ADG3300BRUZ-REEL7 [ADI]

Low Voltage 1.15 V to 5.5 V, 8-Channel Bidirectional Logic Level Translator; 低电压1.15 V至5.5 V , 8通道双向逻辑电平转换器
ADG3300BRUZ-REEL7
型号: ADG3300BRUZ-REEL7
厂家: ADI    ADI
描述:

Low Voltage 1.15 V to 5.5 V, 8-Channel Bidirectional Logic Level Translator
低电压1.15 V至5.5 V , 8通道双向逻辑电平转换器

转换器 电平转换器
文件: 总20页 (文件大小:616K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Voltage 1.15 V to 5.5 V, 8-Channel  
Bidirectional Logic Level Translator  
ADG3300  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Bidirectional level translation  
Operates from 1.15 V to 5.5 V  
Low quiescent current <1 µA  
No direction pin  
V
V
CCY  
CCA  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Y8  
APPLICATIONS  
Low voltage ASIC level translation  
Smart card readers  
Cell phones and cell phone cradles  
Portable communications devices  
Telecommunications equipment  
Network switches and routers  
Storage systems (SAN/NAS)  
Computing/server applications  
GPS  
A8  
EN  
Portable POS systems  
GND  
Low cost serial interfaces  
Figure 1.  
GENERAL DESCRIPTION  
internally pulled down by 6 kΩ resistors, while the Y terminals  
are in the high impedance state. The EN pin is referred to VCCA  
supply voltage and driven high for normal operation.  
The ADG3300 is a bidirectional logic level translator that con-  
tains eight bidirectional channels. It can be used in multivoltage  
digital system applications such as data transfer between a low  
voltage DSP/controller and a higher voltage device. The internal  
architecture allows the device to perform bidirectional logic  
level translation without an additional signal to set the direction  
of the translation.  
The ADG3300 is available in a compact 20-lead TSSOP package,  
and it is guaranteed to operate over the 1.15 V to 5.5 V supply  
voltage range and extended −40°C to +85°C temperature range.  
The voltage applied to VCCA sets the logic levels on the A side of  
the device, while VCCY sets the levels on the Y side. For proper  
operation, VCCA must always be less than VCCY. The VCCA-com-  
patible logic signals applied to the A side of the device appear as  
VCCY-compatible levels on the Y side. Similarly, VCCY-compatible  
PRODUCT HIGHLIGHTS  
1. Bidirectional level translation.  
2. Fully guaranteed over the 1.15 V to 5.5 V supply range.  
3. No direction pin.  
logic levels applied to the Y side of the device appear as VCCA  
compatible logic levels on the A side.  
-
4. 20-lead TSSOP package.  
The enable pin provides three-state operation of the Y side pins.  
When the enable pin (EN) is pulled low, the A1 to A8 pins are  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
ADG3300  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Test Circuits ..................................................................................... 12  
Terminology .................................................................................... 14  
Theory of Operation ...................................................................... 15  
Level Translator Architecture.................................................... 15  
Input Driving Requirements..................................................... 15  
Output Load Requirements ...................................................... 15  
Enable Operation ....................................................................... 15  
Power Supplies............................................................................ 15  
Data Rate ..................................................................................... 16  
Applications..................................................................................... 17  
Layout Guidelines....................................................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
REVISION HISTORY  
4/05—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
ADG3300  
SPECIFICATIONS1  
VCCY = 1.65 V to 5.5 V, VCCA = 1.15 V to VCCY, GND = 0 V. All specifications TMIN to TMAX, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ2  
Max Unit  
LOGIC INPUTS/OUTPUTS  
A Side  
Input High Voltage3  
VIHA  
VIHA  
VILA  
VOHA  
VOLA  
RA,HiZ  
VCCA = 1.15 V  
VCCA = 1.2 V to 5.5 V  
VCCA − 0.3  
VCCA − 0.4  
V
V
V
V
V
Input Low Voltage3  
Output High Voltage  
Output Low Voltage  
Three-State Pull-Down Resistance  
Y Side  
Input Low Voltage3  
Input High Voltage3  
Output High Voltage  
Output Low Voltage  
Capacitance3  
0.4  
VY = VCCY, IOH = 20 µA, Figure 27  
VY = 0 V, IOL = 20 µA, Figure 27  
EN = 0  
VCCA − 0.4  
4.2  
0.4  
8.4  
6
6
kΩ  
VIHY  
VILY  
VOHY  
VOLY  
CY  
VCCY − 0.4  
VCCY − 0.4  
V
V
V
V
pF  
µA  
0.4  
0.4  
1
VA = VCCA, IOH = 20 µA, Figure 28  
VA = 0 V, IOL = 20 µA, Figure 28  
f = 1 MHz, EN = 0, Figure 31  
VY = 0 V/VCCY, EN = 0, Figure 29  
Leakage Current  
ILY, HiZ  
Enable (EN)  
Input High Voltage3  
VIHEN  
VIHEN  
VILEN  
ILEN  
VCCA = 1.15 V  
VCCA = 1.2 V to 5.5 V  
VCCA − 0.3  
VCCA − 0.4  
V
V
V
Input Low Voltage3  
Leakage Current  
Capacitance3  
0.4  
1
VEN = 0 V/VCCA, VA = 0 V, Figure 30  
µA  
pF  
µs  
CEN  
tEN  
3
1
Enable Time3  
1.8  
RS = RT = 50 Ω, VA = 0 V/VCCA (A Y),  
Figure 32  
SWITCHING CHARACTERISTICS3  
3.3 V 0.3 V ꢀ VCCA ꢀ VCCY, VCCY = 5 V 0.5 V  
A Y Level Translation  
Propagation Delay  
Rise Time  
RS = RT = 50 Ω, CL = 50 pF, Figure 33  
tP, A-Y  
tR, A-Y  
tF, A-Y  
6
2
2
10  
3.5  
3.5  
ns  
ns  
ns  
Fall Time  
Maximum Data Rate  
Channel-to-Channel Skew  
Part-to-Part Skew  
DMAX, A-Y  
tSKEW, A-Y  
tPPSKEW, A-Y  
50  
50  
Mbps  
ns  
ns  
2
4
3
RS = RT = 50 Ω, CL = 15 pF, Figure 34  
Y A Level Translation  
Propagation Delay  
Rise Time  
tP, Y-A  
tR, Y-A  
4
1
7
3
ns  
ns  
Fall Time  
tF, Y-A  
3
7
ns  
Mbps  
ns  
Maximum Data Rate  
Channel-to-Channel Skew  
Part-to-Part Skew  
DMAX, Y-A  
tSKEW, Y-A  
tPPSKEW, Y-A  
2
3.5  
2
ns  
1.8 V 0.15 V ꢀ VCCA ꢀ VCCY, VCCY = 3.3 V 0.3 V  
A Y Translation  
RS = RT = 50 Ω, CL = 50 pF, Figure 33  
Propagation Delay  
Rise Time  
Fall Time  
tP, A-Y  
tR, A-Y  
tF, A-Y  
8
2
2
11  
5
5
ns  
ns  
ns  
Maximum Data Rate  
Channel-to-Channel Skew  
Part-to-Part Skew  
DMAX, A-Y  
tSKEW, A-Y  
tPPSKEW, A-Y  
50  
Mbps  
ns  
ns  
2
4
4
Rev. 0 | Page 3 of 20  
 
 
ADG3300  
Parameter  
Symbol  
Conditions  
Min  
Typ2  
Max Unit  
RS = RT = 50 Ω, CL = 15 pF, Figure 34  
Y A Translation  
Propagation Delay  
Rise Time  
Fall Time  
tP, Y-A  
tR, Y-A  
tF, Y-A  
5
2
2
8
3.5  
3.5  
ns  
ns  
ns  
Maximum Data Rate  
Channel-to-Channel Skew  
Part-to-Part Skew  
1.15 V to 1.3 V ꢀ VCCA ꢀ VCCY, VCCY = 3.3 V 0.3 V  
A Y Translation  
DMAX, Y-A  
tSKEW, Y-A  
tPPSKEW, Y-A  
50  
Mbps  
ns  
ns  
2
3
3
RS = RT = 50 Ω, CL = 50 pF, Figure 33  
Propagation Delay  
Rise Time  
Fall Time  
tP, A-Y  
tR, A-Y  
tF, A-Y  
9
3
2
18  
5
5
ns  
ns  
ns  
Maximum Data Rate  
Channel-to-Channel Skew  
Part-to-Part Skew  
Y A Translation  
DMAX, A-Y  
tSKEW, A-Y  
tPPSKEW, A-Y  
40  
40  
Mbps  
ns  
ns  
2
5
10  
RS = RT = 50 Ω, CL = 15 pF, Figure 34  
Propagation Delay  
Rise Time  
Fall Time  
tP, Y-A  
tR, Y-A  
tF, Y-A  
DMAX, Y-A  
tSKEW, Y-A  
tPPSKEW, Y-A  
5
2
2
9
4
4
ns  
ns  
ns  
Mbps  
ns  
Maximum Data Rate  
Channel-to-Channel Skew  
Part-to-Part Skew  
1.15 V to 1.3 Vꢀ VCCA ꢀ VCCY, VCCY = 1.8 V 0.3 V  
A Y Translation  
2
4
4
ns  
RS = RT = 50 Ω, CL = 50 pF, Figure 33  
Propagation Delay  
Rise Time  
Fall Time  
tP, A-Y  
tR, A-Y  
tF, A-Y  
12  
7
3
25  
12  
5
ns  
ns  
ns  
Maximum Data Rate  
Channel-to-Channel Skew  
Part-to-Part Skew  
Y A Translation  
DMAX, A-Y  
tSKEW, A-Y  
tPPSKEW, A-Y  
25  
25  
Mbps  
ns  
ns  
2
5
15  
RS = RT = 50 Ω, CL = 15 pF, Figure 34  
Propagation Delay  
Rise Time  
Fall Time  
tP, Y-A  
tR, Y-A  
tF, Y-A  
DMAX, Y-A  
tSKEW, Y-A  
tPPSKEW, Y-A  
14  
5
2.5  
35  
16  
6.5  
ns  
ns  
ns  
Mbps  
ns  
Maximum Data Rate  
Channel-to-Channel Skew  
Part-to-Part Skew  
2.5 V 0.2 V ꢀ VCCA ꢀ VCCY, VCCY = 3.3 V 0.3 V  
A Y Translation  
3
6.5  
23.5 ns  
RS = RT = 50 Ω, CL = 50 pF, Figure 33  
Propagation Delay  
Rise Time  
Fall Time  
tP, A-Y  
tR, A-Y  
tF, A-Y  
7
2.5  
2
10  
4
5
ns  
ns  
ns  
Maximum Data Rate  
Channel-to-Channel Skew  
Part-to-Part Skew  
Y A Translation  
DMAX, A-Y  
tSKEW, A-Y  
tPPSKEW, A-Y  
60  
60  
Mbps  
ns  
ns  
1.5  
2
4
RS = RT = 50 Ω, CL = 15 pF, Figure 34  
Propagation Delay  
Rise Time  
Fall Time  
Maximum Data Rate  
Channel-to-Channel Skew  
Part-to-Part Skew  
tP, Y-A  
tR, Y-A  
tF, Y-A  
DMAX, Y-A  
tSKEW, Y-A  
tPPSKEW, Y-A  
5
1
3
8
4
5
ns  
ns  
ns  
Mbps  
ns  
2
3
3
ns  
Rev. 0 | Page 4 of 20  
ADG3300  
Parameter  
Symbol  
Conditions  
Min  
Typ2  
Max Unit  
POWER REQUIREMENTS  
Power Supply Voltages  
VCCA  
VCCY  
ICCA  
VCCA ꢀ VCCY  
1.15  
1.65  
5.5  
5.5  
5
V
V
µA  
Quiescent Power Supply Current  
VA = 0 V/VCCA, VY = 0 V/VCCY  
VCCA = VCCY = 5.5 V, EN = 1  
VA = 0 V/VCCA, VY = 0 V/VCCY  
,
,
0.17  
0.27  
ICCY  
5
µA  
V
CCA = VCCY = 5.5 V, EN = 1  
Three-State Mode Power Supply Current  
IHiZA  
IHiZY  
VCCA = VCCY = 5.5 V, EN = 0  
VCCA = VCCY = 5.5 V, EN = 0  
0.1  
0.1  
5
5
µA  
µA  
1 Temperature range is a follows: B version: −40°C to +85°C.  
2 All typical values are at TA = 25°C, unless otherwise noted.  
3 Guaranteed by design; not subject to production test.  
Rev. 0 | Page 5 of 20  
 
ADG3300  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability. Only one absolute maximum rating may be  
applied at any one time.  
Rating  
VCCA to GND  
VCCY to GND  
Digtal Inputs (A)  
Digtal Inputs (Y)  
−0.3 V to +7 V  
VCCA to +7 V  
−0.3 V to (VCCA + 0.3 V)  
−0.3 V to (VCCY + 0.3 V)  
−0.3 V to +7 V  
EN to GND  
Operating Temperature Range  
Industrial (B Version)  
Storage Temperature Range  
Junction Temperature  
θJA Thermal Impedance (4-Layer Board)  
20-Lead TSSOP  
−40°C to +85°C  
−65°C to +150°C  
150°C  
78°C/W  
300°C  
260°C  
Lead Temperature, Soldering (10 sec)  
IR Reflow, Peak Temperature (<20 sec)  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 6 of 20  
 
 
ADG3300  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
A1  
Y1  
V
V
CCY  
CCA  
3
A2  
Y2  
ADG3300  
TOP VIEW  
(Not to Scale)  
4
A3  
A4  
A5  
A6  
A7  
A8  
EN  
Y3  
5
Y4  
6
Y5  
7
Y6  
8
Y7  
9
Y8  
10  
GND  
Figure 2. Pin Configuration  
Table 3. Pin Function Descriptions  
Pin. No.  
Mnemonic Description  
1
2
3
4
5
6
7
8
A1  
VCCA  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
EN  
GND  
Y8  
Y7  
Y6  
Y5  
Y4  
Y3  
Y2  
VCCY  
Y1  
Input/Output A1. Referenced to VCCA  
Power Supply Voltage Input for the A1 to A8 I/O pins (1.15 V ꢀ VCCA < VCCY).  
.
Input/Output A2. Referenced to VCCA  
Input/Output A3. Referenced to VCCA  
Input/Output A4. Referenced to VCCA  
Input/Output A5. Referenced to VCCA  
Input/Output A6. Referenced to VCCA  
Input/Output A7. Referenced to VCCA  
Input/Output A8. Referenced to VCCA  
Active High Enable Input.  
.
.
.
.
.
.
.
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Ground.  
Input/Output Y8. Referenced to VCCY  
Input/Output Y7. Referenced to VCCY  
Input/Output Y6. Referenced to VCCY  
Input/Output Y5. Referenced to VCCY  
Input/Output Y4. Referenced to VCCY  
Input/Output Y3. Referenced to VCCY  
Input/Output Y2. Referenced to VCCY  
.
.
.
.
.
.
.
Power Supply Voltage Input for the Y1 to Y8 I/O pins (1.65 V ꢀ VCCY ꢀ 5.5 V).  
Input/Output Y1. Referenced to VCCY  
.
Rev. 0 | Page 7 of 20  
 
ADG3300  
TYPICAL PERFORMANCE CHARACTERISTICS  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.0  
T = 25°C  
A
1 CHANNEL  
T
= 25°C  
A
1 CHANNEL  
C
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
C
L
= 15pF  
= 50pF  
L
V
= 3.3V, V  
= 5V  
CCY  
CCA  
V
= 3.3V, V  
= 5V  
CCY  
CCA  
V
= 1.8V, V  
= 3.3V  
CCY  
CCA  
V
= 1.8V, V  
= 3.3V  
CCA  
CCY  
40  
V
= 1.2V, V  
= 1.8V  
CCA  
25  
DATA RATE (Mbps)  
CCY  
V
= 1.2V, V  
= 1.8V  
40  
CCA  
CCY  
35  
0
5
10  
15  
20  
30  
35  
45  
50  
0
5
10  
15  
20  
25  
30  
45  
50  
DATA RATE (Mbps)  
Figure 6. ICCY vs. Data Rate (Y A Level Translation)  
Figure 3. ICCA vs. Data Rate (A Y Level Translation)  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
10  
T
= 25°C  
T
= 25°C  
A
A
1 CHANNEL  
V
V
1 CHANNEL  
C
9
8
7
6
5
4
3
2
1
0
= 1.2V  
= 1.8V  
= 50pF  
CCA  
CCY  
L
20Mbps  
V
= 3.3V, V  
= 5V  
CCY  
CCA  
10Mbps  
5Mbps  
V
= 1.8V, V  
= 3.3V  
CCY  
CCA  
V
= 1.2V, V  
CCY  
= 1.8V  
CCA  
1Mbps  
53  
13  
23  
33  
43  
63  
73  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
CAPACITIVE LOAD (pF)  
DATA RATE (Mbps)  
Figure 7. ICCY vs. Capacitive Load at Pin Y for A Y (1.2 V 1.8 V)  
Level Translation  
Figure 4. ICCY vs. Data Rate (A Y Level Translation)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.0  
T
= 25°C  
A
T
= 25°C  
A
1 CHANNEL  
= 15pF  
1 CHANNEL  
V
V
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
C
L
= 1.2V  
=1.8V  
CCA  
CCY  
V
= 3.3V, V  
= 5V  
CCY  
CCA  
20Mbps  
V
= 1.8V, V  
= 3.3V  
CCA  
CCY  
40  
10Mbps  
5Mbps  
V
= 1.2V, V  
= 1.8V  
CCA  
CCY  
1Mbps  
0
5
10  
15  
20  
25  
30  
35  
45  
50  
13  
23  
33  
CAPACITIVE LOAD (pF)  
43  
53  
DATA RATE (Mbps)  
Figure 8. ICCA vs. Capacitive Load at Pin A for Y A (1.8 V 1.2 V)  
Level Translation  
Figure 5. ICCA vs. Data Rate (Y A Level Translation)  
Rev. 0 | Page 8 of 20  
 
ADG3300  
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
T
= 25°C  
T
= 25°C  
A
A
1 CHANNEL  
V
V
1 CHANNEL  
V
V
= 1.8V  
= 3.3V  
= 3.3V  
= 5V  
CCA  
CCY  
CCA  
CCY  
50Mbps  
50Mbps  
30Mbps  
20Mbps  
30Mbps  
20Mbps  
10Mbps  
5Mbps  
10Mbps  
5Mbps  
63  
13  
23  
33  
43  
53  
73  
13  
23  
33  
43  
53  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
Figure 9. ICCY vs. Capacitive Load at Pin Y for A Y (1.8 V 3.3 V)  
Level Translation  
Figure 12. ICCA vs. Capacitive Load at Pin A for Y A (5 V 3.3 V)  
Level Translation  
5.0  
10  
9
8
7
6
5
4
3
2
1
0
T
= 25°C  
T = 25°C  
A
1 CHANNEL  
DATA RATE = 50kbps  
A
1 CHANNEL  
V
V
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
= 1.8V  
= 3.3V  
V
= 1.2V, V  
= 1.8V  
CCY  
CCA  
CCY  
CCA  
50Mbps  
30Mbps  
V
= 1.8V, V  
= 3.3V, V  
= 3.3V  
= 5V  
CCA  
CCY  
20Mbps  
10Mbps  
V
CCA  
CCY  
5Mbps  
13  
23  
33  
43  
53  
13  
23  
33  
43  
53  
63  
73  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
Figure 10. ICCA vs. Capacitive Load at Pin A for Y A (3.3 V 1.8 V)  
Level Translation  
Figure 13. Rise Time vs. Capacitive Load at Pin Y (A Y Level Translation)  
12  
4.0  
T
= 25°C  
T
= 25°C  
A
A
1 CHANNEL  
V
V
1 CHANNEL  
DATA RATE = 50kbps  
50Mbps  
= 3.3V  
= 5V  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
CCA  
CCY  
10  
8
V
= 1.2V, V  
= 1.8V  
CCY  
CCA  
30Mbps  
20Mbps  
V
= 1.8V, V  
= 3.3V  
CCY  
CCA  
6
4
V
= 3.3V, V  
= 5V  
CCY  
CCA  
10Mbps  
5Mbps  
2
0
13  
23  
33  
43  
53  
63  
73  
13  
23  
33  
43  
53  
63  
73  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
Figure 14. Fall Time vs. Capacitive Load at Pin Y (A Y Level Translation)  
Figure 11. ICCY vs. Capacitive Load at Pin Y for A Y (3.3 V 5 V)  
Level Translation  
Rev. 0 | Page 9 of 20  
ADG3300  
10  
12  
10  
8
DATA RATE = 50kbps  
T
= 25°C  
A
V
= 1.2V, V  
= 1.8V  
CCY  
A
T
= 25°C  
CCA  
1 CHANNEL  
DATA RATE = 50kbps  
9
8
7
6
5
4
3
2
1
0
1 CHANNEL  
V
= 1.2V, V  
= 1.8V  
CCA  
CCY  
6
V
= 1.8V, V  
= 3.3V  
CCA  
CCY  
4
V
= 1.8V, V  
= 3.3V  
CCA  
CCY  
2
V
= 3.3V, V  
63  
= 5V  
73  
CCA  
CCY  
V
= 3.3V, V  
= 5V  
CCY  
CCA  
0
13  
23  
33  
43  
53  
13  
18  
23  
28  
33  
38  
43  
48  
53  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
Figure 18. Propagation Delay (tPHL) vs.  
Figure 15. Rise Time vs. Capacitive Load at Pin A (Y A Level Translation)  
Capacitive Load at Pin Y (A Y Level Translation)  
9
8
7
6
5
4
3
2
1
0
4.0  
T
= 25°C  
T
= 25°C  
A
A
1 CHANNEL  
DATA RATE = 50kbps  
1 CHANNEL  
DATA RATE = 50kbps  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 1.2V, V = 1.8V  
CCY  
CCA  
V
= 1.2V, V  
= 1.8V  
CCA  
CCY  
V
= 1.8V, V  
= 3.3V  
= 5V  
CCA  
V
CCY  
V
= 1.8V, V = 3.3V  
CCY  
= 3.3V, V  
CCA  
CCA  
CCY  
V
= 3.3V, V  
43  
= 5V  
CCA  
CCY  
13  
18  
23  
28  
33  
38  
48  
53  
13  
18  
23  
28  
33  
38  
43  
48  
53  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
Figure 19. Propagation Delay (tPLH) vs.  
Capacitive Load at Pin A (Y A Level Translation)  
Figure 16. Fall Time vs. Capacitive Load at Pin A (Y A Level Translation)  
9
8
7
6
5
4
3
2
1
0
14  
T
= 25°C  
A
T
= 25°C  
A
1 CHANNEL  
DATA RATE = 50kbps  
1 CHANNEL  
DATA RATE = 50kbps  
12  
10  
8
V
= 1.2V, V  
= 1.8V  
CCY  
CCA  
V
= 1.2V, V = 1.8V  
CCY  
CCA  
6
V
= 1.8V, V = 3.3V  
CCY  
CCA  
V
= 1.8V, V  
= 3.3V  
CCA  
CCY  
4
V
= 3.3V, V  
= 5V  
CCA  
CCY  
V
= 3.3V, V = 5V  
CCY  
CCA  
2
0
13  
18  
23  
28  
33  
38  
43  
48  
53  
13  
23  
33  
43  
53  
63  
73  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
Figure 20. Propagation Delay(tPHL) vs.  
Capacitive Load at Pin A (Y A Level Translation)  
Figure 17. Propagation Delay (tPLH) vs.  
Capacitive Load at Pin Y (A Y Level Translation)  
Rev. 0 | Page 10 of 20  
ADG3300  
T
= 25°C  
C
= 50pF  
T
= 25°C  
A
L
A
DATA RATE = 25Mbps  
1 CHANNEL  
DATA RATE = 50Mbps  
C
= 15pF  
L
1 CHANNEL  
400mV/DIV  
3ns/DIV  
200mV/DIV  
5ns/DIV  
Figure 21. Eye Diagram at Y Output (1.2 V to 1.8 V Level Translation, 25 Mbps)  
Figure 24. Eye Diagram at A Output (3.3 V to 1.8 V Level Translation, 50 Mbps)  
T
= 25°C  
T
= 25°C  
A
A
DATA RATE = 25Mbps  
C
1 CHANNEL  
DATA RATE = 50Mbps  
CL = 50pF  
1 CHANNEL  
= 50pF  
L
400mV/DIV  
5ns/DIV  
1V/DIV  
3ns/DIV  
Figure 22. Eye Diagram at A Output (1.8 V to 1.2 V Level Translation, 25 Mbps)  
Figure 25. Eye Diagram at Y Output (3.3 V to 5 V Level Translation, 50 Mbps)  
T
= 25°C  
T
= 25°C  
C = 50pF  
L
A
A
DATA RATE = 50Mbps  
= 15pF  
DATA RATE = 50Mbps 1 CHANNEL  
C
L
1 CHANNEL  
500mV/DIV  
3ns/DIV  
3ns/DIV  
800mV/DIV  
Figure 23. Eye Diagram at Y Output (1.8 V to 3.3 V Level Translation, 50 Mbps)  
Figure 26. Eye Diagram at A Output (5 V to 3.3 V Level Translation, 50 Mbps)  
Rev. 0 | Page 11 of 20  
ADG3300  
TEST CIRCUITS  
EN  
V
ADG3300  
CCY  
V
CCA  
0.1µF  
0.1µF  
V
Y
ADG3300  
CCY  
V
CCA  
A
Y
0.1µF  
0.1µF  
K2  
K1  
A
GND  
EN  
A
I
I
OL  
OH  
GND  
K
Figure 27. VOH/VOL Voltages at Pin A  
Figure 30. EN Pin Leakage Current  
EN  
ADG3300  
EN  
V
ADG3300  
CCY  
V
CCA  
V
CCY  
V
CCA  
0.1µF  
0.1µF  
K2  
A
Y
A
Y
K1  
CAPACITANCE  
METER  
GND  
GND  
I
I
OH  
OL  
Figure 31.Capacitance at Pin Y  
Figure 28. VOH/VOL Voltages at Pin Y  
EN  
V
ADG3300  
CCY  
V
CCA  
0.1µF  
0.1µF  
K
A
Y
A
GND  
Figure 29. Three-State Leakage Current at Pin Y  
Rev. 0 | Page 12 of 20  
 
ADG3300  
V
V
CCA  
CCY  
ADG3300  
+
+
0.1µF  
10µF  
0.1µF  
10µF  
1MΩ  
A
Y
V
V
A
Y
K1  
K2  
50pF  
1MΩ  
SIGNAL SOURCE  
EN  
GND  
Z
= 50Ω  
R
0
V
S
EN  
50Ω  
R
T
50Ω  
V
CCA  
tEN1  
V
EN  
0V  
V
CCA  
V
A
0V  
V
CCY  
90%  
V
Y
0V  
V
CCA  
tEN2  
V
EN  
0V  
V
A
V
CCA  
0V  
V
CCY  
V
Y
10%  
0V  
NOTES  
1. tEN IS WHICHEVER IS LARGER BETWEEN tEN1 AND tEN2  
.
Figure 32. Enable Time  
V
CCY  
EN  
V
CCY  
ADG3300  
EN  
+
ADG3300  
V
+
CCA  
+
0.1µF  
10µF  
V
CCA  
0.1µF  
10µF  
SIGNAL  
SOURCE  
+
0.1µF  
= 50Ω  
10µF  
SIGNAL  
SOURCE  
0.1µF  
10µF  
Z
R
S
0
V
V
Y
A
A
Y
Z = 50Ω  
0
R
Y
S
A
V
R
V
Y
A
R
50Ω  
T
50Ω  
50pF  
T
50Ω  
15pF  
50Ω  
GND  
GND  
V
A
V
Y
50%  
50%  
90%  
tP,A-Y  
tP,A-Y  
tP,Y-A  
tP,Y-A  
V
A
V
Y
90%  
50%  
10%  
50%  
10%  
tF,Y-A  
tR,Y-A  
tF,A-Y  
tR,A-Y  
Figure 34. Switching Characteristics (Y A Level Translation)  
Figure 33. Switching Characteristics (A Y Level Translation)  
Rev. 0 | Page 13 of 20  
ADG3300  
TERMINOLOGY  
Table 4.  
Symbol  
VIHA  
Description  
Logic input high voltage at Pins A1 to A8.  
Logic input low voltage at Pins A1 to A8.  
VILA  
VOHA  
VOLA  
RA,HiZ  
VIHY  
Logic output high voltage at Pins A1 to A8.  
Logic output low voltage at Pins A1 to A8.  
Pull-down resistance measured at Pins A1 to A8 when EN = 0.  
Logic input high voltage at Pins Y1 to Y8.  
VILY  
Logic input low voltage at Pins Y1 to Y8.  
VOHY  
VOLY  
CY  
ILY, HiZ  
VIHEN  
VILEN  
CEN  
Logic output high voltage at Pins Y1 to Y8.  
Logic output low voltage at Pins Y1 to Y8.  
Capacitance measured at Pins Y1 to Y8 (EN = 0).  
Leakage current at Pins Y1 to Y8 when EN = 0 (high impedance state at Pins Y1 to Y8).  
Logic input high voltage at the EN pin.  
Logic input low voltage at the EN pin.  
Capacitance measured at EN pin.  
ILEN  
Enable (EN) pin leakage curent.  
tEN  
Three-state enable time for Pins Y1 to Y8.  
Propagation delay when translating logic levels in the A Y direction.  
Rise time when translating logic levels in the A Y direction.  
Fall time when translating logic levels in the A Y direction.  
tP, A-Y  
tR, A-Y  
tF, A-Y  
DMAX, A-Y  
Guaranteed data rate when translating logic levels in the A Y direction under the driving and loading conditions  
specified in Table 1.  
tSKEW, A-Y  
Difference between propagation delays on any two channels when translating logic levels in the A Y direction.  
tPPSKEW, A-Y  
Difference in propagation delay between any one channel and the same channel on a different part (under the  
same driving/loading conditions) when translating logic levels in the A Y direction.  
tP, Y-A  
Propagation delay when translating logic levels in the Y A direction.  
Rise time when translating logic levels in the Y A direction.  
Fall time when translating logic levels in the Y A direction.  
tR, Y-A  
tF, Y-A  
DMAX, Y-A  
Guaranteed data rate when translating logic levels in the Y A direction under the driving and loading conditions  
specified in Table 1.  
tSKEW, Y-A  
Difference between propagation delays on any two channels when translating logic levels in the Y A direction.  
tPPSKEW, Y-A  
Difference in propagation delay between any one channel and the same channel on a different part (under the  
same driving/loading conditions) when translating in the Y A direction.  
VCCA  
VCCY  
ICCA  
VCCA supply voltage.  
VCCY supply voltage.  
VCCA supply current.  
ICCY  
VCCY supply current.  
IHiZA  
IHiZY  
VCCA supply current during three-state mode (EN = 0).  
VCCY supply current during three-state mode (EN = 0).  
Rev. 0 | Page 14 of 20  
 
ADG3300  
THEORY OF OPERATION  
The ADG3300 level translator allows the level shifting necessary  
for data transfer in a system where multiple supply voltages are  
INPUT DRIVING REQUIREMENTS  
To ensure correct operation of the ADG3300, the circuit that  
drives the input of an ADG3300 channels should have an output  
impedance of less than or equal to 150 Ω and a minimum  
current driving capability of 36 mA.  
used. The device requires two supplies, VCCA and VCCY (VCCA  
VCCY). These supplies set the logic levels on each side of the  
device. When driving the A pins, the device translates the VCCA  
-
compatible logic levels to VCCY-compatible logic levels available  
at the Y pins. Similarly, since the device is capable of bidirectional  
translation, when driving the Y pins, the VCCY-compatible logic  
levels are translated to VCCA-compatible logic levels available at  
the A pins. When EN = 0, the A1 to A8 are internally pulled  
down with 6 kΩ resistors while Y1 to Y8 pins are three-stated.  
When EN is driven high, the ADG3300 goes into normal  
operation mode and performs level translation.  
OUTPUT LOAD REQUIREMENTS  
The ADG3300 level translator is designed to drive CMOS-  
compatible loads. If current driving capability is required, it is  
recommended to use buffers between the ADG3300 outputs  
and the load.  
ENABLE OPERATION  
The ADG3300 provides three-state operation at the Y I/O pins  
by using the enable (EN) pin as shown in Table 5.  
LEVEL TRANSLATOR ARCHITECTURE  
The ADG3300 consists of eight bidirectional channels. Each  
channel can translate logic levels in either the A Y or the Y A  
direction. It uses a one-shot accelerator architecture, which  
ensures excellent switching characteristics. Figure 35 shows a  
simplified block diagram of a bidirectional channel.  
Table 5. Truth Table  
EN  
Y I/O Pins  
A I/O Pins  
0
1
Hi-Z1  
6 kΩ pull-down to GND  
Normal operation2  
Normal operation2  
1 High impedance state.  
V
V
CCY  
2 In normal operation, the ADG3300 performs level translation.  
CCA  
T1  
T2  
When EN = 0, the ADG3300 enters into three-state mode. In  
this mode the current consumption from both the VCCA and  
VCCY supplies is reduced, allowing the user to save power, which  
is critical, especially for battery-operated systems. The EN input  
pin can be driven with either VCCA- or VCCY-compatible logic  
levels.  
6k  
U1  
U2  
P
Y
A
ONE-SHOT GENERATOR  
N
POWER SUPPLIES  
For proper operation of the ADG3300, the voltage applied to  
the VCCA must always be less than or equal to the voltage applied  
to VCCY. To meet this condition, the recommended power-up  
sequence is VCCY first and then VCCA. The ADG3300 operates  
properly only after both supply voltages reach their nominal  
values. It is not recommended to use the part in a system where  
VCCA might be greater than VCCY during power-up due to a sig-  
nificant increase in the current taken from the VCCA supply. For  
optimum performance, the VCCA and VCCY pins should be  
decoupled to GND as close as possible to the device.  
U4  
U3  
6kΩ  
T4  
T3  
Figure 35. Simplified Block Diagram of an ADG3300 Channel  
The logic level translation in the A Y direction is performed  
using a level translator (U1) and an inverter (U2), and the  
translation in the Y A direction is performed using the inverters  
U3 and U4. The one-shot generator detects a rising or falling  
edge present on either the A side or the Y side of the channel. It  
sends a short pulse that turns on the PMOS transistors (T1–T2)  
for a rising edge, or the NMOS transistors (T3–T4) for a falling  
edge. This charges/discharges the capacitive load faster, which  
results in fast rise and fall times.  
The inputs of the unused channels (A or Y) should be tied to  
their corresponding VCC rail (VCCA or VCCY) or to GND.  
Rev. 0 | Page 15 of 20  
 
 
 
ADG3300  
DATA RATE  
The maximum data rate at which the device is guaranteed  
to operate is a function of the VCCA and VCCY supply voltage  
combination and the load capacitance. It is given by the  
maximum frequency of a square wave that can be applied to  
the device, which meets the VOH and VOL levels at the output and  
does not exceed the maximum junction temperature (see  
Table 2). Table 6 shows the guaranteed data rates at which the  
ADG3300 can operate in both directions (A Y and Y A level  
translation) for various VCCA and VCCY supply combinations.  
Table 6. Guaranteed Data Rate (Mbps)1  
VCCY  
1.8 V  
(1.65 V to 1.95 V)  
2.5 V  
(2.3 V to 2.7 V)  
3.3 V  
(3.0 V to 3.6 V)  
5 V  
VCCA  
(4.5 V to 5.5 V)  
1.2 V (1.15 V to 1.3 V)  
1.8 V (1.65 V to 1.95 V)  
2.5 V (2.3 V to 2.7 V)  
3.3 V (3.0 V to 3.6 V)  
5 V (4.5 V to 5.5 V)  
25  
-
-
-
-
30  
45  
-
-
-
40  
50  
60  
-
40  
50  
50  
50  
-
-
1 The load capacitance used is 50 pF when translating in the A Y direction and 15 pF when translating in the Y A direction.  
Rev. 0 | Page 16 of 20  
 
 
ADG3300  
APPLICATIONS  
other devices without causing contention issues. Figure 37 shows  
an application where a 3.3 V microprocessor is connected to  
1.8 V peripheral devices using the three-state feature.  
The ADG3300 is designed for digital circuits that operate at  
different supply voltages; therefore, logic level translation is  
required. The lower voltage logic signals are connected to the  
A pins, and the higher voltage logic signals are connected to the  
Y pins. The ADG3300 can provide level translation in both  
directions from A Y and Y A on all eight channels, eliminating  
the need for a level translator IC for each direction. The internal  
architecture allows the ADG3300 to perform bidirectional level  
translation without an additional signal to set the direction of  
the translation. It also allows simultaneous data flow in both  
directions on the same part, for example, four channels translate  
in the A Y direction while the other four translate in the Y A  
direction. This simplifies the design by eliminating the timing  
requirements for the direction signal and reduces the number of  
ICs used for level translation.  
100nF  
100nF  
I/O  
1
I/O  
1
Y1  
A1  
L
H
3.3V  
1.8V  
V
V
CCY  
Y2  
CCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
2
3
4
5
6
7
8
A2  
I/O  
I/O  
2
3
L
L
L
L
L
L
L
H
H
Y3ADG3300 A3  
Y4  
Y5  
Y6  
Y7  
Y8  
A4  
A5  
A6  
A7  
A8  
I/O  
I/O  
I/O  
I/O  
I/O  
4
5
6
7
8
PERIPHERAL  
DEVICE 1  
MICROPROCESSOR/  
MICROCONTROLLER/  
DSP  
H
H
H
H
H
GND  
CS  
GND  
EN  
GND  
100nF  
100nF  
I/O  
1
Y1  
A1  
1.8V  
L
Figure 36 shows an application where a 1.8 V microprocessor  
can read or write data to or from a 3.3 V peripheral device using  
an 8-bit bus.  
V
V
CCY  
CCA  
A2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
2
3
4
5
6
7
8
Y2  
Y3  
L
L
L
L
L
L
L
A3  
ADG3300  
Y4  
Y5  
Y6  
Y7  
Y8  
A4  
A5  
A6  
A7  
A8  
EN  
PERIPHERAL  
DEVICE 2  
100nF  
100nF  
I/O  
1
A1  
Y1  
I/O  
1
3.3V  
L
H
1.8V  
GND  
GND  
V
V
CCY  
CCA  
I/O  
I/O  
2
3
A2  
A3  
Y2  
Y3  
Y4  
I/O  
I/O  
2
3
H
L
Figure 37. 1.8 V to 3.3 V Level Translation Circuit  
Using the Three-State Feature  
H
L
A4  
A5  
I/O  
I/O  
4
5
I/O  
I/O  
4
5
H
L
MICROPROCESSOR/  
MICROCONTROLLER/  
DSP  
PERIPHERAL  
DEVICE  
ADG3300  
LAYOUT GUIDELINES  
Y5  
H
L
As with any high speed digital IC, the printed circuit board  
layout is important in the overall circuit performance. Care  
should be taken to ensure proper power supply bypass and  
return paths for the high speed signals. Each VCC pin (VCCA and  
VCCY) should be bypassed using low effective series resistance  
(ESR) and effective series inductance (ESI) capacitors placed as  
close as possible to the VCCA and VCCY pins. The parasitic induc-  
tance of the high speed signal track might cause significant  
overshoot. This effect can be reduced by keeping the length  
of the tracks as short as possible. A solid copper plane for the  
return path (GND) is also recommended.  
I/O  
I/O  
I/O  
6
7
8
A6  
Y6  
Y7  
Y8  
I/O  
I/O  
I/O  
6
7
8
H
H
H
L
L
L
A7  
A8  
EN  
GND  
GND  
GND  
Figure 36. 1.8 V to 3.3 V 8-Bit Level Translation Circuit  
When the application requires level translation between a  
microprocessor and multiple peripheral devices, the ADG3300  
Y I/O pins (Y1 to Y8) can be three-stated by setting EN = 0.  
This feature allows the ADG3300 to share the data buses with  
Rev. 0 | Page 17 of 20  
 
 
 
ADG3300  
OUTLINE DIMENSIONS  
6.60  
6.50  
6.40  
20  
11  
10  
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65  
BSC  
1.20 MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-153AC  
Figure 38 . 20-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-20)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADG3300BRUZ1  
ADG3300BRUZ-REEL1  
ADG3300BRUZ-REEL71  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
RU-20  
RU-20  
TSSOP  
TSSOP  
TSSOP  
RU-20  
1 Z = Pb-free part.  
Rev. 0 | Page 18 of 20  
 
 
ADG3300  
NOTES  
Rev. 0 | Page 19 of 20  
ADG3300  
NOTES  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05061–0–4/05(0)  
Rev. 0 | Page 20 of 20  

相关型号:

ADG3301

Low Voltage 1.15 V to 5.5 V, Single-Channel Bidirectional Logic Level Translator
ADI

ADG3301BKSZ-REEL

Low Voltage 1.15 V to 5.5 V, Single-Channel Bidirectional Logic Level Translator
ADI

ADG3301BKSZ-REEL7

Low Voltage 1.15 V to 5.5 V, Single-Channel Bidirectional Logic Level Translator
ADI

ADG3304

Low Voltage 1.2 V to 5.5 V, Bidirectional, Logic Level Translators
ADI

ADG3304BCB

Low Voltage 1.2 V to 5.5 V, Bidirectional, Logic Level Translators
ADI

ADG3304BCBZ-REEL

Low Voltage, 1.15 V to 5.5 V, 4-Channel, Bidirectional Logic Level Translator
ADI

ADG3304BCBZ-REEL7

Low Voltage, 1.15 V to 5.5 V, 4-Channel, Bidirectional Logic Level Translator
ADI

ADG3304BCPZ-REEL

Low Voltage, 1.15 V to 5.5 V, 4-Channel, Bidirectional Logic Level Translator
ADI

ADG3304BCPZ-REEL7

Low Voltage, 1.15 V to 5.5 V, 4-Channel, Bidirectional Logic Level Translator
ADI

ADG3304BRU

Low Voltage 1.2 V to 5.5 V, Bidirectional, Logic Level Translators
ADI

ADG3304BRUZ

Low Voltage, 1.15 V to 5.5 V, 4-Channel, Bidirectional Logic Level Translator
ADI

ADG3304BRUZ-REEL

Low Voltage, 1.15 V to 5.5 V, 4-Channel, Bidirectional Logic Level Translator
ADI