ADF5356BCPZ-RL7 [ADI]

Microwave Wideband Synthesizer;
ADF5356BCPZ-RL7
型号: ADF5356BCPZ-RL7
厂家: ADI    ADI
描述:

Microwave Wideband Synthesizer

文件: 总38页 (文件大小:726K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Microwave Wideband Synthesizer  
with Integrated VCO  
Data Sheet  
ADF5356  
FEATURES  
GENERAL DESCRIPTION  
RF output frequency range: 53.125 MHz to 13,600 MHz  
Noise floor integer channel: −227 dBc/Hz  
Noise floor fractional channel: −225 dBc/Hz  
Integrated rms jitter (1 kHz to 20 MHz): 97 fs for 6 GHz output  
Fractional-N synthesizer and integer N synthesizer  
Pin compatible to the ADF5355  
The ADF5356 allows implementation of fractional-N or integer N  
phase-locked loop (PLL) frequency synthesizers when used with  
an external loop filter and an external reference frequency. The  
wideband microwave VCO design permits frequency operation  
from 6.8 GHz to 13.6 GHz at one radio frequency (RF) output. A  
series of frequency dividers at another frequency output permits  
operation from 53.125 MHz to 6800 MHz.  
High resolution, 52-bit modulus  
Phase frequency detector (PFD) operation to 125 MHz  
Reference input frequency operation to 600 MHz  
Maintains frequency lock over −40°C to +85°C  
Low phase noise, voltage controlled oscillator (VCO)  
Programmable divide by 1, 2, 4, 8, 16, 32, or 64 output  
Analog and digital power supplies: 3.3 V  
Charge pump and VCO power supplies: 5.0 V typical  
Logic compatibility: 1.8 V  
The ADF5356 has an integrated VCO with a fundamental  
output frequency ranging from 3400 MHz to 6800 MHz. In  
addition, the VCO frequency is connected to divide by 1, 2, 4, 8,  
16, 32, or 64 circuits that allow the user to generate RF output  
frequencies as low as 53.125 MHz. For applications that require  
isolation, the RF output stage can be muted. The mute function  
is both pin- and software-controllable.  
Control of all on-chip registers is through a simple 3-wire interface.  
The ADF5356 operates with analog and digital power supplies  
ranging from 3.15 V to 3.45 V, with charge pump and VCO  
supplies from 4.75 V to 5.25 V. The ADF5356 also contains  
hardware and software power-down modes.  
Programmable output power level  
RF output mute function  
Supported by the ADIsimPLL design tool  
APPLICATIONS  
Wireless infrastructure (LTE, W-CDMA, TD-SCDMA,  
WiMAX, GSM, PCS, DCS)  
Point to point and point to multipoint microwave links  
Satellites and very small aperture terminals (VSATs)  
Test equipment and instrumentation  
Clock generation  
FUNCTIONAL BLOCK DIAGRAM  
V
VCO  
AV  
DV  
V
R
AV  
V
RF  
CE  
DD  
DD  
P
SET  
DD  
MULTIPLEXER  
MUXOUT  
10-BIT R  
COUNTER  
÷2  
DIVIDER  
REF  
A
B
IN  
×2  
DOUBLER  
C
C
1
2
REG  
REG  
LOCK  
DETECT  
REF  
IN  
CHARGE  
PUMP  
CLK  
DATA  
LE  
CP  
OUT  
DATA REGISTER  
FUNCTION  
LATCH  
PHASE  
COMPARATOR  
V
V
TUNE  
REF  
V
VCO  
CORE  
BIAS  
×2  
INTEGER  
REG  
FRACTION  
REG  
MODULUS  
REG  
V
REGVCO  
OUTPUT  
STAGE  
RF  
B
OUT  
THIRD-ORDER  
FRACTIONAL INTERPOLATOR  
PDB  
RF  
RF  
÷ 1/2/4/8/  
16/32/64  
A+  
A–  
OUTPUT  
STAGE  
OUT  
N COUNTER  
RF  
OUT  
ADF5356  
MULTIPLEXER  
A
CP  
SD  
GND  
A
GNDVCO  
A
GND  
GND  
GNDRF  
Figure 1.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2017 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADF5356  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Register 3 ..................................................................................... 23  
Register 4 ..................................................................................... 24  
Register 5 ..................................................................................... 25  
Register 6 ..................................................................................... 26  
Register 7 ..................................................................................... 28  
Register 8 ..................................................................................... 29  
Register 9 ..................................................................................... 29  
Register 10................................................................................... 30  
Register 11................................................................................... 31  
Register 12................................................................................... 31  
Register 13................................................................................... 32  
Register Initialization Sequence ............................................... 32  
Frequency Update Sequence..................................................... 33  
RF Synthesizer—A Worked Example...................................... 33  
Reference Doubler and Reference Divider ............................. 34  
Spurious Optimization and Fast Lock..................................... 34  
Optimizing Jitter......................................................................... 34  
Spur Mechanisms ....................................................................... 34  
PLL Lock Time ........................................................................... 34  
Applications Information.............................................................. 36  
Power Supplies............................................................................ 36  
PCB Design Guidelines for a Chip Scale Package ................. 36  
Output Matching........................................................................ 37  
Outline Dimensions....................................................................... 38  
Ordering Guide .......................................................................... 38  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics ................................................................ 6  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
Transistor Count........................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ........................................... 10  
Theory of Operation ...................................................................... 15  
Reference Input Section............................................................. 15  
RF N Divider............................................................................... 15  
Phase Frequency Detector (PFD) and Charge Pump............ 16  
MUXOUT and Lock Detect...................................................... 16  
Input Shift Registers................................................................... 16  
Program Modes .......................................................................... 17  
VCO.............................................................................................. 17  
Output Stage................................................................................ 17  
Register Maps.................................................................................. 19  
Register 0 ..................................................................................... 21  
Register 1 ..................................................................................... 22  
Register 2 ..................................................................................... 22  
REVISION HISTORY  
8/2017—Revision 0: Initial Version  
Rev. 0 | Page 2 of 38  
 
Data Sheet  
ADF5356  
SPECIFICATIONS  
AVDD = DVDD = VRF = 3.3 V 5%, 4.75 V ≤ VP = VVCO ≤ 5.25 V, AGND = CPGND = AGNDVCO = SDGND = AGNDRF = 0 V, RSET = 5.1 kΩ, dBm referred  
to 50 Ω, TA = TMIN to TMAX, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
REFINA/REFINB CHARACTERISTICS  
Input Frequency Range  
Single-Ended Mode  
Differential Mode  
For f < 10 MHz, ensure slew rate > 21 V/μs  
10  
10  
250  
600  
MHz  
MHz  
Input Sensitivity  
Single-Ended Mode  
0.4  
0.4  
AVDD  
1.8  
V p-p  
V p-p  
REFINA biased at AVDD/2; ac coupling ensures  
AVDD/2 bias  
Low voltage differential signaling (LVDS) and  
Low voltage positive emitter-coupled logic  
(LVPECL) compatible, REFINA/REFINB biased at  
2.1 V; ac coupling ensures 2.1 V bias  
Differential Mode  
Input Capacitance  
Single-Ended Mode  
Differential Mode  
Input Current  
6.9  
1.4  
pF  
pF  
μA  
μA  
MHz  
100  
250  
125  
Single-ended reference programmed  
Differential reference programmed  
PFD  
CHARGE PUMP (CP)  
CP Current, Sink/Source  
ICP  
RSET = 5.1 kΩ, this resistor is internal in the  
ADF5356  
High Value  
Low Value  
RSET Range  
Current Matching  
ICP vs. VCP  
4.8  
0.3  
5.1  
3
mA  
mA  
kΩ  
%
Fixed  
0.5 V ≤ VCP1 ≤ VP − 0.5 V  
0.5 V ≤ VCP1 ≤ VP − 0.5 V  
VCP1 = 2.5 V  
3
%
ICP vs. Temperature  
LOGIC INPUTS  
Input Voltage  
High  
1.5  
%
VINH  
VINL  
IINH/IINL  
CIN  
1.5  
DVDD  
0.6  
1
V
V
μA  
pF  
Low  
Input Current, High/Low  
Input Capacitance  
LOGIC OUTPUTS  
Output High Voltage  
3.0  
1.8  
VOH  
DVDD − 0.4  
1.5  
V
V
3.3 V output selected  
1.8 V output selected  
Output High Current  
Output Low Voltage  
POWER SUPPLIES  
Analog Power  
Digital Power and RF Supply  
Voltage  
IOH  
VOL  
500  
0.4  
μA  
V
IOL2 = 500 μA  
See Table 7  
AVDD  
DVDD  
VRF  
VP, VVCO  
3.15  
4.75  
3.3  
AVDD  
3.45  
V
,
Voltages must equal AVDD  
VP must equal VVCO  
CP and VCO Supply Voltage  
5.0  
82  
5.25  
92  
V
mA  
Total Digital and Analog Current,  
3
DIDD + AIDD  
Output Dividers  
CP Supply Power Current  
Supply Current  
6 to 36  
8
70  
mA  
mA  
Each output divide by 2 consumes 6 mA  
For maximum ICP = 4.8 mA  
IP  
IVCO  
9
90  
Rev. 0 | Page 3 of 38  
 
ADF5356  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
RFOUTA+/RFOUTA− and RFOUTB Supply  
Current  
IRFOUTx  
RF Output A and RF Output B enabled;  
RF Output A is programmable; enabling RF  
Output B draws negligible extra current  
12  
24  
35  
46  
5
15  
29  
42  
56  
mA  
mA  
mA  
mA  
mA  
mA  
−4 dBm setting  
−1 dBm setting  
2 dBm setting  
5 dBm setting  
Hardware power-down selected  
Software power-down selected  
Low Power Sleep Mode  
20  
RF OUTPUT CHARACTERISTICS  
VCO Frequency Range  
3400  
6800  
6800  
53.125  
6800  
13600 MHz  
12000 MHz  
MHz  
Fundamental VCO range  
RFOUTB Output Frequency  
2× VCO output (RFOUTB), prescaler = 8/9  
2× VCO output (RFOUTB), prescaler = 4/5  
Prescaler = 8/9  
RFOUTA+/RFOUTA− Output  
Frequency  
6800  
MHz  
53.125  
6000  
MHz  
Prescaler = 4/5  
VCO Sensitivity  
Frequency Pushing (Open Loop)  
Frequency Pulling (Open Loop)  
KV  
25  
12  
0.5  
MHz/V  
MHz/V  
MHz  
Voltage standing wave ratio (VSWR) = 2:1  
RFOUTA/RFOUTA−  
30  
MHz  
VSWR = 2:1 RFOUTB  
Harmonic Content  
Second  
−26  
−29  
−32  
−14  
−10  
8
−1  
0
2
dBc  
dBc  
dBc  
dBc  
dBm  
dBm  
dBm  
dBm  
dBm  
dB  
Fundamental VCO output (RFOUTA+)  
Divided VCO output (RFOUTA+)  
Fundamental VCO output (RFOUTA+)  
Divided VCO output (RFOUTA+)  
RFOUTB = 10 GHz  
RFOUTA+ = 1 GHz; 7.4 nH inductor to VRF  
RFOUTA+ = 6.8 GHz; 7.4 nH inductor to VRF  
RFOUTB = 6.8 GHz  
Third  
Fundamental VCO Feedthrough  
RF Output Power4  
RFOUTB = 13.6 GHz  
RFOUTA+ = 5 GHz  
Variation  
1
1
dB  
RFOUTB = 10 GHz  
Variation over Frequency  
5
3
−53  
dB  
dB  
dBm  
RFOUTA+ = 1 GHz to 6.8 GHz  
RFOUTB = 6.8 GHz to 13.6 GHz  
RFOUTA+ = 1 GHz  
Level of Signal with RF Output  
Disabled  
−20  
−16  
−12  
dBm  
dBm  
dBm  
RFOUTA+ = 6.8 GHz  
RFOUTB = 6.8 GHz  
RFOUTB = 13.6 GHz  
NOISE CHARACTERISTICS  
Fundamental VCO Phase Noise  
Performance  
VCO noise in open-loop conditions  
−115  
−135  
−137  
−155  
−113  
−133  
−135  
−153  
−110  
−130  
−132  
−150  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
100 kHz offset from 3.4 GHz carrier  
800 kHz offset from 3.4 GHz carrier  
1 MHz offset from 3.4 GHz carrier  
10 MHz offset from 3.4 GHz carrier  
100 kHz offset from 5.0 GHz carrier  
800 kHz offset from 5.0 GHz carrier  
1 MHz offset from 5.0 GHz carrier  
10 MHz offset from 5.0 GHz carrier  
100 kHz offset from 6.8 GHz carrier  
800 kHz offset from 6.8 GHz carrier  
1 MHz offset from 6.8 GHz carrier  
10 MHz offset from 6.8 GHz carrier  
Rev. 0 | Page 4 of 38  
Data Sheet  
ADF5356  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
VCO 2× Phase Noise Performance  
VCO noise in open-loop conditions  
100 kHz offset from 6.8 GHz carrier  
800 kHz offset from 6.8 GHz carrier  
1 MHz offset from 6.8 GHz carrier  
10 MHz offset from 6.8 GHz carrier  
100 kHz offset from 10 GHz carrier  
800 kHz offset from 10 GHz carrier  
1 MHz offset from 10 GHz carrier  
10 MHz offset from 10 GHz carrier  
100 kHz offset from 13.6 GHz carrier  
800 kHz offset from 13.6 GHz carrier  
1 MHz offset from 13.6 GHz carrier  
10 MHz offset from 13.6 GHz carrier  
−110  
−130  
−132  
−149  
−107  
−127  
−129  
−147  
−103  
−124  
−126  
−144  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Normalized In-Band Phase Noise  
Floor  
Fractional Channel5  
Integer Channel6  
Normalized 1/f Noise, PN1_f  
Integrated RMS Jitter (1 kHz to  
20 MHz)8  
−225  
−227  
−121  
97  
dBc/Hz  
dBc/Hz  
dBc/Hz  
fs  
7
10 kHz offset; normalized to 1 GHz  
Spurious Signals Due to PFD  
Frequency  
−85  
dBc  
1 VCP is the voltage at the CPOUT pin.  
2 IOL is the output low current.  
3 TA = 25°C; AVDD = DVDD = VRF = 3.3 V; VVCO = VP = 5.0 V; prescaler = 8/9; fREFIN = 122.88 MHz; fPFD = 61.44 MHz; and fRF = 1650 MHz.  
4 RF output power using the EV-ADF5356SD1Z evaluation board is measured by a spectrum analyzer, with board and cable losses de-embedded. Unused RF output pins  
are terminated into 50 Ω.  
5 Use this value to calculate the phase noise for any application. To calculate in-band phase noise performance as seen at the VCO output, use the following formula:  
−225 + 10log(fPFD) + 20logN. The value given is the lowest noise mode for the fractional channel.  
6 Use this value to calculate the phase noise for any application. To calculate in-band phase noise performance as seen at the VCO output, use the following formula:  
−227 + 10log(fPFD) + 20logN. The value given is the lowest noise mode for the integer channel.  
7 The PLL phase noise is composed of 1/f (flicker) noise plus the normalized PLL noise floor. The formula for calculating the 1/f noise contribution at an RF frequency (fRF)  
and at a frequency offset (f) is given by PN = P1_f + 10log(10 kHz/f) + 20log(fRF/1 GHz). Both the normalized phase noise floor and flicker noise are modeled in the  
ADIsimPLL design tool.  
8 Integrated rms jitter using the EV-ADF5356SD1Z evaluation board is measured by a spectrum analyzer. The EV-ADF5356SD1Z evaluation board is configured to accept  
a single-ended REFIN signal (SMA 100) = 160 MHz, VCO frequency = 6 GHz, fPFD = 80 MHz, charge pump current = 0.9 mA, with bleed current off. The loop filter is  
configured for an 80 kHz loop filter bandwidth. Unused RF output pins are terminated into 50 Ω.  
Rev. 0 | Page 5 of 38  
ADF5356  
Data Sheet  
TIMING CHARACTERISTICS  
AVDD = DVDD =VRF = 3.3 V 5%, 4.75 V ≤ VP = VVCO ≤ 5.25 V, AGND = CPGND = AGNDVCO = SDGND = AGNDRF = 0 V, RSET = 5.1 kΩ, dBm referred  
to 50 Ω, TA = TMIN to TMAX, unless otherwise noted.  
Table 2. Write Timing  
Parameter  
Limit  
Unit  
Description  
fCLK  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
50  
10  
5
5
10  
10  
10  
MHz max  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
Serial peripheral interface (SPI) CLK frequency  
LE setup time  
DATA to CLK setup time  
DATA to CLK hold time  
CLK high duration  
CLK low duration  
CLK to LE setup time  
LE pulse width  
20 or (2/fPFD), whichever is longer  
Write Timing Diagram  
t4  
t5  
CLK  
t2  
t3  
DB3  
DB2  
(CONTROL BIT C3)  
DB1  
DB0 (LSB)  
(CONTROL BIT C1)  
DB31 (MSB)  
DB30  
DATA  
LE  
(CONTROL BIT C4)  
(CONTROL BIT C2)  
t7  
t1  
t6  
Figure 2. Write Timing Diagram  
Rev. 0 | Page 6 of 38  
 
 
Data Sheet  
ADF5356  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required. θJA is the natural convection  
junction to ambient thermal resistance measured in a one cubic  
foot sealed enclosure.  
Table 3.  
Parameter  
VRF, DVDD, AVDD to GND1  
AVDD to DVDD  
VP, VVCO to GND1  
CPOUT to GND1  
Digital Input/Output Voltage to GND1 −0.3 V to DVDD + 0.3 V  
Analog Input/Output Voltage to GND1 −0.3 V to AVDD + 0.3 V  
REFINA, REFINB to GND1  
Rating  
−0.3 V to +3.6 V  
−0.3 V to +0.3 V  
−0.3 V to +5.8 V  
−0.3 V to VP + 0.3 V  
Table 4. Thermal Resistance  
Package Type  
CP-32-121  
θJA  
Unit  
27.3  
°C/W  
−0.3 V to AVDD + 0.3 V  
2.1 V  
−40°C to +85°C  
−65°C to +125°C  
150°C  
1 Thermal impedance simulated values are based on use of a PCB with the  
REFINA to REFINB  
thermal impedance pad soldered to GND (GND = AGND = SDGND = AGNDRF  
AGNDVCO = CPGND = 0 V).  
=
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
Reflow Soldering  
TRANSISTOR COUNT  
The transistor count for the ADF5356 is 134,486 (CMOS) and  
3874 (bipolar).  
Peak Temperature  
260°C  
40 sec  
Time at Peak Temperature  
Electrostatic Discharge (ESD)  
Charged Device Model  
Human Body Model  
ESD CAUTION  
500 V  
2000 V  
1 GND = AGND = SDGND = AGNDRF = AGNDVCO = CPGND = 0 V.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
The ADF5356 is a high performance RF integrated circuit with  
an ESD rating of 2 kV and is ESD sensitive. Take proper  
precautions for handling and assembly.  
Rev. 0 | Page 7 of 38  
 
 
 
 
ADF5356  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
CLK  
DATA  
LE  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
V
V
NIC  
A
BIAS  
REF  
ADF5356  
TOP VIEW  
(Not to Scale)  
CE  
GNDVCO  
AV  
V
V
DD  
TUNE  
V
P
REGVCO  
A
V
CP  
CP  
GNDVCO  
OUT  
GND  
VCO  
NOTES  
1. NIC = NO INTERNAL CONNECTION. FOR EXISTING DESIGNS THAT CURRENTLY USE THE ADF5355,  
TO UPGRADE TO THE ADF5356, THE R RESISTOR CAN BE LEFT CONNECTED TO THIS PIN.  
SET  
2. THE EXPOSED PAD MUST BE CONNECTED TO A  
.
GND  
Figure 3. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
CLK  
DATA  
LE  
Serial Clock Input. Data is clocked into the 32-bit shift register on the CLK rising edge. This input is a high  
impedance CMOS input.  
Serial Data Input. The serial data is loaded most significant bit (MSB) first with the four LSBs as the control bits. This  
input is a high impedance CMOS input.  
Load Enable, CMOS Input. When LE goes high, the data stored in the shift register is loaded into the register that is  
selected by the four LSBs.  
2
3
4
CE  
Chip Enable. A logic low on this pin powers down the device and puts the charge pump into three-state mode. A  
logic high on this pin powers up the device, depending on the status of the power-down bits.  
5, 16  
AVDD  
VP  
Analog Power Supplies. These pins range from 3.15 V to 3.45 V. Connect decoupling capacitors to the analog  
ground plane as close to these pins as possible. AVDD must have the same value as DVDD.  
Charge Pump Power Supply. VP must have the same value as VVCO. Connect decoupling capacitors to the ground  
plane as close to this pin as possible.  
Charge Pump Output. When enabled, this output provides ICP to the external loop filter. The output of the loop  
filter is connected to VTUNE to drive the internal VCO.  
6
7
CPOUT  
8
9
10  
CPGND  
AGND  
VRF  
Charge Pump Ground. This output is the ground return pin for CPOUT  
Analog Ground. This pin is the ground return pin for AVDD.  
Power Supply for the RF Output. Connect decoupling capacitors to the analog ground plane as close to this pin as  
possible. VRF must have the same value as AVDD.  
.
11  
12  
RFOUTA+  
RFOUTA−  
AGNDRF  
VCO Output. The output level is programmable. The VCO fundamental output, or a divided down version, is  
available.  
Complementary VCO Output. The output level is programmable. The VCO fundamental output, or a divided down  
version, is available.  
RF Output Stage Ground. This pin is the ground return pin for the RF output stage.  
Auxiliary VCO Output. The 2× VCO output is available at this pin.  
Power Supply for the VCO. The voltage on this pin ranges from 4.75 V to 5.25 V. Place decoupling capacitors to the  
analog ground plane as close to this pin as possible.  
13, 15  
14  
17  
RFOUT  
VVCO  
B
18, 21  
19  
AGNDVCO  
VREGVCO  
VCO Ground. This pin is the ground return path for the VCO.  
VCO Compensation Node. Connect decoupling capacitors to the ground plane as close to this pin as possible.  
Connect VREGVCO directly to VVCO  
.
Rev. 0 | Page 8 of 38  
 
Data Sheet  
ADF5356  
Pin No. Mnemonic Description  
20  
22  
23  
VTUNE  
Control Input to the VCO. This voltage determines the output frequency and is derived from filtering the CPOUT  
output voltage. The capacitance at this pin (VTUNE input capacitance) is 9 pF.  
No Internal Connection. For existing designs that currently use the ADF5355, to upgrade to the ADF5356, the RSET  
resistor can be left connected to this pin.  
Internal Compensation Node. This pin is dc biased at half the tuning range. Connect decoupling capacitors to the  
ground plane as close to this pin as possible.  
NIC  
VREF  
24  
VBIAS  
Reference Voltage. Connect a 100 nF decoupling capacitor to the ground plane as close to this pin as possible.  
25, 32  
CREG1, CREG  
2
Outputs from the LDO Regulator. CREG1 and CREG2 are the supply voltages to the digital circuits. These pins have a  
nominal voltage of 1.8 V. Decoupling capacitors of 100 nF connected to AGND are required for these pins.  
26  
27  
PDBRF  
DVDD  
RF Power-Down. A logic low on this pin mutes the RF outputs. This mute function is also software controllable. Do  
not leave this pin floating.  
Digital Power Supply. This pin must be at the same voltage as AVDD. Place decoupling capacitors to the ground  
plane as close to this pin as possible.  
28  
29  
30  
REFINB  
REFINA  
MUXOUT  
Complementary Reference Input. If unused, ac couple this pin to AGND  
Reference Input.  
Multiplexer Output. The multiplexer output allows the digital lock detect, the analog lock detect, scaled RF, or the  
scaled reference frequency to be externally accessible.  
.
31  
SDGND  
EP  
Digital Σ-Δ Modulator Ground. SDGND is the ground return path for the Σ-Δ modulator.  
Exposed Pad. The exposed pad must be connected to AGND  
.
Rev. 0 | Page 9 of 38  
ADF5356  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
–50  
–80  
–90  
DIV1  
DIV2  
DIV4  
DIV8  
–70  
DIV16  
DIV32  
DIV64  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–90  
–110  
–130  
–150  
–170  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY OFFSET FROM CARRIER (Hz)  
FREQUENCY (Hz)  
Figure 4. Open-Loop VCO Phase Noise, 3.4 GHz  
Figure 7. Closed-Loop Phase Noise, RFOUTA+ (100 nH Inductors),  
Fundamental VCO and Dividers, VCO = 3.4 GHz, PFD = 61.44 MHz, Loop  
Bandwidth = 40 kHz  
–50  
–70  
–50  
DIV1  
DIV2  
DIV4  
DIV8  
–70  
–90  
DIV16  
DIV32  
DIV64  
–90  
–110  
–130  
–150  
–170  
–110  
–130  
–150  
–170  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY OFFSET FROM CARRIER (Hz)  
FREQUENCY (Hz)  
Figure 5. Open-Loop VCO Phase Noise, 5.0 GHz  
Figure 8. Closed-Loop Phase Noise, RFOUTA+ (100 nH Inductors),  
Fundamental VCO and Dividers, VCO = 5.0 GHz, PFD = 61.44 MHz, Loop  
Bandwidth = 40 kHz  
–50  
–70  
–50  
DIV1  
DIV2  
DIV4  
DIV8  
–70  
–90  
DIV16  
DIV32  
DIV64  
–90  
–110  
–130  
–150  
–170  
–110  
–130  
–150  
–170  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY OFFSET FROM CARRIER (Hz)  
FREQUENCY (Hz)  
Figure 6. Open-Loop VCO Phase Noise, 6.8 GHz  
Figure 9. Closed-Loop Phase Noise, RFOUTA+ (100 nH Inductors),  
Fundamental VCO and Dividers, VCO = 6.8 GHz, PFD = 61.44 MHz, Loop  
Bandwidth = 40 kHz  
Rev. 0 | Page 10 of 38  
 
Data Sheet  
ADF5356  
–60  
–60  
–80  
–80  
DIV1  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
–180  
DIV2  
–180  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY OFFSET FROM CARRIER (Hz)  
FREQUENCY OFFSET FROM CARRIER (Hz)  
Figure 13. Closed-Loop Phase Noise, RFOUTB = 6.8 GHz, 2× VCO,  
VCO = 3.4 GHz, fPFD = 61.44 MHz, Loop Bandwidth = 10 kHz,  
Figure 10. Closed-Loop Phase Noise, RFOUTA+, Fundamental VCO and  
Divide by 2, VCO = 3.4 GHz, fPFD = 61.44 MHz, Loop Bandwidth = 10 kHz  
–60  
–60  
–80  
–80  
DIV1  
–100  
–100  
DIV2  
–120  
–140  
–160  
–180  
–120  
–140  
–160  
–180  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY OFFSET FROM CARRIER (Hz)  
FREQUENCY OFFSET FROM CARRIER (Hz)  
Figure 14. Closed-Loop Phase Noise, RFOUTB = 10 GHz, 2× VCO,  
VCO = 5.0 GHz, fPFD = 61.44 MHz, Loop Bandwidth = 10 kHz  
Figure 11. Closed-Loop Phase Noise, RFOUTA+, Fundamental VCO and  
Divide by 2, VCO = 5.0 GHz, fPFD = 61.44 MHz, Loop Bandwidth = 10 kHz  
–60  
–70  
–80  
–90  
–60  
–80  
DIV1  
–100  
DIV2  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–120  
–140  
–160  
–180  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY OFFSET FROM CARRIER (Hz)  
FREQUENCY OFFSET FROM CARRIER (Hz)  
Figure 15. Closed-Loop Phase Noise, RFOUTB = 13.6 GHz, 2× VCO,  
VCO = 6.8 GHz, fPFD = 61.44 MHz, Loop Bandwidth = 10 kHz  
Figure 12 Closed-Loop Phase Noise, RFOUTA+, Fundamental VCO and  
Divide by 2, VCO = 6.8 GHz, fPFD = 61.44 MHz, Loop Bandwidth = 10 kHz  
Rev. 0 | Page 11 of 38  
ADF5356  
Data Sheet  
15  
10  
5
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
–9  
–10  
–11  
–12  
–13  
–14  
–15  
–16  
–17  
–18  
–19  
0
–5  
–10  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
OUTPUT FREQUENCY (GHz)  
VCO FREQUENCY (MHz)  
Figure 19. VCO Feedthrough at RFOUTB (Board and Cable Losses De-  
Embedded) vs. VCO Frequency  
Figure 16. RFOUTA+/RFOUTA− Output Power vs. Output Frequency, (7.4 nH  
Inductors, 10 pF AC Coupling Capacitors, Board and Cable Losses De-  
Embedded)  
10  
0
10  
10  
10  
0
0
0
CARRIER (dBm)  
SECOND HARMONIC (dBc)  
THIRD HARMONIC (dBc)  
FOURTH HARMONIC (dBc)  
FIFTH HARMONIC (dBc)  
CARRIER (dBm)  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
SECOND HARMONIC (dBc)  
THIRD HARMONIC (dBc)  
FOURTH HARMONIC (dBc)  
FIFTH HARMONIC (dBc)  
–10  
–20  
–30  
–40  
–50  
–60  
–10  
–20  
–30  
–40  
–50  
–60  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
OUTPUT FREQUENCY (GHz)  
OUTPUT FREQUENCY (GHz)  
Figure 20. Harmonics and RFOUTB Output Power of Carrier vs. Output  
Frequency (10 pF AC Coupling Capacitors, Board and Cable Losses De-  
Embedded)  
Figure 17. Harmonics and RFOUTA+/RFOUTA− Output Power of Carrier vs.  
Output Frequency (7.4 nH Inductors, 10 pF AC Coupling Capacitors, Board  
and Cable Losses De-Embedded)  
0
–10  
–20  
–30  
–40  
–50  
–60  
3
2
1
0
–1  
–2  
T
T
T
= +85°C  
= +25°C  
= –40°C  
–3  
–4  
–5  
–6  
–7  
–8  
A
A
A
5
7
9
11  
13  
15  
17  
19  
21  
23  
25  
FREQUENCY (GHz)  
OUTPUT FREQUENCY (GHz)  
Figure 21. Wideband Spectrum, RFOUTB, VCO = 6.8 GHz, RFOUTB Enabled,  
RFOUTA+/RFOUTA− Disabled (Board Measurement)  
Figure 18. RFOUTB Output Power vs. Output Frequency (10 pF AC Coupling  
Capacitors, Board and Cable Losses De-Embedded)  
Rev. 0 | Page 12 of 38  
Data Sheet  
ADF5356  
250  
200  
150  
100  
50  
–40  
–50  
PFD = 122.88MHz  
PFD = 61.44MHz  
PFD = 30.72MHz  
1kHz TO 20MHz  
12kHz TO 20MHz  
–60  
–70  
–80  
–90  
–100  
–110  
0
0
1000  
2000  
3000  
4000  
5000  
6000  
7000  
OUTPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
Figure 24. Worst Case PFD/Reference Spur vs. Output Frequency (RFOUTB),  
fPFD = 30.72 MHz, 61.44 MHz, and 122.88 MHz, Loop Filter = 3 kHz  
Figure 22. RMS Jitter/Noise vs. Output Frequency,  
PFD Frequency = 61.44 MHz, Loop Filter = 40 kHz  
–60  
–40  
PFD = 122.88MHz  
PFD = 61.44MHz  
PFD = 30.72MHz  
–50  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–70  
–80  
–90  
–100  
–110  
1k  
10k  
100k  
1M  
10M  
100M  
0
1000  
2000  
3000  
4000  
5000  
6000  
7000  
FREQUENCY (Hz)  
OUTPUT FREQUENCY (MHz)  
Figure 25. Fractional-N Spur Performance, GSM1800 Band, RFOUTA+ =  
1550.2 MHz, fREFIN = 122.88 MHz, fPFD = 61.44 MHz, Output Divide by 4  
Selected, Loop Filter Bandwidth = 10 kHz, Channel Spacing = 20 kHz  
Figure 23. Worst Case PFD/Reference Spur vs. Output Frequency  
(RFOUTA+/RFOUTA−), fPFD = 30.72 MHz, 61.44 MHz, and 122.88 MHz,  
Loop Filter = 3 kHz  
Rev. 0 | Page 13 of 38  
ADF5356  
Data Sheet  
–60  
4650  
4600  
4550  
4500  
4450  
4400  
4350  
4300  
4250  
4200  
4150  
–80  
–100  
–120  
–140  
–160  
1
–180  
1k  
10k  
100k  
1M  
10M  
100M  
–1  
0
1
2
3
4
FREQUENCY (Hz)  
TIME (ms)  
Figure 26. Fractional-N Spur Performance, W-CDMA Band, RFOUTA+ =  
2113.5 MHz, fREFIN = 122.88 MHz, fPFD = 61.44 MHz, Output Divide by 2  
Selected, Loop Filter Bandwidth = 10 kHz, Channel Spacing = 20 kHz  
Figure 28. Lock Time for 250 MHz Jump from 4150 MHz to 4400 MHz,  
Loop Bandwidth = 23 kHz  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 27. Fractional-N Spur Performance, RFOUTA+ = 2.591 GHz,  
f
REFIN = 122.88 MHz, fPFD = 61.44 MHz, Output Divide by 2 Selected,  
Loop Filter Bandwidth = 10 kHz, Channel Spacing = 20 kHz  
Rev. 0 | Page 14 of 38  
Data Sheet  
ADF5356  
THEORY OF OPERATION  
INT, FRACx, MODx, and R Counter Relationship  
REFERENCE INPUT SECTION  
The INT, FRAC1, FRAC2, MOD1, and MOD2 values, in  
conjunction with the R counter, make it possible to generate  
output frequencies spaced by fractions of the PFD frequency  
(fPFD). For more information, see the RF Synthesizer—A Worked  
Example section.  
Figure 29 shows the reference input stage. The reference input  
can accept both single-ended and differential signals. Use the  
reference mode bit (Register 4, Bit DB9) to select the signal. To  
use a differential signal on the reference input, program this bit  
high. In this case, SW1 and SW2 are open, SW3 and SW4 are  
closed, and the current source that drives the differential pair of  
transistors switches on. The differential signal buffers and provides  
an emitter coupled logic (ECL) to the CMOS converter. When a  
single-ended signal is used as the reference, program Bit DB9  
in Register 4 to 0. Connect the single-ended reference signal to  
REFINA. In this case, SW1 and SW2 are closed, SW3 and SW4  
are open, and the current source that drives the differential pair  
of transistors switches off.  
Calculate the RF VCO frequency (VCOOUT) as follows:  
VCOOUT = fPFD × N  
(1)  
where:  
VCOOUT is the output frequency of the VCO (without using the  
output divider).  
f
PFD is the frequency of the phase frequency detector.  
N is the desired value of the feedback counter, N.  
Calculate fPFD as follows:  
REFERENCE  
INPUT MODE  
f
PFD = fREFIN × ((1 + D)/(R × (1 + T)))  
where:  
REFIN is the reference input frequency.  
(2)  
85k  
f
SW2  
BUFFER  
SW1  
D is the fREFIN doubler bit.  
R is the preset divide ratio of the binary 10-bit programmable  
reference counter (1 to 1023).  
SW3  
TO  
R COUNTER  
MULTIPLEXER  
T is the fREFIN divide by 2 bit (0 or 1).  
N comprises  
AV  
DD  
ECL TO CMOS  
BUFFER  
FRAC2  
MOD2  
MOD1  
FRAC1   
N INT   
(3)  
REF  
REF  
A
B
IN  
where:  
INT is the 16-bit integer value (23 to 32,767 for the 4/5  
prescaler, and 75 to 65,535 for the 8/9 prescaler).  
IN  
2.5kΩ  
2.5kΩ  
FRAC1 is the numerator of the primary modulus (0 to 16,777,215).  
FRAC2 is the numerator of the 28-bit auxiliary modulus  
(0 to 268,435,455).  
SW4  
BIAS  
GENERATOR  
Figure 29. Reference Input Stage  
MOD2 is the programmable, 28-bit auxiliary fractional  
modulus (2 to 268,435,455).  
RF N DIVIDER  
MOD1 is a 24-bit primary modulus with a fixed value of 224  
=
The RF N divider allows a division ratio in the PLL feedback  
path. Determine the division ratio by the INT, FRAC1, FRAC2,  
and MOD2 values that this divider comprises.  
16,777,216.  
Equation 3 results in a very fine frequency resolution with no  
residual frequency error. To apply this formula, take the  
following steps:  
1. Calculate N by dividing VCOOUT/fPFD. The integer value of  
this number forms INT.  
2. Subtract the INT value from the full N value.  
3. Multiply the remainder by 224. The integer value of this  
number forms FRAC1.  
FRAC2  
MOD2  
RF N COUNTER  
N = INT +  
FRAC1 +  
MOD1  
FROM  
VCO OUTPUT/  
OUTPUT DIVIDERS  
TO PFD  
N COUNTER  
THIRD-ORDER  
FRACTIONAL  
INTERPOLATOR  
4. Calculate MOD2 based on the channel spacing (fCHSP) as  
follows:  
INT  
REG  
FRAC1  
REG  
FRAC2  
VALUE  
MOD2  
VALUE  
MOD2 = fPFD/GCD(fPFD, fCHSP  
)
(4)  
where:  
Figure 30. RF N Divider  
GCD(fPFD, fCHSP) is the greatest common divider of the PFD  
frequency and the desired channel spacing frequency.  
f
CHSP is the desired channel spacing frequency.  
Rev. 0 | Page 15 of 38  
 
 
 
 
 
ADF5356  
Data Sheet  
5. Calculate FRAC2 as follows:  
MUXOUT AND LOCK DETECT  
FRAC2 = ((N INT) × 224 FRAC1)) × MOD2  
(5)  
(6)  
The output multiplexer on the ADF5356 allows the user to access  
various internal points on the chip. The M3, M2, and M1 bits in  
Register 4 control the state of MUXOUT. Figure 32 shows the  
MUXOUT section in block diagram form.  
The FRAC2 and MOD2 fraction results in outputs with zero  
frequency error for channel spacings when  
f
PFD/GCD(fPFD/fCHSP) < 268,435,455  
where:  
PFD is the frequency of the phase frequency detector.  
GCD is a greatest common denominator function.  
CHSP is the desired channel spacing frequency.  
DV  
DD  
f
THREE-STATE OUTPUT  
DV  
DD  
f
SD  
GND  
If zero frequency error is not required, the MOD1 and MOD2  
denominators operate together to create a 52-bit resolution  
modulus.  
R DIVIDER OUTPUT  
N DIVIDER OUTPUT  
MUX  
CONTROL  
MUXOUT  
ANALOG LOCK DETECT  
DIGITAL LOCK DETECT  
RESERVED  
Integer N Mode  
When FRAC1 and FRAC2 are 0, the synthesizer operates in  
integer N mode.  
SD  
GND  
R Counter  
Figure 32. MUXOUT Schematic  
The 10-bit R counter allows the input reference frequency  
(fREFIN) to be divided down to produce the reference clock to the  
PFD. Division ratios from 1 to 1023 are allowed.  
INPUT SHIFT REGISTERS  
The ADF5356 digital section includes a 10-bit R counter, a  
16-bit RF integer N counter, a 24-bit FRAC1 counter, a 28-bit  
auxiliary fractional counter, and a 28-bit auxiliary modulus  
counter. Data clocks into the 32-bit shift register on each rising  
edge of CLK. The data clocks in MSB first. Data transfers from  
the shift register to one of 13 latches on the rising edge of LE.  
The state of the four control bits (C4, C3, C2, and C1) in the  
shift register determines the destination latch. As shown in  
Figure 2, the four least significant bits (LSBs) are DB3, DB2,  
DB1, and DB0. The truth table for these bits is shown in Table 6.  
Figure 36 and Figure 37 summarize the programming of the  
latches.  
PHASE FREQUENCY DETECTOR (PFD) AND  
CHARGE PUMP  
The PFD takes inputs from the R counter and N counter and  
produces an output proportional to the phase and frequency  
difference between them. Figure 31 is a simplified schematic of  
the phase frequency detector. The PFD includes a fixed delay  
element that sets the width of the antibacklash pulse. This pulse  
ensures that there is no dead zone in the PFD transfer function  
and provides a consistent reference spur level. Set the phase  
detector polarity to positive on this device because of the  
positive tuning of the VCO.  
Table 6. Truth Table for the C4, C3, C2, and C1 Control Bits  
UP  
HIGH  
D1  
Q1  
Control Bits  
U1  
CLR1  
C4  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
C3  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
C2  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
C1  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Register  
+IN  
Register 0  
Register 1  
Register 2  
Register 3  
Register 4  
Register 5  
Register 6  
Register 7  
Register 8  
Register 9  
Register 10  
Register 11  
Register 12  
Register 13  
CHARGE  
PUMP  
CP  
U3  
DELAY  
DOWN  
CLR2  
D2 Q2  
HIGH  
U2  
–IN  
Figure 31. PFD Simplified Schematic  
Rev. 0 | Page 16 of 38  
 
 
 
 
 
 
Data Sheet  
ADF5356  
50  
40  
30  
20  
10  
0
PROGRAM MODES  
Table 6 and Figure 38 through Figure 51 show how the program  
modes must be set up for the ADF5356.  
AVERAGE  
LINEAR  
VCO SENSITIVITY  
TREND LINE  
The following settings in the ADF5356 are double-buffered: main  
fractional value (FRAC1), auxiliary modulus value (MOD2),  
auxiliary fractional value (FRAC2), reference doubler, reference  
divide by 2 (RDIV2), R counter value, and charge pump current  
setting. Two events must occur before the ADF5356 uses a new  
value for any of the double-buffered settings. First, the new value  
must latch into the device by writing to the appropriate register,  
and second, a new write to Register 0 must be performed.  
For example, to ensure that the modulus value loads correctly,  
every time that the modulus value updates, Register 0 must be  
written to. The RF divider select in Register 6 is also double  
buffered, but only if DB14 of Register 4 is high.  
3.4  
3.8  
4.2  
4.6  
5.0  
5.4  
5.8  
6.2  
6.6  
FREQUENCY (GHz)  
Figure 33. VCO Sensitivity, KV vs. Frequency  
OUTPUT STAGE  
VCO  
The RFOUTA+ and RFOUTA− pins of the ADF5356 connect to  
the collectors of a negative/positive/negative (NPN) differential  
pair driven by buffered outputs of the VCO, as shown in Figure 34.  
In this scheme, the ADF5356 contains internal 50 Ω resistors  
connected to the VRF pin. To optimize the power dissipation vs.  
the output power requirements, the tail current of the differential  
pair is programmable using Bits[DB5:DB4] in Register 6. Four  
current levels can be set. These levels give approximate output  
power levels of −4 dBm, −1 dBm, +2 dBm, and +5 dBm,  
respectively. Levels of −4 dBm, −1 dBm, and +2 dBm can be  
achieved using a 50 Ω resistor connected to VRF and ac coupling  
into a 50 Ω load. For accurate power levels, refer to the Typical  
Performance Characteristics section. An output power of 5 dBm  
requires an external shunt inductor to provide higher power levels;  
however, this addition results in less wideband performance  
using the internal bias only. Terminate the unused complementary  
output with a similar circuit to the used output.  
The VCO core in the ADF5356 consists of four separate VCOs,  
each of which uses 256 overlapping bands, which allows the  
device to cover a wide frequency range without large VCO  
sensitivity (KV) and without resulting in poor phase noise and  
spurious performance.  
The correct VCO and band are chosen automatically by the  
VCO and band select logic when Register 0 is updated and  
autocalibration is enabled.  
The R counter output is the clock for the band select logic. After  
band selection, normal PLL action resumes. The nominal value of  
KV is 25 MHz/V when the N divider is driven from the VCO  
output, or the KV value is divided by D. D is the output divider  
value if the N divider is driven from the RF output divider (chosen  
by programming Bits[DB23:DB21] in Register 6).  
The VCO shows variations of KV as the tuning voltage, VTUNE, varies  
within the band and from band to band. For wideband applications  
covering a wide frequency range (and changing output dividers), a  
value of 25 MHz/V provides the most accurate KV, because this  
value is closest to the average value. Figure 33 shows how KV varies  
with the fundamental VCO frequency along with an average value  
for the frequency band. Users may prefer this KV value shown in  
Figure 33 when using narrow-band designs.  
V
V
RF  
RF  
50  
A+  
50ꢀ  
RF  
RF  
A–  
OUT  
OUT  
BUFFER/  
DIVIDE BY  
1/2/4/8/  
VCO  
16/32/64  
Figure 34. Output Stage  
The doubled VCO output (6.8 GHz to 13.6 GHz) is available on  
the RFOUTB pin, which can be ac-coupled to the next circuit.  
2× VCO  
MUX  
RF  
B
OUT  
Figure 35. Output Stage  
Rev. 0 | Page 17 of 38  
 
 
 
 
 
ADF5356  
Data Sheet  
Another feature of the ADF5356 is that the supply current to  
the RFOUTA+/RFOUTA− output stage can shut down until the  
ADF5356 achieves lock as measured by the digital lock detect  
circuitry. The mute till lock detect (MTLD) bit (Bit DB11) in  
Register 6 enables this function.  
RFOUTB directly connects to the VCO, and it can be muted but  
only by using the RF Output B enable bit (Bit DB10) in Register 6.  
Table 7. Total IDD1 (RF Output A Enabled)2  
RFOUTA Off  
(mA)  
RFOUT  
(mA)  
A
= −4 dBm  
RFOUT  
(mA)  
A
= −1 dBm  
RFOUT  
(mA)  
A
= +2 dBm  
RFOUT  
(mA)  
A = +5 dBm  
Supply  
5 V Supply (IVCO and ICP)  
74  
74  
74  
74  
74  
3.3 V Supply (AIDD, DIDD, and  
IRFOUTx  
)
Divide by 1  
Divide by 2  
Divide by 4  
Divide by 8  
Divide by 16  
Divide by 32  
Divide by 64  
82.6  
91.9  
103.9  
112.6  
122.6  
130.6  
135.7  
139.7  
142.1  
115.1  
123.5  
134.0  
142.1  
147.3  
151.4  
153.8  
126.1  
134.3  
145.2  
153.5  
158.6  
162.7  
165.2  
136.9  
144.5  
156.0  
164.8  
169.8  
174.1  
176.4  
101.7  
109.7  
114.7  
118.7  
121.1  
1 IDD is the total current of IVCO, ICP, AIDD, DIDD, and IRFOUTx  
2 RFOUT  
refers to RFOUTA+/RFOUTA−.  
.
A
Rev. 0 | Page 18 of 38  
 
Data Sheet  
ADF5356  
REGISTER MAPS  
REGISTER 0  
CONTROL  
BITS  
RESERVED  
16-BIT INTEGER VALUE (INT)  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3  
DB2  
DB1  
DB0  
0
0
0
0
0
0
0
0
0
0
AC1  
PR1  
N16 N15 N14 N13 N12 N11 N10  
N9  
N8  
N7  
N6  
N5  
N4  
N3  
N2  
N1 C4(0) C3(0) C2(0) C1(0)  
REGISTER 1  
CONTROL  
BITS  
1
DBR  
RESERVED  
24-BIT MAIN FRACTIONAL VALUE (FRAC1)  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
F24  
F23  
F22  
F21  
F20  
F19  
F18  
F17  
F16  
F15  
F14 F13 F12  
F11  
F10  
F9  
F8  
F7  
F6  
F5  
F4  
F3  
F2  
F1 C4(0) C3(0) C2(0) C1(1)  
REGISTER 2  
CONTROL  
BITS  
1
1
14-BIT AUXILIARY MODULUS MSB VALUE (MOD2_LSB) DBR  
14-BIT AUXILIARY FRACTIONAL LSB VALUE (FRAC2_LSB) DBR  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
F14  
F13  
F12  
F11  
F10  
F9  
F8  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
M14 M13 M12 M11 M10 M9  
M8  
M7  
M6  
M5  
M4  
M3  
M2  
M1 C4(0) C3(0) C2(1) C1(0)  
REGISTER 3  
CONTROL  
BITS  
1
24-BIT PHASE VALUE (PHASE)  
DBR  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
SD1 PR1 PA1 P24  
P23  
P22  
P21  
P20  
P19  
P18  
P17  
P16  
P15  
P14 P13  
P12  
P11  
P10  
P9  
P8  
P7  
P6  
P5  
P4  
P3  
P2  
P1 C4(0) C3(0) C2(1) C1(1)  
REGISTER 4  
CURRENT  
SETTING  
CONTROL  
BITS  
1
DBR  
1
RESERVED  
MUXOUT  
10-BIT R COUNTER  
DBR  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
M3  
M2  
M1  
RD2 RD1 R10  
R9  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
D1  
CP4 CP3 CP2 CP1  
U6  
U5  
U4  
U3  
U2  
U1 C4(0) C3(1) C2(0) C1(0)  
REGISTER 5  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
C4(0) C3(1) C2(0) C1(1)  
REGISTER 6  
RF  
OUTPUT A  
POWER  
RESERVED  
RF DIVIDER  
SELECT  
CONTROL  
BITS  
1
RESERVED  
CHARGE PUMP BLEED CURRENT  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
BP1 BL10 BL9 D2 D1 C4(0) C3(1) C2(1) C1(0)  
1
0
1
0
0
0
D9  
D8  
D7  
D6  
BL8 BL7 BL6 BL5 BL4 BL3 BL2 BL1  
0
D5  
D4  
0
D3  
1
2
DBR = DOUBLE BUFFERED REGISTER—BUFFERED BY A WRITE TO REGISTER 0.  
DBB = DOUBLE BUFFERED BITS—BUFFERED BY A WRITE TO REGISTER 0 WHEN BIT DB14 OF REGISTER 4 IS HIGH.  
Figure 36. Register Summary (Register 0 to Register 6)  
Rev. 0 | Page 19 of 38  
 
 
ADF5356  
Data Sheet  
REGISTER 7  
LD  
CYCLE  
COUNT  
CONTROL  
BITS  
RESERVED  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
LD4  
LD3 LD2 LD1 C4(0) C3(1) C2(1) C1(1)  
LOL  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LD5  
LE2  
1
LE1  
REGISTER 8  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
1
0
0
1
0
1
0
0
0
1
0
0
1
0
C4(1)  
C1(0)  
C3(0) C2(0)  
1
1
0
1
0
1
0
1
1
1
1
0
REGISTER 9  
AUTOMATIC  
LEVEL CALIBRATION  
TIMEOUT  
SYNTHESIZER  
LOCK TIMEOUT  
CONTROL  
BITS  
VCO BAND DIVISION  
TIMEOUT  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
VC8 VC7 VC6 VC5 VC4 VC3 VC2 VC1 TL10 TL9 TL8 TL7 TL6 TL5 TL4 TL3 TL2 TL1 AL5 AL4 AL3 AL2 AL1 SL5 SL4 SL3 SL2 SL1 C4(1) C3(0) C2(0) C1(1)  
REGISTER 10  
ADC  
CLOCK DIVIDER  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
1
0
0
0
0
0
AD8 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AE2 AE1 C4(1) C3(0) C2(1) C1(0)  
0
0
0
0
0
1
0
0
0
REGISTER 11  
CONTROL  
BITS  
RESERVED  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
1
0
0
0
0
0
0
C4(1) C3(0) C2(1) C1(1)  
0
0
0
VH  
0
1
1
0
0
0
0
1
0
0
0
0
0
REGISTER 12  
CONTROL  
BITS  
PHASE RESYNC CLOCK VALUE  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
P20 P19 P18 P17 P16 P15 P14 P13 P12 P11 P10  
P9  
P8  
P7  
P6  
P5  
P4  
P3  
P2  
P1  
0
1
0
1
1
1
1
1
C4(1) C3(1) C2(0) C1(0)  
REGISTER 13  
CONTROL  
BITS  
1
1
14-BIT AUXILIARY FRACTIONAL MSB VALUE (FRAC2_MSB) DBR  
14-BIT AUXILIARY MODULUS MSB VALUE (MOD2_MSB) DBR  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
F14 F13 F12 F11 F10 F9 F8 F7 F6 F5 F4 F3 F2 F1 M14 M13 M12 M11 M10 M9 M8 M7 M6 M5 M4 M3 M2 M1 C4(1) C3(1) C2(0) C1(1)  
DBR = DOUBLE BUFFERED REGISTER—BUFFERED BY A WRITE TO REGISTER 0.  
1
Figure 37. Register Summary (Register 7 to Register 13)  
Rev. 0 | Page 20 of 38  
 
Data Sheet  
ADF5356  
CONTROL  
BITS  
RESERVED  
16-BIT INTEGER VALUE (INT)  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3  
DB2  
DB1  
DB0  
0
0
0
0
0
0
0
0
0
0
AC1  
PR1  
PR1  
N16 N15 N14 N13 N12 N11 N10  
N9  
N8  
N7  
N6  
N5  
N1  
N4  
N3  
N2  
N1 C4(0) C3(0) C2(0) C1(0)  
PRESCALER  
N16 N15  
....  
N5  
N4  
N3  
N2  
INTEGER VALUE (INT)  
0
1
4/5  
8/9  
0
0
0
.
0
0
0
.
0
0
0
.
0
0
0
.
....  
....  
....  
....  
....  
....  
....  
....  
....  
....  
....  
0
0
0
.
1
1
1
.
0
0
0
.
0
0
1
.
0
0
0
.
1
1
0
.
0
0
1
.
1
1
0
.
0
1
0
.
0
1
0
.
NOT ALLOWED  
NOT ALLOWED  
NOT ALLOWED  
....  
NOT ALLOWED  
23  
24  
....  
VCO  
AUTOCAL  
AC1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
65533  
65534  
65535  
0
1
DISABLED  
DISABLED  
INT  
= 75 WITH PRESCALER = 8/9  
MIN  
Figure 38. Register 0 Details  
Prescaler Value  
REGISTER 0  
The dual modulus prescaler (P/P + 1), together with the INT,  
FRACx, and MODx counters, determines the overall division  
ratio from the VCO output to the PFD input. The PR1 bit  
(Bit DB20) in Register 0 sets the prescaler value.  
Control Bits  
With C4 to C1 (Bits[DB3:DB0]) set to 0000, Register 0 is  
programmed. Figure 38 shows the input data format for  
programming this register.  
Operating at CML levels, the prescaler takes the clock from the  
VCO output and divides it down for the counters. It is based on  
a synchronous 4/5 core. When the prescaler is set to 4/5, the  
maximum RF frequency allowed is 6.0 GHz. Therefore, when  
operating the ADF5356 above 6.0 GHz, the prescaler must be  
set to 8/9. The prescaler limits the INT value; therefore, if P is  
4/5, NMIN is 23, and if P is 8/9, NMIN is 75.  
Reserved  
Bits[DB31:DB22] are reserved and must be set to 0.  
Automatic Calibration (AUTOCAL)  
Write to Register 0 to enact (by default) the VCO automatic  
calibration, and to choose the appropriate VCO and VCO subband.  
Write 1 to the AC1 bit (Bit DB21) to enable the automatic  
calibration, which is the recommended mode of operation.  
16-Bit Integer Value  
Set the AC1 bit (Bit DB21) to 0 to disable the automatic calibration,  
which leaves the ADF5356 in the same band it is in when  
Register 0 updates.  
The 16 INT bits (Bits[DB19:DB4]) set the INT value, which  
determines the integer part of the feedback division factor. The  
INT value is used in Equation 3 (see the INT, FRACx, MODx,  
and R Counter Relationship section). All integer values from 23  
to 32,767 are allowed for the 4/5 prescaler. For the 8/9 prescaler,  
the minimum integer value is 75, and the maximum value is  
65,535  
Disable the automatic calibration only for fixed frequency  
applications, phase adjust applications, or very small (<10 kHz)  
frequency jumps.  
Toggling AUTOCAL is also required when changing frequency.  
See the Frequency Update Sequence section for more information.  
Rev. 0 | Page 21 of 38  
 
 
ADF5356  
Data Sheet  
CONTROL  
BITS  
1
DBR  
RESERVED  
24-BIT MAIN FRACTIONAL VALUE (FRAC1)  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
F24  
F23  
F22  
F21  
F20  
F19  
F18  
F17  
F16  
F15  
F14 F13 F12  
F11  
F10  
F9  
F8  
F7  
F6  
F5  
F4  
F3  
F2  
F1 C4(0) C3(0) C2(0) C1(1)  
F24 F23  
....  
F12  
F1  
MAIN FRACTIONAL VALUE (FRAC1)  
0
0
0
0
.
.
.
1
1
1
1
0
0
0
0
.
.
.
1
1
1
1
....  
....  
....  
....  
....  
....  
....  
....  
....  
....  
....  
0
0
1
1
.
.
.
0
1
1
1
0
1
0
1
.
.
.
0
1
1
1
0
1
2
3
.
.
.
16777212  
16777213  
16777214  
16777215  
1
DBR = DOUBLE BUFFERED REGISTER–BUFFERED BY A WRITE TO REGISTER 0.  
Figure 39. Register 1 Details  
CONTROL  
BITS  
1
1
14-BIT AUXILIARY MODULUS MSB VALUE (MOD2_LSB) DBR  
14-BIT AUXILIARY FRACTIONAL LSB VALUE (FRAC2_LSB) DBR  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
F14  
F13  
F12  
F11  
F10  
F9  
F8  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
M14 M13 M12 M11 M10 M9  
M8  
M7  
M6  
M5  
M4  
M3  
M2  
M1 C4(0) C3(0) C2(1) C1(0)  
F14 F13  
....  
F2  
F1  
FRAC2_LSB WORD  
M14 M13  
....  
M2  
M1  
MOD2_LSB VALUE  
0
0
0
0
.
.
.
1
1
1
1
0
0
0
0
.
.
.
1
1
1
1
....  
....  
....  
....  
....  
....  
....  
....  
....  
....  
....  
0
0
1
1
.
.
.
0
0
1
1
0
1
0
1
.
.
.
0
1
0
1
0
1
2
3
.
.
.
0
0
0
0
.
.
.
1
1
1
1
0
0
0
0
.
.
.
1
1
1
1
....  
....  
....  
....  
....  
....  
....  
....  
....  
....  
....  
0
0
1
1
.
.
.
0
0
1
1
0
1
0
1
.
.
.
0
1
0
1
NOT ALLOWED  
NOT ALLOWED  
2
3
.
.
.
16380  
16381  
16382  
16383  
16381  
16382  
16382  
16383  
1
DBR = DOUBLE BUFFERED REGISTER–BUFFERED BY A WRITE TO REGISTER 0.  
Figure 40. Register 2 Details  
REGISTER 1  
REGISTER 2  
Control Bits  
Control Bits  
With C4 to C1 (Bits[DB3:DB0]) set to 0001, Register 1 is  
programmed. Figure 39 shows the input data format for  
programming this register.  
With C4 to C1 (Bits[DB3:DB0]) set to 0010, Register 2 is pro-  
grammed. Figure 40 shows the input data format for programming  
this register.  
Reserved  
14-Bit Auxiliary Fractional LSB Value (FRAC2_LSB)  
Bits[DB31:DB28] are reserved and must be set to 0.  
24-Bit Main Fractional Value  
Use this value with the auxiliary fractional MSB value (Register 13,  
Bits[DB31:DB18]) to generate the total auxiliary fractional value.  
FRAC2 = (FRAC2_MSB × 214) + FRAC2_LSB  
The 24 FRAC1 bits (Bits[DB27:DB4]) set the numerator of the  
fraction that is input to the Σ-Δ modulator. This fraction, together  
with the INT value, specifies the new frequency channel that  
the synthesizer locks to, as shown in the RF Synthesizer—A  
Worked Example section. FRAC1 values from 0 to (MOD1 − 1)  
cover channels over a frequency range equal to the PFD reference  
frequency.  
FRAC2 must be less than the MOD2 value programmed in  
Register 2 and Register 13.  
14-Bit Auxiliary Modulus LSB Value (MOD2_LSB)  
Use this value with the auxiliary modulus MSB value (Register 13,  
Bits[DB17:DB4]) to generate the total auxiliary modulus value.  
MOD2 = (MOD2_MSB) × 214 + MOD2_LSB  
Use MOD2 to correct any residual error due to the main  
fractional modulus.  
Rev. 0 | Page 22 of 38  
 
 
 
 
Data Sheet  
ADF5356  
CONTROL  
BITS  
1
DBR  
24-BIT PHASE VALUE (PHASE)  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
SD1 PR1 PA1 P24 P23 P22 P21 P20 P19 P18 P17 P16 P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 C4(0) C3(0) C2(1) C1(1)  
0
PHASE  
ADJUST  
PA1  
P24 P23  
....  
P2  
P1  
PHASE VALUE (PHASE)  
0
1
DISABLED  
ENABLED  
0
0
0
0
.
.
.
1
1
1
1
0
0
0
0
.
.
.
1
1
1
1
....  
....  
....  
....  
....  
....  
....  
....  
....  
....  
....  
0
0
1
1
.
.
.
0
0
1
1
0
1
0
1
.
.
.
0
1
0
1
0
1
2
3
.
.
.
PHASE  
RESYNC  
PR1  
16777212  
16777213  
16777214  
16777215  
0
1
DISABLED  
ENABLED  
SD LOAD  
RESET  
SD1  
0
1
ON REGISTER0 UPDATE  
DISABLED  
1
DBR = DOUBLE BUFFERED REGISTER–BUFFERED BY A WRITE TO REGISTER 0.  
Figure 41. Register 3  
REGISTER 3  
Control Bits  
For resynchronization applications, enable the Σ-Δ modulator  
load reset (SD load reset) in Register 3 by setting the SD1 bit (Bit  
DB30) to 0.  
With C4 to C1 (Bits[DB3:DB0]) set to 0011, Register 3 is  
programmed. Figure 41 shows the input data format for  
programming this register.  
The phase of the RF output frequency can be adjusted in 24-bit  
steps from 0° (0) to 360° (224 − 1) relative to the resynchronization  
phase. For phase adjustment applications, the phase is set by  
P24 to P1 (Bits[DB27:DB1]).  
Reserved  
Bit DB31 is reserved and must be set to 0.  
SD Load Reset  
(Phase Value/16,777,216) × 360°  
Practically, this setting means that repeatable adjustable phase  
values can be achieved by using the resynchronization feature with  
different phase values.  
When writing to Register 0, the Σ-Δ modulator resets. For  
applications in which the phase is continually adjusted, this  
reset may not be desirable; therefore, in these cases, disable the  
Σ-Δ reset by writing a 1 to the SD1 bit (Bit DB30).  
Phase Adjustment  
To adjust the relative output phase of the ADF5356 on each  
Register 0 update, set the PA1 bit (Bit DB28) to 1. This feature  
differs from the resynchronization feature in that it is useful when  
adjustments to phase are made continually in an application.  
For this function, disable the VCO automatic calibration by  
setting the AC1 bit (Bit DB21) in Register 0 to 1, and disable the  
Σ-Δ load reset by setting the SD1 bit (Bit DB30) in Register 3 to 1.  
Phase Resynchronization  
To use the phase resynchronization feature, the PR1 bit (Bit DB29)  
must be set to 1. If unused, the bit can be programmed to 0.  
The phase resynchronization clock value must also be used in  
Register 12 to ensure that the resynchronization feature is applied  
after the PLL settles to the final frequency. If the PLL has not  
settled to the final frequency, phase resynchronization may not  
function correctly. Resynchronization is useful in phased array  
and beamforming applications. It ensures repeatability of the  
output phase when programming the same frequency. In phase  
critical applications that use frequencies requiring the output  
divider (<3400 MHz), it is necessary to feed the N divider with  
the divided VCO frequency as distinct from the fundamental  
VCO frequency, which is achieved by programming the D9 bit  
(Bit DB24) in Register 6 to 0, which ensures divided feedback to  
the N divider.  
24-Bit Phase Value  
The phase of the RF output frequency can adjust in 24-bit steps,  
from 0° (0) to 360° (224 − 1). For phase adjust applications, the  
phase is set by  
(Phase Value/16,777,216) × 360°  
When the phase value is programmed to Register 3, each  
subsequent adjustment of Register 0 increments the phase by  
the value in this equation.  
Rev. 0 | Page 23 of 38  
 
ADF5356  
Data Sheet  
CURRENT  
SETTING  
CONTROL  
BITS  
MUXOUT  
10-BIT R COUNTER  
DBR1  
DBR1  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1  
DB0  
0
0
M3  
M2  
M1 RD2 RD1 R10  
R9  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
D1  
CP4 CP3 CP2 CP1 U6  
U5  
U4  
U3  
U2  
U1  
C3(1) C2(0) C1(0)  
C4(0)  
REFERENCE  
RD2  
COUNTER  
RESET  
DOUBLE BUFFERED  
REGISTER 6, BITS[DB23:DB21]  
U1  
DOUBLER  
D1  
U6  
0
REFIN  
SINGLE  
DIFF  
0
1
DISABLED  
ENABLED  
0
1
DISABLED  
ENABLED  
0
1
DISABLED  
1
ENABLED  
RD1 REFERENCE DIVIDE BY 2  
CP  
I
(mA)  
CP  
U2  
U5  
LDP  
1.8V  
3.3V  
THREE-STATE  
CP4  
0
CP3  
0
CP2  
0
CP1  
0
5.1k  
0.30  
0.60  
0.90  
1.20  
1.50  
1.80  
2.10  
2.40  
2.70  
3.00  
3.30  
3.60  
3.90  
4.20  
4.50  
4.80  
0
1
DISABLED  
ENABLED  
0
1
0
1
DISABLED  
0
0
0
1
ENABLED  
0
0
1
0
R10  
R9  
..........  
R2  
R1  
R DIVIDER (R)  
0
0
1
1
U4  
0
PD POLARITY  
NEGATIVE  
POSITIVE  
U3  
POWER DOWN  
0
0
.
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
.
1
0
.
1
0
1
0
0
0
1
DISABLED  
ENABLED  
0
1
0
1
2
1
0
1
1
0
.
0
1
1
1
.
.
.
.
.
1
0
0
0
.
.
.
.
.
1
0
0
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
1020  
1021  
1022  
1023  
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
M3  
0
M2  
0
M1  
0
OUTPUT  
THREE-STATE OUTPUT  
0
0
1
DV  
DD  
0
1
0
SD  
GND  
0
1
1
R DIVIDER OUTPUT  
N DIVIDER OUTPUT  
ANALOG LOCK DETECT  
DIGITAL LOCK DETECT  
RESERVED  
1
0
0
1
0
1
1
1
0
1
1
1
1DBR = DOUBLE BUFFERED REGISTER—BUFFERED BY A WRITE TO REGISTER 0.  
Figure 42. Register 4 Details  
both the rising and falling edges of the reference frequency become  
active edges at the PFD input.  
REGISTER 4  
Control Bits  
The maximum allowable reference frequency when the doubler  
is enabled is 80 MHz.  
With C4 to C1 (Bits[DB3:DB0]) set to 0100, Register 4 is  
programmed. Figure 42 shows the input data format for  
programming this register.  
RDIV2  
Reserved  
Setting the RD1 bit (Bit DB25) to 1 inserts a divide by 2, toggle  
flip flop between the R counter and PFD, which extends the  
maximum reference frequency input rate. This function  
provides a 50% duty cycle signal at the PFD input.  
Bits[DB31:DB30] are reserved and must be set to 0.  
MUXOUT  
The on-chip multiplexer (MUXOUT) is controlled by  
Bits[DB29:DB27]. For additional details, see Figure 42.  
10-Bit R Counter  
The 10-bit R counter divides the reference frequency input,  
fREFIN, to produce the reference clock to the PFD. Division ratios  
range from 1 to 1023.  
When changing the frequency, that is, writing Register 0,  
MUXOUT must not be set to the N divider output or R divider  
output. If needed, enable these functions after locking to the new  
frequency.  
Double Buffer  
The D1 bit (Bit DB14) enables or disables double buffering of  
the RF divider select bits (Bits[DB23:DB21]) in Register 6. The  
Program Modes section explains how double buffering works.  
Reference Doubler  
Setting the RD2 bit (Bit DB26) to 0 feeds the reference frequency  
signal directly to the 10-bit R counter, disabling the doubler.  
Setting this bit to 1 multiplies the reference frequency by a factor  
of 2 before feeding it into the 10-bit R counter. When the doubler  
is disabled, the fREFIN falling edge is the active edge at the PFD  
input to the fractional synthesizer. When the doubler is enabled,  
Charge Pump Current Setting  
The CP4 to CP1 bits (Bits[DB13:DB10]) set the charge pump  
current. Set this value to the charge pump current that the loop  
filter is designed with (see Figure 42). For the lowest spurs, the  
0.90 mA setting is recommended.  
Rev. 0 | Page 24 of 38  
 
 
Data Sheet  
ADF5356  
When power-down activates, the following events occur:  
Reference Mode  
The ADF5356 permits use of either differential or single-ended  
reference sources.  
The synthesizer counters are forced to their load state  
conditions.  
The VCO powers down.  
For optimum integer boundary spur performance, it is recom-  
mended to use the single-ended setting for all references up to  
250 MHz (even if using a differential reference signal). Use the  
differential setting for reference frequencies above 250 MHz.  
The charge pump is forced into three-state mode.  
The digital lock detect circuitry resets.  
The RFOUTA+/RFOUTA− and RFOUTB output stages are  
disabled.  
The input registers remain active and capable of loading  
and latching data.  
Mux Logic  
To assist with logic compatibility, MUXOUT is programmable to  
two logic levels. Set the U5 bit (Bit DB8) to 0 to select 1.8 V  
logic, and set it to 1 to select 3.3 V logic.  
Charge Pump Three-State  
Setting the U2 bit (Bit DB5) to 1 puts the charge pump into  
three-state mode. Set DB5 to 0 for normal operation.  
Phase Detector Polarity  
The U4 bit (Bit DB7) sets the phase detector polarity. When a  
passive loop filter or a noninverting active loop filter is used, set  
DB7 to 1 (positive). If an active filter with an inverting characteris-  
tic is used, set this bit to 0 (negative).  
Counter Reset  
The U1 bit (Bit DB4) resets the R counter, N counter, and VCO  
band select of the ADF5356. When DB4 is set to 1, the RF  
synthesizer N counter, R counter, and VCO band select are reset.  
For normal operation, set DB4 to 0.  
Power-Down  
The U3 bit (Bit DB6) sets the programmable power-down mode.  
Setting DB6 to 1 performs a power-down. Setting DB6 to 0 returns  
the synthesizer to normal operation. In software power-down  
mode, the ADF5356 retains all information in its registers. The  
register contents are lost only when the supply voltages are  
removed.  
REGISTER 5  
The bits in Register 5 are reserved and must be programmed as  
described in Figure 43, using a hexadecimal word of 0x00800025.  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C4(0) C3(1) C2(0) C1(1)  
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
Figure 43. Register 5 Details (0x00800025)  
Rev. 0 | Page 25 of 38  
 
ADF5356  
Data Sheet  
RF  
OUTPUT A  
POWER  
RESERVED  
RF DIVIDER  
CONTROL  
BITS  
1
RESERVED  
SELECT  
CHARGE PUMP BLEED CURRENT  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
BP1 BL10 BL9  
1
0
1
0
0
0
D2  
D1 C4(0) C3(1) C2(1) C1(0)  
D9  
D8  
D7  
D6  
BL8 BL7 BL6 BL5 BL4 BL3 BL2 BL1  
0
D5 D4  
0
D3  
RF OUTPUT A  
POWER  
D2  
D1  
0
0
1
1
0
1
0
1
–4dBm  
–1dBm  
+2dBm  
+5dBm  
FEEDBACK  
SELECT  
D9  
RF OUTPUT A  
ENABLE  
0
1
DIVIDED  
D3  
MUTE TILL  
LOCK DETECT  
D5  
FUNDAMENTAL  
0
1
DISABLED  
ENABLED  
0
1
MUTE DISABLED  
MUTE ENABLED  
NEGATIVE BLEED  
BL9  
D8  
D7  
D6  
RF DIVIDER SELECT  
0
1
DISABLED  
ENABLED  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
÷1  
÷2  
÷4  
÷8  
GATED BLEED  
BL10  
÷16  
÷32  
÷64  
0
1
DISABLED  
ENABLED  
RF OUTPUT B  
ENABLE  
D4  
BLEED POLARITY  
BP1  
0
1
ENABLED  
DISABLED  
BL8  
BL7  
..........  
BL2  
BL1 BLEED CURRENT  
0
1
NEGATIVE  
POSITIVE  
0
0
.
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
.
1
0
.
1
2
.
(3.75µA)  
(7.5µA)  
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
252 (945µA)  
253 (948.75µA)  
254 (952.5µA)  
255 (956.25µA)  
1
BITS[DB23:DB21] ARE BUFFERED BY A WRITE TO REGISTER 0 WHEN THE DOUBLE BUFFER BIT, BIT DB14 OF REGISTER 4, IS ENABLED.  
Figure 44. Register 6 Details  
Do not use negative bleed when operating in integer N mode,  
that is, FRAC1 = FRAC2 = 0. Do not use negative bleed for fPFD  
values greater than 100 MHz.  
REGISTER 6  
Control Bits  
With C4 to C1 (Bits[DB3:DB0]) set to 0110, Register 6 is  
programmed. Figure 44 shows the input data format for  
programming this register.  
Reserved  
Bits[DB28:DB25] are reserved and must be set to 1010.  
Bit DB12 is reserved and must be set to 0. Bits[DB9:DB7] are  
reserved and must be set to 0.  
Bleed Polarity  
BP1 (Bit DB31) sets the polarity of the charge pump bleed current.  
Feedback Select  
Gated Bleed  
D9 (Bit DB24) selects the feedback from the output of the VCO  
to the N counter. When D9 is set to 1, the signal is taken  
directly from the VCO. When this bit is set to 0, the signal is  
taken from the output of the output dividers. The dividers  
enable coverage of the wide frequency band (53.125 MHz to  
6800 MHz). When the divider is enabled and the feedback  
signal is taken from the output, the RF output signals of two  
separately configured PLLs are in phase. Divided feedback is  
useful in some applications where the positive interference of  
signals is required to increase the power.  
Bleed currents can be used for improving phase noise and spurs;  
however, due to a potential impact on lock time, the gated bleed  
bit, BL10 (Bit DB30), if set to 1, ensures bleed currents are not  
switched on until the digital lock detect asserts logic high. Note  
that this function requires the digital lock detect to be enabled  
in Register 4.  
Negative Bleed  
Use of constant negative bleed is recommended for most  
fractional-N applications because it improves the linearity of  
the charge pump, leading to lower noise and spurious signals than  
leaving it off. To enable negative bleed, write 1 to BL9 (Bit DB29),  
and to disable negative bleed, write 0 to BL9.  
RF Divider Select  
D8 to D6 (Bits[DB23:DB21]) select the value of the RF output  
divider (see Figure 44).  
Rev. 0 | Page 26 of 38  
 
 
Data Sheet  
ADF5356  
Charge Pump Bleed Current  
Mute Till Lock Detect  
BL8 to BL1 (Bits[DB20:DB13]) control the level of the bleed  
current added to the charge pump output. This current  
optimizes the phase noise and spurious levels from the device.  
When D5 (Bit DB11) is set to 1, the supply current to the RF  
output stage is shut down until the device achieves lock, as  
determined by the digital lock detect circuitry.  
Calculate the optimal bleed setting using the following  
equation:  
RF Output B Enable  
D4 (Bit DB10) enables or disables RF Output B (RFOUTB). If  
DB10 is set to 0, RF Output B is enabled. If DB10 is set to 1,  
RF Output B is disabled.  
Bleed Value = floor(24 × (fPFD/61.44 MHz) × (ICP/0.9 mA))  
where:  
RF Output A Enable  
Bleed Value is the value programmed to Bits[DB20:DB13].  
floor() is a function to round down to the nearest integer value.  
D3 (Bit DB6) enables or disables RF Output A (RFOUTA+/RFOUTA−).  
If DB3 is set to 0, RF Output A is disabled. If DB6 is set to 1, RF  
Output A is enabled.  
f
I
PFD is the PFD frequency.  
CP is the value of charge pump current setting, Bits[DB13:DB10] of  
Register 4.  
RF Output A Power  
If fPFD > 100 MHz, disable the bleed current using Bit DB29.  
D2 and D1 (Bits[DB5:DB4]) set the value of the RF Output A  
(RFOUTA+/RFOUTA−) power level (see Figure 44).  
Rev. 0 | Page 27 of 38  
ADF5356  
Data Sheet  
LD  
CYCLE  
COUNT  
CONTROL  
BITS  
RESERVED  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
LD4  
LD3 LD2 LD1 C4(0) C3(1) C2(1) C1(1)  
LOL  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LD5  
LE2  
1
LE1  
LD1 LOCK DETECT MODE  
LE1 LE SYNCHRONIZATION  
0
1
FRACTIONAL-N  
DISABLED  
0
1
INTEGER-N (2.9ns)  
LE SYNCED TO REF  
IN  
LD3  
0
LD2  
0
FRACTIONAL-N LD PRECISION  
LE SEL SYNC EDGE  
5.0ns  
6.0ns  
8.0ns  
12.0ns  
LE2  
0
1
0
1
LE SYNC TO REFERENCE FALLING EDGE  
LE SYNC TO REFERENCE RISING EDGE  
1
0
1
1
LOL LOSS OF LOCK MODE  
DISABLED  
ENABLED  
0
1
LD5  
0
LD4  
LOCK DETECT CYCLE COUNT  
0
1
0
1
1024  
2048  
4096  
8192  
0
1
1
Figure 45. Register 7 Details  
Fractional-N Lock Detect (LD) Cycle Count  
REGISTER 7  
LD5 and LD4 (Bits[DB9:DB8]) set the number of consecutive  
cycles counted by the lock detect circuitry before asserting lock  
detect high (see Figure 45 for details).  
Control Bits  
With C4 to C1 (Bits[DB3:DB0]) set to 0111, Register 7 is  
programmed. Figure 45 shows the input data format for  
programming this register.  
Loss of Lock (LOL) Mode  
Set the LOL mode bit (Bit DB7) to 1 when the application is a fixed  
frequency application in which the reference (REFIN signal) is likely  
to be removed, such as a clocking application. The standard lock  
detect circuit assumes that the REFIN signal is always present;  
however, this may not be the case with clocking applications. To  
enable this functionality, set Bit DB7 to 1.  
Reserved  
Bits[DB31:DB28] are reserved and must be set to 0. Bit DB26 is  
reserved and must be set to 1. Bits[DB24:DB10] are reserved  
and must be set to 0.  
LE Select Synchronization Edge  
LE2 (Bit DB27) allows selection of the synchronization load  
enable (LE) edge to the falling or rising edge of the reference  
clock, which is useful for applications that require synchronization  
to a common reference edge (see Figure 45). To use this bit, LE  
synchronization (Bit DB25) must be set to 1.  
Fractional-N Lock Detect (LD) Precision  
LD3 and LD2 (Bits[DB6:DB5]) set the precision of the lock detect  
circuitry in fractional-N mode. LD precision is available at 5.0 ns,  
6.0 ns, 8.0 ns, or 12.0 ns. If bleed currents are used, use 12.0 ns.  
Lock Detect (LD) Mode  
LE Synchronization  
When LD1 (Bit DB4) is set to 0, lock detect precision is set by  
fractional-N lock detect precision as described in the Fractional-N  
Lock Detect (LD) Precision section. If LD1 (Bit DB4) is set to 1,  
lock detect precision is 2.9 ns long, which is more appropriate  
for integer N applications.  
When set to 1, Bit DB25 ensures that the LE edge is synchronized  
internally with the rising edge of reference input frequency.  
This synchronization prevents the rare event of the reference  
and RF dividers loading at the same time as a falling edge of the  
reference frequency, which can lead to longer lock times.  
Rev. 0 | Page 28 of 38  
 
 
 
Data Sheet  
ADF5356  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
1
0
0
1
0
1
0
0
0
1
0
0
1
0
C4(1)  
C1(0)  
C3(0) C2(0)  
1
1
0
1
0
1
0
1
1
1
1
0
Figure 46. Register 8 Details (0x15596568)  
AUTOMATIC  
LEVEL CALIBRATION  
TIMEOUT  
SYNTHESIZER  
LOCK TIMEOUT  
CONTROL  
BITS  
VCO BAND DIVISION  
TIMEOUT  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
VC8 VC7 VC6  
VC5 VC4 VC3 VC2 VC1 TL10 TL9  
TL8  
TL7  
TL6  
TL5  
TL4  
TL3  
TL2  
TL1 AL5 AL4  
AL3 AL2 AL1 SL5 SL4 SL3 SL2 SL1 C4(1) C3(0) C2(0) C1(1)  
SL5  
SL4  
..........  
SL2  
SL1 SLC WAIT  
0
0
.
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
.
1
0
.
1
TL10  
TL9  
..........  
TL2  
TL1 TIMEOUT  
2
0
0
.
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
.
1
0
.
1
.
2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
28  
29  
30  
31  
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
1020  
1021  
1022  
1023  
AL5  
AL4  
..........  
AL2  
AL1 ALC WAIT  
VC8  
VC7  
..........  
VC2  
VC1 VCO BAND DIV  
0
0
.
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
.
1
0
.
1
0
0
.
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
.
1
0
.
1
2
2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
28  
29  
30  
31  
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
252  
253  
254  
255  
Figure 47. Register 9 Details  
REGISTER 8  
Timeout  
The bits in this register are reserved and must be programmed as  
shown in Figure 46, using a hexadecimal word of 0x15596568.  
TL10 to TL1 (Bits[DB23:DB14]) set the timeout value for the  
VCO band select.  
REGISTER 9  
Automatic Level Calibration (ALC) Timeout  
For a worked example and more information, see the PLL Lock  
Time section.  
AL5 to AL1 (Bits[DB13:DB9]) set the timer value used for the  
automatic level calibration of the VCO. This function combines  
the PFD frequency, the timeout variable, and the ALC wait  
variable. Choose the ALC such that the following equation is  
always greater than 50 μs:  
Control Bits  
With C4 to C1 (Bits[DB3:DB0]) set to 1001, Register 9 is  
programmed. Figure 47 shows the input data format for  
programming this register.  
ALC Wait > (50 μs × fPFD)/Timeout  
VCO Band Division  
Synthesizer Lock Timeout  
VC8 to VC1 (Bits[DB31:DB24]) set the value of the VCO band  
division clock. Determine the value of this clock by  
SL5 to SL1 (Bits[DB8:DB4]) set the synthesizer lock timeout  
value. This value allows the VTUNE force to settle on the VTUNE pin.  
The value must be 20 μs. Calculate the value using the following  
equation:  
VCO Band Division = ceiling(fPFD/1,600,000)  
where ceiling() is a function that rounds up to the nearest  
integer.  
Synthesizer Lock Timeout > (20 μs × fPFD)/Timeout  
Rev. 0 | Page 29 of 38  
 
 
 
 
ADF5356  
Data Sheet  
ADC  
CLOCK DIVIDER  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
AD8 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AE2 AE1 C4(1) C3(0) C2(1) C1(0)  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
AE1 ADC  
0
1
DISABLED  
ENABLED  
AE2 ADC CONVERSION  
0
1
DISABLED  
ENABLED  
AD8  
AD7  
..........  
AD2 AD1 ADC CLK DIV  
0
0
.
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
.
1
0
.
1
2
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
252  
253  
254  
255  
Figure 48. Register 10 Details  
AD8 to AD1 (Bits[DB13:DB6]) set the value of this divider. On  
power-up, the R counter is not programmed; however, in these  
power-up cases, it defaults to R = 1.  
REGISTER 10  
Control Bits  
With C4 to C1 (Bits[DB3:DB0]) set to 1010, Register 10 is  
programmed. Figure 48 shows the input data format for  
programming this register.  
Choose the value such that  
ADC_CLK_DIV = ceiling(((fPFD/100,000) − 2)/4)  
Reserved  
For example, for fPFD = 61.44 MHz, set ALC_CLK_DIV = 154  
so that the ADC clock frequency is 99.417 kHz.  
Bits[DB31:DB14] are reserved. Bits[DB23:DB22] must be set to  
11, and all other bits in this range must be set to 0.  
If ADC_CLK_DIV is greater than 255, set it to 255.  
ADC Clock Divider (ADC_CLK_DIV)  
ADC Conversion Enable  
An on-board analog-to-digital converter (ADC) determines the  
VTUNE setpoint relative to the ambient temperature of the  
ADF5356 environment. The ADC ensures that the initial tuning  
voltage in any application is chosen correctly to avoid any  
temperature drift issues.  
AE2 (Bit DB5) ensures that the ADC performs a conversion  
when a write to Register 10 is performed. It is recommended to  
enable this mode.  
ADC Enable  
AE1 (Bit DB4), when set to 1, powers up the ADC for the  
temperature dependent VTUNE calibration. It is recommended to  
always use this function.  
The ADC uses a clock that is equal to the output of the R counter  
(or the PFD frequency) divided by ADC_CLK_DIV.  
Rev. 0 | Page 30 of 38  
 
 
Data Sheet  
ADF5356  
CONTROL  
BITS  
RESERVED  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
1
0
0
0
0
0
0
C4(1) C3(0) C2(1) C1(1)  
0
0
0
VH  
0
1
1
0
0
0
0
1
0
0
0
0
0
VCO BAND HOLD  
VH  
0
1
NORMAL OPERATION  
VCO BAND HOLD  
Figure 49. Register 11 Details  
CONTROL  
BITS  
RESERVED  
PHASE RESYNC CLOCK VALUE  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
P13 P12  
P11 P10  
P9  
P8  
P7  
P6  
P5  
P4  
P3  
P2  
P1  
0
1
0
1
1
1
1
1
P20 P19 P18 P17 P16  
C4(1) C3(1) C2(0) C1(0)  
P15  
P14  
P20  
0
0
0
.
P19  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
P5  
0
0
0
.
P4  
0
0
0
.
P3  
P2  
0
0
1
.
P1  
RESYNC CLOCK  
0
0
0
.
0
0
0
.
0
1
0
.
NOT ALLOWED  
1
2
...  
0
0
0
.
0
0
0
.
1
1
1
.
0
0
1
.
1
1
0
.
1
1
0
.
0
1
0
.
22  
23  
24  
...  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
65533  
65534  
1048575  
Figure 50. Register 12 Details  
REGISTER 11  
Control Bits  
REGISTER 12  
Control Bits  
With C4 to C1 (Bits[DB3:DB0]) set to 1011, Register 11 is  
programmed. Figure 49 shows the input data format for  
programming this register.  
With C4 to C1 (Bits[DB3:DB0]) set to 1100, Register 12 is  
programmed. Figure 50 shows the input data format for  
programming this register.  
Reserved  
Phase Resynchronization Clock Value  
Bits[DB31:DB25] are reserved and must be set to 0. Bit DB22,  
Bit DB21, Bit DB16, and Bit DB13 must be set to 1, and all other  
bits in this range (Bits[DB23:DB4]) must be set to 0.  
P20 to P1 (Bits[DB31:DB12]) set the timeout counter for  
activation of the phase resynchronization. This value must be  
set such that a resynchronization occurs immediately after (and  
not before) the PLL has achieved lock, after reprogramming.  
VCO Band Hold  
Calculate the timeout value using the following equation:  
VH (Bit DB24), when set to 1, prevents a reset of the VCO core,  
band, and bias during a counter reset. VCO band hold is  
required for applications that use external PLLs.  
Timeout Value = Phase Resynchronization Clock Value/fPFD  
When not using phase resynchronization, set these bits to 1 for  
normal operation.  
Reserved  
Bits [DB11:DB4] are reserved. Bit DB11 and Bit DB9 must be  
set to 0, and all other bits in this range must be set to 1.  
Rev. 0 | Page 31 of 38  
 
 
 
 
ADF5356  
Data Sheet  
CONTROL  
BITS  
14-BIT AUXILIARY FRACTIONAL MSB VALUE (FRAC2_MSB) DBR 1  
14-BIT AUXILIARY MODULUS MSB VALUE (MOD2_MSB) DBR1  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
M14 M13 M12 M11 M10 M9  
M8  
M7  
M6  
M5  
M4  
M3  
M2  
M1  
F14  
F13  
F12  
F11  
F10  
F9  
F8  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
C3(1) C2(0) C1(1)  
C4(1)  
M14 M13 .......... M2  
M1  
0
1
0
1
.
MOD2_MSB VALUE  
0
F14  
F13  
.......... F2  
F1  
0
1
0
1
.
FRAC2_MSB WORD  
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
.........  
0
0
1
1
.
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
.........  
0
0
1
1
.
0
1
1
2
2
3
3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
16380  
16381  
16382  
16383  
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
16381  
16382  
16382  
16383  
1
DBR = DOUBLE BUFFERED REGISTER—BUFFERED BY A WRITE TO REGISTER 0.  
Figure 51. Register 13 Details  
11. Register 3.  
12. Register 2.  
13. Register 1.  
REGISTER 13  
Control Bits  
With C4 to C1 (Bits[DB3:DB0]) set to 1101, Register 13 is  
programmed. Figure 51 shows the input data format for  
programming this register.  
14. Ensure that >16 ADC clock cycles elapse between the write  
of Register 10 and Register 0. For example, if ADC clock =  
99.417 kHz, wait 16/99,417 sec = 161 ꢀs. See the Register 10  
section for more information.  
14-Bit Auxiliary Fractional MSB Value (FRAC2_MSB)  
15. Register 0.  
This value is used with the auxiliary fractional LSB value  
(Register 2, Bits[DB31:DB18]) to generate the total auxiliary  
fractional FRAC2 value.  
For fPFD > 75 MHz (initially lock with halved fPFD), use the  
following sequence:  
FRAC2 = (FRAC2_MSB × 214) + FRAC2_LSB  
1. Register 13 (for halved fPFD).  
These bits can be set to all zeros to ensure software  
compatibility with the ADF5355.  
2. Register 12.  
3. Register 11.  
4. Register 10.  
5. Register 9.  
6. Register 8.  
7. Register 7.  
8. Register 6 (bleed current setting using the desired fPFD).  
9. Register 5.  
14-Bit Auxiliary Modulus MSB Value (MOD2_MSB)  
This value is used with the auxiliary fractional MSB value  
(Register 2, Bits[DB17:DB4]) to generate the total auxiliary  
modulus MOD2 value.  
MOD2 = (MOD2_MSB × 214) + MOD2_LSB  
10. Register 4 (with the R divider doubled to halve fPFD).  
11. Register 3.  
12. Register 2 (for halved fPFD).  
REGISTER INITIALIZATION SEQUENCE  
At initial power-up, after the correct application of voltages to  
the supply pins, the ADF5356 registers must be programmed in  
sequence. For f ≤ 75 MHz, use the following sequence:  
13. Register 1 (for halved fPFD).  
14. Ensure that >16 ADC clock cycles elapse between the write  
of Register 10 and Register 0. For example, if ADC clock =  
99.417 kHz, wait 16/99,417 sec = 161 ꢀs. See the Register 10  
section for more information.  
15. Register 0 (for halved fPFD; autocalibration enabled).  
16. Register 13 (for the desired fPFD).  
17. Register 4 (with the R divider set for the desired fPFD).  
18. Register 2 (for the desired fPFD).  
19. Register 1 (for the desired fPFD).  
20. Register 0 (for the desired fPFD; autocalibration disabled).  
1. Register 13.  
2. Register 12.  
3. Register 11.  
4. Register 10.  
5. Register 9.  
6. Register 8.  
7. Register 7.  
8. Register 6.  
9. Register 5.  
10. Register 4.  
Rev. 0 | Page 32 of 38  
 
 
 
Data Sheet  
ADF5356  
FREQUENCY UPDATE SEQUENCE  
f
PFD = fREFIN × ((1 + D)/(R × (1 + T)))  
where:  
REFIN is the reference input frequency.  
(8)  
Frequency updates require updating the auxiliary modulator  
(FRAC2/MOD2) in Register 2 and Register 13, the fractional value  
(FRAC1) in Register 1, and the integer value (INT) in Register 0.  
It is recommended to perform a temperature dependent VTUNE  
f
D is the reference doubler bit.  
R is the fREFIN reference division factor.  
T is the reference divide by 2 bit (0 or 1).  
calibration by updating Register 10 first. Therefore, for fPFD  
75 MHz, the sequence must be as follows:  
1. Register 13.  
2. Register 10.  
3. Register 2.  
4. Register 1.  
5. Ensure that >16 ADC clock cycles elapse between the write  
of Register 10 and Register 0. For example, if ADC clock =  
99.417 kHz, wait 16/99,417 sec = 161 ꢀs. See the Register 10  
section for more information.  
For example, in a universal mobile telecommunication system  
(UMTS) where a 2112.8 MHz RF output frequency (fRFOUT) is  
required, a 122.88 MHz reference frequency input (fREFIN) is availa-  
ble. Note that the ADF5356 VCO operates in the frequency range  
of 3400 MHz to 6800 MHz. Therefore, the RF divider of 2 must be  
used (VCO frequency = 4225.6 MHz, RFOUT = VCO frequency/RF  
divider = 4225.6 MHz/2 = 2112.8 MHz).  
The feedback path is also important. In this example, the VCO  
output is fed back before the output divider (see Figure 52). In  
this example, the 122.88 MHz reference signal is divided by 2 to  
generate an fPFD of 61.44 MHz. The desired channel spacing is  
200 kHz.  
6. Register 0.  
For fPFD > 75 MHz (initially lock with halved fPFD), the sequence  
must be as follows:  
1. Register 13 (for halved fPFD).  
2. Register 10.  
3. Register 4 (with the R divider doubled to halve fPFD).  
4. Register 2 (for halved fPFD).  
fPFD  
RF  
OUT  
PFD  
VCO  
÷2  
5. Register 1 (for halved fPFD).  
N
6. Ensure that >16 ADC clock cycles elapse between the write  
of Register 10 and Register 0. For example, if ADC clock =  
99.417 kHz, wait 16/99,417 sec = 161 ꢀs. See the Register 10  
section for more information.  
DIVIDER  
Figure 52. Loop Closed Before Output Divider  
The worked example is as follows:  
7. Register 0 (for halved fPFD; autocalibration enabled).  
8. Register 13 (for the desired fPFD).  
N = VCOOUT/fPFD = 4225.6 MHz/61.44 MHz =  
68.7760416666666667  
9. Register 4 (with the R divider doubled to halve fPFD  
10. Register 2 (for the desired fPFD).  
11. Register 1 (for the desired fPFD).  
12. Register 0 (for desired fPFD; autocalibration disabled).  
)
INT = int(VCO frequency/fPFD) = 68  
where int() is a function indicating the integer result.  
FRAC = 0.7760416666666667  
MOD1 = 16,777,216  
The frequency change occurs on the write to Register 0.  
FRAC1 = int(MOD1 × FRAC) = 13,019,818  
Remainder = 0.6666666667 or 2/3  
RF SYNTHESIZER—A WORKED EXAMPLE  
Use the following equations to program the ADF5356 synthesizer:  
MOD2 = fPFD/GCD(fPFD, fCHSP) =  
61.44 MHz/GCD(61.44 MHz, 200 kHz) = 1536  
FRAC2  
MOD2  
MOD1  
FRAC1   
INT   
fPFD  
/RF Divider  
(7)  
RFOUT  
FRAC2 = Remainder × 1536 = 1024  
where:  
From Equation 8,  
f
RFOUT is the RF output frequency.  
f
PFD = (122.88 MHz × (1 + 0)/2) = 61.44 MHz  
(9)  
INT is the integer division factor.  
2112.8 MHz = 61.44 MHz × ((INT + (FRAC1 +  
FRAC2/MOD2)/224))/2  
FRAC1 is the fractionality.  
(10)  
FRAC2 is the auxiliary fractionality (FRAC2 = (FRAC2_MSB ×  
214) + FRAC2_LSB).  
where:  
INT = 68.  
FRAC1 = 13,019,818.  
FRAC2 = 1024.  
MOD2 = 1536.  
RF Divider = 2.  
MOD2 is the auxiliary modulus (MOD2 = (MOD2_MSB × 214) +  
MOD2_LSB).  
MOD1 is the fixed 24-bit modulus.  
RF Divider is the output divider that divides down the VCO  
frequency.  
Rev. 0 | Page 33 of 38  
 
 
ADF5356  
Data Sheet  
Lock Time—A Worked Example  
REFERENCE DOUBLER AND REFERENCE DIVIDER  
Assume that fPFD = 61.44 MHz,  
The on-chip reference doubler allows the input reference signal  
to be doubled. The doubler is useful for increasing the PFD  
comparison frequency. To improve the noise performance of  
the system, increase the PFD frequency. Doubling the PFD  
frequency typically improves noise performance by 3 dB.  
VCO Band Div = ceiling(fPFD/1,600,000) = 39  
By combining  
ALC Wait > (50 μs × fPFD)/Timeout  
Synthesizer Lock Timeout > (20 μs × fPFD)/Timeout  
The reference divide by 2 divides the reference signal by 2,  
resulting in a 50% duty cycle PFD frequency.  
It is found that  
SPURIOUS OPTIMIZATION AND FAST LOCK  
ALC Wait = 2.5 × Synthesizer Lock Timeout  
Narrow loop bandwidths can filter unwanted spurious signals;  
however, these bandwidths typically have a long lock time. A  
wider loop bandwidth achieves faster lock times but may lead  
to increased spurious signals inside the loop bandwidth.  
The ALC wait and synthesizer lock timeout values must be set  
to fulfill this equation. Both values are five bits wide; therefore,  
the maximum value for either is 31. There are several suitable  
values.  
OPTIMIZING JITTER  
The following values meet the criteria:  
ALC Wait = 30  
For the lowest jitter applications, use the highest possible PFD  
frequency to minimize the contribution of in-band noise from  
the PLL. Set the PLL filter bandwidth such that the in-band noise  
of the PLL intersects with the open-loop noise of the VCO,  
minimizing the contribution of both to the overall noise.  
Synthesizer Lock Timeout = 12  
Finally, rearrange as follows:  
ALC wait > (50 μs × fPFD)/Timeout  
Timeout = ceiling((fPFD × 50 μs)/ALC Wait)  
Timeout = ceiling((61.44 MHz × 50 μs)/30) = 103  
Synthesizer Lock Timeout  
Use the ADIsimPLL design tool for this task.  
SPUR MECHANISMS  
This section describes the two different spur mechanisms that  
arise with a fractional-N synthesizer and methods to minimize  
them in the ADF5356.  
The synthesizer lock timeout ensures that the VCO calibration  
digital-to-analog (DAC), which forces VTUNE, settles to a steady  
value for the band select circuitry.  
Integer Boundary Spurs  
One mechanism for fractional spur creation is the interactions  
between the RF VCO frequency and the reference frequency.  
When these frequencies are not integer related (the purpose of a  
fractional-N synthesizer), spur sidebands appear on the VCO  
output spectrum at an offset frequency that corresponds to the  
beat note or the difference in frequency between an integer  
multiple of the reference and the VCO frequency. These spurs  
are attenuated by the loop filter and are more noticeable on  
channels close to integer multiples of the reference where the  
difference frequency can be inside the loop bandwidth (thus  
the name, integer boundary spurs).  
The timeout and synthesizer lock timeout variables programmed  
in Register 9 select the length of time the DAC is allowed to  
settle to the final voltage, before the VCO calibration process  
continues to the next phase, which is VCO band selection. The  
PFD frequency is the clock for this logic, and the duration is set by  
Timeout Synthesize r Lock Timeout  
fPFD  
The calculated time must be equal to or greater than 20 μs.  
VCO Band Selection  
Use the PFD frequency again as the clock for the band selection  
process. Calculate this value by  
Reference Spurs  
Reference spurs are generally not a problem in fractional-N  
synthesizers because the reference offset is far outside the loop  
bandwidth. However, any reference feedthrough mechanism  
that bypasses the loop can cause a problem. Feedthrough of low  
levels of on-chip reference switching noise, through the  
prescaler back to the VCO, can result in reference spur levels  
as high as −85 dBc.  
f
PFD/(VCO Band Selection × 16) < 100 kHz  
The band selection takes 11 cycles of the previously calculated  
value. Calculate the duration by  
11 × (VCO Band Selection × 16)/fPFD  
Automatic Level Calibration Timeout  
Use the automatic level calibration (ALC) function to choose  
the correct bias current in the ADF5356 VCO core. Calculate  
the time taken by  
PLL LOCK TIME  
The PLL lock time divides into a number of settings. All of  
these settings are modeled in the ADIsimPLL design tool.  
30 × ALC Wait × Timeout/fPFD  
Much faster lock times than those detailed in this data sheet are  
possible; contact Analog Devices, Inc., for more information.  
Rev. 0 | Page 34 of 38  
 
 
 
 
 
Data Sheet  
ADF5356  
PLL Low-Pass Filter Settling Time  
The total lock time for changing frequencies is the sum of the  
four separate times (synthesizer lock, VCO band selection, ALC  
timeout, and PLL settling time) and is modeled in the ADIsimPLL  
design tool.  
The time taken for the loop to settle is inversely proportional to  
the low-pass filter bandwidth. The settling time is also modeled  
in the ADIsimPLL design tool.  
Rev. 0 | Page 35 of 38  
ADF5356  
Data Sheet  
APPLICATIONS INFORMATION  
large as the exposed pad. On the PCB, there must be a minimum  
clearance of 0.25 mm between the thermal pad and the inner  
edges of the pad pattern. This clearance ensures the avoidance  
of shorting.  
POWER SUPPLIES  
The ADF5356 contains four multiband VCOs that cover an  
octave range of frequencies. To ensure the best performance, it is  
vital to connect a low noise regulator, such as the ADM7150.  
Connect the same regulator to the VVCO, VREGVCO, and VP pins.  
To improve the thermal performance of the package, use thermal  
vias on the PCB thermal pad. If vias are used, incorporate them  
into the thermal pad at the 1.2 mm pitch grid. The via diameter  
must be between 0.3 mm and 0.33 mm, and the via barrel must  
be plated with 1 oz. of copper to plug the via.  
For the 3.3 V supply pins, use one or two ADM7150 regulators,  
one for the DVDD and AVDD supplies and one for VRF. Figure 53  
shows the recommended connections.  
PCB DESIGN GUIDELINES FOR A CHIP SCALE  
PACKAGE  
For a microwave PLL and VCO synthesizer, such as the ADF5356,  
take care with the board stackup and layout. Do not consider  
using FR4 material because it is too lossy above 3 GHz. Instead,  
Rogers 4350, Rogers 4003, or Rogers 3003 dielectric material is  
suitable.  
The lands on the 32-lead, lead frame chip scale package are  
rectangular. The PCB pad for these lands must be 0.1 mm  
longer than the package land length and 0.05 mm wider than  
the package land width. Center each land on the pad to  
maximize the solder joint size.  
Take care with the RF output traces to minimize discontinuities  
and ensure the best signal integrity. Via placement and grounding  
are critical.  
The bottom of the chip scale package has a central exposed  
thermal pad. The thermal pad on the PCB must be at least as  
V
IN  
= 6.0V  
V
= 3.3V  
OUT  
OUT  
100nF  
100nF  
VIN  
EN  
VOUT  
ADM7150  
C
IN  
1µF  
C
ON  
1µF  
LOCK  
DETECT  
OFF  
C
REF  
BYP  
17  
6
27  
5
16  
4
26  
10  
32  
REG2 CREG1  
MUXOUT  
25  
30  
C
BYP  
1µF  
VREG  
REF_SENSE  
VVCO  
DVDD AVDD AV  
VRF  
C
DD CE PDBRF  
VP  
1nF  
1nF  
1nF  
10pF  
REG  
10µF  
FREFIN  
FREFIN  
GND  
29  
REFIN  
A
RFOUT  
B
14  
100  
VOUT  
REFINB  
28  
1nF  
7.5nH  
7.5nH  
1
2
3
CLK  
DATA  
LE  
1nF  
1nF  
11  
12  
RFOUTA+  
RFOUTA–  
ADF5356  
V
IN  
= 6.0V  
V
= 5.0V  
OUT  
VIN  
VOUT  
REF  
VTUNE 20  
CPOUT  
C
IN  
1µF  
C
OUT  
1µF  
430ꢀ  
ADM7150  
ON  
22 NIC  
7
OFF  
EN  
1µF  
68ꢀ  
33nF  
6800pF  
BYP  
VREG  
C
BYP  
1µF  
CPGND SDGND  
AGNDVCO AGNDRF VREGVCO VREF VBIAS  
13 18 21 15 19 23 24  
REF_SENSE  
GND  
AGND  
9
C
REG  
10µF  
8
31  
10pF  
0.1µF 10pF  
0.1µF 10pF  
0.1µF  
Figure 53. Power Supplies  
Rev. 0 | Page 36 of 38  
 
 
 
 
Data Sheet  
ADF5356  
For frequencies below 2 GHz, it is recommended to use a  
100 nH inductor on the RFOUTA+/RFOUTA− pins and a 100 pF  
ac coupling capacitor.  
OUTPUT MATCHING  
The low frequency output can simply be ac-coupled to the next  
circuit, if desired; however, if a higher output power is required,  
use a pull-up inductor to increase the output power level.  
The RFOUTA+/RFOUTA− pins form a differential circuit. Provide  
each output with the same (or similar) components where  
possible, such as the same shunt inductor value, bypass  
capacitor, and termination.  
V
RF  
7.5nH  
100pF  
RF  
A+  
OUT  
50  
AC couple the higher frequency output, RFOUTB, directly to the  
next appropriate circuit stage.  
Figure 54. Optimum Output Stage  
RFOUTB is matched internally to a 50 Ω impedance and requires  
no additional matching components.  
When differential outputs are not required, terminate the  
unused output or combine it with both outputs using a balun.  
Rev. 0 | Page 37 of 38  
 
ADF5356  
Data Sheet  
OUTLINE DIMENSIONS  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
25  
32  
24  
1
0.50  
BSC  
3.75  
3.60 SQ  
3.55  
EXPOSED  
PAD  
17  
8
16  
9
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD-5.  
Figure 55. 32-Lead Lead Frame Chip Scale Package [LFCSP]  
5 mm × 5 mm Body and 0.75 mm Package Height  
(CP-32-12)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADF5356BCPZ  
ADF5356BCPZ-RL7  
EV-ADF5356SD1Z  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
CP-32-12  
CP-32-12  
1 Z = RoHS Compliant Part.  
©2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D15360-0-8/17(0)  
Rev. 0 | Page 38 of 38  
 
 

相关型号:

ADF5610

Microwave Wideband Synthesizer Integrated VCO
ADI

ADF5610BCCZ

Microwave Wideband Synthesizer Integrated VCO
ADI

ADF5610BCCZ-RL7

Microwave Wideband Synthesizer Integrated VCO
ADI

ADF5610_V01

Microwave Wideband Synthesizer Integrated VCO
ADI

ADF5709

9.85 GHz to 20.5 GHz, Wideband, MMIC VCO
ADI

ADF5709BEZ

9.85 GHz to 20.5 GHz, Wideband, MMIC VCO
ADI

ADF5709BEZ-R7

9.85 GHz to 20.5 GHz, Wideband, MMIC VCO
ADI

ADF5901

24 GHz to 24.25 GHz voltage controlled oscillator
ADI

ADF5901WCCPZ

24 GHz to 24.25 GHz voltage controlled oscillator
ADI

ADF5901WCCPZ-RL7

24 GHz to 24.25 GHz voltage controlled oscillator
ADI

ADF5902

24 GHz, ISM Band, Multichannel FMCW Radar Transmitter
ADI

ADF5902WCCPZ

24 GHz, ISM Band, Multichannel FMCW Radar Transmitter
ADI