ADG3242_06 [ADI]

2.5 V/3.3 V, 2-Bit Common Control Level Translator Bus Switch; 2.5 V / 3.3 V , 2位共同控制电平转换器总线开关
ADG3242_06
型号: ADG3242_06
厂家: ADI    ADI
描述:

2.5 V/3.3 V, 2-Bit Common Control Level Translator Bus Switch
2.5 V / 3.3 V , 2位共同控制电平转换器总线开关

转换器 电平转换器 开关
文件: 总16页 (文件大小:408K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.5 V/3.3 V, 2-Bit Common Control  
Level Translator Bus Switch  
ADG3242  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
B0  
A0  
225 ps propagation delay through the switch  
4.5 Ω switch connection between ports  
Data rate 1.5 Gbps  
A1  
BE  
B1  
2.5 V/3.3 V supply operation  
Selectable level shifting/translation  
Level translation  
3.3 V to 2.5 V  
Figure 1.  
3.3 V to 1.8 V  
2.5 V to 1.8 V  
Small signal bandwidth 710 MHz  
8-lead SOT-23 package  
APPLICATIONS  
3.3 V to 2.5 V voltage translation  
3.3 V to 1.8 V voltage translation  
2.5 V to 1.8 V voltage translation  
Bus switching  
Bus isolation  
Hot swap  
Hot plug  
Analog switch applications  
GENERAL DESCRIPTION  
internally, allowing for level translation between 3.3 V inputs  
and 1.8 V outputs. This makes the device suitable for applications  
requiring level translation between different supplies, such as  
converter to DSP/microcontroller interfacing.  
The ADG3242 is a 2.5 V or 3.3 V, 2-bit, 2-port, common control  
digital switch. It is designed on a low voltage CMOS process, and  
provides low power dissipation, yet gives high switching speed  
and very low on resistance. This allows the inputs to be connected  
to the outputs without additional propagation delay or generating  
additional ground bounce noise.  
PRODUCT HIGHLIGHTS  
1. 3.3 V or 2.5 V supply operation.  
These switches are enabled by means of a common bus enable  
2. Extremely low propagation delay through switch.  
3. 4.5 Ω switches connect inputs to outputs.  
4. Level/voltage translation.  
BE  
(
) input signal. This digital switch allows a bidirectional signal  
to be switched when on. In the off condition, signal levels up  
to the supplies are blocked.  
This device is ideal for applications requiring level translation.  
When operated from a 3.3 V supply, level translation from 3.3 V  
inputs to 2.5 V outputs is allowed. Similarly, if the device is oper-  
ated from a 2.5 V supply and 2.5 V inputs are applied, the device  
translates the outputs to 1.8 V. In addition, a level translating  
5. Tiny SOT-23 package.  
SEL  
SEL  
select pin (  
) is included. When  
is low, VCC is reduced  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights ofthird parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
ADG3242  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Timing Measurement Information.............................................. 11  
Bus Switch Applications ................................................................ 12  
Mixed Voltage Operation, Level Translation.......................... 12  
3.3 V to 2.5 V Translation ......................................................... 12  
2.5 V to 1.8 V Translation ......................................................... 12  
3.3 V to 1.8 V Translation ......................................................... 12  
Bus Isolation................................................................................ 13  
Hot Plug and Hot Swap Isolation............................................. 13  
Analog Switching ....................................................................... 13  
High Impedance during Power-Up/Power-Down................. 13  
Outline Dimensions....................................................................... 14  
Ordering Guide............................................................................... 14  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Pin Configurations and Function Descriptions ........................... 5  
Typical Performance Characteristics ............................................. 6  
Terminology .................................................................................... 10  
REVISION HISTORY  
9/06—Rev. 0 to Rev. A  
Updated Format..................................................................Universal  
Added Table 4.................................................................................... 5  
Changes to the Ordering Guide.................................................... 14  
8/03—Revision 0: Initial Version  
Rev. A | Page 2 of 16  
 
ADG3242  
SPECIFICATIONS  
VCC = 2.3 V to 3.6 V, GND = 0 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 1.  
B Version1  
Typ2  
Parameter  
DC ELECTRICAL CHARACTERISTICS  
Input High Voltage  
Symbol  
VINH  
Conditions  
Min  
Max  
Unit  
VCC = 2.7 V to 3.6 V  
VCC = 2.3 V to 2.7 V  
VCC = 2.7 V to 3.6 V  
VCC = 2.3 V to 2.7 V  
2.0  
1.7  
V
V
Input Low Voltage  
VINL  
0.8  
0.7  
1
1
1
2.9  
2.1  
2.1  
V
V
μA  
μA  
μA  
V
Input Leakage Current  
Off State Leakage Current  
On State Leakage Current  
Maximum Pass Voltage  
II  
IOZ  
0.01  
0.01  
0.01  
2.5  
0 ≤ A, B ≤ VCC  
0 ≤ A, B ≤ VCC  
VP  
SEL  
SEL  
2.0  
1.5  
1.5  
VA/VB = VCC  
VA/VB = VCC  
=
=
= 3.3 V, IO = −5 μA  
= 2.5 V, IO = −5 μA  
1.8  
V
SEL  
1.8  
V
VA/VB = VCC = 3.3 V,  
= 0 V, IO = −5 μA  
CAPACITANCE3  
A Port Off Capacitance  
B Port Off Capacitance  
A, B Port On Capacitance  
Control Input Capacitance  
SWITCHING CHARACTERISTICS3  
Propagation Delay A to B or B to A, tPD  
CA OFF  
CB OFF  
CA, CB ON  
CIN  
f = 1 MHz  
f = 1 MHz  
f = 1 MHz  
f = 1 MHz  
3.5  
3.5  
7
pF  
pF  
pF  
pF  
4
4
tPHL, tPLH  
SEL  
= 3 V  
0.225  
5
4.6  
4
ns  
CL = 50 pF, VCC  
=
Propagation Delay Matching5  
BE  
Bus Enable Time to A or B  
ps  
ns  
6
tPZH, tPZL  
SEL  
SEL  
SEL  
SEL  
SEL  
SEL  
1
1
1
1
1
1
3.2  
3
VCC = 3.0 V to 3.6 V;  
VCC = 3.0 V to 3.6 V;  
VCC = 2.3 V to 2.7 V;  
VCC = 3.0 V to 3.6 V;  
VCC = 3.0 V to 3.6 V;  
VCC = 2.3 V to 2.7 V;  
= VCC  
= 0 V  
= VCC  
= VCC  
= 0 V  
= VCC  
ns  
3
4
ns  
6
BE  
t
PHZ, tPLZ  
3
4
ns  
Bus Disable Time to A or B  
2.5  
2.5  
1.5  
45  
3.8  
3.4  
ns  
ns  
Maximum Data Rate  
Channel Jitter  
SEL  
SEL  
Gbps  
ps p-p  
VCC  
VCC  
=
=
= 3.3 V; VA/VB = 2 V  
= 3.3 V; VA/VB = 2 V  
DIGITAL SWITCH  
On Resistance  
RON  
SEL  
SEL  
4.5  
12  
5
8
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
VCC = 3 V,  
VCC = 3 V,  
= VCC, VA = 0 V, IBA = 8 mA  
= VCC, VA = 1.7 V, IBA = 8 mA  
28  
9
SEL  
VCC = 2.3 V,  
VCC = 2.3 V,  
= VCC, VA = 0 V, IBA = 8 mA  
= VCC, VA = 1 V, IBA = 8 mA  
SEL  
9
18  
8
SEL  
5
VCC = 3 V,  
VCC = 3 V,  
VCC = 3 V,  
VCC = 3 V,  
= 0 V, VA = 0 V, IBA = 8 mA  
= 0 V, VA = 1 V, IBA = 8 mA  
= VCC, VA = 0 V, IA = 8 mA  
= 0 V, VA = 0 V, IA = 8 mA  
SEL  
SEL  
SEL  
12  
0.1  
0.1  
On Resistance Matching  
∆RON  
0.5  
0.5  
POWER REQUIREMENTS  
VCC  
Quiescent Power Supply Current  
2.3  
3.6  
1
V
ICC  
SEL  
SEL  
0.01  
0.1  
μA  
mA  
μA  
Digital inputs = 0 V or VCC;  
Digital inputs = 0 V or VCC  
= VCC  
0.2  
8
;
= 0 V  
Increase in ICC per Input7  
∆ICC  
BE  
VCC = 3.6 V, = 3.0 V;  
SEL  
0.15  
= VCC  
1 Temperature range is as follows: B version: −40°C to +85°C.  
2 Typical values are at 25°C, unless otherwise stated.  
3 Guaranteed by design, not subject to production test.  
4 The digital switch contributes no propagation delay other than the RC delay of the typical RON of the switch and the load capacitance when driven by an ideal voltage  
source. Because the time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation  
delay of the digital switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.  
5 Propagation delay matching between channels is calculated from the on resistance matching and load capacitance of 50 pF.  
6 See Timing Measurement Information section.  
7
BE  
This current applies to the Control Pin only. The A and B ports contribute no significant ac or dc currents as they transition.  
Rev. A | Page 3 of 16  
 
 
ADG3242  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 2.  
Parameter  
Rating  
VCC to GND  
Digital Inputs to GND  
DC Input Voltage  
−0.5 V to +4.6 V  
−0.5 V to +4.6 V  
−0.5 V to +4.6 V  
25 mA per channel  
DC Output Current  
Only one absolute maximum rating can be applied at any  
one time.  
Operating Temperature Range  
Industrial (B Version)  
−40°C to +85°C  
−65°C to +150°C  
150°C  
206°C/W  
300°C  
Storage Temperature Range  
Junction Temperature  
θJA Thermal Impedance  
Lead Temperature, Soldering (10 sec)  
IR Reflow, Peak Temperature (<20 sec)  
ESD CAUTION  
235°C  
Rev. A | Page 4 of 16  
 
ADG3242  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
SEL  
V
BE  
CC  
ADI DIE MARK  
A0  
BE  
A0  
1
2
3
4
8
7
6
5
V
CC  
ADG3242  
SEL  
B0  
ADG3242  
TOP VIEW  
A1  
TOP VIEW  
(Not to Scale)  
(Not to Scale)  
GND  
B1  
B0  
B1  
A1  
GND  
Figure 2. Pin Configuration  
Figure 3. Die Pad Configuration (Die size: 550 μm × 820 μm)  
Table 3. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
7
8
BE  
Bus Enable (Active Low).  
Port A0, Input or Output.  
Port A1, Input or Output.  
Ground (0 V) Reference.  
Port B1, Input or Output.  
Port B0, Input or Output.  
Level Translation Select.  
Positive Power Supply Voltage.  
A0  
A1  
GND  
B1  
B0  
SEL  
VCC  
Table 4. Die Pad Coordinates (Measured from the Center of the Die)  
Mnemonic  
X(μm)  
Y(μm)  
+303  
+150  
−139  
−266  
−247  
+121  
+279  
+303  
BE  
+93  
A0  
A1  
GND  
B1  
B0  
+102  
+168  
+126  
−88  
−168  
−111  
−7  
SEL  
VCC  
Table 5. Truth Table  
BE  
SEL1  
Function  
L
L
H
L
H
X
A0 = B0, A1 = B1, 3.3 V to 1.8 V Level Shifting.  
A0 = B0, A1 = B1, 3.3 V to 2.5 V/2.5 V to 1.8 V Level Shifting.  
Disconnect.  
1 SEL  
= 0 V only when VDD = 3.3 V 10ꢀ.  
Rev. A | Page 5 of 16  
 
 
ADG3242  
TYPICAL PERFORMANCE CHARACTERISTICS  
40  
20  
15  
10  
5
T
= 25°C  
A
V
= 3.3V  
CC  
V
= 3V  
CC  
SEL = V  
CC  
SEL = V  
CC  
35  
30  
25  
20  
15  
10  
5
V
= 3.3V  
CC  
CC  
+85°C  
+25°C  
V
= 3.6V  
3.0  
–40°C  
0
0
0
0
0
0.5  
1.0  
1.5  
2.0  
/V (V)  
2.5  
3.5  
3.0  
3.5  
0
0.5  
1.0  
V /V (V)  
A
1.5  
2.0  
V
A
B
B
Figure 4. On Resistance vs. Input Voltage  
Figure 7. On Resistance vs. Input Voltage for Different Temperatures  
40  
35  
30  
25  
20  
15  
10  
5
15  
T
= 25°C  
V
= 2.5V  
A
CC  
V
= 2.3V  
CC  
SEL = V  
SEL = V  
CC  
CC  
10  
V
= 2.5V  
= 2.7V  
CC  
CC  
+85°C  
–40°C  
5
V
+25°C  
0
0
0.5  
1.0  
1.5  
/V (V)  
2.0  
2.5  
0
0.5  
1.0  
1.2  
V
V /V (V)  
A B  
A
B
Figure 5. On Resistance vs. Input Voltage  
Figure 8. On Resistance vs. Input Voltage for Different Temperatures  
40  
35  
30  
25  
20  
15  
10  
5
3.0  
T
= 25°C  
A
V
= 3.6V  
T
= 25°C  
SEL = 0V  
CC  
A
V
= 3V  
CC  
SEL = V  
= –5µA  
O
CC  
I
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 3.3V  
CC  
V
= 3.3V  
= 3.6V  
CC  
V
= 3V  
CC  
V
CC  
0
0.5  
1.0  
1.5  
2.0  
/V (V)  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
V /V (V)  
A B  
A
B
Figure 6. On Resistance vs. Input Voltage  
Figure 9. Pass Voltage vs. VCC  
Rev. A | Page 6 of 16  
 
 
ADG3242  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= 25°C  
T
V
= 25°C  
= 0V  
A
A
V
= 2.7V  
CC  
SEL = V  
CC  
= –5µA  
A
I
BE = 0  
O
V
= 2.5V  
CC  
V
= 3.3V; SEL = 0V  
CC  
V
= 2.3V  
CC  
V
= SEL = 3.3V  
CC  
V
= SEL = 2.5V  
CC  
0
0
0
0.5  
1.0  
1.5  
/V (V)  
2.0  
2.5  
3.0  
3.5  
50  
0
0.02  
0.04  
0.06  
0.08  
0.10  
V
I (A)  
O
A
B
Figure 10. Pass Voltage vs. VCC  
Figure 13. Output Low Characteristic  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= 25°C  
T
V
= 25°C  
A
A
V
= 3.6V  
CC  
SEL = 0V  
= V  
CC  
A
I
= –5µA  
BE = 0  
O
V
= SEL = 3.3V  
CC  
V
= 3.3V  
CC  
V
= 3V  
CC  
V
= SEL = 2.5V  
CC  
V
= 3.3V; SEL = 0V  
CC  
–0.10  
–0.08  
–0.06  
–0.04  
–0.02  
0
0.5  
1.0  
1.5  
V
2.0  
/V (V)  
2.5  
3.0  
I
(A)  
O
A
B
Figure 14. Output High Characteristic  
Figure 11. Pass Voltage vs. VCC  
0
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
T
= 25°C  
T
= 25°C  
A
A
SEL = V  
CC  
–0.2 ONOFF  
= 1nF  
C
L
V
= 2.5V  
= 3.3V  
CC  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
V
= SEL = 3.3V  
CC  
V
CC  
V
= 3.3V;  
CC  
SEL = 0V  
V
= SEL = 2.5V  
CC  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
5
10  
15  
20  
25  
30  
35  
40  
45  
V
/V (V)  
B
ENABLE FREQUENCY (MHz)  
A
Figure 12. ICC vs. Enable Frequency  
Figure 15. Charge Injection vs. Source Voltage  
Rev. A | Page 7 of 16  
ADG3242  
2
1
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
ENABLE  
V
= SEL = 3.3V  
CC  
0
–1  
–2  
–3  
–4  
DISABLE  
V
= 3.3V; SEL = 0V  
CC  
T
= 25°C  
= 3.3V/2.5V  
A
–5  
–6  
–7  
–8  
V
CC  
SEL = V  
CC  
= 0dBm  
V
IN  
N/W ANALYZER:  
= R = 50  
R
L
S
0.03 0.1  
1
10  
100  
1000  
1000  
1000  
–40  
–20  
0
20  
40  
60  
80  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
Figure 19. Enable/Disable Time vs. Temperature  
Figure 16. Bandwidth vs. Frequency  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
T
V
= 25°C  
A
= 3.3V/2.5V  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
CC  
SEL = V  
CC  
= 0dBm  
V
IN  
N/W ANALYZER:  
= R = 50Ω  
ENABLE  
V
= SEL = 2.5V  
CC  
R
L
S
DISABLE  
–40  
–20  
0
20  
40  
60  
80  
0.03 0.1  
1
10  
100  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
Figure 20. Enable/Disable Time vs. Temperature  
Figure 17. Crosstalk vs. Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
T
= 25°C  
A
V
V
= SEL = 3.3V  
CC  
= 1.5V p-p  
V
= 3.3V/2.5V  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
CC  
IN  
20dB ATTENUATION  
SEL = V  
CC  
= 0dBm  
V
IN  
N/W ANALYZER:  
R
= R = 50Ω  
L
S
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
0.1  
1
10  
100  
DATA RATE (Gbps)  
FREQUENCY (MHz)  
Figure 21. Jitter vs. Data Rate; PRBS 31  
Figure 18. Off Isolation vs. Frequency  
Rev. A | Page 8 of 16  
ADG3242  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
V
= SEL = 3.3V  
CC  
= 1.5V p-p  
IN  
20dB ATTENUATION  
V
= 2.5V  
CC  
SEL = 2.5V  
= 1.5V p-p  
20dB  
ATTENUATION  
T = 25°C  
A
20mV/DIV  
200ps/DIV  
% EYE WIDTH = ((CLOCK PERIOD –  
JITTER p-p)/CLOCK PERIOD) × 100%  
V
IN  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
DATA RATE (Gbps)  
Figure 22. Eye Width vs. Data Rate; PRBS 31  
Figure 24. Eye Pattern; 1.244 Gbps, VCC = 2.5 V; PRBS 31  
V
= 3.3V  
CC  
SEL = 3.3V  
= 1.5V p-p  
20dB  
ATTENUATION  
T = 25°C  
A
50mV/DIV  
200ps/DIV  
V
IN  
Figure 23. Eye Pattern; 1.5 Gbps, VCC = 3.3 V; PRBS 31  
Rev. A | Page 9 of 16  
ADG3242  
TERMINOLOGY  
VCC  
CIN  
Positive power supply voltage.  
BE  
SEL  
and .  
Control input capacitance. This consists of  
GND  
ICC  
Ground (0 V) reference.  
Quiescent power supply current. This current represents the  
leakage current between the VCC and ground pins. It is measured  
when all control inputs are at logic high or low level and the  
switches are off.  
VINH  
Minimum input voltage for Logic 1.  
VINL  
ΔICC  
Maximum input voltage for Logic 0.  
EN  
Extra power supply current component for the  
when the input is not driven at the supplies.  
control input  
II  
Input leakage current at the control inputs.  
tPLH, tPHL  
Data propagation delay through the switch in the on state. Propaga-  
tion delay is related to the RC time constant RON × CL, where CL  
is the load capacitance.  
IOZ  
Off state leakage current. It is the maximum leakage current at  
the switch pin in the off state.  
tPZH, tPZL  
IOL  
Bus enable times. These are the times taken to cross the VT in  
On state leakage current. It is the maximum leakage current at  
the switch pin in the on state.  
BE  
response to the control signal,  
.
tPHZ, tPLZ  
VP  
Bus disable times. These are the times taken to place the switch  
in the high impedance off state in response to the control signal.  
They are measured as the time taken for the output voltage to  
change by VΔ from the original quiescent level, with reference  
to the logic level transition at the control input. (See Figure 27  
for enable and disable times.)  
Maximum pass voltage. The maximum pass voltage relates to  
the clamped output voltage of an NMOS device when the switch  
input voltage is equal to the supply voltage.  
RON  
Ohmic resistance offered by a switch in the on state. It is measured  
at a given voltage by forcing a specified amount of current through  
the switch.  
Max Data Rate  
Maximum rate at which data can be passed through the switch.  
ΔRON  
Channel Jitter  
On resistance match between any two channels, that is, RON max  
to RON min.  
Peak-to-peak value of the sum of the deterministic and random  
jitter of the switch channel.  
CX OFF  
Off switch capacitance.  
CX ON  
On switch capacitance.  
Rev. A | Page 10 of 16  
 
ADG3242  
TIMING MEASUREMENT INFORMATION  
DISABLE  
ENABLE  
For the following load circuit and waveforms, the notation that  
V
V
INH  
T
is used is VIN and VOUT where:  
CONTROL INPUT BE  
0V  
V
IN = VA and VOUT = VB, or VIN = VB and VOUT = VA  
tPZL  
tPLZ  
V
CC  
V
2 × V  
CC  
CC  
V
CC  
V
SW1  
OUT  
V
V
V
= 0V  
= V  
T
IN  
SW1 @ 2V  
V
V
+ V  
CC  
L
L
Δ
GND  
R
tPZH  
tPHZ  
L
V
V
OUT  
IN  
V
V
H
H
PULSE  
GENERATOR  
V
DUT  
OUT  
SW1 @ GND  
–V  
V
IN  
CC  
Δ
T
0V  
0V  
R
R
C
L
L
T
Figure 27. Enable and Disable Times  
NOTES  
Table 6. Switch Position  
Test  
1. PULSE GENERATOR FOR ALL PULSES: tR 2.5ns, tF 2.5ns,  
FREQUENCY 10MHz.  
S1  
2. C INCLUDES BOARD, STRAY, AND LOAD CAPACITANCES.  
L
3. R IS THE TERMINATION RESISTOR, SHOULD BE EQUAL TO Z  
OF THE PULSE GENERATOR.  
T
OUT  
tPLZ, tPZL  
tPHZ, tPZH  
2 × VCC  
GND  
Figure 25. Load Circuit  
V
V
IH  
CONTROL  
INPUT BE  
T
0V  
tPLH  
tPLH  
V
V
H
V
T
OUT  
V
L
Figure 26. Propagation Delay  
Table 7. Test Conditions  
VCC = 3.3 V 0.3 V (SEL = VCC  
)
VCC = 2.5 V 0.2 V (SEL = VCC  
)
VCC = 3.3 V 0.3 V (SEL = 0 V)  
Symbol  
Unit  
Ω
mV  
pF  
V
RL  
VΔ  
CL  
VT  
500  
300  
50  
500  
150  
30  
500  
150  
30  
1.5  
0.9  
0.9  
Rev. A | Page 11 of 16  
 
 
 
ADG3242  
BUS SWITCH APPLICATIONS  
MIXED VOLTAGE OPERATION, LEVEL  
TRANSLATION  
2.5 V TO 1.8 V TRANSLATION  
SEL  
When VCC is 2.5 V (  
= 2.5 V) and the input signal range is  
Bus switches provide an ideal solution for interfacing between  
mixed voltage systems. The ADG3242 is suitable for applications  
where voltage translation from 3.3 V technology to a lower voltage  
technology is needed. This device translates from 3.3 V to 1.8 V,  
from 2.5 V to 1.8 V, or from a bidirectional 3.3 V directly to 2.5 V.  
0 V to VCC, the maximum output signal is also clamped within  
a voltage threshold below the VCC supply. In this case, the output  
is limited to approximately 1.8 V, as shown in Figure 32.  
2.5V  
Figure 28 shows a block diagram of a typical application in which a  
user needs to interface between a 3.3 V ADC and a 2.5 V micro-  
processor. The microprocessor does not have 3.3 V tolerant inputs,  
therefore, placing the ADG3242 between the two devices allows  
the devices to communicate easily. The bus switch directly connects  
the two blocks, therefore introducing minimal propagation delay,  
2.5V  
ADG3242  
1.8V  
SEL  
Figure 31. 2.5 V to 1.8 V Voltage Translation,  
= 2.5 VCC  
V
timing skew, or noise.  
OUT  
2.5V SUPPLY  
SEL = 2.5V  
3.3V  
3.3V  
2.5V  
1.8V  
2.5V  
3.3V ADC  
MICROPROCESSOR  
Figure 28. Level Translation Between a 3.3 V ADC and a 2.5 V Microprocessor  
V
IN  
SWITCH  
INPUT  
0V  
2.5V  
3.3 V TO 2.5 V TRANSLATION  
SEL  
Figure 32. 2.5 V to 1.8 V Voltage Translation,  
= VCC  
SEL  
When VCC is 3.3 V (  
= 3.3 V) and the input signal range is  
3.3 V TO 1.8 V TRANSLATION  
0 V to VCC, the maximum output signal is clamped to within a  
voltage threshold below the VCC supply. In this case, the output  
is limited to 2.5 V, as shown in Figure 30. This device can be used  
for translation from 2.5 V to 3.3 V devices and also between two  
The ADG3242 offers the option of interfacing between a 3.3 V  
device and a 1.8 V device. This is possible through use of the  
pin is an active low control pin.  
nal circuitry in the ADG3242 that allows voltage translation  
between 3.3 V devices and 1.8 V devices.  
SEL  
SEL  
SEL  
activates inter-  
pin. The  
3.3 V devices.  
3.3V  
When VCC is 3.3 V and the input signal range is 0 V to VCC, the  
maximum output signal is clamped to 1.8 V, as shown in Figure 34.  
3.3V  
2.5V  
2.5V  
2.5V  
ADG3242  
SEL  
SEL  
To do this, the  
pin must be tied to Logic 0. If  
is unused,  
it can be tied directly to VCC.  
3.3V  
SEL  
Figure 29. 3.3 V to 2.5 V Voltage Translation,  
= VCC  
V
OUT  
3.3V SUPPLY  
SEL = 3.3V  
3.3V  
ADG3242  
1.8V  
2.5V  
SEL  
Figure 33. 3.3 V to 1.8 V Voltage Translation,  
= 0 V  
V
V
OUT  
IN  
3.3V SUPPLY  
SEL = 0V  
SWITCH  
INPUT  
0V  
3.3V  
1.8V  
SEL  
Figure 30. 3.3 V to 2.5 V Voltage Translation,  
= VCC  
V
IN  
SWITCH  
INPUT  
0V  
3.3V  
SEL  
Figure 34. 3.3 V to 1.8 V Voltage Translation,  
= 0 V  
Rev. A | Page 12 of 16  
 
 
 
 
 
ADG3242  
BUS ISOLATION  
PLUG-IN  
CARD (1)  
A common requirement of bus architectures is low capacitance  
loading of the bus. Such systems require bus bridge devices that  
extend the number of loads on the bus without exceeding the spec-  
ifications. Because the ADG3242 is designed specifically for  
applications that do not need drive, yet require simple logic func-  
tions, it solves this requirement. The device isolates access to  
the bus, thus minimizing capacitance loading.  
CARD I/O  
CPU  
RAM  
PLUG-IN  
CARD (2)  
CARD I/O  
BUS  
Figure 36. ADG3242 in a Hot Plug Application  
LOAD A  
LOAD C  
There are many systems, such as docking stations, PCI boards for  
servers, and line cards for telecommunications switches, that  
require the ability to handle hot swapping. If the bus can be isolated  
prior to insertion or removal, there is more control over the hot  
swap event. This isolation can be achieved using bus switches. The  
bus switches are positioned on the hot swap card between the con-  
nector and the devices. During hot swap, the ground pin of the  
hot swap card must connect to the ground pin of the backplane  
before connecting to any other signal or power pins.  
BUS/  
BACKPLANE  
LOAD B  
LOAD D  
BUS SWITCH  
LOCATION  
Figure 35. Location of Bus Switched in a Bus Isolation Application  
HOT PLUG AND HOT SWAP ISOLATION  
The ADG3242 is suitable for hot swap and hot plug applications.  
The output signal of the ADG3242 is limited to a voltage that  
is below the VCC supply, as shown in Figure 30, Figure 32, and  
Figure 34. Thus, the switch acts like a buffer to take the impact  
from the hot insertion, protecting vital and expensive chipsets  
from damage.  
ANALOG SWITCHING  
Bus switches are used in many analog switching applications,  
for example, video graphics. Bus switches can have lower on  
resistance, smaller on and off channel capacitance, and better  
frequency performance than their analog counterparts. The  
bus switch channel itself, consisting solely of an NMOS switch,  
limits the operating voltage (see Figure 4 for a typical plot), but  
in many cases, this does not present an issue.  
In hot plug applications, the system cannot be shut down when  
new hardware is being added. To overcome this, a bus switch can  
be positioned on the backplane between the bus devices and the  
hot plug connectors. The bus switch is turned off during hot plug.  
Figure 36 shows a typical example of this type of application.  
HIGH IMPEDANCE DURING POWER-UP/POWER-  
DOWN  
To ensure the high impedance state during power-up or power-  
BE  
down,  
must be tied to VCC through a pull-up resistor. The  
minimum value of the resistor is determined by the current sink-  
ing capability of the driver.  
Rev. A | Page 13 of 16  
 
 
ADG3242  
OUTLINE DIMENSIONS  
2.90 BSC  
8
1
7
2
6
3
5
4
1.60 BSC  
2.80 BSC  
PIN 1  
INDICATOR  
0.65 BSC  
1.95  
BSC  
1.30  
1.15  
0.90  
1.45 MAX  
0.22  
0.08  
0.60  
0.45  
0.30  
8°  
4°  
0°  
0.38  
0.22  
0.15 MAX  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-178-BA  
Figure 37. 8-Lead Small Outline Transistor Package [SOT-23]  
(RJ-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
Branding  
SCA  
SCA  
SCA  
SOU  
ADG3242BRJ-R2  
ADG3242BRJ-REEL  
ADG3242BRJ-REEL7  
ADG3242BRJZ-REEL71  
ADG3242BCZ-SF31  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
8-Lead Small Outline Transistor [SOT-23] RJ-8  
8-Lead Small Outline Transistor [SOT-23] RJ-8  
8-Lead Small Outline Transistor [SOT-23] RJ-8  
8-Lead Small Outline Transistor [SOT-23] RJ-8  
Die  
Chip  
1 Z = Pb-free part.  
Rev. A | Page 14 of 16  
 
 
 
ADG3242  
NOTES  
Rev. A | Page 15 of 16  
ADG3242  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C04309-0-9/06(A)  
Rev. A | Page 16 of 16  

相关型号:

ADG3243

2.5 V/3.3 V, 2-Bit, Individual Control Level Translator Bus Switch
ADI

ADG3243BRJ-R2

2.5 V/3.3 V, 2-Bit, Individual Control Level Translator Bus Switch
ADI

ADG3243BRJ-REEL

2.5 V/3.3 V, 2-Bit, Individual Control Level Translator Bus Switch
ADI

ADG3243BRJ-REEL7

2.5 V/3.3 V, 2-Bit, Individual Control Level Translator Bus Switch
ADI

ADG3243BRJZ-REEL7

2.5 V/3.3 V, 2-Bit, Individual Control Level Translator Bus Switch
ADI

ADG3245

2.5 V/3.3 V, 8-Bit, 2-Port Level Translating, Bus Switch
ADI

ADG3245BCPZ

2.5 V/3.3 V, 8 Bit, 2 Port Level Translator, Bus Switch
ADI

ADG3245BRU

2.5 V/3.3 V, 8-Bit, 2-Port Level Translating, Bus Switch
ADI

ADG3245BRUZ-REEL7

2.5 V/3.3 V, 8 Bit, 2 Port Level Translator, Bus Switch
ADI

ADG3245_15

2.5V/3.3V 8 Bit 2 Port Level Translating Bus Switch
ADI

ADG3246

2.5 V/3.3 V, 10-Bit, 2-Port Level Translating, Bus Switch
ADI

ADG3246BCP

2.5 V/3.3 V, 10-Bit, 2-Port Level Translating, Bus Switch
ADI