ADG1208YCPZ-REEL [ADI]

Low Capacitance, 4-/8-Channel +-15 V/+12 V iCMOS Multiplexers; 低电容,4 / 8通道±15 V / + 12 V的iCMOS多路复用器
ADG1208YCPZ-REEL
型号: ADG1208YCPZ-REEL
厂家: ADI    ADI
描述:

Low Capacitance, 4-/8-Channel +-15 V/+12 V iCMOS Multiplexers
低电容,4 / 8通道±15 V / + 12 V的iCMOS多路复用器

复用器 开关 复用器或开关 信号电路
文件: 总20页 (文件大小:453K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Capacitance, 4-/8-Channel  
± ±1 ꢀ/ꢁ±ꢂ ꢀ iCMOSMultiplexers  
ADG±ꢂ08/ADG±ꢂ09  
FUNCTIONAL BLOCK DIAGRAMS  
FEATURES  
<1 pC charge injection over full signal range  
1 pF off capacitance  
33 V supply range  
ADG1208  
ADG1209  
S1  
S1A  
S4A  
DA  
DB  
120 Ω on resistance  
Fully specified at 1ꢀ V/+12 V  
3 V logic compatible inputs  
Rail-to-rail operation  
Break-before-make switching action  
Available in 16-lead TSSOP and 4 mm × 4 mm LFCSP_VQ  
Typical power consumption < 0.03 μW  
D
S1B  
S4B  
S8  
1-OF-8  
DECODER  
1-OF-4  
DECODER  
APPLICATIONS  
A0 A1 A2 EN  
A0 A1 EN  
Audio and video routing  
Automatic test equipment  
Data-acquisition systems  
Battery-powered systems  
Sample-and-hold systems  
Communication systems  
Figure 1.  
GENERAL DESCRIPTION  
The ADG1208 and ADG1209 are monolithic, iCMOS analog  
multiplexers comprising eight single channels and four differential  
channels, respectively. The ADG1208 switches one of eight  
inputs to a common output as determined by the 3-bit binary  
address lines A0, A1, and A2. The ADG1209 switches one of  
four differential inputs to a common differential output as  
determined by the 2-bit binary address lines A0 and A1. An  
EN input on both devices is used to enable or disable the device.  
When disabled, all channels are switched off. When on, each  
channel conducts equally well in both directions and has an  
input signal range that extends to the supplies.  
The ultralow capacitance and exceptionally low charge injection  
of these multiplexers make them ideal solutions for data  
acquisition and sample-and-hold applications, where low glitch  
and fast settling are required. Figure 2 shows that there is  
minimum charge injection over the entire signal range of the  
device. iCMOS construction also ensures ultralow power  
dissipation, making the parts ideally suited for portable and  
battery powered instruments.  
1.0  
MUX (SOURCE TO DRAIN)  
T
= 25°C  
A
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
The iCMOS (industrial CMOS) modular manufacturing  
process combines high voltage CMOS (complementary metal-  
oxide semiconductor) and bipolar technologies. It enables the  
development of a wide range of high performance analog ICs  
capable of 33 V operation in a footprint that no other generation  
of high voltage parts has been able to achieve. Unlike analog ICs  
using conventional CMOS processes, iCMOS components can  
tolerate high supply voltages while providing increased  
performance, dramatically lower power consumption, and  
reduced package size.  
V
V
= +15V  
= –15V  
DD  
SS  
V
V
= +12V  
= 0V  
DD  
SS  
0.1  
0
V
V
= +5V  
= –5V  
DD  
SS  
–15  
–10  
–5  
0
5
10  
15  
V
(V)  
S
Figure 2. Source to Drain Charge Injection vs. Source Voltage  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2006 Analog Devices, Inc. All rights reserved.  
 
 
ADG±ꢂ08/ADG±ꢂ09  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Absolute Maximum Ratings ............................................................7  
ESD Caution...................................................................................7  
Pin Configurations and Function Descriptions............................8  
Typical Performance Characteristics ........................................... 10  
Terminology.................................................................................... 14  
Test Circuits..................................................................................... 15  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 17  
Applications....................................................................................... 1  
Functional Block Diagrams............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Dual Supply................................................................................... 3  
Single Supply................................................................................. 5  
REVISION HISTORY  
4/06—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
ADG±ꢂ08/ADG±ꢂ09  
SPECIFICATIONS  
DUAL SUPPLY  
VDD = +15 V 10%, VSS = –15 V 10%, GND = 0 V, unless otherwise noted.1  
Table 1.  
40ºC to 40ºC to  
Parameter  
+2ꢀºC  
+8ꢀºC  
+12ꢀºC  
VSS to VDD  
270  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
V
120  
200  
Ω typ  
Ω max  
Ω typ  
VS = 10 V, IS = −1 mA, see Figure 29  
VDD = +13.5 V, VSS = −13.5 V  
VS = 10 V, IS = −1 mA  
240  
On Resistance Match Between Channels, 3.5  
∆RON  
6
20  
64  
10  
76  
12  
83  
Ω max  
Ω typ  
Ω max  
On Resistance Flatness, RFLAT (On)  
VS = −5 V, 0 V, +5 V, IS = −1 mA  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
0.02  
0.1  
0.02  
0.1  
0.1  
0.02  
0.2  
0.2  
nA typ  
nA max  
nA typ  
nA max  
nA max  
nA typ  
nA max  
nA max  
VD = 10 V, VS = −10 V, see Figure 30  
VS = 1 V, 10 V; VD = 10 V, 1 V; see Figure 30  
0.6  
1
Drain Off Leakage, ID (Off)  
ADG1208  
ADG1209  
Channel On Leakage, ID, IS (On)  
ADG1208  
0.6  
0.6  
1
1
VS = VD = 10 V, see Figure 31  
0.6  
0.6  
1
1
ADG1209  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
μA max  
μA max  
pF typ  
0.005  
VIN = VINL or VINH  
0.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS2  
Transition Time, tTRANSITION  
2
80  
130  
75  
95  
83  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
dB typ  
dB typ  
% typ  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 32  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 34  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 34  
RL = 300 Ω, CL = 35 pF  
VS1 = VS2 = 10 V, see Figure 33  
VS = 0 V, RS = 0 Ω, CL = 1 nF, see Figure 35  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 36  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 38  
RL = 10 kΩ, 5 V rms, f = 20 Hz to 20 kHz,  
see Figure 39  
165  
105  
125  
185  
115  
140  
10  
tON (EN)  
tOFF (EN)  
100  
25  
Break-Before-Make Time Delay, tBBM  
Charge Injection  
Off Isolation  
Channel-to-Channel Crosstalk  
Total Harmonic Distortion + Noise  
0.4  
−85  
−85  
0.15  
−3 dB Bandwidth  
CS (Off)  
550  
1
MHz typ  
pF typ  
RL = 50 Ω, CL = 5 pF, see Figure 37  
f = 1 MHz, VS = 0 V  
1.5  
6
7
3.5  
4.5  
pF max  
pF typ  
pF max  
pF typ  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
CD (Off) ADG1208  
CD (Off) ADG1209  
pF max  
f = 1 MHz, VS = 0 V  
Rev. 0 | Page 3 of 20  
 
ADG±ꢂ08/ADG±ꢂ09  
40ºC to 40ºC to  
Parameter  
+2ꢀºC  
+8ꢀºC  
+12ꢀºC  
Unit  
Test Conditions/Comments  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
CD, CS (On) ADG1208  
7
8
5
6
pF typ  
pF max  
pF typ  
pF max  
CD, CS (On) ADG1209  
POWER REQUIREMENTS  
IDD  
VDD = +16.5 V, VSS = 16.5 V  
Digital inputs = 0 V or VDD  
0.002  
220  
μA typ  
μA max  
μA typ  
μA max  
μA typ  
μA max  
μA typ  
μA max  
1.0  
320  
1.0  
IDD  
Digital inputs = 5 V  
ISS  
0.002  
0.002  
Digital inputs = 0 V or VDD  
Digital inputs = 5 V  
ISS  
1.0  
VDD/VSS  
5/ 16.5  
V min/max |VDD | = |VSS|  
1 Temperature range is as follows: Y version: –40°C to +125°C.  
2 Guaranteed by design, not subject to production test.  
Rev. 0 | Page 4 of 20  
ADG±ꢂ08/ADG±ꢂ09  
SINGLE SUPPLY  
VDD = 12 V 10%, VSS = 0 V, GND = 0 V, unless otherwise noted.1  
Table 2.  
−40ºC to  
+2ꢀºC +8ꢀºC  
−40ºC to  
+12ꢀºC  
Parameter  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
0 to VDD  
625  
V
300  
475  
5
Ω typ  
Ω max  
Ω typ  
VS = 0 V to10 V, IS = −1 mA, see Figure 29  
VDD = 10.8 V, VSS = 0 V  
VS = 0 V to 10 V, IS = −1 mA  
567  
26  
On Resistance Match Between Channels,  
∆RON  
16  
60  
27  
Ω max  
Ω typ  
On Resistance Flatness, RFLAT (On)  
LEAKAGE CURRENTS  
VS = 3 V, 6 V, 9 V; IS = −1 mA  
VDD = 13.2 V  
Source Off Leakage, IS (Off)  
0.02  
0.1  
0.02  
0.1  
0.1  
0.02  
0.2  
0.2  
nA typ  
nA max  
nA typ  
nA max  
nA max  
nA typ  
nA max  
nA max  
VS = 1 V/10 V, VD = 10 V/1 V, see Figure 30  
0.6  
1
Drain Off Leakage, ID (Off)  
ADG1208  
ADG1209  
Channel On Leakage ID, IS (On)  
ADG1208  
VS = 1 V/10 V, VD = 10 V/1 V, see Figure 30  
VS = VD = 1 V or 10 V; see Figure 31  
0.6  
0.6  
1
1
0.6  
0.6  
1
1
ADG1209  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
0.001  
0.1  
μA max  
pF typ  
VIN = VINL or VINH  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS2  
Transition Time, tTRANSITION  
3
100  
170  
90  
110  
105  
130  
45  
ns typ  
ns typ  
ns typ  
RL = 300 Ω, CL = 35 pF  
VS = 8 V, see Figure 32  
RL = 300 Ω, CL = 35 pF  
VS = 8 V, see Figure 34  
RL = 300 Ω, CL = 35 pF  
VS = 8 V, see Figure 34  
RL = 300 Ω, CL = 35 pF  
VS1 = VS2 = 8 V, see Figure 33  
VS = 6 V, RS = 0 Ω, CL = 1 nF, see Figure 35  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 36  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 38  
RL = 50 Ω, CL = 5 pF, see Figure 37  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
210  
140  
155  
235  
160  
175  
20  
tON (EN)  
tOFF (EN)  
Break-Before-Make Time Delay, tBBM  
ns typ  
ns min  
pC typ  
dB typ  
dB typ  
MHz typ  
pF typ  
pF max  
pF typ  
pF max  
pF typ  
pF max  
pF typ  
pF max  
pF typ  
pF max  
Charge Injection  
Off Isolation  
Channel-to-Channel Crosstalk  
−3 dB Bandwidth  
CS (Off)  
−0.2  
−85  
−85  
450  
1.2  
1.8  
7.5  
9
4.5  
5.5  
9
10.5  
6
CD (Off) ADG1208  
CD (Off) ADG1209  
CD, CS (On) ADG1208  
CD, CS (On) ADG1209  
7.5  
f = 1 MHz, VS = 6 V  
Rev. 0 | Page 5 of 20  
 
ADG±ꢂ08/ADG±ꢂ09  
−40ºC to  
+2ꢀºC +8ꢀºC  
−40ºC to  
+12ꢀºC  
Parameter  
Unit  
Test Conditions/Comments  
VDD = 13.2 V  
Digital inputs = 0 V or VDD  
POWER REQUIREMENTS  
IDD  
0.002  
220  
μA typ  
μA max  
μA typ  
μA max  
1.0  
IDD  
Digital inputs = 5 V  
330  
VDD  
5/16.5  
V min/max VSS = 0 V, GND = 0 V  
1 Temperature range is as follows: Y version: –40°C to +125°C.  
2 Guaranteed by design, not subject to production test.  
Rev. 0 | Page 6 of 20  
ADG±ꢂ08/ADG±ꢂ09  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VDD to VSS  
35 V  
VDD to GND  
VSS to GND  
Analog, Digital Inputs1  
−0.3 V to +25 V  
+0.3 V to −25 V  
VSS − 0.3 V to VDD + 0.3 V or  
30 mA (whichever occurs first)  
Continuous Current, S or D  
30 mA  
Peak Current, S or D (Pulsed at  
1 ms, 10% Duty Cycle max)  
100 mA  
Operating Temperature Range  
Industrial (Y Version)  
Storage Temperature  
–40°C to +125°C  
–65°C to +150°C  
150°C  
Junction Temperature  
TSSOP, θJA, Thermal Impedance  
112°C/W  
LFCSP_VQ, θJA, Thermal Impedance 30.4°C/W  
Reflow Soldering Peak  
Temperature (Pb-Free)  
260(+0/−5)°C  
1 Overvoltages at A, EN, S, or D are clamped by internal diodes. Current should  
be limited to the maximum ratings given.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 7 of 20  
 
ADG±ꢂ08/ADG±ꢂ09  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
A0  
A1  
EN  
A2  
PIN 1  
INDICATOR  
V
GND  
SS  
ADG1208  
TOP VIEW  
(Not to Scale)  
12 GND  
11 V  
V
1
2
3
4
SS  
S1  
V
DD  
S1  
S2  
S3  
DD  
10 S5  
S6  
ADG1208  
TOP VIEW  
(Not to Scale)  
S2  
S3  
S4  
D
S5  
S6  
S7  
S8  
9
Figure 4. ADG1208 Pin Configuration (LFCSP_VQ),  
Exposed Pad Tied to Substrate, VSS  
Figure 3. ADG1208 Pin Configuration (TSSOP)  
Table 4. ADG1208 Pin Function Descriptions  
Pin Number  
TSSOP  
LFCSP_VQ  
Mnemonic  
Description  
1
2
15  
16  
A0  
EN  
Logic Control Input.  
Active High Digital Input. When low, the device is disabled and all switches are off.  
When high, Ax logic inputs determine on switches.  
3
1
VSS  
Most Negative Power Supply Potential. In single supply applications, it can be  
connected to ground.  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
S1  
S2  
S3  
S4  
D
S8  
S7  
S6  
S5  
VDD  
GND  
A2  
A1  
Source Terminal 1. Can be an input or an output.  
Source Terminal 2. Can be an input or an output.  
Source Terminal 3. Can be an input or an output.  
Source Terminal 4. Can be an input or an output.  
Drain Terminal. Can be an input or an output.  
Source Terminal 8. Can be an input or an output.  
Source Terminal 7. Can be an input or an output.  
Source Terminal 6. Can be an input or an output.  
Source Terminal 5. Can be an input or an output.  
Most Positive Power Supply Potential.  
Ground (0 V) Reference.  
Logic Control Input.  
Logic Control Input.  
Table 5. ADG1208 Truth Table  
A2  
X
0
0
0
0
1
1
1
A1  
X
0
0
1
1
0
0
1
A0  
X
0
1
0
1
0
1
0
EN  
0
1
1
1
1
1
1
1
ON SWITCH  
NONE  
1
2
3
4
5
6
7
8
1
1
1
1
Rev. 0 | Page 8 of 20  
 
ADG±ꢂ08/ADG±ꢂ09  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
A0  
EN  
A1  
GND  
V
V
PIN 1  
INDICATOR  
SS  
DD  
ADG1209  
TOP VIEW  
(Not to Scale)  
12 V  
V
1
2
3
4
DD  
SS  
S1A  
S1B  
S2B  
S3B  
S4B  
DB  
11 S1B  
10 S2B  
S1A  
S2A  
S3A  
ADG1209  
TOP VIEW  
(Not to Scale)  
S2A  
S3A  
S4A  
DA  
9
S3B  
Figure 5. ADG1209 Pin Configuration (TSSOP)  
Figure 6. ADG1209 Pin Configurations (LFCSP_VQ),  
Exposed Pad Tied to Substrate, VSS  
Table 6. ADG1209 Pin Function Descriptions  
Pin Number  
TSSOP  
LFCSP_VQ  
Mnemonic Description  
1
2
15  
16  
A0  
EN  
Logic Control Input.  
Active High Digital Input. When low, the device is disabled and all switches are off.  
When high, Ax logic inputs determine on switches.  
3
1
VSS  
Most Negative Power Supply Potential. In single supply applications, it can be  
connected to ground.  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
S1A  
S2A  
S3A  
S4A  
DA  
Source Terminal 1A. Can be an input or an output.  
Source Terminal 2A. Can be an input or an output.  
Source Terminal 3A. Can be an input or an output.  
Source Terminal 4A. Can be an input or an output.  
Drain Terminal A. Can be an input or an output.  
Drain Terminal B. Can be an input or an output.  
Source Terminal 4B. Can be an input or an output.  
Source Terminal 3B. Can be an input or an output.  
Source Terminal 2B. Can be an input or an output.  
Source Terminal 1B. Can be an input or an output.  
Most Positive Power Supply Potential.  
DB  
S4B  
S3B  
S2B  
S1B  
VDD  
GND  
A1  
Ground (0 V) Reference.  
Logic Control Input.  
Table 7. ADG1209 Truth Table  
A1  
A0  
EN  
ON SWITCH PAIR  
X
0
0
1
X
0
1
0
0
1
1
1
1
NONE  
1
2
3
4
1
1
Rev. 0 | Page 9 of 20  
ADG±ꢂ08/ADG±ꢂ09  
TYPICAL PERFORMANCE CHARACTERISTICS  
200  
250  
V
V
= +15V  
= –15V  
DD  
SS  
T
= 25°C  
A
V
V
= +15V  
= –15V  
DD  
SS  
180  
160  
140  
120  
100  
80  
V
V
= +13.5V  
= –13.5V  
DD  
SS  
200  
150  
T
T
= +125°C  
= +85°C  
A
A
T
= +25°C  
= –40°C  
A
A
V
V
= +16.5V  
= –16.5V  
DD  
SS  
100  
T
60  
40  
50  
0
20  
0
–18 –15 –12 –9 –6 –3  
0
3
6
9
12 15 18  
–15  
–10  
–5  
0
5
10  
15  
SOURCE OR DRAIN VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 7. On Resistance as a Function of VD (VS) for Dual Supply  
Figure 10. On Resistance as a Function of VD (VS) for Different  
Temperatures, Dual Supply  
600  
600  
V
V
= 12V  
= 0V  
DD  
SS  
T
= 25°C  
V
V
= +4.5V  
= –4.5V  
A
DD  
SS  
T
= +125°C  
A
500  
400  
300  
200  
500  
V
V
= +5V  
= –5V  
DD  
SS  
T
= +85°C  
A
400  
300  
T
= +25°C  
A
V
V
= +5.5V  
= –5.5V  
DD  
SS  
T
= –40°C  
A
200  
100  
0
100  
0
0
2
4
6
8
10  
12  
–6  
–4  
–2  
0
2
4
6
TEMPERATURE (°C)  
SOURCE OR DRAIN VOLTAGE (V)  
Figure 11. On Resistance as a Function of VD (VS) for Different  
Temperatures, Single Supply  
Figure 8. On Resistance as a Function of VD (VS) for Dual Supply  
400  
450  
V
V
V
= +15V  
= –15V  
T
= 25°C  
DD  
SS  
V
V
= 10.8V  
= 0V  
A
DD  
SS  
400  
350  
300  
250  
200  
150  
100  
300  
200  
= +10V/–10V  
BIAS  
V
V
= 12V  
= 0V  
DD  
SS  
I
,
(ON) + +  
S
D
I
(OFF) + –  
D
100  
I
(OFF) + –  
S
V
V
= 13.2V  
= 0V  
0
DD  
SS  
I
,
(ON) – –  
S
D
–100  
–200  
–300  
–400  
I
(OFF) – +  
D
I
(OFF) – +  
S
50  
0
0
10 20 30 40 50 60 70 80 90 100 110 120  
TEMPERATURE (°C)  
0
2
4
6
8
10  
12  
14  
SOURCE OR DRAIN VOLTAGE (V)  
Figure 12. ADG1208 Leakage Currents as a Function of Temperature,  
Dual Supply  
Figure 9. On Resistance as a Function of VD (VS) for Single Supply  
Rev. 0 | Page 10 of 20  
 
ADG±ꢂ08/ADG±ꢂ09  
150  
100  
50  
6
4
DEMUX (DRAIN TO SOURCE)  
= 25°C  
V
V
V
= 12V  
= 0V  
DD  
SS  
T
A
= 1V/10V  
BIAS  
I
(OFF) + –  
V
V
= +5V  
= –5V  
S
DD  
SS  
I
,
(ON) + +  
S
D
2
I
(OFF) + –  
D
0
0
V
V
= +12V  
= 0V  
DD  
SS  
I
(OFF) – +  
S
I
,
(ON) – –  
S
D
V
V
= +15V  
= –15V  
DD  
SS  
–50  
–100  
–150  
–2  
I
(OFF) – +  
D
–4  
–6  
0
10 20 30 40 50 60 70 80 90 100 110 120  
TEMPERATURE (°C)  
–15  
–10  
–5  
0
5
10  
15  
V
(V)  
S
Figure 13. ADG1208 Leakage Currents as a Function of Temperature,  
Single Supply  
Figure 16. Drain-to-Source Charge Injection vs. Source Voltage  
350  
200  
180  
160  
140  
120  
100  
80  
I
T
PER CHANNEL  
= 25°C  
DD  
300  
A
V
V
= +5V  
= –5V  
DD  
SS  
250  
200  
150  
100  
50  
V
V
= +15V  
= –15V  
DD  
SS  
V
V
= +12V  
= 0V  
DD  
SS  
V
V
= +15V  
= –15V  
DD  
SS  
60  
40  
V
V
= +12V  
= 0V  
DD  
SS  
20  
0
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
0
2
4
6
8
10  
12  
14  
16  
TEMPERATURE (°C)  
LOGIC, IN (V)  
X
Figure 17. tON/tOFF Times vs. Temperature  
Figure 14. IDD vs. Logic Level  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
MUX (SOURCE TO DRAIN)  
= 25°C  
V
V
= +15V  
= –15V  
DD  
SS  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
T
A
T
= 25°C  
A
V
V
= +15V  
= –15V  
DD  
SS  
V
V
= +12V  
= 0V  
DD  
SS  
–100  
–110  
0.1  
0
V
V
= +5V  
= –5V  
DD  
SS  
10k  
100k  
1M  
10M  
100M  
1G  
–15  
–10  
–5  
0
5
10  
15  
FREQUENCY (Hz)  
V
(V)  
S
Figure 18. Off Isolation vs. Frequency  
Figure 15. Source-to-Drain Charge Injection vs. Source Voltage  
Rev. 0 | Page 11 of 20  
ADG±ꢂ08/ADG±ꢂ09  
20  
10  
V
V
T
= +15V  
= –15V  
= 25°C  
DD  
SS  
LOAD = 10k  
= 25°C  
T
A
0
–20  
–40  
–60  
–80  
A
1
V
V
= +5V, V = –5V, V = +3.5Vrms  
SS  
DD  
S
ADJACENT CHANNELS  
= +15V, V = –15V, V = +5Vrms  
SS  
DD  
S
0.1  
NONADJACENT  
CHANNELS  
–100  
–120  
0.01  
10k  
100k  
1M  
10M  
100M  
1G  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
Figure 19. ADG1208 Crosstalk vs. Frequency  
Figure 22. THD + N vs. Frequency  
0
–20  
12  
10  
8
V
V
= +15V  
= –15V  
= 25°C  
DD  
SS  
T
A
–40  
SOURCE/DRAIN ON  
DRAIN OFF  
ADJACENT CHANNELS  
–60  
6
–80  
4
–100  
–120  
2
0
SOURCE OFF  
NONADJACENT  
CHANNELS  
10k  
100k  
1M  
10M  
100M  
1G  
–15  
–10  
–5  
0
5
10  
15  
FREQUENCY (Hz)  
V
(V)  
BIAS  
Figure 20. ADG1209 Crosstalk vs. Frequency  
Figure 23. ADG1208 Capacitance vs. Source Voltage,  
15 V Dual Supply  
12  
10  
8
–6.0  
–6.5  
–7.0  
–7.5  
–8.0  
–8.5  
–9.0  
–9.5  
–10.0  
V
V
= 12V  
= 0V  
= 25°C  
DD  
SS  
T
A
SOURCE/DRAIN ON  
DRAIN OFF  
6
4
SOURCE OFF  
2
0
10k  
100k  
1M  
10M  
100M  
1G  
0
2
4
6
8
10  
12  
V
(V)  
FREQUENCY (Hz)  
BIAS  
Figure 21. On Response vs. Frequency  
Figure 24. ADG1208 Capacitance vs. Source Voltage,  
12 V Single Supply  
Rev. 0 | Page 12 of 20  
ADG±ꢂ08/ADG±ꢂ09  
12  
10  
8
8
7
6
5
4
3
2
V
V
= 12V  
= 0V  
= 25°C  
DD  
SS  
T
A
SOURCE/DRAIN ON  
DRAIN OFF  
SOURCE/DRAIN ON  
DRAIN OFF  
V
V
= +5V  
= –5V  
= 25°C  
DD  
SS  
6
T
A
4
SOURCE OFF  
2
1
0
SOURCE OFF  
0
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
0
2
4
6
8
10  
12  
V
(V)  
V
(V)  
BIAS  
BIAS  
Figure 27. ADG1209 Capacitance vs. Source Voltage, 12 V Single Supply  
Figure 25. ADG1208 Capacitance vs. Source Voltage, 5 V Dual Supply  
8
8
V
V
= +15V  
= –15V  
= 25°C  
DD  
SS  
7
6
5
4
3
2
1
0
SOURCE/DRAIN ON  
DRAIN OFF  
7
6
5
4
3
2
T
A
SOURCE/DRAIN ON  
V
V
= +5V  
= –5V  
= 25°C  
DD  
SS  
DRAIN OFF  
T
A
SOURCE OFF  
SOURCE OFF  
1
0
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
–15  
–10  
–5  
0
5
10  
15  
V
(V)  
V
(V)  
BIAS  
BIAS  
Figure 26. ADG1209 Capacitance vs. Source Voltage, 15 V Dual Supply  
Figure 28. ADG1209 Capacitance vs. Source Voltage, 5 V Dual Supply  
Rev. 0 | Page 13 of 20  
ADG±ꢂ08/ADG±ꢂ09  
TERMINOLOGY  
RON  
tTRANSITION  
Ohmic resistance between D and S.  
Delay time between the 50% and 90% points of the digital  
inputs and the switch on condition when switching from one  
address state to another.  
ΔRON  
Difference between the RON of any two channels.  
TBBM  
IS (Off)  
Off time measured between the 80% point of both switches  
when switching from one address state to another.  
Source leakage current when the switch is off.  
ID (Off)  
VINL  
Drain leakage current when the switch is off.  
Maximum input voltage for Logic 0.  
ID, IS (On)  
VINH  
Channel leakage current when the switch is on.  
Minimum input voltage for Logic 1.  
VD (VS)  
IINL (IINH  
Input current of the digital input.  
)
Analog voltage on terminals D, S.  
CS (Off)  
IDD  
Channel input capacitance for off condition.  
Positive supply current.  
CD (Off)  
ISS  
Channel output capacitance for off condition.  
Negative supply current.  
CD, CS (On)  
On switch capacitance.  
Off Isolation  
A measure of unwanted signal coupling through an off channel.  
CIN  
Charge Injection  
A measure of the glitch impulse transferred from the digital  
input to the analog output during switching.  
Digital input capacitance.  
tON (EN)  
Delay time between the 50% and 90% points of the digital input  
and switch on condition.  
Bandwidth  
The frequency at which the output is attenuated by 3 dB.  
tOFF (EN)  
On Response  
Delay time between the 50% and 90% points of the digital input  
and switch off condition.  
The frequency response of the on switch.  
THD + N  
The ratio of the harmonic amplitude plus noise of the signal to  
the fundamental.  
Rev. 0 | Page 14 of 20  
 
ADG±ꢂ08/ADG±ꢂ09  
TEST CIRCUITS  
I
(ON)  
A
I
(OFF)  
A
I
(OFF)  
A
D
S
D
V
S
D
S
D
NC  
S
D
V
V
D
V
D
S
NC = NO CONNECT  
I
DS  
V
S
Figure 30. Off Leakage  
Figure 31. On Leakage  
Figure 29. On Resistance  
V
V
V
V
DD  
DD  
SS  
SS  
3V  
tr < 20ns  
tf < 20ns  
ADDRESS  
DRIVE (V  
50%  
50%  
A0  
A1  
A2  
)
IN  
S1  
V
V
S1  
S8  
0V  
V
IN  
50  
S2–S7  
tTRANSITION  
tTRANSITION  
S8  
ADG12081  
90%  
OUTPUT  
D
2.4V  
EN  
OUTPUT  
300Ω  
GND  
35pF  
90%  
1
SIMILAR CONNECTION FOR ADG1209.  
Figure 32. Address to Output Switching Times, tTRANSITION  
V
V
V
DD  
DD  
SS  
SS  
3V  
V
ADDRESS  
A0  
A1  
A2  
DRIVE (V  
)
IN  
S1  
V
S
V
IN  
50  
0V  
S2–S7  
S8  
ADG12081  
80%  
80%  
OUTPUT  
OUTPUT  
D
2.4V  
EN  
300Ω  
GND  
35pF  
tBBM  
1
SIMILAR CONNECTION FOR ADG1209.  
Figure 33. Break-Before-Make Delay, tBBM  
V
V
V
V
DD  
SS  
SS  
3V  
DD  
A0  
A1  
A2  
ENABLE  
DRIVE (V  
50%  
50%  
)
S1  
S2–S8  
V
IN  
S
0V  
ADG12081  
tON (EN)  
tOFF (EN)  
OUTPUT  
0.9V  
0.9V  
O
D
EN  
O
OUTPUT  
V
35pF  
IN  
50  
300Ω  
GND  
1
SIMILAR CONNECTION FOR ADG1209.  
Figure 34. Enable Delay, tON (EN), tOFF (EN)  
Rev. 0 | Page 15 of 20  
 
 
 
 
 
 
ADG±ꢂ08/ADG±ꢂ09  
V
V
V
V
DD  
SS  
DD  
SS  
3V  
A0  
A1  
A2  
V
V
IN  
ADG12081  
R
S
S
D
OUT  
V
ΔV  
OUT  
OUT  
EN  
C
1nF  
L
V
Q
= C × ΔV  
L OUT  
S
INJ  
GND  
V
IN  
1
SIMILAR CONNECTION FOR ADG1209.  
Figure 35. Charge Injection  
V
V
SS  
DD  
V
V
DD  
SS  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
NETWORK  
ANALYZER  
V
V
DD  
SS  
V
V
DD  
SS  
V
OUT  
S1  
R
L
50  
S
50  
50Ω  
D
R
V
S
50Ω  
S2  
D
V
OUT  
V
R
S
L
50Ω  
GND  
GND  
V
OUT  
V
OUT  
OFF ISOLATION = 20 log  
CHANNEL-TO-CHANNEL CROSSTALK = 20 log  
V
V
S
S
Figure 36. Off Isolation  
Figure 38. Channel-to-Channel Crosstalk  
V
V
DD  
SS  
0.1µF  
0.1µF  
V
V
DD  
SS  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
V
V
DD  
SS  
AUDIO PRECISION  
V
V
DD  
SS  
S
50Ω  
R
S
V
S
S
D
IN  
V
V
S
OUT  
R
V p-p  
L
50Ω  
D
V
OUT  
GND  
V
IN  
R
L
10k  
GND  
V
WITH SWITCH  
OUT  
INSERTION LOSS = 20 log  
V
WITHOUT SWITCH  
OUT  
Figure 37. Bandwidth  
Figure 39. THD + Noise  
Rev. 0 | Page 16 of 20  
 
 
 
ADG±ꢂ08/ADG±ꢂ09  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 40. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
4.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
0.60 MAX  
13  
16  
12  
1
0.65 BSC  
PIN 1  
INDICATOR  
2.25  
2.10 SQ  
1.95  
TOP  
VIEW  
EXPOSED  
3.75  
BSC SQ  
PAD  
(BOTTOM VIEW)  
0.75  
0.60  
0.50  
4
9
8
5
0.25 MIN  
1.95 BSC  
0.80 MAX  
0.65 TYP  
12° MAX  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
0.20 REF  
COPLANARITY  
0.08  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGC  
Figure 41. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-16-4)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Package Description  
Package Option  
RU-16  
ADG1208YRUZ1  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
ADG1208YRUZ-REEL71  
ADG1208YCPZ-REEL1  
ADG1208YCPZ-REEL71  
ADG1209YRUZ1  
ADG1209YRUZ-REEL71  
ADG1209YCPZ-REEL1  
ADG1209YCPZ-REEL71  
RU-16  
CP-16-4  
CP-16-4  
RU-16  
RU-16  
CP-16-4  
CP-16-4  
1 Z = Pb-free part.  
Rev. 0 | Page 17 of 20  
 
ADG±ꢂ08/ADG±ꢂ09  
NOTES  
Rev. 0 | Page 18 of 20  
ADG±ꢂ08/ADG±ꢂ09  
NOTES  
Rev. 0 | Page 19 of 20  
ADG±ꢂ08/ADG±ꢂ09  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D0ꢀ713-0-4/06(0)  
Rev. 0 | Page 20 of 20  

相关型号:

ADG1208YCPZ-REEL1

Low Capacitance, 4-/8-Channel 15 V/12 V iCMOS Multiplexers
ADI

ADG1208YCPZ-REEL7

Low Capacitance, 4-/8-Channel +-15 V/+12 V iCMOS Multiplexers
ADI

ADG1208YCPZ-REEL71

Low Capacitance, 4-/8-Channel 15 V/12 V iCMOS Multiplexers
ADI

ADG1208YRU

IC 8-CHANNEL, SGL ENDED MULTIPLEXER, PDSO16, MS-153AB, TSSOP-16, Multiplexer or Switch
ADI

ADG1208YRUZ

Low Capacitance, 4-/8-Channel +-15 V/+12 V iCMOS Multiplexers
ADI

ADG1208YRUZ-REEL7

Low Capacitance, 4-/8-Channel +-15 V/+12 V iCMOS Multiplexers
ADI

ADG1208YRUZ-REEL71

Low Capacitance, 4-/8-Channel 15 V/12 V iCMOS Multiplexers
ADI

ADG1208YRUZ1

Low Capacitance, 4-/8-Channel 15 V/12 V iCMOS Multiplexers
ADI

ADG1208YRZ

Low Capacitance, 8-Channel, ±15 V/+12 V iCMOS&reg; Multiplexer
ADI

ADG1208YRZ-REEL7

Low Capacitance, 4-/8-Channel, ±15 V/12 V iCMOS Multiplexers
ADI

ADG1208YRZ-REEL71

Low Capacitance, 4-/8-Channel 15 V/12 V iCMOS Multiplexers
ADI

ADG1208YRZ1

Low Capacitance, 4-/8-Channel, ±15 V/12 V iCMOS Multiplexers
ADI