ADG5412BF [ADI]

Bidirectional Fault Protection and Detection, 10 ohm RON, Quad SPST Switches;
ADG5412BF
型号: ADG5412BF
厂家: ADI    ADI
描述:

Bidirectional Fault Protection and Detection, 10 ohm RON, Quad SPST Switches

文件: 总28页 (文件大小:583K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Bidirectional Fault Protection and  
Detection, 10 Ω RON, Quad SPST Switches  
ADG5412BF/ADG5413BF  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
Overvoltage protection up to −55 V and +55 V  
Power-off protection up to −55 V and +55 V  
Overvoltage detection on source and drain pins  
Low on resistance: 10 Ω  
ADG5412BF  
D1  
D2  
D3  
D4  
S1  
S2  
S3  
S4  
On-resistance flatness of 0.5 Ω  
3 kV human body model (HBM) ESD rating  
Latch-up immune under any circumstance  
Known state without digital inputs present  
FAULT  
DETECTION  
+ SWITCH  
DRIVER  
FF  
VSS to VDD analog signal range  
5 V to 22 V dual-supply operation  
8 V to 44 V single-supply operation  
Fully specified at 15 V, 20 V, +12 V, and +36 V  
IN1 IN2 IN3 IN4  
NOTES  
1. SWITCHES SHOWN FOR A LOGIC 1 INPUT.  
Figure 1. ADG5412BF  
APPLICATIONS  
ADG5413BF  
Analog input/output modules  
Process control/distributed control systems  
Data acquisition  
D1  
S1  
D2  
D3  
D4  
S2  
S3  
S4  
Instrumentation  
Avionics  
FAULT  
DETECTION  
+ SWITCH  
DRIVER  
Automatic test equipment  
Communication systems  
Relay replacement  
FF  
IN1 IN2 IN3 IN4  
NOTES  
1. SWITCHES SHOWN FOR A LOGIC 1 INPUT.  
Figure 2. ADG5413BF  
GENERAL DESCRIPTION  
The ADG5412BF and ADG5413BF contain four independently  
controlled single-pole/single-throw (SPST) switches. The  
ADG5412BF has four switches that turn on with Logic 1 inputs.  
The ADG5413BF has two switches that turn on and two switches  
that turn off with Logic 1 inputs. Each switch conducts equally  
well in both directions when on, and each switch has an input  
signal range that extends to the supplies. The digital inputs are  
compatible with 3 V logic inputs over the full operating supply  
range.  
The low on resistance of these switches, combined with on-  
resistance flatness over a significant portion of the signal range  
make them an ideal solution for data acquisition and gain switching  
applications where excellent linearity and low distortion are critical.  
PRODUCT HIGHLIGHTS  
1. Switch pins are protected against voltages greater than the  
supply rails, up to −55 V and +55 V.  
2. Switch pins are protected against voltages between −55 V  
and +55 V, in an unpowered state.  
3. Overvoltage detection with digital output indicates  
operating state of switches.  
4. Trench isolation guards against latch-up.  
5. Optimized for low on resistance and on-resistance flatness.  
6. The ADG5412BF/ADG5413BF can be operated from a  
dual-supply of 5 V up to 22 V or a single power supply  
of 8 V up to 44 V.  
When no power supplies are present, the switch remains in the  
off condition, and the switch inputs are high impedance. Under  
normal operating conditions, if the analog input signal levels on  
any switch pin exceed VDD or VSS by a threshold voltage, VT, the  
switch turns off. Input signal levels up to +55 V and −55 V relative  
to ground are blocked, in both the powered and unpowered  
condition.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2016 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
ADG5412BF/ADG5413BF  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Test Circuits..................................................................................... 19  
Terminology.................................................................................... 23  
Theory of Operation ...................................................................... 2ꢀ  
Switch Architecture.................................................................... 2ꢀ  
Fault Protection .......................................................................... 26  
Applications Information.............................................................. 27  
Power Supply Rails..................................................................... 27  
Power Supply Sequencing Protection...................................... 27  
Signal Range................................................................................ 27  
Low Impedance Channel Protection....................................... 27  
High oltage Surge Suppression .............................................. 27  
Intelligent Fault Detection ........................................................ 27  
Large oltage, High Frequency Signals................................... 27  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 28  
Applications....................................................................................... 1  
Functional Block Diagrams............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
1ꢀ ꢁ Dual-Supply....................................................................... 3  
2ꢂ ꢁ Dual-Supply....................................................................... ꢀ  
12 ꢁ Single-Supply ....................................................................... 7  
36 ꢁ Single-Supply ....................................................................... 9  
Continuous Current per Channel, Sx or Dx........................... 11  
Absolute Maximum Ratings.......................................................... 12  
ESD Caution................................................................................ 12  
Pin Configuration and Function Descriptions........................... 13  
Typical Performance Characteristics ........................................... 14  
REVISION HISTORY  
1/16—Rev. A to Rev. B  
Changes to Table 6.......................................................................... 12  
Added Figure 4, Renumbered Sequentially ................................ 13  
Changes to Table 7.......................................................................... 13  
Changes to Figure 3ꢀ...................................................................... 19  
Changes to Figure ꢀꢂ...................................................................... 2ꢀ  
Changes to Applications Information Section ........................... 27  
Updated Outline Dimensions....................................................... 28  
Changes to Ordering Guide.......................................................... 28  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ ꢀ  
Changes to Table 3............................................................................ 7  
Changes to Table 4............................................................................ 9  
Changes to Switch Architecture Section ..................................... 2ꢀ  
3/15—Rev. 0 to Rev. A  
Added LFCSP Package.......................................................Universal  
Changes to Output Leakage Current, IS or ID/With Overvoltage  
Parameter, Table 3............................................................................. 7  
Changes to Output Leakage Current, IS or ID/With Overvoltage  
Parameter, Table 4............................................................................. 9  
7/14—Revision 0: Initial Version  
Rev. B | Page 2 of 28  
 
Data Sheet  
ADG5412BF/ADG5413BF  
SPECIFICATIONS  
±±15 5ꢀDUA-SDPPAY5  
VDD = 15 V 10%, VSS = −15 V 10%, ꢀGD = 0 V, CDECOUPLIGꢀ = 0.1 μF, unless otherwise noted.  
Table 1.  
−40°C5to5  
+81°C5  
−40°C5to5  
+±21°C5Dnit5 CTeosntd5 itions/Comments5  
Parameter5+21°C5  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
5
VDD = 13.5 V, VSS = −13.5 V, see Figure 32  
VS = 10 V, IS = −10 mA  
VS = 9 V, IS = −10 mA  
VDD to VSS  
16.5  
16  
V
10  
11.2  
9.5  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
V typ  
14  
10.7  
13.5  
0.6  
0.5  
1.1  
0.5  
On-Resistance Match Between Channels, ∆RON 0.05  
VS = 10 V, IS = −10 mA  
VS = 9 V, IS = −10 mA  
0.5  
0.05  
0.35  
0.6  
0.9  
0.1  
0.4  
0.7  
0.7  
0.5  
On-Resistance Flatness, RFLAT(ON)  
VS = 10 V, IS = −10 mA  
VS = 9 V, IS = −10 mA  
1.1  
0.5  
Threshold Voltage, VT  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
See Figure 28  
VDD = 16.5 V, VSS = −16.5 V  
VS = 10 V, VD = 10 V, see Figure 33  
0.1  
nA typ  
nA max  
nA typ  
nA max  
nA typ  
nA max  
1.5  
0.1  
1.5  
0.3  
2.0  
5.5  
5.5  
2.5  
24  
20  
5.5  
Drain Off Leakage, ID (Off)  
VS = 10 V, VD = 10 V, see Figure 33  
Channel On Leakage, ID (On), IS (On)  
VS = VD = 10 V, see Figure 34  
FAULT  
Input Leakage Current, IS or ID  
With Overvoltage  
78  
40  
μA typ  
μA typ  
VDD = 16.5 V, VSS = 16.5 V, GND = 0 V, VS  
or VD = 55 V, see Figure 37  
VDD = 0 V or floating, VSS = 0 V or  
floating, GND = 0 V, INx = 0 V or  
floating, VS or VD = 55 V, see Figure 38  
Power Supplies Grounded or Floating  
Output Leakage Current, IS or ID  
With Overvoltage  
20  
nA typ  
VDD = 16.5 V, VSS = 16.5 V, GND = 0 V, VS  
or VD = 55 V, see Figure 37  
200  
10  
250  
250  
nA max  
nA typ  
Power Supplies Grounded  
Power Supplies Floating  
VDD = 0 V, VSS = 0 V, GND = 0 V, VS or VD =  
55 V, INx = 0 V, see Figure 38  
30  
10  
50  
10  
100  
10  
nA max  
μA typ  
VDD = floating, VSS = floating, GND = 0 V,  
VS or VD = 55 V, INx = 0 V, see Figure 38  
DIGITAL INPUTS/OUTPUTS  
Input Voltage  
High, VINH  
Low, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
μA typ  
μA max  
pF typ  
0.7  
VIN = VGND or VDD  
1.2  
Digital Input Capacitance, CIN  
5.0  
Rev. B | Page 3 of 28  
 
 
ADG5412BF/ADG5413BF  
Data Sheet  
−40°C to  
+85°C  
−40°C to  
+125°C  
Parameter  
+25°C  
Unit  
Test Conditions/Comments  
Output Voltage  
High, VOH  
Low, VOL  
V min  
V min  
V max  
2.0  
0.8  
DYNAMIC CHARACTERISTICS1  
tON  
400  
495  
410  
510  
285  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 47  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 47  
RL = 300 Ω, CL = 35 pF  
525  
545  
550  
555  
tOFF  
Break-Before-Make Time Delay, tD  
(ADG5413BF Only)  
185  
630  
ns min  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
μs typ  
ns typ  
VS1 = VS2 = 10 V, see Figure 46  
RL = 1 kΩ, CL = 2 pF, see Figure 41  
Overvoltage Response Time, tRESPONSE  
Overvoltage Recovery Time, tRECOVERY  
460  
585  
720  
930  
85  
615  
RL = 1 kΩ, CL = 2 pF, see Figure 42  
1050  
1100  
115  
85  
Interrupt Flag Response Time, tDIGRESP  
Interrupt Flag Recovery Time, tDIGREC  
CL = 10 pF, see Figure 43  
CL = 10 pF, see Figure 44  
CL = 10 pF, RPULLUP = 1 kΩ, see  
Figure 45  
60  
600  
Charge Injection, QINJ  
Off Isolation  
−680  
−70  
pC typ  
dB typ  
VS = 0 V, RS = 0 Ω, CL = 1 nF, see Figure 48  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see  
Figure 35  
Channel-to-Channel Crosstalk  
−90  
dB typ  
% typ  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see  
Figure 36  
RL = 10 kΩ, VS = 15 V p-p, f = 20 Hz to  
20 kHz, see Figure 40  
Total Harmonic Distortion Plus Noise, THD + N  
0.0015  
−3 dB Bandwidth  
Insertion Loss  
270  
−0.72  
MHz typ  
dB typ  
RL = 50 Ω, CL = 5 pF, see Figure 39  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see  
Figure 39  
CS (Off)  
CD (Off)  
CD (On), CS (On)  
POWER REQUIREMENTS  
13  
12  
24  
pF typ  
pF typ  
pF typ  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
VDD = 16.5 V, VSS = −16.5 V, digital inputs =  
0 V, 5 V, or VDD  
Normal Mode  
IDD  
0.9  
1.2  
0.4  
0.55  
0.5  
mA typ  
mA max  
mA typ  
mA max  
mA typ  
μA max  
1.3  
0.6  
0.7  
IGND  
ISS  
0.65  
Fault Mode  
IDD  
VS = 55 V  
1.2  
1.6  
0.8  
1.0  
0.5  
1.0  
mA typ  
mA max  
mA typ  
mA max  
mA typ  
mA max  
V min  
1.8  
1.1  
IGND  
ISS  
1.8  
5
22  
VDD/VSS  
GND = 0 V  
GND = 0 V  
V max  
1 Guaranteed by design; not subject to production test.  
Rev. B | Page 4 of 28  
Data Sheet  
ADG5412BF/ADG5413BF  
±±20 0ꢀDUA-SDPPAY0  
VDD = 20 V ꢀ0%, VSS = −20 V ꢀ0%, ꢁGD = 0 V, CDECOUPLIGꢁ = 0.ꢀ μF, unless otherwise noted.  
Table 2.  
−42°C0to0  
+85°C0  
−42°C0to0  
+1±5°C0Dnit0 CoTensdti0tions/Comments0  
VDD = 18 V, VSS = −18 V, see  
Parameter0+±5°C0  
0
ANALOG SWITCH  
Figure 32  
Analog Signal Range  
On Resistance, RON  
VDD to VSS  
16.5  
16.5  
0.5  
V
10  
11.5  
9.5  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
V typ  
VS = 15 V, IS = −10 mA  
VS = 13.5 V, IS = −10 mA  
VS = 15 V, IS = −10 mA  
VS = 13.5 V, IS = −10 mA  
VS = 15 V, IS = −10 mA  
VS = 13.5 V, IS = −10 mA  
14.5  
14  
11  
On-Resistance Match Between Channels, ∆RON  
On-Resistance Flatness, RFLAT(ON)  
0.05  
0.35  
0.05  
0.35  
1.0  
1.4  
0.1  
0.4  
0.7  
0.5  
0.5  
1.5  
0.5  
0.5  
1.5  
0.5  
Threshold Voltage, VT  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
See Figure 28  
VDD = 22 V, VSS = −22 V  
VS = 15 V, VD = 15 V, see Figure 33  
0.1  
1.5  
0.1  
1.5  
0.3  
2.0  
nA typ  
nA max  
nA typ  
nA max  
nA typ  
nA max  
5.5  
5.5  
2.5  
24  
20  
5.5  
Drain Off Leakage, ID (Off)  
VS = 15 V, VD = 15 V, see Figure 33  
Channel On Leakage, ID (On), IS (On)  
VS = VD = 15 V, see Figure 34  
FAULT  
Input Leakage Current, IS or ID  
With Overvoltage  
78  
40  
μA typ  
μA typ  
VDD = 22 V, VSS = −22 V, GND = 0 V,  
VS or VD = 55 V, see Figure 37  
VDD = 0 V or floating, VSS = 0 V or  
floating, GND = 0 V, INx = 0 V or  
floating, VS or VD = 55 V, see  
Figure 38  
Power Supplies Grounded or Floating  
Output Leakage Current, IS or ID  
With Overvoltage  
0.4  
μA typ  
VDD = +22 V, VSS = −22 V, GND = 0 V,  
VS or VD = 55 V, see Figure 37  
1.0  
10  
1.0  
1.0  
μA max  
nA typ  
Power Supplies Grounded  
Power Supplies Floating  
VDD = 0 V, VSS = 0 V, GND = 0 V, VS or  
VD = 55 V, INx = 0 V, see Figure 38  
30  
10  
50  
10  
100  
10  
nA max  
μA typ  
VDD = floating, VSS = floating, GND  
= 0 V, VS or VD = 55 V, INx = 0 V,  
see Figure 38  
DIGITAL INPUTS  
Input Voltage  
High, VINH  
Low, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
μA typ  
μA max  
pF typ  
0.7  
5.0  
VIN = VGND or VDD  
1.2  
Digital Input Capacitance, CIN  
Rev. B | Page 5 of 28  
 
ADG5412BF/ADG5413BF  
Data Sheet  
−40°C to  
+85°C  
−40°C to  
+125°C  
Parameter  
+25°C  
Unit  
Test Conditions/Comments  
Output Voltage  
High, VOH  
Low, VOL  
2.0  
0.8  
V min  
V max  
DYNAMIC CHARACTERISTICS1  
tON  
400  
500  
415  
515  
295  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 47  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 47  
RL = 300 Ω, CL = 35 pF  
530  
550  
555  
565  
tOFF  
Break-Before-Make Time Delay, tD  
(ADG5413BF Only)  
200  
515  
ns min  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
μs typ  
ns typ  
VS1 = VS2 = 10 V, see Figure 46  
RL = 1 kΩ, CL = 2 pF, see Figure 41  
Overvoltage Response Time, tRESPONSE  
Overvoltage Recovery Time, tRECOVERY  
370  
480  
840  
1200  
85  
500  
RL = 1 kΩ, CL = 2 pF, see Figure 42  
1400  
1700  
115  
85  
Interrupt Flag Response Time, tDIGRESP  
Interrupt Flag Recovery Time, tDIGREC  
CL = 10 pF, see Figure 43  
CL = 10 pF, see Figure 44  
CL = 10 pF, RPULLUP = 1 kΩ, see  
Figure 45  
60  
600  
Charge Injection, QINJ  
−640  
−70  
pC typ  
dB typ  
dB typ  
% typ  
VS = 0 V, RS = 0 Ω, CL = 1 nF, see  
Figure 48  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see  
Figure 35  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see  
Figure 36  
RL = 10 kΩ, VS = 20 V p-p, f = 20 Hz  
to 20 kHz, see Figure 40  
Off Isolation  
Channel-to-Channel Crosstalk  
Total Harmonic Distortion Plus Noise, THD + N  
−90  
0.001  
−3 dB Bandwidth  
Insertion Loss  
270  
−0.73  
MHz typ  
dB typ  
RL = 50 Ω, CL = 5 pF, see Figure 39  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see  
Figure 39  
CS (Off)  
CD (Off)  
CD (On), CS (On)  
POWER REQUIREMENTS  
12  
11  
23  
pF typ  
pF typ  
pF typ  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
VDD = 22 V, VSS = −22 V, digital  
inputs = 0 V, 5 V, or VDD  
Normal Mode  
IDD  
0.9  
1.2  
0.4  
0.55  
0.5  
mA typ  
mA max  
mA typ  
mA max  
mA typ  
mA max  
1.3  
0.6  
0.7  
IGND  
ISS  
0.65  
Fault Mode  
IDD  
VS = 55 V  
1.2  
1.6  
0.8  
1.0  
0.5  
1.0  
mA typ  
mA max  
mA typ  
mA max  
mA typ  
mA max  
V min  
1.8  
1.1  
IGND  
ISS  
1.8  
5
22  
VDD/VSS  
GND = 0 V  
GND = 0 V  
V max  
1 Guaranteed by design; not subject to production test.  
Rev. B | Page 6 of 28  
Data Sheet  
ADG5412BF/ADG5413BF  
12 V SINGLE-SUPPLY  
VDD = 12 V 10%, VSS = 0 V, GND = 0 V, CDECOUPLING = 0.1 μF, unless otherwise noted.  
Table 3.  
−40°C to  
+25°C +85°C  
−40°C to  
+125°C  
Parameter  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD = 10.8 V, VSS = 0 V, see Figure 32  
0 V to VDD  
37  
V
22  
24.5  
10  
11.2  
0.05  
0.5  
0.05  
0.5  
12.5  
14.5  
0.6  
0.9  
0.7  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
V typ  
VS = 0 V to 10 V, IS = −10 mA  
VS = 3.5 V to 8.5 V, IS = −10 mA  
VS = 0 V to 10 V, IS = −10 mA  
VS = 3.5 V to 8.5 V, IS = −10 mA  
VS = 0 V to 10 V, IS = −10 mA  
VS = 3.5 V to 8.5 V, IS = −10 mA  
31  
14  
16.5  
0.7  
On-Resistance Match Between Channels, ∆RON  
On-Resistance Flatness, RFLAT(ON)  
0.6  
0.6  
19  
0.7  
23  
1.1  
1.3  
Threshold Voltage, VT  
LEAKAGE CURRENTS  
See Figure 28  
VDD = 13.2 V, VSS = 0 V  
Source Off Leakage, IS (Off)  
0.1  
1.5  
0.1  
1.5  
0.3  
2.0  
nA typ  
nA max  
nA typ  
nA max  
nA typ  
nA max  
VS = 1 V/10 V, VD = 10 V/1 V, see Figure 33  
5.5  
24  
20  
5.5  
Drain Off Leakage, ID (Off)  
VS = 1 V/10 V, VD = 10 V/1 V, see Figure 33  
VS = VD = 1 V/10 V, see Figure 34  
5.5  
2.5  
Channel On Leakage, ID (On), IS (On)  
FAULT  
Input Leakage Current, IS or ID  
With Overvoltage  
78  
40  
μA typ  
μA typ  
VDD = 13.2 V, VSS = 0 V, GND = 0 V, VS or  
VD = 55 V, see Figure 37  
VDD = 0 V or floating, VSS = 0 V or floating,  
GND = 0 V, INx = 0 V or floating, VS or  
VD = 55 V, see Figure 38  
Power Supplies Grounded or Floating  
Output Leakage Current, IS or ID  
With Overvoltage  
20  
nA typ  
VDD = 13.2 V, VSS = 0 V, GND = 0 V, VS or  
VD = 55 V, see Figure 37  
200  
10  
250  
250  
nA max  
nA typ  
Power Supplies Grounded  
Power Supplies Floating  
VDD = 0 V, VSS = 0 V, GND = 0 V, VS or VD =  
55 V, INx = 0 V, see Figure 38  
30  
10  
50  
10  
100  
10  
nA max  
μA typ  
VDD = floating, VSS = floating, GND = 0 V,  
VS or VD = 55 V, INx = 0 V, see Figure 38  
DIGITAL INPUTS  
Input Voltage  
High, VINH  
Low, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
μA typ  
μA max  
pF typ  
0.7  
5.0  
VIN = VGND or VDD  
1.2  
Digital Input Capacitance, CIN  
Output Voltage  
High, VOH  
2.0  
0.8  
V min  
V max  
Low, VOL  
Rev. B | Page 7 of 28  
 
ADG5412BF/ADG5413BF  
Data Sheet  
−40°C to  
+25°C +85°C  
−40°C to  
+125°C  
Parameter  
DYNAMIC CHARACTERISTICS1  
Unit  
Test Conditions/Comments  
tON  
400  
485  
375  
460  
260  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
RL = 300 Ω, CL = 35 pF  
VS = 8 V, see Figure 47  
RL = 300 Ω, CL = 35 pF  
VS = 8 V, see Figure 47  
RL = 300 Ω, CL = 35 pF  
515  
495  
540  
520  
tOFF  
Break-Before-Make Time Delay, tD  
(ADG5413BF Only)  
170  
720  
ns min  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
μs typ  
ns typ  
pC typ  
dB typ  
VS1 = VS2 = 8 V, see Figure 46  
RL = 1 kΩ, CL = 2 pF, see Figure 41  
Overvoltage Response Time, tRESPONSE  
Overvoltage Recovery Time, tRECOVERY  
560  
660  
640  
800  
85  
700  
865  
RL = 1 kΩ, CL = 2 pF, see Figure 42  
960  
115  
85  
Interrupt Flag Response Time, tDIGRESP  
Interrupt Flag Recovery Time, tDIGREC  
CL = 10 pF, see Figure 43  
CL = 10 pF, see Figure 44  
CL = 10 pF, RPULLUP = 1 kΩ, see Figure 45  
VS = 6 V, RS = 0 Ω, CL = 1 nF, see Figure 48  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see  
Figure 35  
60  
600  
−340  
−65  
Charge Injection, QINJ  
Off Isolation  
Channel-to-Channel Crosstalk  
−90  
dB typ  
% typ  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see  
Figure 36  
RL = 10 kΩ, VS = 6 V p-p, f = 20 Hz to  
20 kHz, see Figure 40  
Total Harmonic Distortion Plus Noise, THD + N  
0.007  
−3 dB Bandwidth  
Insertion Loss  
270  
−0.74  
MHz typ RL = 50 Ω, CL = 5 pF, see Figure 39  
dB typ  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see  
Figure 39  
CS (Off)  
CD (Off)  
CD (On), CS (On)  
POWER REQUIREMENTS  
16  
15  
25  
pF typ  
pF typ  
pF typ  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
VDD = 13.2 V, VSS = 0 V, digital inputs = 0 V,  
5 V, or VDD  
Normal Mode  
IDD  
0.9  
1.2  
0.4  
0.55  
0.5  
mA typ  
mA max  
mA typ  
mA max  
mA typ  
mA max  
1.3  
0.6  
0.7  
IGND  
ISS  
0.65  
Fault Mode  
IDD  
VS = 55 V  
1.2  
1.6  
0.8  
1.0  
0.5  
1.0  
mA typ  
mA max  
mA typ  
mA max  
mA typ  
mA max  
V min  
1.8  
1.1  
IGND  
ISS  
1.8  
8
44  
VDD  
VSS = GND = 0 V  
VSS = GND = 0 V  
V max  
1 Guaranteed by design; not subject to production test.  
Rev. B | Page 8 of 28  
Data Sheet  
ADG5412BF/ADG5413BF  
36 V SINGLE-SUPPLY  
VDD = 36 V ꢀ0%, VSS = 0 V, GND = 0 V, CDECOUPLING = 0.ꢀ μF, unless otherwise noted.  
Table 4.  
−40°C to  
+25°C +85°C  
−40°C to  
+125°C  
Parameter  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD = 32.4 V, VSS = 0 V, see Figure 32  
0 V to VDD  
37  
V
22  
24.5  
10  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
V typ  
VS = 0 V to 30 V, IS = −10 mA  
VS = 4.5 V to 28 V, IS = −10 mA  
VS = 0 V to 30 V, IS = −10 mA  
VS = 4.5 V to 28 V, IS = −10 mA  
VS = 0 V to 30 V, IS = −10 mA  
VS = 4.5 V to 28 V, IS = −10 mA  
31  
11  
14  
16.5  
0.7  
On-Resistance Match Between Channels, ∆RON 0.05  
0.5  
0.05  
0.35  
12.5  
14.5  
0.1  
0.6  
0.5  
19  
0.5  
On-Resistance Flatness, RFLAT(ON)  
23  
0.4  
0.7  
0.5  
0.5  
Threshold Voltage, VT  
LEAKAGE CURRENTS  
See Figure 28  
VDD = 39.6 V, VSS = 0 V  
Source Off Leakage, IS (Off)  
0.1  
nA typ  
VS = 1 V/30 V, VD = 30 V/1 V, see  
Figure 33  
1.5  
0.1  
5.5  
24  
nA max  
nA typ  
Drain Off Leakage, ID (Off)  
VS = 1 V/30 V, VD = 30 V/1 V, see  
Figure 33  
1.5  
0.3  
2.0  
5.5  
2.5  
20  
nA max  
nA typ  
nA max  
Channel On Leakage, ID (On), IS (On)  
VS = VD = 1 V/30 V, see Figure 34  
5.5  
FAULT  
Input Leakage Current, IS or ID  
With Overvoltage  
78  
40  
μA typ  
μA typ  
VDD = 39.6 V, VSS = 0 V, GND = 0 V, VS or  
VD = +55 V, −40 V, see Figure 37  
VDD = 0 V or floating, VSS = 0 V or  
floating, GND = 0 V, INx = 0 V or  
floating, VS or VD = 55 V, see Figure 38  
Power Supplies Grounded or Floating  
Output Leakage Current, IS or ID  
With Overvoltage  
20  
nA typ  
VDD = 39.6 V, VSS = 0 V, GND = 0 V, VS or  
VD = +55 V, −40 V, see Figure 37  
200  
10  
250  
250  
nA max  
nA typ  
Power Supplies Grounded  
Power Supplies Floating  
VDD = 0 V, VSS = 0 V, GND = 0 V, VS or  
VD = 55 V, INx = 0 V, see Figure 38  
30  
10  
50  
10  
100  
10  
nA max  
μA typ  
VDD = floating, VSS = floating, GND =  
0 V, VS or VD = 55 V, INx = 0 V, see  
Figure 38  
DIGITAL INPUTS  
Input Voltage  
High, VINH  
Low, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
μA typ  
μA max  
pF typ  
0.7  
5.0  
VIN = VGND or VDD  
1.2  
Digital Input Capacitance, CIN  
Rev. B | Page 9 of 28  
 
ADG5412BF/ADG5413BF  
Data Sheet  
−40°C to  
+25°C +85°C  
−40°C to  
+125°C  
Parameter  
Unit  
Test Conditions/Comments  
Output Voltage  
High, VOH  
Low, VOL  
2.0  
0.8  
V min  
V max  
DYNAMIC CHARACTERISTICS1  
tON  
400  
490  
375  
460  
285  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
RL = 300 Ω, CL = 35 pF  
VS = 18 V, see Figure 47  
RL = 300 Ω, CL = 35 pF  
VS = 18 V, see Figure 47  
RL = 300 Ω, CL = 35 pF  
520  
485  
545  
510  
tOFF  
Break-Before-Make Time Delay, tD  
(ADG5413BF Only)  
195  
375  
ns min  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
μs typ  
ns typ  
pC typ  
VS1 = VS2 = 18 V, see Figure 46  
RL = 1 kΩ, CL = 2 pF, see Figure 41  
Overvoltage Response Time, tRESPONSE  
Overvoltage Recovery Time, tRECOVERY  
250  
350  
1500  
2000  
85  
60  
600  
−610  
360  
RL = 1 kΩ, CL = 2 pF, see Figure 42  
2300  
2700  
115  
85  
Interrupt Flag Response Time, tDIGRESP  
Interrupt Flag Recovery Time, tDIGREC  
CL = 10 pF, see Figure 43  
CL = 10 pF, see Figure 44  
CL = 10 pF, RPULLUP = 1 kΩ, see Figure 45  
VS = 18 V, RS = 0 Ω, CL = 1 nF, see  
Figure 48  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see  
Figure 35  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see  
Figure 36  
RL = 10 kΩ, VS = 18 V p-p, f = 20 Hz to  
20 kHz, see Figure 40  
Charge Injection, QINJ  
Off Isolation  
−70  
−90  
dB typ  
dB typ  
% typ  
Channel-to-Channel Crosstalk  
Total Harmonic Distortion Plus Noise, THD + N 0.001  
−3 dB Bandwidth  
Insertion Loss  
270  
−0.75  
MHz typ  
dB typ  
RL = 50 Ω, CL = 5 pF, see Figure 39  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see  
Figure 39  
CS (Off)  
CD (Off)  
CD (On), CS (On)  
POWER REQUIREMENTS  
12  
11  
23  
pF typ  
pF typ  
pF typ  
VS = 18 V, f = 1 MHz  
VS = 18 V, f = 1 MHz  
VS = 18 V, f = 1 MHz  
VDD = 39.6 V, VSS = 0 V, digital inputs =  
0 V, 5 V, or VDD  
Normal Mode  
IDD  
0.9  
1.2  
0.4  
0.55  
0.5  
mA typ  
mA max  
mA typ  
mA max  
mA typ  
mA max  
1.3  
0.6  
0.7  
IGND  
ISS  
0.65  
Isolation Mode  
IDD  
VS = +55 V, −40 V  
1.2  
1.6  
0.8  
1.0  
0.5  
1.0  
mA typ  
mA max  
mA typ  
mA max  
mA typ  
mA max  
V min  
1.8  
1.1  
IGND  
ISS  
1.8  
8
44  
VDD  
VSS = GND = 0 V  
VSS = GND = 0 V  
V max  
1 Guaranteed by design; not subject to production test.  
Rev. B | Page 10 of 28  
Data Sheet  
ADG5412BF/ADG5413BF  
CONTINUOUS CURRENT PER CHANNEL, Sx OR Dx  
Table 5.  
Parameter  
25°C  
85°C  
125°C  
Unit  
Test Conditions/Comments  
16-LEAD TSSOP  
θJA = 112.6°C/W  
83  
64  
59  
48  
39  
29  
mA max  
mA max  
VS = VSS + 4.5 V to VDD − 4.5 V  
VS = VSS to VDD  
16-LEAD LFCSP  
θJA = 30.4°C/W  
152  
118  
99  
80  
61  
52  
mA max  
mA max  
VS = VSS + 4.5 V to VDD − 4.5 V  
VS = VSS to VDD  
Rev. B | Page 11 of 28  
 
 
ADG5412BF/ADG5413BF  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 6.  
Parameter  
VDD to VSS  
VDD to GND  
VSS to GND  
Sx and Dx  
Sx to VDD or VSS  
VS to VD  
Rating  
48 V  
−0.3 V to +48 V  
−48 V to +0.3 V  
−55 V to +55 V  
80 V  
Only one absolute maximum rating can be applied at any one time.  
ESD CAUTION  
80 V  
Digital Inputs  
GND − 0.7 V to +48 V or 30 mA,  
whichever occurs first  
Peak Current, Sx or Dx Pins  
288 mA (pulsed at 1 ms, 10%  
duty cycle maximum)  
Data1 + 15%  
Continuous Current, Sx or Dx  
Pins  
Digital Output  
GND − 0.7 V to 6 V or 30 mA,  
whichever occurs first  
Operating Temperature  
Range  
−40°C to +125°C  
Storage Temperature Range  
Junction Temperature  
−65°C to +150°C  
150°C  
Thermal Impedance, θJA  
(4-Layer Board)  
16-Lead TTSOP  
16-Lead LFSCP  
112.6°C/W  
30.4°C/W  
Reflow Soldering Peak  
Temperature, Pb Free  
As per JEDEC J-STD-020  
ESD (HBM: ANSI/ESD  
STM5.1-2007)  
I/O Port to Supplies  
I/O Port to I/O Port  
All Other Pins  
5.5 kV  
5.5 kV  
3 kV  
1 See Table 5.  
Rev. B | Page 12 of 28  
 
 
Data Sheet  
ADG5412BF/ADG5413BF  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
IN1  
D1  
S1  
IN2  
D2  
S2  
V
S1  
1
2
3
4
12  
11  
S2  
V
ADG5412BF/  
ADG5413BF  
TOP VIEW  
(Not to Scale)  
V
V
SS  
DD  
SS  
DD  
ADG5412BF/  
ADG5413BF  
GND  
FF  
S3  
D3  
IN3  
GND  
10 FF  
TOP VIEW  
9
S4  
S3  
S4  
D4  
IN4  
NOTES  
1. THE EXPOSED PAD IS INTERNALLY CONNECTED.  
FOR INCREASED RELIABILITY OF THE SOLDER JOINTS  
AND MAXIMUM THERMAL CAPABILITY, IT IS RECOMMENDED  
THAT THE PAD BE CONNECTED TO THE LOWEST SUPPLY VOLTAGE, V  
.
SS  
Figure 4. LFCSP Pin Configuration  
Figure 3. TSSOP Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
TSSOP LFCSP Mnemonic Description  
1
2
3
4
5
6
7
8
15  
16  
1
2
3
4
5
6
7
IN1  
D1  
S1  
VSS  
GND  
S4  
D4  
IN4  
IN3  
D3  
S3  
Logic Control Input.  
Overvoltage Protected Drain Terminal. This pin can be an input or an output.  
Overvoltage Protected Source Terminal. This pin can be an input or an output.  
Most Negative Power Supply Potential.  
Ground (0 V) Reference.  
Overvoltage Protected Source Terminal. This pin can be an input or an output.  
Overvoltage Protected Drain Terminal. This pin can be an input or an output.  
Logic Control Input.  
Logic Control Input.  
Overvoltage Protected Drain Terminal. This pin can be an input or an output.  
Overvoltage Protected Source Terminal. This pin can be an input or an output.  
9
10  
11  
12  
8
9
10  
FF  
Fault Flag Digital Output. This pin has a high output when the device is in normal operation or a low when  
a fault condition occurs on any of the Sx inputs.  
13  
14  
15  
16  
11  
12  
13  
14  
EP  
VDD  
S2  
D2  
IN2  
Exposed  
Pad  
Most Positive Power Supply Potential.  
Overvoltage Protected Source Terminal. This pin can be an input or an output.  
Overvoltage Protected Drain Terminal. This pin can be an input or an output.  
Logic Control Input.  
The exposed pad is internally connected. For increased reliability of the solder joints and maximum  
thermal capability, it is recommended that the pad be connected to the lowest supply voltage, VSS.  
Table 8. ADG5412BF Truth Table  
INx  
Switch Condition (S1 to S4)  
1
0
On  
Off  
Table 9. ADG5413BF Truth Table  
Switch Condition  
INx  
0
1
S1, S4  
S2, S3  
On  
Off  
Off  
On  
Rev. B | Page 13 of 28  
 
ADG5412BF/ADG5413BF  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
25  
40  
35  
30  
25  
20  
15  
10  
5
V
V
= +22V  
= –22V  
V
V
= +15V  
= –15V  
DD  
SS  
T
= 25°C  
DD  
A
SS  
V
V
= +20V  
= –20V  
DD  
SS  
20  
15  
10  
5
V
V
= +16.5V  
= –16.5V  
DD  
SS  
V
V
= +18V  
= –18V  
DD  
SS  
V
V
= +13.5V  
= –13.5V  
DD  
SS  
+125°C  
+85°C  
+25°C  
–40°C  
V
V
= +15V  
= –15V  
DD  
SS  
0
0
–25 –20 –15 –10  
–5  
0
5
10  
15  
20  
25  
14  
40  
–15 –12  
–9  
–6  
–3  
0
3
6
9
12  
15  
V , V (V)  
V , V (V)  
S D  
S
D
Figure 5. RON as a Function of VS,VD (Dual-Supply)  
Figure 8. RON as a Function of VS,VD for Different Temperatures,  
15 V Dual-Supply  
25  
20  
15  
10  
5
40  
V
V
= +20V  
= –20V  
T
= 25°C  
DD  
A
SS  
35  
30  
25  
20  
15  
10  
5
V
V
= 12V  
= 0V  
DD  
SS  
V
V
= 10.8V  
= 0V  
DD  
SS  
+125°C  
+85°C  
V
V
= 13.2V  
= 0V  
DD  
SS  
+25°C  
–40°C  
0
0
–20  
0
2
4
6
8
10  
12  
–15  
–10  
–5  
0
5
10  
15  
20  
V , V (V)  
V , V (V)  
S D  
S
D
Figure 6. RON as a Function of VS,VD (12 V Single-Supply)  
Figure 9. RON as a Function of VS,VD for Different Temperatures,  
2ꢀ V Dual-Supply  
25  
20  
15  
10  
5
40  
V
= 12V  
T
= 25°C  
DD  
A
V
= 0V  
SS  
35  
30  
25  
20  
15  
10  
5
V
V
= 36V  
= 0V  
DD  
SS  
V
V
= 32.4V  
= 0V  
DD  
SS  
+125°C  
+85°C  
+25°C  
–40°C  
V
V
= 39.6V  
= 0V  
DD  
SS  
0
0
0
5
10  
15  
20  
V , V (V)  
25  
30  
35  
0
2
4
6
8
10  
12  
V , V (V)  
S
D
S
D
Figure 7. RON as a Function of VS,VD (36 V Single-Supply)  
Figure 1ꢀ. RON as a Function of VS,VD for Different Temperatures,  
12 V Single-Supply  
Rev. B | Page 14 of 28  
 
Data Sheet  
ADG5412BF/ADG5413BF  
40  
35  
30  
25  
20  
15  
10  
5
2
1
V
V
= 36V  
DD  
= 0V  
SS  
0
V
V
V
= 12V  
= 0V  
DD  
SS  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
= 1V/10V  
BIAS  
+125°C  
+85°C  
+25°C  
–40°C  
I
I
(OFF) + –  
(OFF) – +  
I
I
(OFF) + –  
(OFF) – +  
S
S
D
D
I , I (ON) + +  
I , I (ON) – –  
S
D
S
D
0
0
4
8
12  
16  
20  
24  
28  
32  
36  
0
20  
40  
60  
80  
100  
120  
V , V (V)  
TEMPERATURE (°C)  
S
D
Figure 14. Leakage Current vs. Temperature, 12 V Single-Supply  
Figure 11. RON as a Function of VS,VD for Different Temperatures,  
36 V Single-Supply  
2
1
0
4
V
V
V
= 36V  
= 0V  
DD  
SS  
2
0
= 1V/30V  
BIAS  
V
V
V
= +15V  
= –15V  
DD  
SS  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
= +10V/–10V  
BIAS  
–2  
–4  
–6  
–8  
I
I
(OFF) + –  
(OFF) – +  
I
I
(OFF) + –  
(OFF) – +  
I
I
(OFF) + –  
(OFF) – +  
I
I
(OFF) + –  
(OFF) – +  
S
S
D
D
S
S
D
D
–10  
–12  
I , I (ON) + +  
I , I (ON) – –  
I , I (ON) + +  
I , I (ON) – –  
S
D
S
D
S
D
S
D
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. Leakage Current vs. Temperature, 15 V Dual-Supply  
Figure 15. Leakage Current vs. Temperature, 36 V Single-Supply  
4
5
0
V
V
V
= +20V  
= –20V  
DD  
SS  
2
0
= +15V/–15V  
BIAS  
V
V
= +15V  
= –15V  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
DD  
SS  
–2  
–4  
–6  
–8  
–10  
–12  
–14  
V
V
V
V
= –30V  
= +30V  
= –55V  
= +55V  
S
S
S
S
I
I
(OFF) + –  
(OFF) – +  
I
I
(OFF) + –  
(OFF) – +  
S
S
D
D
I , I (ON) + +  
I , I (ON) – –  
S
D
S
D
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. Leakage Current vs. Temperature, 20 V Dual-Supply  
Figure 16. Overvoltage Drain Leakage Current vs. Temperature,  
15 V Dual-Supply  
Rev. B | Page 15 of 28  
ADG5412BF/ADG5413BF  
Data Sheet  
10  
0
–20  
V
V
T
= +15V  
= –15V  
= 25°C  
V
V
= +20V  
= –20V  
DD  
DD  
SS  
SS  
0
–10  
–20  
–30  
–40  
–50  
–60  
A
–40  
–60  
–80  
V
V
V
V
= –30V  
= +30V  
= –55V  
= +55V  
S
S
S
S
–100  
–120  
0
20  
40  
60  
80  
100  
120  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
1G  
40  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 17. Overvoltage Drain Leakage Current vs. Temperature,  
±±2 ꢀ Dual-Supply  
Figure ±2. Off Isolation vs. Frequency, ±15 ꢀ Dual-Supply  
5
0
0
–20  
V
V
= +15V  
= –15V  
= 25°C  
DD  
SS  
T
A
V
V
= 12V  
= 0V  
DD  
SS  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–40  
–60  
–80  
V
V
V
V
= –30V  
= +30V  
= –55V  
= +55V  
S
S
S
S
–100  
–120  
0
20  
40  
60  
80  
100  
120  
10k  
100k  
1M  
10M  
100M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 18. Overvoltage Drain Leakage Current vs. Temperature,  
1± ꢀ Single-Supply  
Figure ±1. Crosstalk vs. Frequency, ±15 ꢀ Dual-Supply  
5
100  
0
T
= 25°C  
V
V
= 36V  
= 0V  
A
DD  
SS  
0
–5  
–100  
–200  
–300  
–400  
–500  
–600  
–700  
–800  
V
V
= 12V  
= 0V  
DD  
SS  
–10  
–15  
–20  
–25  
–30  
V
V
= 36V  
= 0V  
DD  
SS  
V
V
V
V
= –38V  
= +38V  
= –40V  
= +55V  
S
S
S
S
0
5
10  
15  
20  
(V)  
25  
30  
35  
0
20  
40  
60  
80  
100  
120  
V
TEMPERATURE (°C)  
S
Figure 19. Overvoltage Drain Leakage Current vs. Temperature,  
36 ꢀ Single-Supply  
Figure ±±. Charge Injection vs. Source ꢀoltage (ꢀS), Single-Supply  
Rev. B | Page 16 of 28  
Data Sheet  
ADG5412BF/ADG5413BF  
100  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
T
= 25°C  
V
V
= +15V  
= –15V  
= 25°C  
A
DD  
SS  
0
–100  
–200  
–300  
–400  
–500  
–600  
–700  
–800  
T
A
V
V
= +15V  
= –15V  
DD  
SS  
V
V
= +20V  
= –20V  
DD  
SS  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
10k  
100k  
1M  
10M  
100M  
1G  
V
(V)  
FREQUENCY (Hz)  
S
Figure 23. Charge Injection vs. Source Voltage (VS), Dual-Supply  
Figure 26. Bandwidth vs. Frequency  
0
480  
460  
440  
420  
400  
380  
360  
340  
320  
V
V
T
= +15V  
= –15V  
= 25°C  
DD  
tON (+12V)  
tON (±20V)  
tOFF (±15V)  
tON (+36V)  
tOFF (+12V)  
tOFF (±20V)  
tON (±15V)  
tOFF (+36V)  
SS  
–20  
–40  
A
WITH DECOUPLING CAPACITORS  
–60  
–80  
–100  
–120  
–140  
10k  
100k  
1M  
10M  
100M  
1G  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 24. ACPSRR vs. Frequency, ±±1 V Dual-Supply  
Figure 27. tON, tOFF Times vs. Temperature  
0.020  
0.015  
0.010  
0.005  
0
0.9  
0.8  
0.7  
0.6  
0.5  
LOAD = 10k  
T
= 25°C  
A
V
= 12V, V = 0V, V = 6V p-p  
SS S  
DD  
V
= 15V, V = –15V, V = 15V p-p  
SS S  
DD  
V
= 20V, V = –20V, V = 20V p-p  
SS S  
DD  
V
= 36V, V = 0V, V = 18V p-p  
SS S  
DD  
0
5000  
10000  
FREQUENCY (Hz)  
15000  
20000  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
Figure 21. THD + N vs. Frequency, ±±1 V Dual-Supply  
Figure 28. Threshold Voltage (VT) vs. Temperature  
Rev. B | Page 17 of 28  
 
ADG5412BF/ADG5413BF  
Data Sheet  
24  
20  
16  
12  
8
T
V
V
= 25°C  
T
A
= +10V  
= –10V  
DD  
SS  
SOURCE  
V
DD  
DISTORTIONLESS  
OPERATING  
REGION  
2
DRAIN  
4
0
1
10  
FREQUENCY (MHz)  
100  
CH1 5.00V CH2 5.00V  
CH3 5.00V  
M200ns  
–10.00ns  
A
CH2  
16.1V  
T
Figure 29. Drain Output Response to Positive Overvoltage  
Figure 31. Large Voltage Signal Tracking vs. Frequency  
T
3
DRAIN  
V
SS  
SOURCE  
CH2 –16.1V  
CH1 5.00V CH2 5.00V  
CH3 5.00V  
M200ns  
–10.00ns  
A
T
Figure 30. Drain Output Response to Negative Overvoltage  
Rev. B | Page 18 of 28  
 
 
Data Sheet  
ADG5412BF/ADG5413BF  
TEST CIRCUITS  
I
I
D
S
V
Sx  
Dx  
A
A
R
10k  
L
|V | > |V | OR |V |  
SS  
Sx  
Dx  
S
DD  
I
DS  
V
S
R
= V/I  
DS  
ON  
Figure 37. Switch Overvoltage Leakage  
Figure 32. On Resistance  
V
= V = GND = 0V  
SS  
DD  
I
I
D
S
Sx  
Dx  
I
(OFF)  
A
I
(OFF)  
A
S
D
A
A
Sx  
Dx  
R
10k  
L
V
S
V
V
D
S
Figure 38. Switch Unpowered Leakage  
Figure 33. Off Leakage  
I
(ON)  
A
D
Sx  
Dx  
NC  
V
D
NC = NO CONNECT  
Figure 34. On Leakage  
V
V
DD  
SS  
V
V
SS  
DD  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
NETWORK  
ANALYZER  
V
V
DD  
SS  
V
V
DD  
SS  
Sx  
50  
Sx  
50Ω  
INx  
IN  
V
S
INx  
V
S
Dx  
Dx  
V
OUT  
V
V
R
50Ω  
OUT  
L
V
IN  
R
50Ω  
L
GND  
GND  
V
OUT  
V
WITH SWITCH  
OUT  
OFF ISOLATION = 20 log  
V
S
INSERTION LOSS = 20 log  
V
WITHOUT SWITCH  
OUT  
Figure 39. Bandwidth  
Figure 35. Off Isolation  
V
V
SS  
DD  
V
V
DD  
SS  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
AUDIO  
PRECISION  
NETWORK  
ANALYZER  
V
V
DD  
SS  
V
V
DD  
SS  
R
V
S
OUT  
S1  
R
50  
L
Sx  
V
INx  
IN  
S
Dx  
V p-p  
R
L
50Ω  
S2  
Dx  
V
OUT  
V
R
10kΩ  
L
V
S
GND  
GND  
V
OUT  
CHANNEL-TO-CHANNEL CROSSTALK = 20 log  
V
S
Figure 36. Channel-to-Channel Crosstalk  
Figure 40. THD + N  
Rev. B | Page 19 of 28  
 
 
 
 
 
 
 
 
 
 
ADG5412BF/ADG5413BF  
Data Sheet  
V
V
V
V
DD  
SS  
SS  
0.1µF  
0.1µF  
V
+ 0.5V  
DD  
DD  
SOURCE  
VOLTAGE  
V
S1  
D1  
D
(V )  
S
C *  
L
2pF  
R
L
V
S
1k  
0V  
ADG5412BF/  
ADG5413BF  
tRESPONSE  
V
– 1V  
DD  
S2 TO S4  
GND  
OUTPUT  
(V  
)
D
0V  
*INCLUDES TRACK CAPACITANCE  
Figure 41. Overvoltage Response Time, tRESPONSE  
V
V
DD  
SS  
0.1µF  
0.1µF  
V
+ 0.5V  
DD  
V
V
DD  
SS  
SOURCE  
VOLTAGE  
V
D
S1  
D1  
(V )  
S
C *  
L
2pF  
R
L
1k  
V
S
0V  
ADG5412BF/  
ADG5413BF  
tRECOVERY  
S2 TO S4  
GND  
OUTPUT  
(V  
)
D
1V  
0V  
*INCLUDES TRACK CAPACITANCE  
Figure 42. Overvoltage Recovery Time, tRECOVERY  
V
V
DD  
SS  
SS  
0.1µF  
0.1µF  
V
+ 0.5V  
DD  
V
V
DD  
SOURCE  
VOLTAGE  
S1  
D1  
S2 TO S4  
(V )  
S
V
S
0V  
ADG5412BF/  
ADG5413BF  
tDIGRESP  
FF  
C *  
L
12pF  
OUTPUT  
(V  
)
GND  
FF  
0.1V  
OUT  
0V  
*INCLUDES TRACK CAPACITANCE  
Figure 43. Interrupt Flag Response Time, tDIGRESP  
Rev. B | Page 20 of 28  
 
 
 
Data Sheet  
ADG5412BF/ADG5413BF  
V
V
V
V
DD  
SS  
0.1µF  
0.1µF  
V
+ 0.5V  
DD  
DD  
SS  
SOURCE  
S1  
D1  
S2 TO S4  
VOLTAGE  
(V )  
V
S
S
0V  
ADG5412BF/  
ADG5413BF  
FF  
tDIGREC  
C *  
L
12pF  
0.9V  
OUT  
OUTPUT  
GND  
(V  
)
FF  
0V  
*INCLUDES TRACK CAPACITANCE  
Figure 44. Interrupt Flag Recovery Time, tDIGREC  
V
V
DD  
SS  
0.1µF  
0.1µF  
V
+ 0.5V  
DD  
V
V
DD  
SS  
SOURCE  
S1  
D1  
S2 TO S4  
VOLTAGE  
(V )  
S
V
S
5V  
0V  
R
1k  
ADG5412BF/  
ADG5413BF  
PULLUP  
tDIGREC  
OUTPUT  
FF  
5V  
C *  
L
12pF  
3V  
OUTPUT  
GND  
(V  
)
FF  
0V  
*INCLUDES TRACK CAPACITANCE  
Figure 45. Interrupt Flag Recovery Time, tDIGREC, with a 1 kΩ Pull-Up Resistor  
V
V
DD  
SS  
V
0.1µF  
0.1µF  
IN  
50%  
50%  
0V  
0V  
V
S1  
V
SS  
D1  
90%  
DD  
90%  
V
V
OUT1  
OUT2  
V
V
S1  
OUT1  
C
35pF  
R
300  
L
L
S2  
D2  
V
V
S2  
OUT2  
C
R
300Ω  
L
L
90%  
90%  
35pF  
IN1,  
IN2  
0V  
ADG5413BF  
GND  
tD  
tD  
Figure 46. Break-Before-Make Time Delay, tD  
Rev. B | Page 21 of 28  
 
 
 
ADG5412BF/ADG5413BF  
Data Sheet  
V
V
DD  
SS  
0.1µF  
0.1µF  
ADG5412BF/  
ADG5413BF  
V
50%  
50%  
IN  
V
V
SS  
DD  
V
L
OUT  
Sx  
Dx  
R
300  
C
L
V
S
35pF  
INx  
90%  
V
OUT  
10%  
GND  
tOFF  
tON  
Figure 47. Switching Times, tON and tOFF  
V
V
DD  
SS  
0.1µF  
0.1µF  
ADG5412BF/  
ADG5413BF  
V
V
SS  
DD  
V
IN  
V
R
OUT  
S
Sx  
Dx  
OFF  
ON  
C
1nF  
L
V
S
INx  
V
OUT  
V  
OUT  
Q
= C × V  
L
OUT  
GND  
INJ  
Figure 48. Charge Injection, QINJ  
Rev. B | Page 22 of 28  
 
 
Data Sheet  
ADG5412BF/ADG5413BF  
TERMINOLOGY  
IDD  
tOFF  
OFF represents the delay between applying the digital control  
I
DD represents the positive supply current.  
t
input and the output switching off (see Figure 47).  
ISS  
ISS represents the negative supply current.  
tD  
tD represents the off time measured between the 90% point of both  
switches when switching from one address state to another.  
VD, VS  
VD and VS represent the analog voltage on the Dx pins and the  
Sx pins, respectively.  
tDIGRESP  
t
DIGRESP is the time required for the FF pin to go low (0.3 V),  
RON  
measured with respect to voltage on the source pin exceeding  
the supply voltage by 0.5 V.  
RON represents the ohmic resistance between the Dx pins and  
the Sx pins.  
tDIGREC  
ΔRON  
tDIGREC is the time required for the FF pin to return high (3 V),  
ΔRON represents the difference between the RON of any two  
channels.  
measured with respect to voltage on the Sx pin falling below the  
supply voltage plus 0.5 V.  
RFLAT(ON)  
tRESPONSE  
RFLAT(ON) is the flatness that is defined as the difference between  
tRESPONSE represents the delay between the source voltage  
the maximum and minimum value of on resistance measured  
over the specified analog signal range.  
exceeding the supply voltage by 0.5 V and the drain voltage  
falling to 90% of the supply voltage.  
IS (Off)  
tRECOVERY  
IS (Off) is the source leakage current with the switch off.  
tRECOVERY represents the delay between an overvoltage on the Sx  
ID (Off)  
pin falling below the supply voltage plus 0.5 V and the drain  
voltage rising from 0 V to 10% of the supply voltage.  
ID (Off) is the drain leakage current with the switch off.  
ID (On), IS (On)  
ID (On) and IS (On) represent the channel leakage currents with  
the switch on.  
Off Isolation  
Off isolation is a measure of unwanted signal coupling through  
an off switch.  
VINL  
Charge Injection  
Charge injection is a measure of the glitch impulse transferred  
from the digital input to the analog output during switching.  
V
INL is the maximum input voltage for Logic 0.  
VINH  
INH is the minimum input voltage for Logic 1.  
INL, IINH  
V
Channel-to-Channel Crosstalk  
Crosstalk is a measure of unwanted signal that is coupled through  
from one channel to another as a result of parasitic capacitance.  
I
IINL and IINH represent the low and high input currents of the  
digital inputs.  
−3 dB Bandwidth  
CD (Off)  
Bandwidth is the frequency at which the output is attenuated  
CD (Off) represents the off switch drain capacitance, which is  
by 3 dB.  
measured with reference to ground.  
On Response  
CS (Off)  
On response is the frequency response of the on switch.  
CS (Off) represents the off switch source capacitance, which is  
measured with reference to ground.  
Insertion Loss  
Insertion loss is the loss due to the on resistance of the switch.  
CD (On), CS (On)  
CD (On) and CS (On) represent on switch capacitances, which  
are measured with reference to ground.  
Total Harmonic Distortion Plus Noise (THD + N)  
THD + N is the ratio of the harmonic amplitude plus noise of  
the signal to the fundamental.  
CIN  
CIN is the digital input capacitance.  
tON  
tON represents the delay between applying the digital control  
input and the output switching on (see Figure 47).  
Rev. B | Page 23 of 28  
 
ADG5412BF/ADG5413BF  
Data Sheet  
AC Power Supply Rejection Ratio (ACPSRR)  
VT  
ACPSRR is the ratio of the amplitude of signal on the output to  
the amplitude of the modulation. ACPSRR is a measure of the  
ability of the device to avoid coupling noise and spurious signals  
that appear on the supply voltage pin to the output of the switch.  
The dc voltage on the device is modulated by a sine wave of  
0.62 V p-p.  
VT is the voltage threshold at which the overvoltage protection  
circuitry engages. See Figure 28.  
Rev. B | Page 24 of 28  
Data Sheet  
ADG5412BF/ADG5413BF  
THEORY OF OPERATION  
During overvoltage conditions, the leakage current into and out  
of the switch pins is limited to tens of microamperes. This limit  
protects the switch and connected circuitry from over stresses as  
well as restricting the current drawn from the signal source. When  
an overvoltage event occurs, the channels undisturbed by the  
overvoltage input continue to operate normally without  
additional crosstalk.  
SWITCH ARCHITECTURE  
Each channel of the ADG5412BF/ADG5413BF consists of a  
parallel pair of N-channel diffused metal-oxide semiconductor  
(NDMOS) and P-channel DMOS (PDMOS) transistors. This  
construction provides excellent performance across the signal  
range. The ADG5412BF/ADG5413BF channels operate as stand-  
ard switches when input signals with a voltage between VSS and  
ESD Performance  
VDD are applied. For example, the on resistance is 10 Ω typically  
and the appropriate control pin, INx, controls the opening or  
closing of the switch.  
The ADG5412BF/ADG5413BF has an ESD rating of 3 kV for  
the human body model (HBM). ESD protection cells allow the  
voltage at the pins to exceed the supply voltage. See Figure 49  
for a switch channel overview.  
Additional internal circuitry enables the switch to detect over-  
voltage inputs by comparing the voltage on the source or drain  
pin with VDD and VSS. A signal is considered overvoltage if it  
exceeds the supply voltages by the voltage threshold, VT. The  
threshold voltage is typically 0.7 V, but can range from 0.8 V  
(when operating at −40°C) down to 0.6 V at +125°C. See Figure 28  
to see the change in VT with operating temperature.  
Trench Isolation  
In the ADG5412BF and ADG5413BF, an insulating oxide layer  
(trench) is placed between the NDMOS and the PDMOS  
transistors of each switch. Parasitic junctions, which occur between  
the transistors in junction-isolated switches, are eliminated, and  
the result is a switch that is latch-up immune under all  
The maximum voltage that can be applied to any switch input is  
+55 V or −55 V. When the device is powered using the single-  
supply of 25 V or greater, the maximum signal level reduces  
from −55 V to −40 V at VDD = 40 V to remain within the 80 V  
maximum rating. Construction of the process allows the channel  
to withstand 80 V across the switch when it is opened. These  
overvoltage limits apply whether the power supplies are present  
or not.  
circumstances. These devices pass a JESD78D latch-up test of  
500 mA for 1 sec, which is the harshest test in the specification.  
NDMOS  
PDMOS  
ESD  
PROTECTION  
ESD  
PROTECTION  
P-WELL  
N-WELL  
Sx  
Dx  
FAULT  
DETECTOR  
SWITCH  
FAULT  
DRIVER DETECTOR  
TRENCH  
AND  
BURIED OXIDE LAYER  
HANDLE WAFER  
INx  
Figure 49. Switch Channel and Control Function  
When an overvoltage condition is detected on either the source pin  
or drain pin, the switch is automatically opened regardless of the  
digital logic state, INx. The source and drain pins both become  
high impedance and ensure that no current flows through the  
switch. In Figure 29, the voltage on the drain pin can be seen to  
follow the voltage on the source pin until the switch has turned off  
completely and the drain voltage discharges through the load. The  
maximum voltage and the rate at which the output voltage dis-  
charges is dependent on the load at the pin. The ADG5412F/  
ADG5413F are pin-compatible devices that are overvoltage  
protected on the source pin only, with ESD diodes on the drain  
pin that limit the maximum voltage while the switch is opening.  
Figure 50. Trench Isolation  
Rev. B | Page 25 of 28  
 
 
 
ADG5412BF/ADG5413BF  
Data Sheet  
+22V 0V  
–22V  
FAULT PROTECTION  
When the voltages at the switch inputs exceed VDD or VSS by VT,  
the switch turns off or, if the device is unpowered, the switch  
remains off. The switch input remains high impedance regardless  
of the digital input state or the load resistance, and the output  
acts as a virtual open circuit. Signal levels up to +55 V and  
−55 V are blocked in both the powered and unpowered condition  
as long as the 80 V limitation between the switch and supply  
pins is met.  
V
GND  
V
SS  
DD  
ADG5413BF  
S1  
S2  
S3  
S4  
D1  
D2  
D3  
D4  
+22V  
55V  
+55V  
FAULT  
DETECTION  
+ SWITCH  
DRIVER  
Power-On Protection  
FF  
0V  
The following three conditions must be satisfied for the switch  
to be in the on condition:  
5V  
IN1 IN2 IN3 IN4  
VDD to VSS ≥ 8 V  
Input signal is between VSS − VT and VDD + VT  
Digital logic control input, INx, is turned on  
Figure 51. ADG5413BF in Multiplexer Configuration under Overvoltage  
Conditions  
Power-Off Protection  
When the switch is turned on, signal levels up to the supply rails  
are passed.  
When no power supplies are present, the switch remains in the  
off condition, and the switch inputs are high impedance. This  
state ensures that no current flows and prevents damage to the  
switch or downstream circuitry. The switch output is a virtual  
open circuit.  
The switch responds to an analog input that exceeds VDD or VSS  
by a threshold voltage, VT, by turning off. The absolute input  
voltage limits are −55 V and +55 V, while maintaining an 80 V  
limit between the source pin and the supply rails. The switch  
remains off until the voltage at the switch pin returns to between  
The switch remains off regardless of whether the VDD and VSS  
supplies are 0 V or floating. A GND reference must always be  
present to ensure proper operation. Signal levels of up to ±55 V  
are blocked in the unpowered condition.  
VDD and VSS.  
The fault response time (tRESPONSE) when powered by ±±5 V  
dual-supply is typically 460 ns, and the fault recovery time  
(tRECOVERY) is 720 ns. These vary with supply voltages and output  
load conditions.  
Digital Input Protection  
The ADG54±2BF and the ADG54±3BF can tolerate digital  
input signals being present on the device without power. When  
the device is unpowered, the switch is guaranteed to be in the  
off state, regardless of the state of the digital logic signals.  
Exceeding ±55 V on any switch input may damage the ESD  
protection circuitry on the device.  
The maximum stress across the switch channel is 80 V; therefore,  
the user must pay close attention to this limit if using the device  
in a multiplexed configuration and one channel is on while another  
channel is in a fault condition.  
The digital inputs are protected against positive faults up to 44 V.  
The digital inputs do not offer protection against negative  
overvoltages. ESD protection diodes connected to GND are  
present on the digital inputs.  
For example, consider the case where the device is set up in a  
multiplexer configuration as shown in Figure 5±.  
Overvoltage Interrupt Flag  
The voltages on the switch inputs of the ADG54±2BF and the  
ADG54±3BF are continuously monitored and the state of the  
switch is indicated by an active low digital output pin, FF.  
VDD/VSS = ±22 V, S± = 22 V, all switches are on  
D± is externally multiplexed with D2; therefore, D± and D2  
= 22 V  
The voltage on the FF pin indicates if any of the switch input  
pins are experiencing a fault condition. The output of the FF pin  
is a nominal 3 V when all switch pins are within normal operating  
range. If any switch pin voltage exceeds the supply voltage by  
VT, the FF output reduces to below 0.8 V.  
S2 has a −55 V fault and S3 has a +55 V fault  
The voltage between S2 and D± or between S2 and D2 =  
+22 V − (−55 V) = +77 V  
The voltage between S3 and D3 = 55 V− 0 V = 55 V  
These calculations are all within device specifications: 55 V  
maximum fault on switch inputs and a maximum of 80 V across  
the off switch channel.  
Rev. B | Page 26 of 28  
 
 
Data Sheet  
ADG5412BF/ADG5413BF  
APPLICATIONS INFORMATION  
The overvoltage protected family of switches and multiplexers  
provide a robust solution for instrumentation, industrial,  
aerospace, and other harsh environments where overvoltage  
signals can be present and the system must remain operational  
both during and after the overvoltage has occurred.  
The ADG5412BF/ADG5413BF enable the designer to remove  
these resistors and retain the precision performance without  
compromising the protection of the circuit.  
HIGH VOLTAGE SURGE SUPPRESSION  
The ADG5412BF/ADG5413BF is not intended for use in very  
high voltage applications. The maximum operating voltage of  
the transistor is 80 . In applications where the inputs are likely  
to be subject to overvoltages exceeding the breakdown voltage,  
use transient voltage suppressors (TꢀSs), or similar.  
POWER SUPPLY RAILS  
To guarantee correct operation of the device, 0.1 μF decoupling  
capacitors are required.  
The ADG5412BF and the ADG5413BF can operate with bipolar  
supplies between 5 ꢀ and 22 . The supplies on ꢀDD and  
ꢀSS need not be symmetrical but the ꢀDD to ꢀSS range must  
not exceed 44 . The ADG5412BF and the ADG5413BF can  
also operate with single supplies between 8 ꢀ and 44 ꢀ with  
ꢀSS connected to GND.  
INTELLIGENT FAULT DETECTION  
The ADG5412BF/ADG5413BF digital output pin, FF, can  
interface with a microprocessor or control system and be used  
as an interrupt flag. This feature provides real-time diagnostic  
information on the state of the device and the system to which it  
connects.  
These devices are fully specified at 15 , 20 , +12 , and  
+36 ꢀ supply ranges.  
The control system can use the digital interrupt to start a variety  
of actions, such as  
POWER SUPPLY SEQUENCING PROTECTION  
The switch channel remains open when the device is unpowered  
and signals from −55 ꢀ to +55 ꢀ can be applied without damaging  
the device. Only when the supplies are connected and a suitable  
digital control signal is placed on the INx pin does the switch  
channel close and then allow a signal to pass. Placing the  
ADG5412BF/ADG5413BF between external connectors and  
sensitive components offers protection in systems where a  
signal is presented to the switch pins before the supply voltages  
are available.  
Initiating investigation into the source of the overvoltage fault  
Shutting down critical systems in response to the overvoltage  
Data recorders marking data during these events as  
unreliable or out of specification  
For systems that are sensitive during a start-up sequence, the  
active low operation of the flag allows the system to ensure that  
the ADG5412BF/ADG5413BF are powered on and that all  
input voltages are within normal operating range before  
initiating operation.  
SIGNAL RANGE  
The FF pin is a weak pull-up, which allows the signals to be  
combined into a single interrupt for larger modules that contain  
multiple devices.  
The ADG5412BF/ADG5413BF switches have fault detection  
circuitry on their inputs that compares the voltage levels at the  
switch terminals with ꢀDD and ꢀSS, relative to ground. To protect  
downstream circuitry from overvoltages, supply the ADG5412BF/  
ADG5413BF by voltages that match the intended signal range.  
The low on-resistance switch allows signals up to the supply  
rails to be passed with very little distortion. A signal that  
exceeds the supply rail by the threshold voltage is then blocked.  
This offers protection to both the device and any downstream  
circuitry.  
The recovery time, tDIGREC, can be decreased from a typical 60 μs  
to 600 ns by using a 1 kΩ pull-up resistor.  
LARGE VOLTAGE, HIGH FREQUENCY SIGNALS  
Figure 31 illustrates the voltage range and frequencies that the  
ADG5412BF/ADG5413BF can reliably convey. For signals that  
extend across the full signal range from ꢀSS to ꢀDD, keep the  
frequency below 3 MHz. If the required frequency is greater  
than 3 MHz, decrease the signal voltage appropriately to ensure  
signal integrity.  
LOW IMPEDANCE CHANNEL PROTECTION  
The ADG5412BF/ADG5413BF can be used as protective  
elements in signal chains that are sensitive to both channel  
impedance and overvoltage signals. Traditionally, series  
resistors are used to limit the current during an overvoltage  
condition to protect susceptible components. These series  
resistors affect the performance of the signal chain and reduce  
the precision that can be reached. A compromise must be  
reached on the value of the series resistance that is high enough  
to sufficiently protect sensitive components but low enough that  
the precision performance of the signal chain is not sacrificed.  
Rev. B | Page 27 of 28  
 
 
 
 
 
 
 
 
ADG5412BF/ADG5413BF  
OUTLINE DIMENSIONS  
Data Sheet  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 52. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
4.10  
4.00 SQ  
3.90  
0.35  
0.30  
0.25  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
0.65  
BSC  
12  
1
EXPOSED  
PAD  
2.70  
2.60 SQ  
2.50  
4
9
5
8
0.45  
0.40  
0.35  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.  
Figure 53. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Very Thin Quad  
(CP-16-17)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADG5412BFBRUZ  
ADG5412BFBRUZ-RL7  
ADG5412BFBCPZ-RL7  
EVAL-ADG5412BFEBZ  
ADG5413BFBRUZ  
ADG5413BFBRUZ-RL7  
ADG5413BFBCPZ-RL7  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
RU-16  
RU-16  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
Evaluation Board  
CP-16-17  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
RU-16  
RU-16  
CP-16-17  
1 Z = RoHS Compliant Part.  
©2014–2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12473-0-1/16(B)  
Rev. B | Page 28 of 28  
 
 

相关型号:

ADG5412BFBCPZ-RL7

Bidirectional Fault Protection and Detection, 10 Ω RON, Quad SPST Switches
ADI

ADG5412BFBRUZ

Bidirectional Fault Protection and Detection, 10 Ω RON, Quad SPST Switches
ADI

ADG5412BFBRUZ-RL7

Bidirectional Fault Protection and Detection, 10 ohm RON, Quad SPST Switches
ADI

ADG5412BRUZ

High Voltage Latch-Up Proof, Quad SPST Switches
ADI

ADG5412BRUZ-REEL7

High Voltage Latch-Up Proof, Quad SPST Switches
ADI

ADG5412F

Fault Protection and Detection, 10 ohm RON, Quad SPST Switches
ADI

ADG5412FBCPZ-RL7

Fault Protection and Detection, 10 ohm RON, Quad SPST Switches
ADI

ADG5412FBRUZ

Fault Protection and Detection, 10 ohm RON, Quad SPST Switches
ADI

ADG5412FBRUZ-RL7

Fault Protection and Detection, 10 ohm RON, Quad SPST Switches
ADI

ADG5412FTRUZ-EP

Fault Protection and Detection, 10 Ω RON, Quad SPST Switches
ADI

ADG5412WBRUZ-REEL7

High Voltage Latch-Up Proof, Quad SPST Switches
ADI

ADG5412_11

High Voltage Latch-Up Proof, Quad SPST Switches
ADI