ADG3301BKSZ-REEL7 [ADI]

Low Voltage 1.15 V to 5.5 V, Single-Channel Bidirectional Logic Level Translator; 低电压1.15 V至5.5 V ,单通道双向逻辑电平转换器
ADG3301BKSZ-REEL7
型号: ADG3301BKSZ-REEL7
厂家: ADI    ADI
描述:

Low Voltage 1.15 V to 5.5 V, Single-Channel Bidirectional Logic Level Translator
低电压1.15 V至5.5 V ,单通道双向逻辑电平转换器

转换器 电平转换器
文件: 总20页 (文件大小:785K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Voltage 1.15 V to 5.5 V, Single-Channel  
Bidirectional Logic Level Translator  
ADG3301  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Bidirectional level translation  
Operates from 1.15 V to 5.5 V  
Low quiescent current < 5 µA  
No direction pin  
V
V
CCY  
CCA  
A
Y
EN  
APPLICATIONS  
ADG3301  
SPI®, MICROWIRE® level translation  
Low voltage ASIC level translation  
Smart card readers  
GND  
Figure 1.  
Cell phones and cell phone cradles  
Portable communication devices  
Telecommunications equipment  
Network switches and routers  
Storage systems (SAN/NAS)  
Computing/server applications  
GPS  
Portable POS systems  
Low cost serial interfaces  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
The ADG3301 is a single-channel, bidirectional logic level  
translator. It can be used in multivoltage digital system applica-  
tions such as data transfer between a low voltage DSP/controller  
and a higher voltage device. The internal architecture allows the  
device to perform bidirectional logic level translation without an  
additional signal to set the direction in which the translation  
takes place.  
1. Bidirectional level translation.  
2. Fully guaranteed over the 1.15 V to 5.5 V supply range.  
3. No direction pin.  
4. Compact 6-lead SC70 package.  
The voltage applied to VCCA sets the logic levels on the A side of  
the device, while VCCY sets the levels on the Y side. For proper  
operation, VCCA must always be less than VCCY. The VCCA  
-
compatible logic signals applied to the A pin appear as VCCY  
-
compatible levels on the Y pin. Similarly, VCCY-compatible logic  
levels applied to the Y pin appear as VCCA-compatible logic levels  
on the A pin. The enable pin (EN) provides three-state operation  
on both the A pin and the Y pin. When the device enable pin is  
pulled low, the terminals on both sides of the device are in the  
high impedance state. The EN pin is referred to the VCCA supply  
voltage and driven high for normal operation.  
The ADG3301 is available in a compact 6-lead SC70 package  
and is guaranteed to operate over the 1.15 V to 5.5 V supply  
voltage range and extended −40°C to +85°C temperature range.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
 
ADG3301  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Test Circuits ..................................................................................... 12  
Terminology .................................................................................... 15  
Theory of Operation ...................................................................... 16  
Level Translator Architecture ................................................... 16  
Input Driving Requirements..................................................... 16  
Output Load Requirements ...................................................... 16  
Enable Operation ....................................................................... 16  
Power Supplies............................................................................ 16  
Data Rate ..................................................................................... 17  
Applications..................................................................................... 18  
Layout Guidelines....................................................................... 18  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
REVISION HISTORY  
12/05—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
ADG3301  
SPECIFICATIONS  
VCCY = 1.65 V to 5.5 V, VCCA = 1.15 V to VCCY, GND = 0 V. All specifications TMIN to TMAX, unless otherwise noted.  
Table 1.  
Parameter1  
Symbol  
Conditions  
Min  
Typ2 Max  
Unit  
LOGIC INPUTS/OUTPUTS  
A Side  
Input High Voltage3  
VIHA  
VIHA  
VILA  
VOHA  
VOLA  
CA  
VCCA = 1.15 V  
VCCA = 1.2 V to 5.5 V  
VCCA − 0.3  
0.65 × VCCA  
V
Input Low Voltage3  
Output High Voltage  
Output Low Voltage  
Capacitance3  
0.35 × VCCA  
V
V
V
pF  
µA  
VY = VCCY, IOH = 20 µA, see Figure 27  
VY = 0 V, IOL = 20 µA, see Figure 27  
f = 1 MHz, EN = 0, see Figure 32  
VA = 0 V/VCCA, EN = 0, see Figure 29  
VCCA − 0.4  
0.4  
9
Leakage Current  
ILA, HiZ  
1
Y Side  
Input High Voltage3  
Input Low Voltage3  
Output High Voltage  
Output Low Voltage  
Capacitance3  
VIHY  
VILY  
VOHY  
VOLY  
CY  
0.65 × VCCY  
VCCY − 0.4  
V
V
V
V
pF  
µA  
0.35 × VCCY  
VA = VCCA, IOH = 20 µA, see Figure 28  
VA = 0 V, IOL = 20 µA, see Figure 28  
f = 1 MHz, EN = 0, see Figure 33  
VY = 0 V/VCCY, EN = 0, see Figure 30  
0.4  
1
6
Leakage Current  
Enable (EN)  
ILY, HiZ  
Input High Voltage3  
VIHEN  
VIHEN  
VILEN  
ILEN  
CEN  
tEN  
VCCA = 1.15 V  
VCCA = 1.2 V to 5.5 V  
VCCA − 0.3  
0.65 × VCCA  
V
V
V
µA  
pF  
µs  
Input Low Voltage3  
Leakage Current  
Capacitance3  
0.35 × VCCA  
1
VEN = 0 V/VCCA, VA = 0 V, see Figure 31  
3
1
Enable Time3  
1.8  
RS = RT = 50 Ω, VA = 0 V/VCCA (AY),  
VY = 0 V/VCCY (YA), see Figure 34  
SWITCHING CHARACTERISTICS3  
3.3 V 0.3 V ≤ VCCA ≤ VCCY, VCCY = 5 V 0.5 V  
AY Level Translation  
RS = RT = 50 Ω, CL = 50 pF,  
see Figure 35  
Propagation Delay  
Rise Time  
6
2
2
10  
ns  
tP, A  
Y
3.5  
3.5  
ns  
tR, A  
Y
Fall Time  
ns  
tF, A  
Y
Maximum Data Rate  
Part-to-Part Skew  
YA Level Translation  
50  
50  
Mbps  
ns  
DMAX, A  
Y
3
tPPSKEW, A  
Y
RS = RT = 50 Ω, CL = 15 pF,  
see Figure 36  
Propagation Delay  
Rise Time  
4
1
3
7
3
7
ns  
tP, Y  
A
ns  
tR, Y  
A
Fall Time  
ns  
tF, Y  
A
Maximum Data Rate  
Part-to-Part Skew  
Mbps  
ns  
DMAX, Y  
A
2
tPPSKEW, Y  
A
1.8 V 0.15 V ≤ VCCA ≤ VCCY, VCCY = 3.3 V 0.3 V  
AY Translation  
RS = RT = 50 Ω, CL = 50 pF,  
see Figure 35  
Propagation Delay  
Rise Time  
8
2
2
11  
5
ns  
tP, A  
Y
ns  
tR, A  
Y
Fall Time  
5
ns  
tF, A  
Y
Maximum Data Rate  
Part-to-Part Skew  
50  
Mbps  
ns  
DMAX, A  
Y
4
tPPSKEW, A  
Y
Rev. 0 | Page 3 of 20  
 
 
 
ADG3301  
Parameter1  
Symbol  
Conditions  
Min  
Typ2 Max  
Unit  
RS = RT = 50 Ω, CL = 15 pF,  
see Figure 36  
YA Translation  
Propagation Delay  
Rise Time  
5
2
2
8
ns  
tP, Y  
A
3.5  
3.5  
ns  
tR, Y  
A
Fall Time  
ns  
tF, Y  
A
Maximum Data Rate  
Part-to-Part Skew  
50  
Mbps  
ns  
DMAX, Y  
A
3
tPPSKEW, Y  
A
1.15 V to 1.3 V ≤ VCCA ≤ VCCY, VCCY = 3.3 V 0.3 V  
AY Translation  
RS = RT = 50 Ω, CL = 50 pF,  
see Figure 35  
Propagation Delay  
Rise Time  
9
3
2
18  
5
ns  
tP, A  
Y
ns  
tR, A  
Y
Fall Time  
5
ns  
tF, A  
Y
Maximum Data Rate  
Part-to-Part Skew  
YA Translation  
40  
40  
Mbps  
ns  
DMAX, A  
Y
10  
tPPSKEW, A  
Y
RS = RT = 50 Ω, CL = 15 pF,  
see Figure 36  
Propagation Delay  
Rise Time  
5
2
2
9
4
4
ns  
tP, Y  
A
ns  
tR, Y  
A
Fall Time  
ns  
tF, Y  
A
Maximum Data Rate  
Part-to-Part Skew  
Mbps  
ns  
DMAX, Y  
A
4
tPPSKEW, Y  
A
1.15 V to 1.3 V ≤ VCCA ≤ VCCY, VCCY = 1.8 V 0.3 V  
AY Translation  
RS = RT = 50 Ω, CL = 50 pF,  
see Figure 35  
Propagation Delay  
Rise Time  
12  
7
25  
12  
5
ns  
tP, A  
Y
ns  
tR, A  
Y
Fall Time  
3
ns  
tF, A  
Y
Maximum Data Rate  
Part-to-Part Skew  
YA Translation  
25  
25  
Mbps  
ns  
DMAX, A  
Y
15  
tPPSKEW, A  
Y
RS = RT = 50 Ω, CL = 15 pF,  
see Figure 36  
Propagation Delay  
Rise Time  
14  
5
35  
16  
6.5  
ns  
tP, Y  
A
ns  
tR, Y  
A
Fall Time  
2.5  
ns  
tF, Y  
A
Maximum Data Rate  
Part-to-Part Skew  
Mbps  
ns  
DMAX, Y  
A
23.5  
tPPSKEW, Y  
A
2.5 V 0.2 V ≤ VCCA ≤ VCCY, VCCY = 3.3 V 0.3 V  
AY Translation  
RS = RT = 50 Ω, CL = 50 pF,  
see Figure 35  
Propagation Delay  
Rise Time  
7
10  
4
ns  
tP, A  
Y
2.5  
2
ns  
tR, A  
Y
Fall Time  
5
ns  
tF, A  
Y
Maximum Data Rate  
Part-to-Part Skew  
YA Translation  
60  
60  
Mbps  
ns  
DMAX, A  
Y
4
tPPSKEW, A  
Y
RS = RT = 50 Ω, CL = 15 pF,  
see Figure 36  
Propagation Delay  
Rise Time  
5
1
3
8
4
5
ns  
tP, Y  
A
ns  
tR, Y  
A
Fall Time  
ns  
tF, Y  
A
Maximum Data Rate  
Part-to-Part Skew  
Mbps  
ns  
DMAX, Y  
A
3
tPPSKEW, Y  
A
Rev. 0 | Page 4 of 20  
ADG3301  
Parameter1  
Symbol  
Conditions  
Min  
Typ2 Max  
Unit  
POWER REQUIREMENTS  
Power Supply Voltages  
VCCA  
VCCY  
ICCA  
VCCA ≤ VCCY  
1.15  
1.65  
5.5  
5.5  
5
V
V
µA  
Quiescent Power Supply Current  
VA = 0 V/VCCA, VY = 0 V/VCCY  
VCCA = VCCY = 5.5 V, EN = 1  
VA = 0 V/VCCA, VY = 0 V/VCCY  
,
0.17  
0.27  
ICCY  
,
5
µA  
VCCA = VCCY = 5.5 V, EN = 1  
Three-State Mode Power Supply Current  
IHiZA  
IHiZY  
VCCA = VCCY = 5.5 V, EN = 0  
VCCA = VCCY = 5.5 V, EN = 0  
0.1  
0.1  
5
5
µA  
µA  
1 Temperature range for the B version is −40°C to +85°C.  
2 All typical values are at TA = 25°C, unless otherwise noted.  
3 Guaranteed by design, not subject to production test.  
Rev. 0 | Page 5 of 20  
ADG3301  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VCCA to GND  
−0.3 V to +7 V  
VCCY to GND  
VCCA to +7 V  
Digital Inputs (A)  
Digital Inputs (Y)  
EN to GND  
−0.3 V to VCCA + 0.3 V  
−0.3 V to VCCY + 0.3 V  
−0.3 V to +7 V  
Operating Temperature Range  
Industrial (B Version)  
Storage Temperature Range  
Junction Temperature  
θJA Thermal Impedance (4-Layer Board)  
6-Lead SC70  
Only one absolute maximum rating may be applied at any one  
time.  
−40°C to +85°C  
−65°C to +150°C  
150°C  
494.1°C/W  
300°C  
260(+0/−5)°C  
Lead Temperature, Soldering (10 sec)  
IR Reflow, Peak Temperature (< 20 sec)  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 6 of 20  
 
 
ADG3301  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
V
1
2
3
6
5
4
V
Y
CCA  
CCY  
ADG3301  
A
TOP VIEW  
(Not to Scale)  
GND  
EN  
Figure 2. Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
Power Supply Voltage Input for the A I/O Pin (1.15 V ≤ VCCA ≤ VCCY).  
1
2
3
4
5
6
VCCA  
A
GND  
EN  
Y
Input/Output A. Referenced to VCCA  
.
Ground (0 V).  
Active High Enable Input.  
Input/Output Y. Referenced to VCCY  
.
VCCY  
Power Supply Voltage Input for the Y I/O Pin (1.65 V ≤ VCCY ≤ 5.5V).  
Rev. 0 | Page 7 of 20  
 
ADG3301  
TYPICAL PERFORMANCE CHARACTERISTICS  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.0  
T
= 25°C  
A
T = 25°C  
A
1 CHANNEL  
= 50pF  
1 CHANNEL  
C = 15pF  
L
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
C
L
V
= 3.3V, V  
= 5V  
CCY  
CCA  
V
= 3.3V, V  
= 5V  
CCY  
CCA  
V
= 1.8V, V  
= 3.3V  
CCY  
CCA  
V
= 1.8V, V  
= 3.3V  
CCA  
CCY  
40  
V
= 1.2V, V  
= 1.8V  
40  
V
= 1.2V, V  
= 1.8V  
CCA  
CCY  
35  
CCA  
25  
DATA RATE (Mbps)  
CCY  
0
5
10  
15  
20  
30  
35  
45  
50  
0
5
10  
15  
20  
25  
30  
45  
50  
DATA RATE (Mbps)  
Figure 6. ICCY vs. Data Rate (YA Level Translation)  
Figure 3. ICCA vs. Data Rate (AY Level Translation)  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
10  
T
= 25°C  
T
= 25°C  
A
A
1 CHANNEL  
C
1 CHANNEL  
V
V
9
8
7
6
5
4
3
2
1
0
= 50pF  
= 1.2V  
= 1.8V  
L
CCA  
CCY  
20Mbps  
V
= 3.3V, V  
= 5V  
CCY  
CCA  
10Mbps  
5Mbps  
V
= 1.8V, V = 3.3V  
CCY  
CCA  
V
= 1.2V, V  
= 1.8V  
CCY  
CCA  
1Mbps  
53  
13  
23  
33  
43  
63  
73  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
DATA RATE (Mbps)  
CAPACITIVE LOAD (pF)  
Figure 4. ICCY vs. Data Rate (AY Level Translation)  
Figure 7. ICCY vs. Capacitive Load at Pin Y for AY  
(1.2 V1.8 V) Level Translation  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.0  
T
= 25°C  
T
= 25°C  
A
A
1 CHANNEL  
C
1 CHANNEL  
V
V
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
= 15pF  
= 1.2V  
=1.8V  
L
CCA  
CCY  
V
= 3.3V, V  
= 5V  
CCY  
CCA  
20Mbps  
V
= 1.8V, V  
= 3.3V  
CCA  
CCY  
40  
10Mbps  
5Mbps  
V
= 1.2V, V  
= 1.8V  
CCA  
CCY  
1Mbps  
0
5
10  
15  
20  
25  
30  
35  
45  
50  
13  
23  
33  
CAPACITIVE LOAD (pF)  
43  
53  
DATA RATE (Mbps)  
Figure 5. ICCA vs. Data Rate (YA Level Translation)  
Figure 8. ICCA vs. Capacitive Load at Pin A for YA  
(1.8 V1.2 V) Level Translation  
Rev. 0 | Page 8 of 20  
 
ADG3301  
9
8
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
T
= 25°C  
T
= 25°C  
A
A
1 CHANNEL  
V
V
1 CHANNEL  
V
V
= 1.8V  
= 3.3V  
= 3.3V  
= 5V  
CCA  
CCY  
CCA  
CCY  
50Mbps  
50Mbps  
30Mbps  
20Mbps  
30Mbps  
20Mbps  
10Mbps  
5Mbps  
10Mbps  
5Mbps  
63  
13  
23  
33  
43  
53  
73  
13  
23  
33  
43  
53  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
Figure 12. ICCA vs. Capacitive Load at Pin A for YA  
(5 V3.3 V) Level Translation  
Figure 9. ICCY vs. Capacitive Load at Pin Y for AY  
(1.8 V3.3 V) Level Translation  
10  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= 25°C  
T
= 25°C  
A
A
1 CHANNEL  
DATA RATE = 50kbps  
1 CHANNEL  
V
V
9
8
7
6
5
4
3
2
1
0
= 1.8V  
= 3.3V  
V
= 1.2V, V  
= 1.8V  
CCY  
CCA  
CCY  
CCA  
50Mbps  
30Mbps  
V
= 1.8V, V  
= 3.3V, V  
= 3.3V  
= 5V  
CCA  
CCY  
20Mbps  
10Mbps  
V
CCA  
CCY  
5Mbps  
13  
23  
33  
43  
53  
13  
23  
33  
43  
53  
63  
73  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
Figure 13. Rise Time vs. Capacitive Load at Pin Y  
Figure 10. ICCA vs. Capacitive Load at Pin A for YA  
(3.3 V1.8 V) Level Translation  
(AY Level Translation)  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
12  
T
= 25  
°
C
T
= 25°C  
A
A
1 CHANNEL  
V
V
1 CHANNEL  
DATA RATE = 50kbps  
50Mbps  
= 3.3V  
= 5V  
CCA  
CCY  
V
= 1.2V, V  
= 1.8V  
CCY  
CCA  
10  
8
30Mbps  
20Mbps  
V
= 1.8V, V  
= 3.3V  
CCY  
CCA  
6
4
V
= 3.3V, V  
= 5V  
CCY  
CCA  
10Mbps  
5Mbps  
2
0
13  
13  
23  
33  
43  
53  
63  
73  
23  
33  
43  
53  
63  
73  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
Figure 14. Fall Time vs. Capacitive Load at Pin Y  
Figure 11. ICCY vs. Capacitive Load at Pin Y for AY  
(3.3 V5 V) Level Translation  
(AY Level Translation)  
Rev. 0 | Page 9 of 20  
ADG3301  
10  
12  
10  
8
DATA RATE = 50kbps  
= 25°C  
T
= 25°C  
A
V
= 1.2V, V = 1.8V  
CCY  
T
CCA  
A
1 CHANNEL  
DATA RATE = 50kbps  
9
8
7
6
5
4
3
2
1
0
1 CHANNEL  
V
= 1.2V, V  
= 1.8V  
CCY  
CCA  
6
V
= 1.8V, V  
= 3.3V  
CCY  
CCA  
4
V
= 1.8V, V  
= 3.3V  
CCY  
CCA  
2
V
= 3.3V, V  
63  
= 5V  
73  
CCA  
CCY  
V
= 3.3V, V  
CCY  
= 5V  
53  
CCA  
0
13  
23  
33  
43  
53  
13  
18  
23  
28  
33  
38  
43  
48  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
Figure 15. Rise Time vs. Capacitive Load at Pin A  
Figure 18. Propagation Delay (tPHL) vs. Capacitive Load at Pin Y  
(YA Level Translation)  
(AY Level Translation)  
9
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= 25°C  
T
= 25°C  
A
A
1 CHANNEL  
DATA RATE = 50kbps  
1 CHANNEL  
DATA RATE = 50kbps  
8
7
6
5
4
3
2
1
0
V
= 1.2V, V = 1.8V  
CCY  
CCA  
V
= 1.2V, V  
= 1.8V  
CCY  
CCA  
V
= 1.8V, V  
= 3.3V  
CCY  
CCA  
V
V
= 1.8V, V  
= 3.3V  
CCY  
= 3.3V, V  
= 5V  
CCY  
CCA  
CCA  
V
= 3.3V, V  
43  
= 5V  
CCA  
CCY  
13  
18  
23  
28  
33  
38  
48  
53  
13  
18  
23  
28  
33  
38  
43  
48  
53  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
Figure 19. Propagation Delay (tPLH) vs. Capacitive Load at Pin A  
Figure 16. Fall Time vs. Capacitive Load at Pin A  
(YA Level Translation)  
(YA Level Translation)  
9
14  
12  
10  
8
T
= 25°C  
A
T
= 25°C  
A
1 CHANNEL  
DATA RATE = 50kbps  
1 CHANNEL  
DATA RATE = 50kbps  
8
7
6
5
4
3
2
1
0
V
= 1.2V, V  
= 1.8V  
CCY  
CCA  
V
= 1.2V, V  
= 1.8V  
CCY  
CCA  
6
V
= 1.8V, V  
= 3.3V  
CCY  
CCA  
V
= 1.8V, V  
= 3.3V  
CCA  
CCY  
4
V
= 3.3V, V  
= 5V  
CCY  
CCA  
V
= 3.3V, V  
= 5V  
CCY  
CCA  
2
0
13  
18  
23  
28  
33  
38  
43  
48  
53  
13  
23  
33  
43  
53  
63  
73  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
Figure 20. Propagation Delay (tPHL) vs. Capacitive Load at Pin A  
Figure 17. Propagation Delay (tPLH) vs. Capacitive Load at Pin Y  
(YA Level Translation)  
(AY Level Translation)  
Rev. 0 | Page 10 of 20  
ADG3301  
T
= 25°C  
A
T
= 25°C  
A
DATA RATE = 25Mbps  
= 50pF  
DATA RATE = 50Mbps  
C
1 CHANNEL  
C
L
= 15pF  
L
1 CHANNEL  
400mV/DIV  
5ns/DIV  
400mV/DIV  
3ns/DIV  
Figure 21. Eye Diagram at Y Output  
Figure 24. Eye Diagram at A Output  
(1.2 V to 1.8 V Level Translation, 25 Mbps)  
(3.3 V to 1.8 V Level Translation, 50 Mbps)  
T
= 25°C  
C
= 15pF  
T = 25°C  
A
DATA RATE = 50Mbps  
CL = 50pF  
A
L
DATA RATE = 25Mbps  
1 CHANNEL  
1 CHANNEL  
1V/DIV  
200mV/DIV  
3ns/DIV  
5ns/DIV  
Figure 22. Eye Diagram at A Output  
(1.8 V to 1.2 V Level Translation, 25 Mbps)  
Figure 25. Eye Diagram at Y Output  
(3.3 V to 5 V Level Translation, 50 Mbps)  
T = 25°C  
A
T
= 25°C  
C
= 50pF  
A
L
DATA RATE = 50Mbps  
= 15pF  
DATA RATE = 50Mbps 1 CHANNEL  
C
L
1 CHANNEL  
3ns/DIV  
500mV/DIV  
3ns/DIV  
800mV/DIV  
Figure 23. Eye Diagram at Y Output  
Figure 26. Eye Diagram at A Output  
(1.8 V to 3.3 V Level Translation, 50 Mbps)  
(5 V to 3.3 V Level Translation, 50 Mbps)  
Rev. 0 | Page 11 of 20  
ADG3301  
TEST CIRCUITS  
EN  
V
ADG3301  
CCY  
V
CCA  
0.1µF  
0.1µF  
EN  
V
Y
ADG3301  
CCY  
V
CCA  
A
Y
0.1µF  
0.1µF  
K2  
K1  
K
A
GND  
A
I
I
OL  
OH  
GND  
Figure 30. Three-State Leakage Current at Pin Y  
Figure 27. VOH/VOL Voltages at Pin A  
EN  
ADG3301  
V
CCA  
V
CCY  
0.1µF  
0.1µF  
V
ADG3301  
CCY  
V
CCA  
0.1µF  
K2  
A
Y
0.1µF  
K1  
Y
A
GND  
EN  
A
I
I
OH  
OL  
GND  
K
Figure 28. VOH/VOL Voltages at Pin Y  
Figure 31. EN Pin Leakage Current  
EN  
EN  
V
ADG3301  
CCY  
V
ADG3301  
CCY  
V
CCA  
V
CCA  
0.1µF  
0.1µF  
A
Y
Y
A
A
K
CAPACITANCE  
METER  
GND  
GND  
Figure 29. Three-State Leakage Current at Pin A  
Figure 32. Capacitance at Pin A  
EN  
V
Y
ADG3301  
CCY  
V
CCA  
A
CAPACITANCE  
METER  
GND  
Figure 33. Capacitance at Pin Y  
Rev. 0 | Page 12 of 20  
 
ADG3301  
A
Y DIRECTION  
V
V
CCA  
CCY  
ADG3301  
+
+
0.1µF  
10µF  
0.1µF  
10µF  
1MΩ  
A
Y
V
V
A
Y
K1  
K2  
50pF  
1MΩ  
SIGNAL SOURCE  
EN  
GND  
R
50Ω  
S
Z
= 50Ω  
0
V
EN  
R
T
50Ω  
Y
A DIRECTION  
V
V
CCA  
CCY  
ADG3301  
+
+
0.1µF  
10µF  
0.1µF  
10µF  
1MΩ  
A
Y
V
V
A
Y
K1  
K2  
15pF  
1MΩ  
SIGNAL SOURCE  
EN  
GND  
R
50Ω  
S
Z
= 50Ω  
0
V
EN  
R
T
50Ω  
V
CCA  
tEN1  
V
EN  
0V  
V
/V  
CCA CCY  
V
/V  
A
Y
A
0V  
V
/V  
CCY CCA  
90%  
V /V  
Y
0V  
V
CCA  
tEN2  
V
EN  
0V  
V
/V  
Y
A
V
/V  
CCA CCY  
0V  
V
/V  
CCY CCA  
V /V  
Y
A
10%  
0V  
NOTE:  
tEN IS THE LARGEST OF tEN1 AND tEN2 IN BOTH A Y AND Y A DIRECTIONS.  
Figure 34. Enable Time  
Rev. 0 | Page 13 of 20  
ADG3301  
V
CCY  
EN  
V
CCY  
ADG3301  
EN  
+
ADG3301  
V
+
CCA  
+
0.1µF  
10µF  
V
CCA  
0.1µF  
10µF  
SIGNAL  
SOURCE  
+
0.1µF  
= 50Ω  
10µF  
SIGNAL  
SOURCE  
0.1µF  
10µF  
R
S
R
S
Z
0
V
V
Y
A
50Ω  
A
Y
Z
= 50Ω  
50Ω  
0
Y
A
V
V
Y
A
R
50Ω  
T
R
50Ω  
50pF  
T
15pF  
GND  
GND  
V
V
A
V
V
Y
50%  
90%  
50%  
90%  
tP, AY  
tP, AY  
tP, YA  
tP, YA  
Y
A
50%  
10%  
50%  
10%  
tF, AY  
tR, AY  
tF, YA  
tR, YA  
Figure 35. Switching Characteristics (AY Level Translation)  
Figure 36. Switching Characteristics (YA Level Translation)  
Rev. 0 | Page 14 of 20  
ADG3301  
TERMINOLOGY  
VIHA  
tR, A→Y  
Logic input high voltage at Pin A.  
Rise time when translating logic levels in the AY direction.  
VILA  
tF, A→Y  
Logic input low voltage at Pin A.  
Fall time when translating logic levels in the AY direction.  
VOHA  
DMAX, A→Y  
Logic output high voltage at Pin A.  
Guaranteed data rate when translating logic levels in the AY  
direction under the driving and loading conditions specified in  
Table 1.  
VOLA  
Logic output low voltage at Pin A.  
tPPSKEW, A→Y  
CA  
Difference in propagation delay between any one channel and  
the same channel on a different part (under same  
driving/loading conditions) when translating in the AY  
direction.  
Capacitance measured at Pin A (EN = 0).  
ILA  
,
HiZ  
Leakage current at Pin A when EN = 0 (Pin A three-stated).  
tP, Y → A  
VIHY  
Propagation delay when translating logic levels in the YA  
direction.  
Logic input high voltage at Pin Y.  
VILY  
tR, Y→A  
Logic input low voltage at Pin Y.  
Rise time when translating logic levels in the YA direction.  
VOHY  
tF, Y→A  
Logic output high voltage at Pin Y.  
Fall time when translating logic levels in the YA direction.  
VOLY  
DMAX, Y→A  
Logic output low voltage at Pin Y.  
Guaranteed data rate when translating logic levels in the YA  
direction under the driving and loading conditions specified in  
Table 1.  
CY  
Capacitance measured at Pin Y (EN = 0).  
ILY, HiZ  
tPPSKEW, Y→A  
Leakage current at pin and when EN = 0 (Pin A three-stated).  
Difference in propagation delay between any one channel and  
the same channel on a different part (under the same driving/  
loading conditions) when translating in the YA direction.  
VIHEN  
Logic input high voltage at the EN pin.  
ICCA  
VILEN  
VCCA supply current.  
Logic input low voltage at the EN pin.  
ICCY  
CEN  
VCCY supply current.  
Capacitance measured at EN pin.  
IHiZA  
ILEN  
VCCA supply current during three-state mode (EN = 0).  
Enable (EN) pin leakage current.  
IHiZY  
tEN  
VCCY supply current during three-state mode (EN = 0).  
Three-state enable time for Pin A and Pin Y.  
tP, A → Y  
Propagation delay when translating logic levels in the AY  
direction.  
Rev. 0 | Page 15 of 20  
 
ADG3301  
THEORY OF OPERATION  
The ADG3301 level translator allows the level shifting  
INPUT DRIVING REQUIREMENTS  
necessary for data transfer in a system where multiple supply  
voltages are used. The device requires two supplies, VCCA and  
VCCY (VCCA ≤ VCCY). These supplies set the logic levels on each  
side of the device. When driving the A pin, the device translates  
the VCCA-compatible logic levels to VCCY-compatible logic levels  
available at the Y pin. Similarly, because the device is capable of  
bidirectional translation, when driving the Y pin the VCCY-com-  
patible logic levels are translated to VCCA-compatible logic levels  
available at the A pin. When EN = 0, the A pin and the Y pin  
are three-stated. When EN is driven high, the ADG3301 goes  
into normal operation mode and performs level translation.  
To ensure correct operation of the ADG3301, the circuit that  
drives the input of an ADG3301 channel must have an output  
impedance of less than or equal to 150 Ω and a minimum peak  
current driving capability of 36 mA.  
OUTPUT LOAD REQUIREMENTS  
The ADG3301 level translator is designed to drive CMOS-  
compatible loads. If current driving capability is required, it is  
recommended to use buffers between the ADG3301 outputs  
and the load.  
ENABLE OPERATION  
LEVEL TRANSLATOR ARCHITECTURE  
The ADG3301 provides three-state operation at the A I/O pin  
and Y I/O pin by using the enable (EN) pin as shown in Table 4.  
The ADG3301 consists of a single bidirectional channel that can  
translate logic levels in either the AY or the YA direction.  
It uses a one-shot accelerator architecture that ensures excellent  
switching characteristics. Figure 37 shows a simplified block  
diagram of the ADG3301 level translator.  
Table 4. Truth Table  
EN  
Y I/O Pin  
A I/O Pin  
0
1
Hi-Z1  
Hi-Z1  
Normal operation2  
Normal operation2  
V
V
CCY  
CCA  
1 High impedance state.  
2 In normal operation, the ADG3301 performs level translation.  
T1  
T2  
While EN = 0, the ADG3301 enters into tri-state mode. In this  
mode, the current consumption from both the VCCA and VCCY  
supplies is reduced, allowing the user to save power, which is  
critical especially on battery-operated systems. The EN input pin  
can be driven with either VCCA- or VCCY-compatible logic levels.  
6k  
U1  
U2  
P
Y
A
ONE-SHOT GENERATOR  
N
POWER SUPPLIES  
For proper operation of the ADG3301, the voltage applied to  
the VCCA must be always less than or equal to the voltage applied  
to VCCY. To meet this condition, the recommended power-up  
sequence is VCCY first and then VCCA. The ADG3301 operates  
properly only after both supply voltages reach their nominal  
values. It is not recommended to use the part in a system where,  
during power-up, VCCA may be greater than VCCY due to a  
significant increase in the current taken from the VCCA supply  
For optimum performance, the VCCA and VCCY pins should be  
decoupled to GND, and placed as close as possible to the device.  
U4  
U3  
6kΩ  
T4  
T3  
Figure 37. Simplified Block Diagram of an ADG3301 Channel  
The logic level translation in the AY direction is performed  
using a level translator (U1) and an inverter (U2), while the  
translation in the YA direction is performed using the  
inverters U3 and U4. The one-shot generator detects a rising  
or falling edge present on either the A side or the Y side of the  
channel. It sends a short pulse that turns on the PMOS transis-  
tors (T1 and T2) for a rising edge, or the NMOS transistors  
(T3 and T4) for a falling edge. This charges/discharges the  
capacitive load faster, which results in fast rise and fall times.  
Rev. 0 | Page 16 of 20  
 
 
 
ADG3301  
power dissipation (the junction temperature does not exceed  
the value specified under the Absolute Maximum Ratings  
section).  
DATA RATE  
The maximum data rate at which the device is guaranteed to  
operate is a function of the VCCA and VCCY supply voltage combi-  
nation and the load capacitance. It represents the maximum  
frequency of a square wave that can be applied to the I/O pins,  
which ensures that the device operates within the datasheet  
specifications in terms of output voltage (VOL and VOH) and  
Table 5 shows the guaranteed data rates at which the ADG3301  
can operate in both directions (AY or YA level translation)  
for various VCCA and VCCY supply combinations.  
Table 5. Guaranteed Data Rate (Mbps)1  
VCCY  
1.8 V  
(1.65 V to 1.95 V)  
2.5 V  
(2.3 V to 2.7 V)  
3.3 V  
(3.0 V to 3.6 V)  
5 V  
VCCA  
(4.5 V to 5.5 V)  
1.2 V (1.15 V to 1.3 V)  
1.8 V (1.65 V to 1.95 V)  
2.5 V (2.3 V to 2.7 V)  
3.3 V (3.0 V to 3.6 V)  
5 V (4.5 V to 5.5 V)  
25  
30  
45  
40  
50  
60  
40  
50  
50  
50  
1 The load capacitance used is 50 pF when translating in the AY direction and 15 pF when translating in the YA direction.  
Rev. 0 | Page 17 of 20  
 
 
ADG3301  
APPLICATIONS  
The ADG3301 is designed for digital circuits that operate at  
different supply voltages; therefore, logic level translation is  
required. The lower voltage logic signals are connected to the  
A pin, and the higher voltage logic signals are connected to the  
Y pin. The ADG3301 can provide level translation in both  
directions from AY or YA, eliminating the need for a level  
translator IC for each direction. The internal architecture allows  
the ADG3301 to perform bidirectional level translation without  
an additional signal to set the direction in which the translation  
is made. This simplifies the design by eliminating the timing  
requirements for the direction signal and reduces the number of  
ICs used for level translation.  
LAYOUT GUIDELINES  
As with any high speed digital IC, the printed circuit board  
layout is important for the overall performance of the circuit.  
Care should be taken to ensure proper power supply bypass and  
return paths for the high speed signals. Each VCC pin (VCCA and  
VCCY) should be bypassed using low effective series resistance  
(ESR) and effective series inductance (ESI) capacitors placed as  
close as possible to the VCCA and VCCY pins. The parasitic induc-  
tance of the high-speed signal track might cause significant  
overshoot. This effect can be reduced by keeping the length of  
the tracks as short as possible. A solid copper plane for the  
return path (GND) is also recommended.  
Figure 38 shows an application where a 1.8 V microprocessor  
transfers data to or from a 3.3 V peripheral device using the  
ADG3301 level translator.  
100nF  
100nF  
1
2
3
V
V
6
5
4
CCA  
CCY  
1.8V  
3.3V  
ADG3301  
A
Y
I/O  
I/O  
H
L
MICROPROCESSOR/  
MICROCONTROLLER/  
DSP  
PERIPHERAL  
DEVICE  
GND  
EN  
GND  
GND  
Figure 38 1.8 V to 3.3 V Level Translation Circuit  
Rev. 0 | Page 18 of 20  
 
 
ADG3301  
OUTLINE DIMENSIONS  
2.20  
2.00  
1.80  
2.40  
2.10  
1.80  
6
1
5
2
4
3
1.35  
1.25  
1.15  
PIN 1  
1.30 BSC  
0.65 BSC  
1.00  
0.90  
0.70  
0.40  
0.10  
1.10  
0.80  
0.30  
0.10  
0.30  
0.15  
0.22  
0.08  
0.10 MAX  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-203-AB  
Figure 39. 6-Lead Thin Shrink Small Outline Transistor Package [SC70]  
(KS-6)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADG3301BKSZ-REEL2  
ADG3301BKSZ-REEL72  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Branding1 Package Option  
6-Lead Thin Shrink Small Outline Transistor Package  
6-Lead Thin Shrink Small Outline Transistor Package  
S0H  
S0H  
KS-6  
KS-6  
1 Branding on this package is limited to three characters due to space constraints.  
2 Z = Pb-free part.  
Rev. 0 | Page 19 of 20  
 
 
ADG3301  
NOTES  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05517-0-12/05(0)  
Rev. 0 | Page 20 of 20  

相关型号:

ADG3304

Low Voltage 1.2 V to 5.5 V, Bidirectional, Logic Level Translators
ADI

ADG3304BCB

Low Voltage 1.2 V to 5.5 V, Bidirectional, Logic Level Translators
ADI

ADG3304BCBZ-REEL

Low Voltage, 1.15 V to 5.5 V, 4-Channel, Bidirectional Logic Level Translator
ADI

ADG3304BCBZ-REEL7

Low Voltage, 1.15 V to 5.5 V, 4-Channel, Bidirectional Logic Level Translator
ADI

ADG3304BCPZ-REEL

Low Voltage, 1.15 V to 5.5 V, 4-Channel, Bidirectional Logic Level Translator
ADI

ADG3304BCPZ-REEL7

Low Voltage, 1.15 V to 5.5 V, 4-Channel, Bidirectional Logic Level Translator
ADI

ADG3304BRU

Low Voltage 1.2 V to 5.5 V, Bidirectional, Logic Level Translators
ADI

ADG3304BRUZ

Low Voltage, 1.15 V to 5.5 V, 4-Channel, Bidirectional Logic Level Translator
ADI

ADG3304BRUZ-REEL

Low Voltage, 1.15 V to 5.5 V, 4-Channel, Bidirectional Logic Level Translator
ADI

ADG3304BRUZ-REEL7

Low Voltage, 1.15 V to 5.5 V, 4-Channel, Bidirectional Logic Level Translator
ADI

ADG3304SRU-EP-RL7

Low Voltage 1.15 V to 5.5 V, 4 Channel, Bidirectional, Logic Level Translator
ADI

ADG3304SRU-EP-RL7

SPECIALTY INTERFACE CIRCUIT, PDSO14, MO-153AB-1, TSSOP-14
ROCHESTER