0 (for halved fPFD; autocalibration disabled)  
6. Register 4 (counter reset disabled [DB4 = 0], with the R  
divider doubled to output half fPFD).  
7. Wait >16 ADC clock cycles. For example, if the ADC clock =  
99.417 kHz, wait 16/99417 sec = 161 μs. See the Register 10  
section for more information.  
N = VCOOUT/fPFD = 4225.6 MHz/61.44 MHz =  
68.7760416666666667  
INT = int(VCO frequency/fPFD) = 68  
FRAC = 0.7760416666666667  
MOD1 = 16,777,216  
FRAC1 = int(MOD1 × FRAC) = 13019818  
Remainder = 0.6666666667 or 2/3  
MOD2 = fPFD/GCD(fPFD, fCHSP) =  
61.44 MHz/GCD(61.44 MHz, 200 kHz) = 1536  
FRAC2 = Remainder × 1536 = 1024  
8. Register 0 (for halved fPFD; autocalibration enabled).  
9. Register 4 (with the R divider set for desired fPFD  
10. Register 2 (for desired fPFD).  
.
11. Register 1 (for desired fPFD).  
12. Register 0 (for desired fPFD; autocalibration disabled).  
From Equation 8,  
The frequency change only occurs when writing to Register 0.  
f
PFD = (122.88 MHz × (1 + 0)/2) = 61.44 MHz  
(x)  
(9)  
RF SYNTHESIZER—A WORKED EXAMPLE  
2112.8 MHz = 61.44 MHz × ((INT + (FRAC1 +  
FRAC2/MOD2)/224))/2  
Use the following equations to program the ADF5355 synthesizer:  
FRAC2  
MOD2  
MOD1  
FRAC1+  
where:  
INT = 68  
FRAC1 = 13,019,817  
MOD2 = 1536  
FRAC2 = 1024  
RF Divider = 2  
RFOUT = INT +  
where:  
×
(
fPFD /RF Divider (7)  
)
RFOUT is the RF output frequency.  
INT is the integer division factor.  
FRAC1 is the fractionality.  
FRAC2 is the auxiliary fractionality.  
MOD1 is the fixed 24-bit modulus.  
MOD2 is the auxiliary modulus.  
RF Divider is the output divider that divides down the VCO  
frequency.  
REFERENCE DOUBLER AND REFERENCE DIVIDER  
The on-chip reference doubler allows the input reference signal  
to be doubled. The doubler is useful for increasing the PFD  
comparison frequency. To improve the noise performance of  
the system, increase the PFD frequency. Doubling the PFD  
frequency typically improves noise performance by 3 dB.  
f
PFD = REFIN × ((1 + D)/(R × (1 + T)))  
(8)  
The reference divide by 2 divides the reference signal by 2,  
resulting in a 50% duty cycle PFD frequency.  
where:  
REFIN is the reference frequency input.  
D is the REFIN doubler bit.  
R is the REF reference division factor.  
SPURIOUS OPTIMIZATION AND FAST LOCK  
Narrow loop bandwidths can filter unwanted spurious signals;  
however, these bandwidths typically have a long lock time.  
T is the reference divide by 2 bit (0 or 1).  
For example, in a universal mobile telecommunication system  
(UMTS) where a 2112.8 MHz RF frequency output (RFOUT) is  
Rev. D | Page 34 of 38  
 
 
 
 
Data Sheet  
ADF5355  
A wider loop bandwidth achieves faster lock times but may lead  
to increased spurious signals inside the loop bandwidth.  
It is found that  
ALC Wait = 2.5 × Synthesizer Lock Timeout  
OPTIMIZING JITTER  
The ALC wait and synthesizer lock timeout values must be set  
to fulfill this equation. Both values are 5 bits wide; therefore, the  
maximum value for either is 31. There are several suitable values.  
For lowest jitter applications, use the highest possible PFD  
frequency to minimize the contribution of in-band noise from  
the PLL. Set the PLL filter bandwidth such that the in-band noise  
of the PLL intersects with the open-loop noise of the VCO,  
minimizing the contribution of both to the overall noise.  
The following values meet the criteria:  
ALC Wait = 30  
Synthesizer Lock Timeout = 12  
Use the ADIsimPLL design tool for this task.  
Finally, ALC Wait > (50 µs × fPFD)/Timeout, is rearranged for  
Timeout = Ceiling((fPFD × 50 µs)/ALC Wait)  
Timeout = Ceiling((61.44 MHz × 50 µs)/30) = 103  
Synthesizer Lock Timeout  
SPUR MECHANISMS  
This section describes the two different spur mechanisms that  
arise with a fractional-N synthesizer and how to minimize them  
in the ADF5355.  
Integer Boundary Spurs  
The synthesizer lock timeout ensures that the VCO calibration  
DAC, which forces VTUNE, has settled to a steady value for the  
band select circuitry.  
One mechanism for fractional spur creation is the interactions  
between the RF VCO frequency and the reference frequency.  
When these frequencies are not integer related (the purpose of a  
fractional-N synthesizer), spur sidebands appear on the VCO  
output spectrum at an offset frequency that corresponds to the  
beat note or the difference in frequency between an integer  
multiple of the reference and the VCO frequency. These spurs  
are attenuated by the loop filter and are more noticeable on  
channels close to integer multiples of the reference where the  
difference frequency can be inside the loop bandwidth (thus  
the name, integer boundary spurs).  
The timeout and synthesizer lock timeout variables programmed  
in Register 9 select the length of time the DAC is allowed to  
settle to the final voltage, before the VCO calibration process  
continues to the next phase, which is VCO band selection. The  
PFD frequency is the clock for this logic, and the duration is set by  
Timeout ×Synthesizer Lock Timeout  
fPFD  
The calculated time must be equal to or greater than 20 µs.  
Reference Spurs  
VCO Band Selection  
Reference spurs are generally not a problem in fractional-N  
synthesizers because the reference offset is far outside the loop  
bandwidth. However, any reference feedthrough mechanism  
that bypasses the loop can cause a problem. Feedthrough of low  
levels of on-chip reference switching noise, through the  
prescaler back to the VCO, can result in reference spur levels  
as high as −80 dBc.  
Use the PFD frequency again as the clock for the band selection  
process. Calculate this value by  
fPFD/(VCO Band Selection × 16) < 150 kHz  
The band selection takes 11 cycles of the previously calculated  
value. Calculate the duration by  
11 × (VCO Band Selection × 16)/fPFD  
LOCK TIME  
Automatic Level Calibration Timeout  
The PLL lock time divides into a number of settings. All of  
these settings are modeled in the ADIsimPLL design tool.  
Use the automatic level calibration (ALC) function to choose  
the correct bias current in the ADF5355 VCO core. Calculate  
the time taken by  
Much faster lock times than those detailed in this data sheet  
are possible; contact Analog Devices for more information.  
55 × ALC Wait × Timeout/fPFD  
Lock Time—A Worked Example  
Assume that fPFD = 61.44 MHz,  
PLL Low-Pass Filter Settling Time  
The time taken for the loop to settle is inversely proportional to  
the low-pass filter bandwidth. The settling time is also modeled  
in the ADIsimPLL design tool.  
VCO Band Div = Ceiling(fPFD/2,400,000) = 26  
where Ceiling() rounds up to the nearest integer.  
By combining  
The total lock time for changing frequencies is the sum of the  
four separate times (synthesizer lock, VCO band selection, ALC  
timeout, and PLL settling time) and is all modeled in the  
ADIsimPLL design tool.  
ALC Wait > (50 µs × fPFD)/Timeout  
Synthesizer Lock Timeout > (20 µs × fPFD)/Timeout  
Rev. D | Page 35 of 38  
 
 
 
ADF5355  
Data Sheet  
APPLICATIONS INFORMATION  
On the PCB, there must be a minimum clearance of 0.25 mm  
between the thermal pad and the inner edges of the pad pattern.  
This clearance ensures the avoidance of shorting.  
POWER SUPPLIES  
The ADF5355 contains four multiband VCOs that together cover  
an octave range of frequencies. To ensure best performance, it is  
vital to connect a low noise regulator, such as the ADM7150, to  
the VVCO pin. Connect the same regulator to VVCO, VREGVCO, and VP.  
To improve the thermal performance of the package, use thermal  
vias on the PCB thermal pad. If vias are used, incorporate them  
into the thermal pad at the 1.2 mm pitch grid. The via diameter  
must be between 0.3 mm and 0.33 mm, and the via barrel must  
be plated with 1 oz. of copper to plug the via.  
For the 3.3 V supply pins, use an ADM7150 regulator. Figure 55  
shows the recommended connections.  
PRINTED CIRCUIT BOARD (PCB) DESIGN  
GUIDELINES FOR A CHIP-SCALE PACKAGE  
For a microwave PLL and VCO synthesizer, such as the ADF5355,  
take care with the board stack-up and layout. Do not consider  
using FR4 material because it is too lossy above 3 GHz. Instead,  
Rogers 4350, Rogers 4003, or Rogers 3003 dielectric material is  
suitable.  
The lands on the 32-lead lead frame chip-scale package are  
rectangular. The PCB pad for these lands must be 0.1 mm  
longer than the package land length and 0.05 mm wider than  
the package land width. Center each land on the pad to  
maximize the solder joint size.  
Take care with the RF output traces to minimize discontinuities  
and ensure the best signal integrity. Via placement and grounding  
are critical.  
The bottom of the chip-scale package has a central exposed  
thermal pad. The thermal pad on the PCB must be at least as  
large as the exposed pad.  
1
V
= 6.0V  
FB  
IN  
V
OUT  
= 3.3V  
100nF  
100nF  
VIN  
EN  
VOUT  
C
IN  
10µF  
C
10µF  
OUT  
ON  
LOCK  
DETECT  
ADM7150  
OFF  
BYP  
REF  
17  
6
27  
5
16  
4
26  
10  
32  
REG2 CREG1  
MUXOUT  
25  
30  
C
10µF  
BYP  
VVCO  
DVDD AVDD AV  
VRF  
C
DD CE PDBRF  
VREG REF_SENSE  
GND  
VP  
1nF  
1nF  
1nF  
C
REG  
10µF  
10pF  
FREFIN  
FREFIN  
29  
REFIN  
A
RFOUT  
B
14  
100  
VOUT  
REFINB  
28  
1nF  
7.5nH  
7.5nH  
1
2
3
CLK  
DATA  
LE  
1nF  
1nF  
11  
12  
RFOUTA+  
RFOUTA–  
ADF5355  
V
= 6.0V  
IN  
V
OUT  
= 5.0V  
VIN  
EN  
VOUT  
VTUNE 20  
C
IN  
10µF  
C
OUT  
10µF  
430Ω  
ON  
CPOUT  
7
RSET  
22  
ADM7150  
OFF  
4.7kΩ  
1µF  
68Ω  
33nF  
6800pF  
BYP  
REF  
C
BYP  
10µF  
VREG REF_SENSE  
GND  
CPGND SDGND  
AGNDVCO AGNDRF VREGVCO VREF VBIAS  
AGND  
9
C
REG  
10µF  
15  
8
31  
18 21  
13  
19  
23  
24  
10pF  
0.1µF 10pF  
0.1µF 10pF  
0.1µF  
1
MURATA PART NUMBER BLM15AX100SN1D HAS BEEN USED WITH GOOD RESULTS.  
Figure 55. ADF5355 Power Supplies  
Rev. D | Page 36 of 38  
 
 
 
 
Data Sheet  
ADF5355  
For lower frequencies below 2 GHz, it is recommended to use a  
100 nH inductor on the RFOUTA+/RFOUTA− pins.  
OUTPUT MATCHING  
The low frequency output can simply be ac-coupled to the next  
circuit, if desired; however, if higher output power is required,  
use a pull-up inductor to increase the output power level.  
The RFOUTA+/RFOUTA− pins are a differential circuit. Provide  
each output with the same (or similar) components where  
possible, such as same shunt inductor value, bypass capacitor,  
and termination.  
V
RF  
7.5nH  
100pF  
AC couple the higher frequency output, RFOUTB, directly to the  
next appropriate circuit stage.  
RF  
A+  
OUT  
50Ω  
RFOUTB is matched internally to a 50 Ω impedance and requires  
no additional matching components.  
Figure 56. Optimum Output Stage  
When differential outputs are not needed, terminate the unused  
output or combine it with both outputs using a balun.  
Rev. D | Page 37 of 38  
 
ADF5355  
Data Sheet  
OUTLINE DIMENSIONS  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
25  
32  
24  
1
0.50  
BSC  
3.75  
3.60 SQ  
3.55  
EXPOSED  
PAD  
17  
8
16  
9
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD-5.  
Figure 57. 32-Lead Lead Frame Chip Scale Package [LFCSP]  
5 mm × 5 mm Body and 0.75 mm Package Height  
(CP-32-12)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
ADF5355BCPZ  
ADF5355BCPZ-RL7  
EV-ADF5355SD1Z  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
CP-32-12  
CP-32-12  
1 Z = RoHS Compliant Part.  
©2014–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12714-0-8/17(D)  
Rev. D | Page 38 of 38  
 
 

相关型号:

ADF5355BCPZ-RL7

Microwave Wideband Synthesizer with Integrated VCO
ADI

ADF5355_17

Microwave Wideband Synthesizer with Integrated VCO
ADI

ADF5356

Microwave Wideband Synthesizer
ADI

ADF5356BCPZ

Microwave Wideband Synthesizer
ADI

ADF5356BCPZ-RL7

Microwave Wideband Synthesizer
ADI

ADF5610

Microwave Wideband Synthesizer Integrated VCO
ADI

ADF5610BCCZ

Microwave Wideband Synthesizer Integrated VCO
ADI

ADF5610BCCZ-RL7

Microwave Wideband Synthesizer Integrated VCO
ADI

ADF5610_V01

Microwave Wideband Synthesizer Integrated VCO
ADI

ADF5709

9.85 GHz to 20.5 GHz, Wideband, MMIC VCO
ADI

ADF5709BEZ

9.85 GHz to 20.5 GHz, Wideband, MMIC VCO
ADI

ADF5709BEZ-R7

9.85 GHz to 20.5 GHz, Wideband, MMIC VCO
ADI