ADG1207YRUZ-REEL7 [ADI]

Low Capacitance, 16- and 8-Channel +-15 V/+12 V iCMOS Multiplexers; 低电容,16位和8通道±15 V / + 12 V的iCMOS多路复用器
ADG1207YRUZ-REEL7
型号: ADG1207YRUZ-REEL7
厂家: ADI    ADI
描述:

Low Capacitance, 16- and 8-Channel +-15 V/+12 V iCMOS Multiplexers
低电容,16位和8通道±15 V / + 12 V的iCMOS多路复用器

复用器 开关 复用器或开关 信号电路 光电二极管
文件: 总20页 (文件大小:478K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Capacitance, 16- and 8-Channel  
1ꢀ ꢁV/1ꢂ ꢁ iCMOSMultiplexers  
ADG1ꢂ06VADG1ꢂ07  
FUNCTIONAL BLOCK DIAGRAMS  
FEATURES  
<1 pC charge injection over full signal range  
1.5 pF off capacitance  
33 V supply range  
ADG1206  
ADG1207  
S1  
S1A  
S8A  
DA  
DB  
120 Ω on resistance  
Fully specified at 15 V/+12 V  
3 V logic-compatible inputs  
Rail-to-rail operation  
Break-before-make switching action  
28-lead TSSOP and 32-lead, 5 mm × 5 mm LFCSP_VQ  
D
S1B  
S8B  
S16  
1-OF-16  
DECODER  
1-OF-8  
DECODER  
APPLICATIONS  
Audio and video routing  
Automatic test equipment  
Data acquisition systems  
Battery-powered systems  
Sample-and-hold systems  
Communication systems  
A0 A1 A2 A3 EN  
A0 A1 A2 EN  
Figure 1.  
GENERAL DESCRIPTION  
The ultralow capacitance and exceptionally low charge injection  
of these multiplexers make them ideal solutions for data  
acquisition and sample-and-hold applications, where low glitch  
and fast settling are required. Figure 2 shows that there is  
minimum charge injection over the entire signal range of the  
device. iCMOS construction also ensures ultralow power  
dissipation, making the parts ideally suited for portable and  
battery-powered instruments.  
The ADG1206 and ADG1207 are monolithic iCMOS analog  
multiplexers comprising sixteen single channels and eight  
differential channels, respectively. The ADG1206 switches one  
of sixteen inputs to a common output, as determined by the 4-  
bit binary address lines A0, A1, A2, and A3. The ADG1207  
switches one of eight differential inputs to a common  
differential output, as determined by the 3-bit binary address  
lines A0, A1, and A2. An EN input on both devices is used to  
enable or disable the device. When disabled, all channels are  
switched off. When on, each channel conducts equally well in  
both directions and has an input signal range that extends to the  
supplies.  
1.0  
MUX (SOURCE TO DRAIN)  
T
= 25°C  
A
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
V
V
= +15V  
= –15V  
DD  
SS  
The iCMOS (industrial CMOS) modular manufacturing  
process combines high voltage CMOS (complementary metal-  
oxide semiconductor) and bipolar technologies. It enables the  
development of a wide range of high performance analog ICs  
capable of 33 V operation in a footprint that no other generation  
of high voltage parts has been able to achieve. Unlike analog ICs  
using conventional CMOS processes, iCMOS components can  
tolerate high supply voltages while providing increased perfor-  
mance, dramatically lower power consumption, and reduced  
package size.  
V
V
= +12V  
= 0V  
DD  
SS  
0.1  
0
V
V
= +5V  
= –5V  
DD  
SS  
–15  
–10  
–5  
0
5
10  
15  
V
(V)  
S
Figure 2. Source-to-Drain Charge Injection vs. Source Voltage  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
 
ADG1ꢂ06VADG1ꢂ07  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Absolute Maximum Ratings ............................................................7  
ESD Caution...................................................................................7  
Pin Configurations and Function Descriptions............................8  
Typical Performance Characteristics ........................................... 12  
Terminology.................................................................................... 16  
Test Circuits..................................................................................... 17  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
Applications....................................................................................... 1  
Functional Block Diagrams............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Dual Supply................................................................................... 3  
Single Supply................................................................................. 5  
REVISION HISTORY  
7/06—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
ADG1ꢂ06VADG1ꢂ07  
SPECIFICATIONS  
DUAL SUPPLY  
VDD = +15 V 10%, VSS = –15 V 10%, GND = 0 V, unless otherwise noted.1  
Table 1.  
−40°C to  
+25°C +85°C  
−40°C to  
+125°C  
Parameter  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VSS to VDD  
270  
V
120  
200  
3.5  
Ω typ  
Ω max  
Ω typ  
VS = 10 V, IS = −1 mA; see Figure 28  
VDD = +13.5 V, VSS = −13.5 V  
VS = 10 V, IS = −1 mA  
240  
On Resistance Match Between  
Channels, ∆RON  
6
20  
64  
10  
76  
12  
83  
Ω max  
Ω typ  
Ω max  
On Resistance Flatness, RFLAT (On)  
VS = −5 V, 0 V, +5 V; IS = −1 mA  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
0.03  
nA typ  
VD = 10 V, VS = 10 V; see Figure 29  
VS = 1 V, 10 V; VD = 10 V, 1 V; see Figure 29  
VS = VD = 10 V; see Figure 30  
0.2  
0.05  
0.2  
0.08  
0.2  
0.6  
0.6  
0.6  
1
2
2
nA max  
nA typ  
nA max  
nA typ  
nA max  
Drain Off Leakage, ID (Off)  
Channel On Leakage, ID, IS (On)  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
μA typ  
μA max  
pF typ  
0.005  
VIN = VINL or VINH  
0.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS2  
Transition Time, tTRANSITION  
2
80  
130  
75  
95  
85  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
dB typ  
dB typ  
% typ  
RL = 300 Ω, CL = 35 pF  
VS = 10 V; see Figure 31  
RL = 300 Ω, CL = 35 pF  
VS = 10 V; see Figure 33  
RL = 300 Ω, CL = 35 pF  
VS = 10 V; see Figure 33  
RL = 300 Ω, CL = 35 pF  
VS1 = VS2 = 10 V; see Figure 32  
VS = 0 V, RS = 0 Ω, CL = 1 nF; see Figure 34  
RL = 50 Ω, CL = 5 pF, f = 1 MHz; see Figure 35  
RL = 50 Ω, CL = 5 pF, f = 1 MHz; see Figure 37  
RL = 10 kΩ, 5 V rms, f = 20 Hz to 20 kHz;  
see Figure 38  
165  
105  
125  
185  
115  
140  
10  
tON (EN)  
tOFF (EN)  
100  
20  
Break-Before-Make Time Delay, tBBM  
Charge Injection  
Off Isolation  
Channel-to-Channel Crosstalk  
Total Harmonic Distortion + Noise  
0.5  
−85  
−85  
0.15  
−3 dB Bandwidth ADG1206  
−3 dB Bandwidth ADG1207  
CS (Off)  
280  
490  
1.5  
2
11  
12  
7
MHz typ  
MHz typ  
pF typ  
pF max  
pF typ  
RL = 50 Ω, CL = 5 pF; see Figure 36  
RL = 50 Ω, CL = 5 pF; see Figure 36  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
CD (Off) ADG1206  
CD (Off) ADG1207  
pF max  
pF typ  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
9
pF max  
f = 1 MHz, VS = 0 V  
Rev. 0 | Page 3 of 20  
 
ADG1ꢂ06VADG1ꢂ07  
−40°C to  
+25°C +85°C  
−40°C to  
+125°C  
Parameter  
Unit  
Test Conditions/Comments  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
CD, CS (On) ADG1206  
13  
15  
8
pF typ  
pF max  
pF typ  
pF max  
CD, CS (On) ADG1207  
10  
POWER REQUIREMENTS  
IDD  
VDD = +16.5 V, VSS = −16.5 V  
Digital inputs = 0 V or VDD  
0.002  
260  
μA typ  
μA max  
μA typ  
μA max  
μA typ  
μA max  
1.0  
IDD  
Digital inputs = 5 V  
420  
ISS  
0.002  
Digital inputs = 0 V, 5 V, or VDD  
1.0  
VDD/VSS  
5/ 16.5  
V min/max GND = 0V  
1 Temperature range for Y version is 40°C to +125°C.  
2 Guaranteed by design, not subject to production test.  
Rev. 0 | Page 4 of 20  
ADG1ꢂ06VADG1ꢂ07  
SINGLE SUPPLY  
VDD = 12 V 10%, VSS = 0 V, GND = 0 V, unless otherwise noted.1  
Table 2.  
−40°C to  
+25°C +85°C  
−40°C to  
+125°C  
Parameter  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
0 to VDD  
625  
V
300  
475  
5
Ω typ  
Ω max  
Ω typ  
VS = 0 V to10 V, IS = −1 mA; see Figure 28  
VDD = 10.8 V, VSS = 0 V  
VS = 0 V to 10 V, IS = −1 mA  
567  
26  
On Resistance Match Between  
Channels, ∆RON  
16  
60  
27  
Ω max  
Ω typ  
On Resistance Flatness, RFLAT (On)  
LEAKAGE CURRENTS  
VS = 3 V, 6 V, 9 V; IS = −1 mA  
VDD = 13.2 V  
Source Off Leakage, IS (Off)  
0.02  
0.2  
0.05  
0.2  
0.08  
0.2  
nA typ  
nA max  
nA typ  
nA max  
nA typ  
nA max  
VS = 1 V/10 V, VD = 10 V/1 V; see Figure 29  
0.6  
0.6  
0.6  
1
2
2
Drain Off Leakage, ID (Off)  
VS = 1 V/10 V, VD = 10 V/1 V; see Figure 29  
VS = VD = 1 V or 10 V; see Figure 30  
Channel On Leakage, ID, IS (On)  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
μA typ  
μA max  
pF typ  
0.001  
0.1  
VIN = VINL or VINH  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS2  
Transition Time, tTRANSITION  
3
100  
140  
80  
100  
90  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
RL = 300 Ω, CL = 35 pF  
VS = 8 V; see Figure 31  
RL = 300 Ω, CL = 35 pF  
VS = 8 V; see Figure 33  
RL = 300 Ω, CL = 35 pF  
VS = 8 V; see Figure 33  
RL = 300 Ω, CL = 35 pF  
175  
120  
130  
200  
130  
155  
15  
tON (EN)  
tOFF (EN)  
110  
25  
Break-Before-Make Time Delay, tBBM  
ns min  
pC typ  
dB typ  
dB typ  
MHz typ  
MHz typ  
pF typ  
pF max  
pF typ  
pF max  
pF typ  
pF max  
pF typ  
pF max  
pF typ  
pF max  
VS1 = VS2 = 8 V; see Figure 32  
VS = 6 V, RS = 0 Ω, CL = 1 nF; see Figure 34  
RL = 50 Ω, CL = 5 pF, f = 1 MHz; see Figure 35  
RL = 50 Ω, CL = 5 pF, f = 1 MHz; see Figure 37  
RL = 50 Ω, CL = 5 pF; see Figure 36  
RL = 50 Ω, CL = 5 pF; see Figure 36  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
Charge Injection  
Off Isolation  
Channel-to-Channel Crosstalk  
−3 dB Bandwidth ADG1206  
−3 dB Bandwidth ADG1207  
CS (Off)  
0.2  
−85  
−85  
185  
300  
1.5  
2
13  
15  
9
11  
CD (Off) ADG1206  
CD (Off) ADG1207  
CD, CS (On) ADG1206  
CD, CS (On) ADG1207  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
15  
17  
10  
12  
f = 1 MHz, VS = 6 V  
Rev. 0 | Page 5 of 20  
 
ADG1ꢂ06VADG1ꢂ07  
−40°C to  
+25°C +85°C  
−40°C to  
+125°C  
Parameter  
Unit  
Test Conditions/Comments  
VDD = 13.2 V  
Digital inputs = 0 V or VDD  
POWER REQUIREMENTS  
IDD  
0.002  
260  
μA typ  
μA max  
μA typ  
μA max  
1.0  
IDD  
Digital inputs = 5  
420  
VDD  
5/16.5  
V min/max VSS = 0 V, GND = 0 V  
1 Temperature range for Y version is −40°C to +125°C.  
2 Guaranteed by design, not subject to production test.  
Rev. 0 | Page 6 of 20  
ADG1ꢂ06VADG1ꢂ07  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VDD to VSS  
35 V  
VDD to GND  
VSS to GND  
Analog, Digital Inputs1  
−0.3 V to +25 V  
+0.3 V to −25 V  
VSS − 0.3 V to VDD + 0.3 V  
or 30 mA, whichever  
occurs first  
Continuous Current, S or D  
Peak Current, S or D (Pulsed at 1 ms,  
10% Duty Cycle Maximum)  
30 mA  
100 mA  
Only one absolute maximum rating may be applied at any  
one time.  
Operating Temperature Ranges  
Industrial (Y Version)  
Storage  
Junction Temperature  
28-Lead TSSOP  
–40°C to +125°C  
–65°C to +150°C  
150°C  
θJA, Thermal Impedance  
θJC, Thermal Impedance  
32-Lead LFCSP_VQ  
θJA, Thermal Impedance  
97.9°C/W  
14°C/W  
27.27°C/W  
Reflow Soldering Peak Temperature  
(Pb-Free)  
260(+0/−5)°C  
1 Overvoltages at A, EN, S, or D are clamped by internal diodes. Current should  
be limited to the maximum ratings given.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 7 of 20  
 
ADG1ꢂ06VADG1ꢂ07  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
D
DD  
2
NC  
NC  
V
SS  
3
S8  
S7  
S6  
S5  
S4  
S3  
S2  
S1  
EN  
A0  
A1  
A2  
4
S16  
S15  
S14  
S13  
S12  
S11  
S10  
S9  
5
6
ADG1206  
TOP VIEW  
(Not to Scale)  
7
S16  
S15  
S14  
S13  
S12  
S11  
S10  
S9  
1
2
3
4
5
6
7
8
24 S8  
23 S7  
22 S6  
21 S5  
20 S4  
19 S3  
18 S2  
17 S1  
PIN 1  
INDICATOR  
8
9
ADG1206  
TOP VIEW  
(Not to Scale)  
10  
11  
12  
13  
14  
GND  
NC  
NC = NO CONNECT  
A3  
NC = NO CONNECT  
Figure 3. ADG1206 Pin Configuration—TSSOP  
Figure 4. ADG1206 Pin Configuration—5 mm × 5 mm LFCSP_VQ,  
Exposed Pad Tied to Substrate, VSS  
Table 4. ADG1206 Pin Function Descriptions  
Pin Number  
TSSOP  
LFCSP_VQ  
31  
12, 13  
26, 27, 28,  
30, 32  
Mnemonic  
Description  
1
2
3
VDD  
NC  
NC  
Most Positive Power Supply Potential.  
No Connect.  
No Connect.  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
1
2
3
4
5
6
7
8
S16  
S15  
S14  
S13  
S12  
S11  
S10  
S9  
GND  
NC  
A3  
A2  
A1  
Source Terminal 16. Can be an input or an output.  
Source Terminal 15. Can be an input or an output.  
Source Terminal 14. Can be an input or an output.  
Source Terminal 13. Can be an input or an output.  
Source Terminal 12. Can be an input or an output.  
Source Terminal 11. Can be an input or an output.  
Source Terminal 10. Can be an input or an output.  
Source Terminal 9. Can be an input or an output.  
Ground (0 V) Reference.  
No Connect.  
Logic Control Input.  
Logic Control Input.  
Logic Control Input.  
9
10  
11  
14  
15  
16  
A0  
EN  
Logic Control Input.  
Active High Digital Input. When this pin is low, the device is disabled and all switches are  
turned off. When this pin is high, the Ax logic inputs determine which switch is turned on.  
19  
20  
21  
22  
23  
24  
25  
26  
27  
17  
18  
19  
20  
21  
22  
23  
24  
25  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
VSS  
Source Terminal 1. Can be an input or an output.  
Source Terminal 2. Can be an input or an output.  
Source Terminal 3. Can be an input or an output.  
Source Terminal 4. Can be an input or an output.  
Source Terminal 5. Can be an input or an output.  
Source Terminal 6. Can be an input or an output.  
Source Terminal 7. Can be an input or an output.  
Source Terminal 8. Can be an input or an output.  
Most Negative Power Supply Potential. In single-supply applications, this pin can be  
connected to ground.  
28  
29  
D
Drain Terminal. Can be an input or an output.  
Rev. 0 | Page 8 of 20  
 
ADG1ꢂ06VADG1ꢂ07  
Table 5. ADG1206 Truth Table  
A3  
X
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
A2  
X
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
A1  
X
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
A0  
X
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
EN  
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
On Switch  
None  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
Rev. 0 | Page 9 of 20  
ADG1ꢂ06VADG1ꢂ07  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
DA  
DD  
DB  
NC  
V
SS  
3
S8A  
S7A  
S6A  
S5A  
S4A  
S3A  
S2A  
S1A  
EN  
4
S8B  
S7B  
S6B  
S5B  
S4B  
S3B  
S2B  
S1B  
GND  
NC  
5
6
ADG1207  
TOP VIEW  
(Not to Scale)  
7
8
S8B  
S7B  
S6B  
S5B  
S4B  
S3B  
S2B  
S1B  
1
2
3
4
5
6
7
8
24 S8A  
23 S7A  
22 S6A  
21 S5A  
20 S4A  
19 S3A  
18 S2A  
17 S1A  
PIN 1  
INDICATOR  
9
10  
11  
12  
13  
14  
ADG1207  
TOP VIEW  
(Not to Scale)  
A0  
A1  
NC  
A2  
NC = NO CONNECT  
NC = NO CONNECT  
Figure 5. ADG1207 Pin Configuration—TSSOP  
Figure 6. ADG1207 Pin Configuration—5 mm × 5 mm LFCSP_VQ  
Exposed Pad Tied to Substrate, VSS  
Table 6. ADG1207 Pin Function Descriptions  
Pin Number  
TSSOP  
LFCSP_VQ  
Mnemonic  
VDD  
DB  
Description  
1
2
3
29  
31  
11, 12, 13  
Most Positive Power Supply Potential.  
Drain Terminal B. Can be an input or an output.  
No Connect.  
NC  
4
5
6
7
8
9
10  
11  
12  
13  
1
2
3
4
5
6
7
8
9
S8B  
S7B  
S6B  
S5B  
S4B  
S3B  
S2B  
S1B  
Source Terminal 8B. Can be an input or an output.  
Source Terminal 7B. Can be an input or an output.  
Source Terminal 6B. Can be an input or an output.  
Source Terminal 5B. Can be an input or an output.  
Source Terminal 4B. Can be an input or an output.  
Source Terminal 3B. Can be an input or an output.  
Source Terminal 2B. Can be an input or an output.  
Source Terminal 1B. Can be an input or an output.  
Ground (0 V) Reference.  
GND  
NC  
26, 28,  
30, 32  
No Connect.  
14  
15  
16  
17  
18  
NC  
A2  
A1  
A0  
EN  
No Connect.  
10  
14  
15  
16  
Logic Control Input.  
Logic Control Input.  
Logic Control Input.  
Active High Digital Input. When this pin is low, the device is disabled and all switches are  
turned off. When this pin is high, the Ax logic inputs determine which switch is turned on.  
19  
20  
21  
22  
23  
24  
25  
26  
27  
17  
18  
19  
20  
21  
22  
23  
24  
25  
S1A  
S2A  
S3A  
S4A  
S5A  
S6A  
S7A  
S8A  
VSS  
Source Terminal 1A. Can be an input or an output.  
Source Terminal 2A. Can be an input or an output.  
Source Terminal 3A. Can be an input or an output.  
Source Terminal 4A. Can be an input or an output.  
Source Terminal 5A. Can be an input or an output.  
Source Terminal 6A. Can be an input or an output.  
Source Terminal 7A. Can be an input or an output.  
Source Terminal 8A. Can be an input or an output.  
Most Negative Power Supply Potential. In single-supply applications, this pin can be  
connected to ground.  
28  
27  
DA  
Drain Terminal A. Can be an input or an output.  
Rev. 0 | Page 10 of 20  
ADG1ꢂ06VADG1ꢂ07  
Table 7. ADG1207 Truth Table  
A2  
X
0
0
0
0
1
1
1
A1  
X
0
0
1
1
0
0
1
A0  
X
0
1
0
1
0
1
0
EN  
0
1
1
1
1
1
1
1
On Switch Pair  
None  
1
2
3
4
5
6
7
8
1
1
1
1
Rev. 0 | Page 11 of 20  
ADG1ꢂ06VADG1ꢂ07  
TYPICAL PERFORMANCE CHARACTERISTICS  
200  
250  
V
V
= +15V  
= –15V  
DD  
SS  
T
= 25°C  
A
V
V
= +15V  
= –15V  
DD  
SS  
180  
160  
140  
120  
100  
80  
V
V
= +13.5V  
= –13.5V  
DD  
SS  
200  
150  
T
T
= +125°C  
= +85°C  
A
A
T
= +25°C  
= –40°C  
A
A
V
V
= +16.5V  
= –16.5V  
DD  
SS  
100  
T
60  
40  
50  
0
20  
0
–18 –15 –12 –9 –6 –3  
0
3
6
9
12 15 18  
–15  
–10  
–5  
0
5
10  
15  
SOURCE OR DRAIN VOLTAGE (V)  
SOURCE OR DRAIN VOLTAGE (V)  
Figure 7. On Resistance as a Function of VD (VS) for Dual Supply  
Figure 10. On Resistance as a Function of VD (VS) for Different Temperatures,  
Dual Supply  
600  
600  
V
V
= 12V  
= 0V  
DD  
SS  
T
= 25°C  
V
V
= +4.5V  
= –4.5V  
A
DD  
SS  
T
= +125°C  
A
500  
500  
400  
300  
200  
V
V
= +5V  
= –5V  
DD  
SS  
T
= +85°C  
A
400  
300  
T
= +25°C  
A
V
V
= +5.5V  
= –5.5V  
DD  
SS  
T
= –40°C  
A
200  
100  
0
100  
0
–6  
–4  
–2  
0
2
4
6
0
2
4
6
8
10  
12  
SOURCE OR DRAIN VOLTAGE (V)  
SOURCE OR DRAIN VOLTAGE (V)  
Figure 8. On Resistance as a Function of VD (VS) for Dual Supply  
Figure 11. On Resistance as a Function of VD (VS) for Different Temperatures,  
Single Supply  
450  
1200  
V
V
V
= +15V  
= –15V  
DD  
SS  
T
= 25°C  
V
V
= 10.8V  
= 0V  
A
DD  
SS  
1000  
800  
400  
350  
300  
250  
200  
150  
100  
50  
I
(OFF) – +  
D
= +10V/–10V  
BIAS  
I
, I (ON) + +  
S
D
V
V
= 12V  
= 0V  
DD  
SS  
600  
I
(OFF) + –  
S
400  
200  
V
V
= 13.2V  
= 0V  
DD  
SS  
0
–200  
–400  
–600  
–800  
–1000  
–1200  
I
(OFF) – +  
S
I
(OFF) + –  
D
I
, I (ON) – –  
S
D
0
0
2
4
6
8
10  
12  
14  
0
20  
40  
60  
80  
100  
120  
SOURCE OR DRAIN VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 9. On Resistance as a Function of VD (VS) for Single Supply  
Figure 12. ADG1206 Leakage Currents as a Function of Temperature,  
Dual Supply  
Rev. 0 | Page 12 of 20  
 
ADG1ꢂ06VADG1ꢂ07  
6
4
400  
300  
DEMUX (DRAIN TO SOURCE)  
= 25°C  
V
V
V
= 12V  
= 0V  
I (OFF) – +  
D
DD  
SS  
T
A
= 1V/10V  
BIAS  
V
V
= +5V  
= –5V  
I
(OFF) + –  
DD  
S
200  
SS  
I
, I (ON )+ +  
S
D
2
100  
0
V
V
= +12V  
= 0V  
0
DD  
SS  
–100  
–200  
–300  
–400  
V
V
= +15V  
= –15V  
DD  
SS  
–2  
I
(OFF) – +  
S
I
(OFF) + –  
D
–4  
–6  
I
, I (ON) – –  
S
D
–15  
–10  
–5  
0
(V)  
5
10  
15  
0
20  
40  
60  
80  
100  
120  
V
TEMPERATURE (°C)  
S
Figure 13. ADG1206 Leakage Currents as a Function of Temperature,  
Single Supply  
Figure 16. Drain-to-Source Charge Injection vs. Source Voltage  
350  
300  
200  
I
T
PER CHANNEL  
= 25°C  
DD  
180  
160  
140  
120  
100  
80  
A
V
V
= +5V  
= –5V  
DD  
SS  
V
V
= +15V  
= –15V  
DD  
250  
200  
150  
100  
50  
SS  
V
V
= +12V  
= 0V  
DD  
SS  
60  
V
V
= +15V  
= –15V  
DD  
SS  
40  
V
V
= +12V  
= 0V  
DD  
SS  
20  
0
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
0
2
4
6
8
10  
12  
14  
16  
LOGIC, IN (V)  
TEMPERATURE (°C)  
X
Figure 14. IDD vs. Logic Level  
Figure 17. Transition Time vs. Temperature  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
MUX (SOURCE TO DRAIN)  
= 25°C  
V
V
= +15V  
= –15V  
= 25°C  
DD  
SS  
T
A
T
A
V
V
= +15V  
= –15V  
DD  
SS  
V
V
= +12V  
= 0V  
DD  
SS  
0.1  
0
V
V
= +5V  
= –5V  
DD  
SS  
–15  
–10  
–5  
0
5
10  
15  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
V
(V)  
S
Figure 15. Source-to-Drain Charge Injection vs. Source Voltage  
Figure 18. Off Isolation vs. Frequency  
Rev. 0 | Page 13 of 20  
ADG1ꢂ06VADG1ꢂ07  
0
10  
T
A
= 25°C  
LOAD = 10k  
= 25°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
T
A
1
V
V
= +5V, V = –5V, V = +3.5V rms  
SS S  
DD  
DD  
ADJACENT  
CHANNELS  
= +15V, V = –15V, V = +5V rms  
SS  
S
0.1  
NON ADJACENT  
CHANNELS  
0.01  
10k  
100k  
1M  
10M  
100M  
1G  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
Figure 22. THD + N vs. Frequency  
Figure 19. ADG1206 Crosstalk vs. Frequency  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
20  
T
A
= 25°C  
V
V
= +15V  
= –15V  
DD  
SS  
18  
16  
14  
12  
10  
8
T
= 25°C  
A
SOURCE/DRAIN ON  
DRAIN OFF  
ADJACENT  
CHANNELS  
6
4
NON ADJACENT  
2
SOURCE OFF  
CHANNELS  
0
–15  
–10  
–5  
0
5
10  
15  
10k  
100k  
1M  
10M  
100M  
1G  
V
(V)  
FREQUENCY (Hz)  
BIAS  
Figure 20. ADG1207 Crosstalk vs. Frequency  
Figure 23. ADG1206 Capacitance vs. Source Voltage,  
15 V Dual Supply  
–4  
–6  
20  
18  
16  
14  
12  
10  
8
ADG1207  
SOURCE/DRAIN ON  
DRAIN OFF  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
ADG1206  
6
V
V
= 12V  
= 0V  
= 25°C  
DD  
SS  
4
T
A
V
V
= +15V  
= –15V  
= 25°C  
DD  
SS  
SOURCE OFF  
6
2
T
A
0
0
2
4
8
10  
12  
10k  
100k  
1M  
10M  
100M  
1G  
V
(V)  
FREQUENCY (Hz)  
BIAS  
Figure 21. On Response vs. Frequency  
Figure 24. ADG1206 Capacitance vs. Source Voltage, 12 V Single Supply  
Rev. 0 | Page 14 of 20  
ADG1ꢂ06VADG1ꢂ07  
12  
10  
8
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
V
= +15V  
= –15V  
= 25°C  
DD  
SS  
T
= 25°C  
A
NO DECOUPLING CAPACITORS  
V
V
T
A
= +15V  
= –15V  
DD  
SS  
V p-p = 0.63V  
SOURCE/DRAIN ON  
DRAIN OFF  
6
4
2
SOURCE OFF  
0
–15  
–10  
–5  
0
5
10  
15  
100  
1k  
10k  
100k  
1M  
10M  
V
(V)  
BIAS  
FREQUENCY (Hz)  
Figure 25. ADG1207 Capacitance vs. Source Voltage, 15 V Dual Supply  
Figure 27. AC PSRR vs. Frequency  
14  
V
V
= 12V  
= 0V  
DD  
SS  
12  
10  
8
T = 25°C  
A
SOURCE/DRAIN ON  
DRAIN OFF  
6
4
2
SOURCE OFF  
0
0
2
4
6
8
10  
12  
V
(V)  
BIAS  
Figure 26. ADG1207 Capacitance vs. Source Voltage, 12 V Single Supply  
Rev. 0 | Page 15 of 20  
ADG1ꢂ06VADG1ꢂ07  
TERMINOLOGY  
RON  
TBBM  
Ohmic resistance between D and S.  
Off time measured between the 80% points of the switches  
when switching from one address state to another.  
ΔRON  
Difference between the RON of any two channels.  
VINL  
Maximum input voltage for Logic 0.  
RFLAT(ON)  
Flatness is defined as the difference between the maximum and  
minimum value of on resistance as measured.  
VINH  
Minimum input voltage for Logic 1.  
IS (Off)  
IINL (IINH)  
Source leakage current when the switch is off.  
Input current of the digital input.  
ID (Off)  
IDD  
Drain leakage current when the switch is off.  
Positive supply current.  
ID, IS (On)  
ISS  
Channel leakage current when the switch is on.  
Negative supply current.  
VD (VS)  
Off Isolation  
Analog voltage on Terminals D and S.  
A measure of unwanted signal coupling through an off channel.  
CS (Off)  
Charge Injection  
Channel input capacitance for the off condition.  
A measure of the glitch impulse transferred from the digital  
input to the analog output during switching.  
CD (Off)  
Channel output capacitance for the off condition.  
Bandwidth  
The frequency at which the output is attenuated by 3 dB.  
CD, CS (On)  
On switch capacitance.  
On Response  
The frequency response of the on switch.  
CIN  
Digital input capacitance.  
THD + N  
The ratio of the harmonic amplitude plus noise of the signal to  
the fundamental.  
tON (EN)  
Delay time between the 50% and 90% points of the digital input  
and the switch on condition.  
ACPSRR (AC Power Supply Rejection Ratio)  
Measures the ability of a part to avoid coupling noise and  
spurious signals that appear on the supply voltage pin to the  
output of the switch. The dc voltage on the device is modulated  
by a sine wave of 0.62 V p-p. The ratio of the amplitude of  
signal on the output to the amplitude of the modulation is the  
ACPSRR.  
tOFF (EN)  
Delay time between the 50% and 90% points of the digital input  
and the switch off condition.  
tTRANSITION  
Delay time between the 50% and 90% points of the digital  
inputs and the switch on condition when switching from one  
address state to another.  
Rev. 0 | Page 16 of 20  
 
ADG1ꢂ06VADG1ꢂ07  
TEST CIRCUITS  
V
I
(ON)  
A
I
(OFF)  
A
I
(OFF)  
A
D
S
D
S
D
S
D
S
D
NC  
I
DS  
V
V
V
D
V
D
S
S
NC = NO CONNECT  
Figure 28. On Resistance  
Figure 29. Off Leakage  
Figure 30. On Leakage  
V
V
V
V
DD  
SS  
3V  
t
t
< 20ns  
< 20ns  
r
f
DD  
SS  
ADDRESS  
DRIVE (V  
50%  
50%  
)
A0  
A1  
A2  
A3  
IN  
S1  
V
V
S1  
0V  
V
IN  
50Ω  
S2 TO S15  
tTRANSITION  
tTRANSITION  
90%  
S16  
S16  
ADG12061  
OUTPUT  
D
2.4V  
EN  
OUTPUT  
GND  
300Ω  
35pF  
90%  
1
SIMILAR CONNECTION FOR ADG1207.  
Figure 31. Address to Output Switching Times, tTRANSITION  
V
V
V
DD  
SS  
SS  
3V  
V
DD  
ADDRESS  
A0  
A1  
A2  
A3  
DRIVE (V  
)
IN  
S1  
V
S
V
IN  
50  
0V  
S2 TO S15  
S16  
ADG12061  
80%  
80%  
OUTPUT  
OUTPUT  
D
2.4V  
EN  
GND  
300Ω  
35pF  
tBBM  
1
SIMILAR CONNECTION FOR ADG1207.  
Figure 32. Break-Before-Make Delay, tBBM  
V
V
V
V
DD  
DD  
SS  
SS  
3V  
ENABLE  
A0  
A1  
A2  
A3  
50%  
50%  
DRIVE (V  
)
S1  
S2 TO S16  
V
IN  
S
0V  
ADG12061  
tON (EN)  
tOFF (EN)  
OUTPUT  
0.9V  
0.9V  
O
D
EN  
O
OUTPUT  
GND  
V
IN  
300  
50Ω  
35pF  
1
SIMILAR CONNECTION FOR ADG1207.  
Figure 33. Enable Delay, tON (EN), tOFF (EN)  
Rev. 0 | Page 17 of 20  
 
 
 
 
 
ADG1ꢂ06VADG1ꢂ07  
V
V
V
V
DD  
SS  
SS  
DD  
A0  
A1  
A2  
A3  
3V  
V
V
IN  
ADG12061  
R
V
S
S
D
V
OUT  
OUT  
ΔV  
EN  
OUT  
C
L
S
1nF  
GND  
Q
= C × ΔV  
L OUT  
INJ  
V
IN  
1
SIMILAR CONNECTION FOR ADG1207.  
Figure 34. Charge Injection  
V
V
DD  
V
V
DD  
SS  
SS  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
NETWORK  
ANALYZER  
V
V
V
V
SS  
DD  
DD  
SS  
V
OUT  
S1  
R
L
S
50  
50  
50Ω  
D
R
V
S
50Ω  
S2  
D
V
OUT  
R
V
L
S
50Ω  
GND  
GND  
V
OUT  
V
OUT  
OFF ISOLATION = 20 log  
CHANNEL-TO-CHANNEL CROSSTALK = 20 log  
V
S
V
S
Figure 35. Off Isolation  
Figure 37. Channel-to-Channel Crosstalk  
V
V
V
DD  
V
DD  
SS  
SS  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
AUDIO PRECISION  
V
V
V
DD  
V
DD  
SS  
SS  
R
S
S
S
50Ω  
IN  
V
S
V
S
V p-p  
D
D
V
V
OUT  
OUT  
V
R
IN  
R
L
L
50Ω  
10k  
GND  
GND  
V
WITH SWITCH  
OUT  
WITHOUT SWITCH  
INSERTION LOSS = 20 log  
V
OUT  
Figure 38. THD + Noise  
Figure 36. Bandwidth  
Rev. 0 | Page 18 of 20  
 
 
 
ADG1ꢂ06VADG1ꢂ07  
OUTLINE DIMENSIONS  
9.80  
9.70  
9.60  
28  
15  
4.50  
4.40  
4.30  
6.40 BSC  
1
14  
PIN 1  
0.65  
BSC  
1.20 MAX  
0.15  
0.05  
8°  
0°  
0.75  
0.60  
0.45  
0.30  
0.19  
0.20  
0.09  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AE  
Figure 39. 28-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-28)  
Dimensions shown in millimeters  
0.60  
0.60  
0.42  
0.24  
5.00  
BSC SQ  
0.42  
0.24  
0.45  
BSC  
25  
32  
1
24  
4.75  
BSC SQ  
0.50  
BSC  
*
EXPOSED  
PAD  
2.85  
2.70 SQ  
2.55  
PIN 1  
INDICATOR  
BOTTOM  
VIEW  
(TOP VIEW)  
0.50  
0.40  
0.30  
17  
16  
8
9
0.20  
MIN  
3.50 REF  
0.80 MAX  
0.65 TYP  
12° MAX  
0.05 MAX  
0.02 NOM  
1.00 MAX  
0.85 NOM  
0.30  
0.23  
0.18  
COPLANARITY  
0.05  
0.20 REF  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-220  
WITH EXCEPTION TO PADDLE ORIENTATION.  
Figure 40. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
5 mm × 5 mm Body, Very Thin Quad  
(CP-32-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Description  
Package Option  
RU-28  
RU-28  
CP-32-2  
RU-28  
RU-28  
ADG1206YRUZ1  
28-Lead Thin Shrink Small Outline Package [TSSOP]  
28-Lead Thin Shrink Small Outline Package [TSSOP]  
32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
28-Lead Thin Shrink Small Outline Package [TSSOP]  
28-Lead Thin Shrink Small Outline Package [TSSOP]  
32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
ADG1206YRUZ-REEL71  
ADG1206YCPZ-REEL71  
ADG1207YRUZ1  
ADG1207YRUZ-REEL71  
ADG1207YCPZ-REEL71  
CP-32-2  
1 Z = Pb-free part.  
Rev. 0 | Page 19 of 20  
 
ADG1ꢂ06VADG1ꢂ07  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06119-0-7/06(0)  
Rev. 0 | Page 20 of 20  

相关型号:

ADG1207_15

Low Capacitance, 16 and 8 Channel
ADI

ADG1208

Low Capacitance, 4-/8-Channel +-15 V/+12 V iCMOS Multiplexers
ADI

ADG1208YCP

IC 8-CHANNEL, SGL ENDED MULTIPLEXER, QCC16, 4 X 4 MM, LFCSP-16, Multiplexer or Switch
ADI

ADG1208YCPZ-REEL

Low Capacitance, 4-/8-Channel +-15 V/+12 V iCMOS Multiplexers
ADI

ADG1208YCPZ-REEL1

Low Capacitance, 4-/8-Channel 15 V/12 V iCMOS Multiplexers
ADI

ADG1208YCPZ-REEL7

Low Capacitance, 4-/8-Channel +-15 V/+12 V iCMOS Multiplexers
ADI

ADG1208YCPZ-REEL71

Low Capacitance, 4-/8-Channel 15 V/12 V iCMOS Multiplexers
ADI

ADG1208YRU

IC 8-CHANNEL, SGL ENDED MULTIPLEXER, PDSO16, MS-153AB, TSSOP-16, Multiplexer or Switch
ADI

ADG1208YRUZ

Low Capacitance, 4-/8-Channel +-15 V/+12 V iCMOS Multiplexers
ADI

ADG1208YRUZ-REEL7

Low Capacitance, 4-/8-Channel +-15 V/+12 V iCMOS Multiplexers
ADI

ADG1208YRUZ-REEL71

Low Capacitance, 4-/8-Channel 15 V/12 V iCMOS Multiplexers
ADI

ADG1208YRUZ1

Low Capacitance, 4-/8-Channel 15 V/12 V iCMOS Multiplexers
ADI