ADGS1612 [ADI]

SPI Interface, 1 Ω RON, ±5 V, 12 V, 5 V, 3.3 V, Mux Configurable, Quad SPST Switch;
ADGS1612
型号: ADGS1612
厂家: ADI    ADI
描述:

SPI Interface, 1 Ω RON, ±5 V, 12 V, 5 V, 3.3 V, Mux Configurable, Quad SPST Switch

文件: 总29页 (文件大小:380K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SPI Interface, 1 Ω RON, ± ± ꢀ, 1ꢁ ꢀ, ± ꢀ,  
3.3 ꢀ, Mux Configurable, Quad SPST Switch  
ADGS161ꢁ  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
SPI interface with error detection  
Includes CRC, invalid read/write address, and SCLK count  
error detection  
Supports burst mode and daisy-chain mode  
Industry-standard SPI Mode 0 and SPI Mode 3 interface  
compatible  
ADGS1612  
S1  
S2  
D1  
D2  
S3  
S4  
D3  
D4  
Guaranteed break-before-make switching allowing external  
wiring of switches to deliver multiplexer configurations  
1 Ω typical on resistance at 25°C  
0.23 Ω typical on resistance flatness at 25°C  
V
SS to VDD analog signal range  
SPI  
SDO  
INTERFACE  
Fully specified at 5 V, 12 V, 5 V, and 3.3 V  
3.3 V to 8 V dual-supply operation  
3.3 V to 16 V single-supply operation  
SCLK  
SDI  
CS  
RESET/V  
L
1.8 V logic compatibility with 2.7 V ≤ VL ≤ 3.3 V  
4 mm × 4 mm, 24-lead LFCSP package  
Figure 1.  
APPLICATIONS  
Communication systems  
Medical systems  
Audio and video signal routing  
Automatic test equipment  
Data acquisition systems  
Battery-powered systems  
Sample-and-hold systems  
Relay replacements  
signals. The ADGS1612 exhibits break-before-make switching  
action for use in multiplexer applications. Note that throughout  
GENERAL DESCRIPTION  
The ADGS1612 contains four independent single-pole/single-  
throw (SPST) switches. A serial peripheral interface (SPI) controls  
the switches. The SPI interface has robust error detection features,  
including cyclic redundancy check (CRC) error detection,  
invalid read/write address detection, and serial clock (SCLK)  
count error detection.  
RESET  
this data sheet, the multifunction pin,  
/VL, is referred to  
either by the entire pin name or by a single function of the pin,  
for example, VL, when only that function is relevant.  
PRODUCT HIGHLIGHTS  
1. The SPI interface removes the need for parallel conversion  
and logic traces and reduces general-purpose input/output  
(GPIO) channel count.  
2. Daisy-chain mode removes additional logic traces when  
multiple devices are used.  
It is possible to daisy-chain multiple ADGS1612 devices together.  
Daisy-chaining enables the configuration of multiple devices with a  
minimal amount of digital lines. The ADGS1612 can also operate  
in burst mode to decrease the time between SPI commands.  
3. CRC, invalid read/write address, and SCLK count error  
detection ensure a robust digital interface.  
4. CRC error detection capabilities allow the use of the  
ADGS1612 in safety critical systems.  
5. Guaranteed break-before-make switching allows the use of  
the ADGS1612 in multiplexer configurations with external  
wiring.  
Each switch conducts equally well in both directions when on, and  
each switch has an input signal range that extends to the supplies.  
In the off condition, signal levels up to the supplies are blocked.  
The ultralow on resistance (RON) of these switches make them  
ideal solutions for data acquisition and gain switching  
applications where low RON and low distortion are critical. The  
RON profile is very flat over the full analog input range, ensuring  
excellent linearity and low distortion when switching audio  
6. Minimum distortion.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2018 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
 
ADGS161ꢁ  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Address Mode............................................................................. 22  
Error Detection Features........................................................... 22  
Clearing the Error Flags Register............................................. 23  
Burst Mode.................................................................................. 23  
Software Reset............................................................................. 23  
Daisy-Chain Mode..................................................................... 23  
Power-On Reset.......................................................................... 24  
Applications Information.............................................................. 25  
Break-Before-Make Switching.................................................. 25  
Digital Input Buffers .................................................................. 25  
Power Supply Rails..................................................................... 25  
Register Summary .......................................................................... 26  
Register Details ............................................................................... 27  
Switch Data Register .................................................................. 27  
Error Configuration Register.................................................... 27  
Error Flags Register.................................................................... 28  
Burst Enable Register................................................................. 28  
Software Reset Register ............................................................. 28  
Outline Dimensions....................................................................... 29  
Ordering Guide .......................................................................... 29  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
5 V Dual Supply ......................................................................... 3  
12 V Single Supply........................................................................ 5  
5 V Single Supply.......................................................................... 7  
3.3 V Single Supply....................................................................... 9  
Continuous Current per Channel, Sx or Dx........................... 11  
Timing Characteristics .............................................................. 11  
Absolute Maximum Ratings.......................................................... 13  
Thermal Resistance .................................................................... 13  
ESD Caution................................................................................ 13  
Pin Configuration and Function Descriptions........................... 14  
Typical Performance Characteristics ........................................... 15  
Test Circuits..................................................................................... 19  
Terminology .................................................................................... 21  
Theory of Operation ...................................................................... 22  
REVISION HISTORY  
1/2018—Revision 0: Initial Version  
Rev. 0 | Page 2 of 29  
 
Data Sheet  
ADGS161ꢁ  
SPECIFICATIONS  
5 V DUAL SUPPLY  
Positive supply (VDD) = 5 V 1ꢀ0, negative supply (VSS) = −5 V 1ꢀ0, digital supply (VL) = 2.7 V to 5.5 V, GND = ꢀ V, unless otherwise noted.  
Table 1.  
Parameter  
25°C  
−40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD to VSS  
V
1
Ω typ  
VS = ±±.ꢀ V, IS = −10 mA;  
see Figure 29  
1.2  
0.0±  
1.±  
1.6  
Ω max  
Ω typ  
VDD = +±.ꢀ V, VSS = −±.ꢀ V  
VS = ±±.ꢀ V, IS = −10 mA  
On Resistance Match Between  
Channels, ∆RON  
0.08  
0.23  
0.28  
0.09  
0.32  
0.1  
Ω max  
Ω typ  
Ω max  
On Resistance Flatness, RFLAT (ON)  
VS = ±±.ꢀ V, IS = −10 mA  
0.37  
LEAKAGE CURRENTS  
VDD = +ꢀ.ꢀ V, VSS = −ꢀ.ꢀ V  
Source Off Leakage, IS (Off)  
±0.1  
±0.3  
±0.1  
±0.3  
±0.2  
±0.±  
nA typ  
nA max  
nA typ  
nA max  
nA typ  
nA max  
VS = ±±.ꢀ V, VD = ±.ꢀ V; see Figure 32  
±1.0  
±1.0  
±1.ꢀ  
±6.0  
±6.0  
±10.0  
Drain Off Leakage, ID (Off)  
VS = ±±.ꢀ V, VD = ±.ꢀ V; see Figure 32  
Channel On Leakage, ID (On), IS (On)  
VS = VD = ±±.ꢀ V; see Figure 28  
DIGITAL OUTPUT  
Output Voltage  
Low, VOL  
0.±  
0.2  
V max  
V max  
μA typ  
μA max  
pF typ  
ISINK = ꢀ mA  
ISINK = 1 mA  
VOUT = VGND or VL  
Output Current, Low (IOL) or High (IOH)  
0.001  
±
±0.1  
Digital Output Capacitance, COUT  
DIGITAL INPUTS  
Input Voltage  
High, VINH  
2
V min  
V min  
3.3 V < VL ≤ ꢀ.ꢀ V  
2.7 V ≤ VL ≤ 3.3 V  
3.3 V < VL ≤ ꢀ.ꢀ V  
2.7 V ≤ VL ≤ 3.3 V  
VIN = VGND or VL  
1.3ꢀ  
0.8  
0.8  
Low, VINL  
V max  
V max  
μA typ  
μA max  
pF typ  
Input Current, Low (IINL) or High (IINH  
)
0.001  
±
±0.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS  
On Time, tON  
38ꢀ  
±80  
2ꢀ0  
30ꢀ  
17ꢀ  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
RL = 300 Ω, CL = 3ꢀ pF  
VS = 2.ꢀ V; see Figure 36  
RL = 300 Ω, CL = 3ꢀ pF  
VS = 2.ꢀ V; see Figure 36  
RL = 300 Ω, CL = 3ꢀ pF  
VS1 = VS2 = 2.ꢀ V, see Figure 3ꢀ  
VS = 0 V, RS = 0 Ω, CL = 1 nF; see  
Figure 37  
RL = ꢀ0 Ω, CL = ꢀ pF, f = 100 kHz; see  
Figure 31  
±8ꢀ  
33ꢀ  
±8ꢀ  
360  
11ꢀ  
Off Time, tOFF  
Break-Before-Make Time Delay, tD  
Charge Injection, QINJ  
Off Isolation  
120  
−6ꢀ  
−93  
dB typ  
dB typ  
Channel to Channel Crosstalk  
RL = ꢀ0 Ω, CL = ꢀ pF, f = 1 MHz; see  
Figure 30  
Rev. 0 | Page 3 of 29  
 
 
ADGS161ꢁ  
Data Sheet  
Parameter  
25°C  
−40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
Total Harmonic Distortion Plus Noise,  
THD + N  
0.007  
% typ  
RL = 110 Ω, ꢀ V p-p, f = 20 Hz to  
20 kHz; see Figure 33  
−3 dB Bandwidth  
Insertion Loss  
3±  
−0.08  
MHz typ RL = ꢀ0 Ω, CL = ꢀ pF; see Figure 3±  
dB typ  
RL = ꢀ0 Ω, CL = ꢀ pF, f = 1 MHz; see  
Figure 3±  
Off Switch Source Capacitance,  
CS (Off)  
63  
pF typ  
VS = 0 V, f = 1 MHz  
Off Switch Drain Capacitance, CD (Off) 63  
pF typ  
pF typ  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
VDD = +ꢀ.ꢀ V, VSS = −ꢀ.ꢀ V  
All switches open  
On Switch Capacitance, CD (On), CS (On)  
POWER REQUIREMENTS  
1ꢀ±  
Positive Supply Current, IDD  
0.01  
0.01  
130  
μA typ  
μA max  
μA typ  
μA max  
μA typ  
μA max  
1
All switches closed, VL = ꢀ.ꢀ V  
All switches closed, VL = 2.7 V  
1
220  
Digital Supply Current, IL  
Inactive  
6.3  
μA typ  
μA max  
μA typ  
μA typ  
μA typ  
μA typ  
μA typ  
μA typ  
μA typ  
μA typ  
mA typ  
Digital inputs = 0 V or VL  
8.0  
Inactive, SCLK = 1 MHz  
SCLK = ꢀ0 MHz  
1±  
CS = VL and SDI = 0 V or VL, VL = ꢀ V  
CS = VL and SDI = 0 V or VL, VL = 3 V  
CS = VL and SDI = 0 V or VL, VL = ꢀ V  
CS = VL and SDI = 0 V or VL, VL = 3 V  
CS and SCLK = 0 V or VL, VL = ꢀ V  
CS and SCLK = 0 V or VL, VL = 3 V  
CS and SCLK = 0 V or VL, VL = ꢀ V  
CS and SCLK = 0 V or VL, VL = 3 V  
7
390  
210  
1ꢀ  
Inactive, SDI = 1 MHz  
SDI = 2ꢀ MHz  
7.ꢀ  
230  
120  
1.8  
Active at ꢀ0 MHz  
Digital inputs toggle between 0 V  
and VL, VL = ꢀ.ꢀ V  
2.1  
1.0  
mA max  
mA typ  
0.7  
Digital inputs toggle between 0 V  
and VL, VL = 2.7 V  
mA max  
μA typ  
μA max  
V min  
Negative Supply Current, ISS  
VDD/VSS  
0.01  
Digital inputs = 0 V or VL  
1
±3.3  
±8  
GND = 0 V  
GND = 0 V  
V max  
Rev. 0 | Page ± of 29  
Data Sheet  
ADGS161ꢁ  
12 V SINGLE SUPPLY  
VDD = 12 V 1ꢀ0, VSS = ꢀ V, VL = 2.7 V to 5.5 V, GND = ꢀ V, unless otherwise noted.  
Table 2.  
Parameter  
25°C  
−40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
0 V to VDD  
1.±ꢀ  
V
0.9ꢀ  
Ω typ  
VS = 0 V to 10 V, IS = −10 mA;  
see Figure 29  
VDD = 10.8 V, VSS = 0 V  
1.1  
0.03  
1.2ꢀ  
Ω max  
Ω typ  
On Resistance Match Between Channels,  
∆RON  
VS = 0 V to 10 V, IS = −10 mA  
0.06  
0.2  
0.23  
0.07  
0.27  
0.08  
0.32  
Ω max  
Ω typ  
Ω max  
On Resistance Flatness, RFLAT (ON)  
VS = 0 V to 10 V, IS = −10 mA  
VDD = 10.8 V, VSS = 0 V  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
±0.1  
nA typ  
VS = 1 V/10 V, VD = 10 V/1 V; see  
Figure 32  
±0.3  
±0.1  
±1.0  
±6.0  
nA max  
nA typ  
Drain Off Leakage, ID (Off)  
VS = 1 V/10 V, VD = 10 V/1 V; see  
Figure 32  
±0.3  
±0.2  
±0.±  
±1.0  
±1.ꢀ  
±6.0  
nA max  
nA typ  
nA max  
Channel On Leakage, ID (On), IS (On)  
VS = VD = 1 V/10 V; see Figure 28  
±10.0  
DIGITAL OUTPUT  
Output Voltage  
Low, VOL  
0.±  
0.2  
V max  
V max  
μA typ  
μA max  
pF typ  
ISINK = ꢀ mA  
ISINK = 1 mA  
VOUT = VGND or VL  
Output Current, Low (IOL) or High (IOH)  
0.001  
±
±0.1  
Digital Output Capacitance, COUT  
DIGITAL INPUTS  
Input Voltage  
High, VINH  
2
V min  
V min  
3.3 V < VL ≤ ꢀ.ꢀ V  
2.7 V ≤ VL ≤ 3.3 V  
3.3 V < VL ≤ ꢀ.ꢀ V  
2.7 V ≤ VL ≤ 3.3 V  
VIN = VGND or VL  
1.3ꢀ  
0.8  
0.8  
Low, VINL  
V max  
V max  
μA typ  
μA max  
pF typ  
Input Current, Low (IINL) or High (IINH  
)
0.001  
±
±0.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS  
On Time, tON  
36ꢀ  
±60  
190  
23ꢀ  
200  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
RL = 300 Ω, CL = 3ꢀ pF  
VS = 8 V; see Figure 36  
RL = 300 Ω, CL = 3ꢀ pF  
VS = 8 V; see Figure 36  
RL = 300 Ω, CL = 3ꢀ pF  
VS1 = VS2 = 8 V, see Figure 3ꢀ  
VS = 6 V, RS = 0 Ω, CL = 1 nF; see  
Figure 37  
RL = ꢀ0 Ω, CL = ꢀ pF, f = 100 kHz;  
see Figure 31  
±70  
260  
±70  
280  
1±0  
Off Time, tOFF  
Break-Before-Make Time Delay, tD  
Charge Injection, QINJ  
Off Isolation  
1±0  
−6ꢀ  
−93  
dB typ  
dB typ  
Channel to Channel Crosstalk  
RL = ꢀ0 Ω, CL = ꢀ pF, f = 1 MHz; see  
Figure 30  
Rev. 0 | Page ꢀ of 29  
 
ADGS161ꢁ  
Data Sheet  
Parameter  
25°C  
−40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
Total Harmonic Distortion Plus Noise,  
THD + N  
0.012  
% typ  
RL = 110 Ω, ꢀ V p-p, f = 20 Hz to  
20 kHz; see Figure 33  
−3 dB Bandwidth  
Insertion Loss  
3±  
−0.07  
MHz typ  
MHz typ  
RL = ꢀ0 Ω, CL = ꢀ pF; see Figure 3±  
RL = ꢀ0 Ω, CL = ꢀ pF, f = 1 MHz; see  
Figure 3±  
Off Switch Source Capacitance, CS (Off) 60  
dB typ  
pF typ  
pF typ  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
VDD = 12 V  
Off Switch Drain Capacitance, CD (Off)  
On Switch Capacitance, CD (On), CS (On)  
POWER REQUIREMENTS  
60  
1ꢀ±  
Positive Supply Current, IDD  
0.01  
320  
320  
μA typ  
μA max  
μA typ  
μA max  
μA typ  
μA max  
All switches open  
1
All switches closed, VL = ꢀ.ꢀ V  
All switches closed, VL = 2.7 V  
±80  
±80  
Digital Supply Current, IL  
Inactive  
6.3  
1±  
7
μA typ  
μA max  
μA typ  
Digital inputs = 0 V or VL  
8.0  
Inactive, SCLK = 1 MHz  
CS = VL and SDI = 0 V or VL,  
VL = ꢀ V  
CS = VL and SDI = 0 V or VL,  
VL = 3 V  
CS = VL and SDI = 0 V or VL,  
VL = ꢀ V  
μA typ  
μA typ  
SCLK = ꢀ0 MHz  
390  
210  
1ꢀ  
μA typ  
μA typ  
μA typ  
μA typ  
μA typ  
mA typ  
CS = VL and SDI = 0 V or VL, VL = 3 V  
Inactive, SDI = 1 MHz  
SDI = 2ꢀ MHz  
CS and SCLK = 0 V or VL, VL = ꢀ V  
CS and SCLK = 0 V or VL, VL = 3 V  
CS and SCLK = 0 V or VL, VL = ꢀ V  
CS and SCLK = 0 V or VL, VL = 3 V  
7.ꢀ  
230  
120  
1.8  
Active at ꢀ0 MHz  
Digital inputs toggle between 0 V  
and VL, VL = ꢀ.ꢀ V  
2.1  
mA max  
mA typ  
0.7  
Digital inputs toggle between 0 V  
and VL, VL = 2.7 V  
1.0  
3.3  
16  
mA max  
V min  
V max  
VDD  
GND = 0 V, VSS = 0 V  
GND = 0 V, VSS = 0 V  
Rev. 0 | Page 6 of 29  
Data Sheet  
ADGS161ꢁ  
5 V SINGLE SUPPLY  
VDD = 5 V 1ꢀ0, VSS = ꢀ V, VL = 2.7 V to 5.5 V, GND = ꢀ V, unless otherwise noted.  
Table 3.  
Parameter  
25°C  
−40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
0 V to VDD  
2.7  
V
1.7  
Ω typ  
VS = 0 V to ±.ꢀ V, IS = −10 mA; see  
Figure 29  
VDD = ±.ꢀ V, VSS = 0 V  
2.1ꢀ  
0.0ꢀ  
2.±  
Ω max  
Ω typ  
On Resistance Match Between Channels,  
∆RON  
VS = 0 V to ±.ꢀ V, IS = −10 mA  
0.09  
0.±  
0.ꢀ3  
0.12  
0.ꢀꢀ  
0.1ꢀ  
0.6  
Ω max  
Ω typ  
Ω max  
On Resistance Flatness, RFLAT (ON)  
VS = 0 V to ±.ꢀ V, IS = −10 mA  
VDD = ꢀ.ꢀ V, VSS = 0 V  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
±0.1  
nA typ  
VS = 1 V or ±.ꢀ V, VD = ±.ꢀ V/1 V;  
see Figure 32  
±0.3  
±0.1  
±1.0  
±6.0  
nA max  
nA typ  
Drain Off Leakage, ID (Off)  
VS = 1 V/±.ꢀ V, VD = ±.ꢀ V/1 V; see  
Figure 32  
±0.3  
±0.2  
±0.±  
±1.0  
±1.ꢀ  
±6.0  
nA max  
nA typ  
nA max  
Channel On Leakage, ID (On), IS (On)  
VS = VD = 1 V/±.ꢀ V; see Figure 28  
±10.0  
DIGITAL OUTPUT  
Output Voltage  
Low, VOL  
0.±  
0.2  
V max  
V max  
μA typ  
μA max  
pF typ  
ISINK = ꢀ mA  
ISINK = 1 mA  
VOUT = VGND or VL  
Output Current, Low (IOL) or High (IOH)  
0.001  
±
±0.1  
Digital Output Capacitance, COUT  
DIGITAL INPUTS  
Input Voltage  
High, VINH  
2
V min  
V min  
3.3 V < VL ≤ ꢀ.ꢀ V  
2.7 V ≤ VL ≤ 3.3 V  
3.3 V < VL ≤ ꢀ.ꢀ V  
2.7 V ≤ VL ≤ 3.3 V  
VIN = VGND or VL  
1.3ꢀ  
0.8  
0.8  
Low, VINL  
V max  
V max  
μA typ  
μA max  
pF typ  
Input Current, Low (IINL) or High (IINH  
)
0.001  
±
±0.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS  
On Time, tON  
±0ꢀ  
ꢀ10  
290  
36ꢀ  
16ꢀ  
ns typ  
ns max  
ns typ  
Ns max  
ns typ  
ns min  
pC typ  
RL = 300 Ω, CL = 3ꢀ pF  
VS = 2.ꢀ V; see Figure 36  
RL = 300 Ω, CL = 3ꢀ pF  
VS = 2.ꢀ V; see Figure 36  
RL = 300 Ω, CL = 3ꢀ pF  
VS1 = VS2 = 2.ꢀ V, see Figure 3ꢀ  
VS = 0 V, RS = 0 Ω, CL = 1 nF; see  
Figure 37  
RL = ꢀ0 Ω, CL = ꢀ pF, f = 100 kHz; see  
Figure 31  
ꢀ1ꢀ  
±10  
ꢀ2ꢀ  
±ꢀꢀ  
9ꢀ  
Off Time, tOFF  
Break-Before-Make Time Delay, tD  
Charge Injection, QINJ  
Off Isolation  
72  
−6ꢀ  
−93  
dB typ  
dB typ  
Channel to Channel Crosstalk  
RL = ꢀ0 Ω, CL = ꢀ pF, f = 1 MHz; see  
Figure 30  
Rev. 0 | Page 7 of 29  
 
ADGS161ꢁ  
Data Sheet  
Parameter  
25°C  
−40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
Total Harmonic Distortion Plus Noise,  
THD + N  
0.093  
% typ  
RL = 110 Ω, f = 20 Hz to 20 kHz,  
VS = 3.ꢀ V p-p ; see Figure 33  
−3 dB Bandwidth  
Insertion Loss  
38  
−0.1ꢀ  
MHz typ  
dB typ  
RL = ꢀ0 Ω, CL = ꢀ pF; see Figure 3±  
RL = ꢀ0 Ω, CL = ꢀ pF, f = 1 MHz; see  
Figure 3±  
Off Switch Source Capacitance, CS (Off) 72  
Off Switch Drain Capacitance, CD (Off) 72  
On Switch Capacitance, CD (On), CS (On) 160  
POWER REQUIREMENTS  
pF typ  
pF typ  
pF typ  
VS = 2.ꢀ V, f = 1 MHz  
VS = 2.ꢀ V, f = 1 MHz  
VS = 2.ꢀ V, f = 1 MHz  
VDD = ꢀ.ꢀ V  
Positive Supply Current, IDD  
0.01  
0.01  
130  
μA typ  
μA max  
μA typ  
μA max  
μA typ  
μA max  
All switches open  
1
All switches closed, VL = ꢀ.ꢀ V  
All switches closed, VL = 2.7 V  
1
220  
Digital Supply Current, IL  
Inactive  
6.3  
1±  
μA typ  
μA max  
μA typ  
Digital inputs = 0 V or VL  
8.0  
Inactive, SCLK = 1 MHz  
CS = VL and SDI = 0 V or VL,  
VL = ꢀ V  
7
μA typ  
μA typ  
μA typ  
CS = VL and SDI = 0 V or VL,  
VL = 3 V  
CS = VL and SDI = 0 V or VL,  
VL = ꢀ V  
CS = VL and SDI = 0 V or VL,  
VL = 3 V  
SCLK = ꢀ0 MHz  
390  
210  
Inactive, SDI = 1 MHz  
SDI = 2ꢀ MHz  
1ꢀ  
μA typ  
μA typ  
μA typ  
μA typ  
mA typ  
CS and SCLK = 0 V or VL, VL = ꢀ V  
7.ꢀ  
230  
120  
1.8  
CS and SCLK = 0 V or VL, VL = 3 V  
CS and SCLK = 0 V or VL, VL = ꢀ V  
CS and SCLK = 0 V or VL, VL = 3 V  
Active at ꢀ0 MHz  
Digital inputs toggle between 0 V  
and VL, VL = ꢀ.ꢀ V  
2.1  
mA max  
mA typ  
0.7  
Digital inputs toggle between 0 V  
and VL, VL = 2.7 V  
1.0  
3.3  
16  
mA max  
V min  
V max  
VDD  
GND = 0 V, VSS = 0 V  
GND = 0 V, VSS = 0 V  
Rev. 0 | Page 8 of 29  
Data Sheet  
ADGS161ꢁ  
3.3 V SINGLE SUPPLY  
VDD = 3.3 V, VSS = ꢀ V, VL = 2.7 V to 3.3 V, GND = ꢀ V, unless otherwise noted.  
Table 4.  
Parameter  
25°C  
−40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
0 V to VDD  
3.6  
V
3.2  
3.±  
Ω typ  
VS = 0 V to VDD, IS = −10 mA, VDD =  
3.3 V, VSS = 0 V; see Figure 29  
On Resistance Match Between Channels,  
∆RON  
On Resistance Flatness, RFLAT(ON)  
LEAKAGE CURRENTS  
0.06  
1.2  
0.07  
1.3  
0.08  
1.±  
Ω typ  
Ω typ  
VS = 0 V to VDD, IS = −10 mA  
VS = 0 V to VDD, IS = −10 mA  
VDD = 3.3 V, VSS = 0 V  
Source Off Leakage, IS (Off)  
±0.1  
nA typ  
VS = 0.6 V/3 V, VD = 3 V/0.6 V; see  
Figure 32  
±0.3  
±0.1  
±1.0  
±6.0  
nA max  
nA typ  
Drain Off Leakage, ID (Off)  
VS = 0.6 V/3 V, VD = 3 V/0.6 V; see  
Figure 32  
±0.3  
±0.2  
±0.±  
±1.0  
±1.ꢀ  
±6.0  
nA max  
V max  
Channel On Leakage, ID (On), IS (On)  
VS = VD = 0.6 V/3 V; see Figure 28  
±10.0  
DIGITAL OUTPUT  
Output Voltage  
Low, VOL  
0.±  
0.2  
V max  
V max  
μA typ  
μA max  
pF typ  
ISINK = ꢀ mA  
ISINK = 1 mA  
VOUT = VGND or VL  
Output Current, Low (IOL) or High (IOH)  
0.001  
±
±0.1  
Digital Output Capacitance, COUT  
DIGITAL INPUTS  
Input Voltage  
High, VINH  
Low, VINL  
Input Current, Low (IINL) or High (IINH  
1.3ꢀ  
0.8  
V min  
V max  
μA typ  
μA max  
pF typ  
)
0.001  
±
VIN = VGND or VL  
±0.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS  
On Time, tON  
ꢀ±ꢀ  
720  
±70  
630  
1ꢀꢀ  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
RL = 300 Ω, CL = 3ꢀ pF  
VS = 1.ꢀ V; see Figure 36  
RL = 300 Ω, CL = 3ꢀ pF  
VS = 1.ꢀ V; see Figure 36  
RL = 300 Ω, CL = 3ꢀ pF  
VS1 = VS2 = 1.ꢀ V, see Figure 3ꢀ  
730  
69ꢀ  
73ꢀ  
760  
ꢀ0  
Off Time, tOFF  
Break-Before-Make Time Delay, tD  
Charge Injection, QINJ  
ꢀ0  
VS = 1.ꢀ V, RS = 0 Ω, CL = 1 nF; see  
Figure 37  
Off Isolation  
Channel to Channel Crosstalk  
−6ꢀ  
−93  
dB typ  
dB typ  
CL = ꢀ pF, f = 100 kHz; see Figure 31  
RL = ꢀ0 Ω, CL = ꢀ pF, f = 1 MHz; see  
Figure 30  
Total Harmonic Distortion Plus Noise,  
THD + N  
0.18  
% typ  
RL = 110 Ω, f = 20 Hz to 20 kHz,  
VS = 2 V p-p; see Figure 33  
−3 dB Bandwidth  
Insertion Loss  
ꢀ0  
−0.27  
MHz typ  
dB typ  
RL = ꢀ0 Ω, CL = ꢀ pF; see Figure 3±  
RL = ꢀ0 Ω, CL = ꢀ pF, f = 1 MHz; see  
Figure 3±  
Off Switch Source Capacitance, CS (Off) 76  
Off Switch Drain Capacitance, CD (Off) 76  
On Switch Capacitance, CD (On), CS (On) 160  
pF typ  
pF typ  
pF typ  
VS = 1.ꢀ V, f = 1 MHz  
VS = 1.ꢀ V, f = 1 MHz  
VS = 1.ꢀ V, f = 1 MHz  
Rev. 0 | Page 9 of 29  
 
ADGS161ꢁ  
Data Sheet  
Parameter  
25°C  
0.01  
0.01  
−40°C to +85°C −40°C to +125°C Unit  
μA typ  
Test Conditions/Comments  
POWER REQUIREMENTS  
Positive Supply Current, IDD  
VDD = 3.3 V  
All switches open  
1
μA max  
μA typ  
μA max  
All switches closed, VL = 3.3 V  
Digital inputs = 0 V or VL  
1
Digital Supply Current, IL  
Inactive  
3.2  
7
μA typ  
μA max  
μA typ  
±.8  
Inactive, SCLK = 1 MHz  
SCLK = ꢀ0 MHz  
CS = VL and SDI = 0 V or VL,  
VL = 3 V  
CS = VL and SDI = 0 V or VL,  
VL = 3 V  
210  
μA typ  
Inactive, SDI = 1 MHz  
SDI = 2ꢀ MHz  
7.ꢀ  
120  
0.7  
μA typ  
μA typ  
mA typ  
CS and SCLK = 0 V or VL, VL = 3 V  
CS and SCLK = 0 V or VL, VL = 3 V  
Active at ꢀ0 MHz  
Digital inputs toggle between 0 V  
and VL, VL = 2.7 V  
1.0  
3.3  
16  
mA max  
V min  
V max  
VDD  
GND = 0 V, VSS = 0 V  
GND = 0 V, VSS = 0 V  
Rev. 0 | Page 10 of 29  
Data Sheet  
ADGS161ꢁ  
CONTINUOUS CURRENT PER CHANNEL, Sx OR Dx  
Table 5. Four Channels On  
Parameter  
25°C  
85°C  
125°C  
Unit  
CONTINUOUS CURRENT, Sx OR Dx  
VDD = +ꢀ V, VSS = −ꢀ V (θJA = 60°C/W)  
VDD = 12 V, VSS = 0 V (θJA = 60°C/W)  
VDD = ꢀ V, VSS = 0 V (θJA = 60°C/W)  
VDD = 3.3 V, VSS = 0 V (θJA = 60°C/W)  
31ꢀ  
330  
2±9  
203  
19±  
200  
161  
137  
106  
108  
96  
mA max  
mA max  
mA max  
mA max  
87  
Table 6. One Channel On  
Parameter  
25°C  
85°C  
125°C  
Unit  
CONTINUOUS CURRENT, Sx OR Dx  
VDD = +ꢀ V, VSS = −ꢀ V (θJA = 60°C/W)  
VDD = 12 V, VSS = 0 V (θJA = 60°C/W)  
VDD = ꢀ V, VSS = 0 V (θJA = 60°C/W)  
VDD = 3.3 V, VSS = 0 V (θJA = 60°C/W)  
ꢀ66  
ꢀ91  
±ꢀ0  
366  
292  
301  
2ꢀ1  
218  
126  
127  
120  
113  
mA max  
mA max  
mA max  
mA max  
TIMING CHARACTERISTICS  
VL = 2.7 V to 5.5 V; GND = ꢀ V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 7.  
Parameter  
Limit at TMIN, TMAX  
Unit  
Description  
t1  
t2  
t3  
t±  
tꢀ  
t6  
t7  
t8  
20  
8
8
10  
6
8
10  
20  
20  
20  
20  
8
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
ns max  
ns max  
ns min  
ns min  
ns min  
SCLK period  
SCLK high pulse width  
SCLK low pulse width  
CS falling edge to SCLK rising edge  
Data setup time  
Data hold time  
SCLK active edge to CS rising edge  
CS falling edge to SDO data available  
SCLK falling edge to SDO data available  
CS rising edge to SDO returns to high impedance  
CS high time between SPI commands  
CS falling edge to SCLK becomes stable  
CS rising edge to SCLK becomes stable  
1
t9  
t10  
t11  
t12  
t13  
8
1 Measured with the 1 kΩ pull-up resistor to VL and 20 pF load. The t9 parameter determines the maximum SCLK frequency when SDO is used.  
Rev. 0 | Page 11 of 29  
 
 
 
 
ADGS161ꢁ  
Data Sheet  
Timing Diagrams  
t1  
SCLK  
CS  
t2  
t7  
t4  
t3  
t6  
t5  
SDI  
R/W  
A6  
A5  
1
D2  
D2  
D1  
D1  
D0  
D0  
t10  
t9  
SDO  
0
0
t8  
Figure 2. Addressable Mode Timing Diagram  
t1  
SCLK  
CS  
t2  
t3  
t4  
t7  
t6  
t5  
SDI  
D7  
D6  
D0  
D7  
D6  
D1  
D0  
INPUT BYTE FOR DEVICE N  
t9  
INPUT BYTE FOR DEVICE N + 1  
t10  
SDO  
0
0
0
D7  
D6  
D1  
D0  
ZERO BYTE  
INPUT BYTE FOR DEVICE N  
t8  
Figure 3. Daisy-Chain Timing Diagram  
t11  
CS  
SCLK  
t13  
t12  
CS  
Figure 4. SCLK/ Timing Diagram  
Rev. 0 | Page 12 of 29  
Data Sheet  
ADGS161ꢁ  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Table 8.  
Parameter  
Rating  
VDD to VSS  
18 V  
θJA is the natural convection junction to ambient thermal  
resistance measured in a one cubic foot sealed enclosure. θJC is  
the junction to case thermal resistance.  
VDD to GND  
VSS to GND  
RESET/VL to GND  
VDD ≤ ꢀ.ꢀ V  
VDD > ꢀ.ꢀ V  
Analog Inputs1  
−0.3 V to +18 V  
+0.3 V to −18 V  
−0.3V to VDD + 0.3 V  
−0.3 V to +6 V  
VSS − 0.3 V to VDD + 0.3 V or  
30 mA, whichever occurs first  
−0.3 V to +6 V  
Table 9. Thermal Resistance  
Package Type  
CP-2±-171  
θJA  
θJC  
Unit  
60  
13  
°C/W  
Digital Inputs1  
Peak Current, Sx or Dx Pins2  
1 Thermal impedance simulated values are based on a JEDEC 2S2P thermal  
test board. See JEDEC JESDꢀ1.  
ꢀ±6 mA (pulsed at 1 ms, 10%  
duty cycle maximum)  
Continuous Current, Sx or Dx2, 3 Data + 1ꢀ%  
Temperature Ranges  
ESD CAUTION  
Operating  
−±0°C to +12ꢀ°C  
Storage  
Junction Temperature  
−6ꢀ°C to +1ꢀ0°C  
1ꢀ0°C  
Reflow Soldering Peak  
Temperature, Pb-Free  
260°C  
1 Overvoltages at the digital, Sx, and Dx pins are clamped by internal diodes.  
Limit current to the maximum ratings given.  
2 Sx refers to the S1 to S± pins, and Dx refers to the D1 to D± pins.  
3 See Table ꢀ and Table 6.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Only one absolute maximum rating can be applied at any one time.  
Rev. 0 | Page 13 of 29  
 
 
 
ADGS161ꢁ  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
18  
17  
16  
15  
14  
13  
D1  
S1  
D2  
S2  
ADGS1612  
NIC  
V
SS  
TOP VIEW  
V
GND 4  
DD  
(Not to Scale)  
5
6
S4  
D4  
S3  
D3  
NOTES  
1. THE EXPOSED PAD IS CONNECTED  
INTERNALLY. FOR INCREASED RELIABILITY  
OF THE SOLDER JOINTS AND MAXIMUM  
THERMAL CAPABILITY, IT IS RECOMMENDED  
THAT THE EXPOSED PAD BE SOLDEREDTO  
THE SUBSTRATE, V  
.
SS  
2. NIC = NOT INTERNALLY CONNECTED.  
Figure 5. Pin Configuration  
Table 10. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
±, 11  
6
D1  
S1  
VSS  
GND  
S±  
D±  
NIC  
Drain Terminal 1. This pin can be an input or an output.  
Source Terminal 1. This pin can be an input or an output.  
Most Negative Power Supply Potential. In single-supply applications, tie this pin to ground.  
Ground (0 V) Reference.  
Source Terminal ±. This pin can be an input or an output.  
Drain Terminal ±. This pin can be an input or an output.  
Not Internally Connected. These pins are not internally connected.  
7, 8, 10, 12,  
16, 19, 2±  
9
RESET/VL  
Reset/Logic Power Supply Input. Under normal operation, drive the RESET/VL pin with a 2.7 V to ꢀ.ꢀ V supply.  
Pull the pin low to complete a hardware reset. All switches are opened, and the appropriate registers are set  
to their default settings.  
13  
1±  
1ꢀ  
17  
18  
20  
D3  
S3  
VDD  
S2  
D2  
SDO  
Drain Terminal 3. This pin can be an input or an output.  
Source Terminal 3. This pin can be an input or an output.  
Most Positive Power Supply Potential.  
Source Terminal 2. This pin can be an input or an output.  
Drain Terminal 2. This pin can be an input or an output.  
Serial Data Output. This pin can be used for daisy-chaining a number of these devices together or for reading  
back the data stored in a register for diagnostic purposes. The serial data is propagated on the falling edge of  
SCLK. Pull this open-drain output to VL with an external resistor.  
21  
CS  
Active Low Control Input. CS is the frame synchronization signal for the input data. When CS goes low, it  
powers on the SCLK buffers and enables the input shift register. Data is transferred in on the falling edges of  
the following clocks. Taking CS high updates the switch condition.  
22  
23  
SCLK  
SDI  
Serial Clock Input. Data is captured on the positive edge of SCLK. Data is transferred at rates of up to ꢀ0 MHz.  
Serial Data Input. Data is captured on the positive edge of the serial clock input.  
EPAD  
Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder joints and  
maximum thermal capability, it is recommended that the exposed pad be soldered to the substrate, VSS.  
Rev. 0 | Page 1± of 29  
 
Data Sheet  
ADGS161ꢁ  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
1.4  
V
V
= 12V  
= 0V  
T
T
= +125°C  
= +85°C  
T
T
= +25°C  
= –40°C  
DD  
SS  
A
A
A
A
1.2  
1.0  
0.8  
0.6  
T
= 25°C  
DD  
V
V
= +3.3V,V = –3.3V  
SS  
= +8V, V = –8V  
SS  
A
DD  
DD  
V
= +5V, V = –5V  
SS  
0.4  
–8  
0
2
4
6
8
10  
12  
–6  
–4  
–2  
0
2
4
6
8
V
OR V VOLTAGE (V)  
D
V
OR V VOLTAGE (V)  
S
S
D
Figure 9. On Resistance (RON) as a Function of VS (VD) for Various  
Temperatures, 12 V Single Supply  
Figure 6. On Resistance (RON) as a Function of VS, VD (Dual Supply)  
3.5  
2.5  
V
V
= 5V  
= 0V  
T
T
= +125°C  
= +85°C  
T
T
= +25°C  
= –40°C  
T
= 25°C  
DD  
SS  
A
A
A
A
A
V
V
V
V
= 16V, V = 0V  
DD  
SS  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
= 12V, V = 0V  
= 5V, V = 0V  
= 3.3V, V = 0V  
DD  
DD  
DD  
SS  
SS  
SS  
2.0  
1.5  
1.0  
0
2
4
6
8
10  
12  
14  
16  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
V
OR V VOLTAGE (V)  
V OR V VOLTAGE (V)  
S D  
S
D
Figure 7. On Resistance (RON) as a Function of VS, VD (Single Supply)  
Figure 10. On Resistance (RON) as a Function of VS (VD) for Various  
Temperatures, 5 V Single Supply  
1.4  
2.5  
V
V
= 5V  
= 0V  
T
T
= +125°C  
= +85°C  
T
T
= +25°C  
= –40°C  
DD  
SS  
A
A
A
A
1.2  
1.0  
0.8  
0.6  
2.0  
1.5  
1.0  
T
T
T
T
= +125°C  
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
V
V
= +5V  
= –5V  
DD  
SS  
0.4  
–6  
–4  
–2  
0
2
4
6
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
V
S
OR V VOLTAGE (V)  
D
V
OR V VOLTAGE (V)  
D
S
Figure 8. On Resistance (RON) as a Function of VS (VD) for Various  
Temperatures, 5 V Dual Supply  
Figure 11. On Resistance (RON) as a Function of VS (VD) for Various  
Temperatures, 3.3 V Single Supply  
Rev. 0 | Page 1ꢀ of 29  
 
ADGS161ꢁ  
Data Sheet  
20  
15  
10  
5
18  
16  
14  
12  
10  
8
+I (ON), +I (ON)  
D
S
+I (OFF), +I (OFF)  
D
S
–I (OFF), +I (OFF)  
D
S
D
S
S
S
–I (OFF), –I (OFF)  
D
D
S
D
S
S
+I (OFF), –I (OFF)  
–I (OFF), +I (OFF)  
–I (ON), –I (ON)  
D
+I (OFF), –I (OFF)  
S
–I (OFF), +I (OFF)  
S
–I (OFF), +I (OFF)  
S
+I (OFF), –I (OFF)  
D
D
+I (OFF), –I (OFF)  
D
D
6
0
4
–5  
–10  
2
0
–2  
–4  
–15  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. Leakage Current vs. Temperature, 3.3 V Single Supply  
Figure 12. Leakage Current vs. Temperature, 5 V Dual Supply  
0
25  
T
V
V
= 25°C  
= +5V  
SS  
+I (ON), +I (ON)  
A
DD  
D
S
–I (OFF), +I (OFF)  
20  
15  
D
S
D
S
S
S
= –5V  
–20  
–40  
+I (OFF), –I (OFF)  
–I (ON), –I (ON)  
D
–I (OFF), +I (OFF)  
S
+I (OFF), –I (OFF)  
D
D
10  
–60  
5
0
–80  
–5  
–100  
–120  
–140  
–10  
–15  
–20  
0
20  
40  
60  
80  
100  
120  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 13. Leakage Current vs. Temperature, 12 V Single Supply  
Figure 16. Off Isolation vs. Frequency, 5 V Dual Supply  
20  
0
–20  
T
= 25°C  
DD  
SS  
A
+I (OFF), +I (OFF)  
D
S
V
V
= +5V  
= –5V  
–I (OFF), –I (OFF)  
D
D
S
D
S
S
–I (OFF), +I (OFF)  
15  
10  
5
+I (OFF), –I (OFF)  
S
–40  
–I (OFF), +I (OFF)  
S
+I (OFF), –I (OFF)  
D
D
–60  
–80  
–100  
–120  
–140  
–160  
0
–5  
0
20  
40  
60  
80  
100  
120  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 17. Crosstalk vs. Frequency, 5 V Dual Supply  
Figure 14. Leakage Current vs. Temperature, 5 V Single Supply  
Rev. 0 | Page 16 of 29  
Data Sheet  
ADGS161ꢁ  
300  
0
–1  
–2  
–3  
–4  
–5  
–6  
T
= 25°C  
A
V
V
V
V
= 12.0V, V = 0V  
DD  
DD  
DD  
DD  
SS  
= 5V, V = –5V  
SS  
250  
200  
150  
100  
50  
= 5V, V = 0V  
SS  
SS  
= 3.3V, V = 0V  
T
= 25°C  
DD  
A
V
= +5V  
0
–6  
–4  
–2  
0
2
4
6
8
10  
12  
14  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
V
(V)  
FREQUENCY (Hz)  
S
Figure 18. Charge Injection vs. Source Voltage, VS  
Figure 21. Bandwidth  
600  
500  
400  
300  
200  
100  
0
5.5V DUAL SUPPLY, tON  
13.2V SINGLE SUPPLY, tON  
5.5V SINGLE SUPPLY, tON  
0
–10  
WITH 10µF AND 100nF DECOUPLING CAP  
WITH 100nF DECOUPLING CAP  
WITHOUT DECOUPLING CAP  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
5.5V DUAL SUPPLY, tOFF  
13.2V SINGLE SUPPLY, tOFF  
5.5V SINGLE SUPPLY, tOFF  
–90  
–100  
–110  
–120  
T
V
V
= 25°C  
DD  
SS  
A
= +5V  
= –5V  
–40  
25  
60  
85  
125  
TEMPERATURE (°C)  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 19. AC Power Supply Power Rejection Ratio (AC PSRR) vs. Frequency,  
5 V Dual Supply  
Figure 22. tON, tOFF Times vs. Temperature, VL = 5.5 V  
0.20  
0.18  
600  
500  
400  
300  
200  
100  
0
3.3V SINGLE SUPPLY, tON  
3.3V SINGLE SUPPLY, tOFF  
R
V
V
V
V
= 110, T = 25°C  
L
A
= +12.0V, V = 5V p-p  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
DD  
DD  
DD  
DD  
S
= +5V , V = –5V, V = 5V p-p  
SS S  
= +5V, V = 3.5V  
S
= +3.3V, V = 2V  
S
0
5k  
10k  
FREQUENCY (Hz)  
15k  
20k  
–40  
25  
60  
85  
125  
TEMPERATURE (°C)  
Figure 20. THD + N vs. Frequency, 5 V Dual Supply  
Figure 23. tON, tOFF Times vs. Temperature, VL = 3.3 V  
Rev. 0 | Page 17 of 29  
ADGS161ꢁ  
Data Sheet  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.0  
1.5  
SCLK = 2.5MHz  
SCLK IDLE  
1.0  
0.5  
0
T
= 25°C  
DD  
SS  
A
V
V
= +5V  
= –5V  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
12.0V SINGLE SUPPLY  
5.0V DUAL SUPPLY  
5.0V SINGLE SUPPLY  
3.3V SINGLE SUPPLY  
T
= 25°C  
DD  
SS  
A
V
V
= +5V  
= –5V  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
TIME (µs)  
V
(V)  
L
Figure 26. Digital Feedthrough  
Figure 24. IDD vs. VL  
180  
160  
140  
120  
100  
80  
450  
T
= 25°C  
A
400  
350  
300  
250  
200  
150  
100  
50  
60  
T
= 25°C  
DD  
SS  
A
V
V
= +5V  
= –5V  
40  
C
C
C
OFF  
OFF  
S
S
D
D
20  
V
V
= 5V  
= 3V  
L
L
/C ON  
0
–5  
0
–4  
–3  
–2  
–1  
0
1
2
3
4
5
0
10  
20  
30  
40  
50  
SOURCE VOLTAGE  
SCLK FREQUENCY (MHz)  
Figure 27. Source/Drain Capacitance vs. Source Voltage (VS)  
CS  
Figure 25. IL vs. SCLK Frequency When Is High  
Rev. 0 | Page 18 of 29  
 
Data Sheet  
ADGS161ꢁ  
TEST CIRCUITS  
I
(ON)  
A
I
(OFF)  
A
I
D
(OFF)  
A
D
S
Sx  
Dx  
Sx  
Dx  
NC  
V
V
D
V
D
S
NC = NO CONNECT  
Figure 28. On Leakage  
Figure 32. Off Leakage  
V
V
DD  
SS  
0.1µF  
0.1µF  
AUDIO PRECISION  
V
V
DD  
SS  
R
S
I
DS  
Sx  
50  
V p-p  
V
S
V1  
Dx  
V
OUT  
R
1kΩ  
L
Sx  
Dx  
GND  
V
S
R
= V1/I  
DS  
ON  
Figure 33. THD + N  
Figure 29. On Resistance  
V
V
V
V
V
V
DD  
SS  
DD  
SS  
SS  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
NETWORK  
ANALYZER  
V
V
DD  
DD  
SS  
V
NC  
OUT  
S1  
D1  
R
L
50  
Sx  
Dx  
50Ω  
V
S
D2  
S2  
R
50  
L
V
S
V
OUT  
R
GND  
L
50Ω  
GND  
V
V
OUT  
CHANNEL-TO-CHANNEL CROSSTALK = 20 log  
V
WITH SWITCH  
OUT  
S
INSERTION LOSS = 20 log  
V
WITHOUT SWITCH  
OUT  
Figure 30. Channel to Channel Crosstalk  
Figure 34. Bandwidth  
V
V
SS  
DD  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
V
V
DD  
SS  
Sx  
50Ω  
V
S
Dx  
V
OUT  
R
L
50Ω  
GND  
V
OUT  
OFF ISOLATION = 20 log  
V
S
Figure 31. Off Isolation  
Rev. 0 | Page 19 of 29  
 
 
 
 
 
 
 
 
ADGS161ꢁ  
Data Sheet  
V
V
V
V
DD  
DD  
SS  
SS  
0.1µF  
0.1µF  
SCLK  
50%  
50%  
0V  
0V  
80%  
80%  
V
OUT1  
S1  
S2  
D1  
D2  
V
V
S1  
S2  
V
OUT1  
R
300ꢀ  
C
L1  
35pF  
L1  
V
OUT2  
R
300ꢀ  
C
L2  
35pF  
L
80%  
80%  
INPUT LOGIC  
GND  
V
OUT2  
0V  
t
t
D
D
Figure 35. Break-Before-Make Time Delay, tD  
V
V
V
V
DD  
DD  
SS  
SS  
0.1µF  
0.1µF  
SCLK  
V
OUT  
50%  
50%  
Sx  
Dx  
R
300  
C
L
35pF  
L
90%  
V
S
V
INPUT LOGIC  
GND  
OUT  
10%  
tON  
tOFF  
Figure 36. Switching Times  
V
V
V
DD  
DD  
SS  
SS  
3V  
V
SYNC  
R
V
S
S
D
V
OUT  
C
1nF  
L
S
Q
= C × V  
L OUT  
INJ  
INPUT LOGIC  
GND  
V
OUT  
V  
OUT  
SWITCH OFF  
SWITCH ON  
Figure 37. Charge Injection  
V
SS  
NETWORK  
ANALYZER  
V
V
DD  
SS  
INTERNAL  
BIAS  
R
L
50  
V
S
V
NIC  
OUT  
R
S1  
D1  
L
50ꢀ  
GND  
V
OUT  
AC PSRR = 20 log  
V
S
NOTES  
1. BOARD AND COMPONENT EFFECTS ARE NOT DE-EMBEDDED  
FROM THE AC PSRR MEASUREMENT.  
Figure 38. AC PSRR  
Rev. 0 | Page 20 of 29  
 
 
 
Data Sheet  
ADGS161ꢁ  
TERMINOLOGY  
IDD  
CD (On), CS (On)  
IDD is the positive supply current.  
CD (On) and CS (On) are the on switch capacitances, measured  
with reference to ground.  
ISS  
I
SS is the negative supply current.  
CIN  
CIN is the digital input capacitance.  
VD, VS  
VD and VS are the analog voltages on Terminal D and Terminal  
tON  
S, respectively.  
tON is the delay between applying the digital control input and  
the output switching on.  
RON  
RON is the ohmic resistance between Terminal D and Terminal  
S.  
tOFF  
tOFF is the delay between applying the digital control input and  
the output switching off.  
ΔRON  
ΔRON is the difference between the RON of any two channels.  
tD  
tD is the off time measured between the 8ꢀ0 point of both  
switches when switching from one address state to another.  
RFLAT (ON)  
RFLAT (ON) is the difference between the maximum and minimum  
values of on resistance, measured over the specified analog  
Off Isolation  
signal range.  
Off isolation is a measure of unwanted signal coupling through  
an off switch.  
IS (Off)  
IS (Off) is the source leakage current with the switch off.  
Charge Injection  
Charge injection is a measure of the glitch impulse transferred  
from the digital input to the analog output during switching.  
ID (Off)  
ID (Off) is the drain leakage current with the switch off.  
Crosstalk  
ID (On), IS (On)  
Crosstalk is a measure of unwanted signal that is coupled  
through from one channel to another as a result of parasitic  
capacitance.  
ID (On) and IS (On) are the channel leakage currents with the  
switch on.  
IDS  
Bandwidth  
IDS is the drain to source current.  
Bandwidth is the frequency at which the output is attenuated  
by 3 dB.  
V1  
V1 is the voltage drop across the switch, Sx, to Dx.  
On Response  
VINL  
On response is the frequency response of the on switch.  
VINL is the maximum input voltage for Logic ꢀ.  
Insertion Loss  
VINH  
Insertion loss is the loss due to the on resistance of the switch.  
VINH is the minimum input voltage for Logic 1.  
Total Harmonic Distortion Plus Noise (THD + N)  
THD + N is the ratio of the harmonic amplitude plus noise of  
the signal to the fundamental.  
IINL, IINH  
I
INL and IINH is the low and high input currents of the digital  
inputs.  
AC Power Supply Rejection Ratio (AC PSRR)  
AC PSRR is the ratio of the amplitude of signal on the output to  
the amplitude of the modulation. AC PSRR is a measure of the  
ability of the device to avoid coupling noise and spurious signals  
that appear on the supply voltage pin to the output of the switch.  
The dc voltage on the device is modulated by a sine wave of  
ꢀ.62 V p-p.  
CD (Off)  
CD (Off) is the off switch drain capacitance, which is measured  
with reference to ground.  
CS (Off)  
CS (Off) is the off switch source capacitance, which is measured  
with reference to ground.  
Rev. 0 | Page 21 of 29  
 
ADGS161ꢁ  
Data Sheet  
THEORY OF OPERATION  
The ADGS1612 is a set of serially controlled, quad SPST switches  
with error detection features. SPI Mode ꢀ and SPI Mode 3 can  
be used with the device, and it operates with SCLK frequencies  
of up to 5ꢀ MHz. The default mode for the ADGS1612 is address  
mode, in which the registers of the device are accessed by a 16-bit  
reads. A register write occurs on the 16th SCLK rising edge  
during SPI writes.  
During any SPI command, SDO sends out eight alignment bits  
on the first eight SCLK falling edges. The alignment bits observed  
at SDO are ꢀx25.  
CS  
SPI command bounded by . The SPI command becomes 24-bit  
ERROR DETECTION FEATURES  
if the user enables CRC error detection. Other error detection  
features include SCLK count error and invalid read/write error. If  
any of these SPI interface errors occur, they are detectable by  
reading the error flags register. The ADGS1612 can also operate  
in two other modes, namely burst mode and daisy-chain mode.  
Protocol and communication errors on the SPI interface are  
detectable. There are three detectable errors: incorrect SCLK error  
detection, invalid read and write address error detection, and  
CRC error detection. Each of these errors has a corresponding  
enable bit in the error configuration register. In addition, there  
is an error flag bit for each of these errors in the error flags  
register.  
CS  
The interface pins of the ADGS1612 are , SCLK, SDI, and  
CS  
SDO. Hold low when using the SPI interface. Data is captured  
on the SDI pin on the rising edge of SCLK, and data is propagated  
out on the SDO pin on the falling edge of SCLK. SDO has an  
open-drain output; thus, connect a pull-up resistor to this  
output. When not pulled low by the ADGS1612, SDO is in a  
high impedance state.  
Cyclic Redundancy Check (CRC) Error Detection  
The CRC error detection feature extends a valid SPI frame by  
eight SCLK cycles. These eight extra cycles are needed to send the  
CRC byte for that SPI frame. The CRC byte is calculated by the SPI  
W
block using the 16-bit payload: the R/ bit, Address Bits[6:ꢀ], and  
ADDRESS MODE  
Data Bits[7:ꢀ]. The CRC polynomial used in the SPI block is  
x8 + x2 + x1 + 1 with a seed value of ꢀ. For a timing diagram with  
CRC enabled, see Figure 4ꢀ. Register writes occur at the 24th SCLK  
rising edge with CRC error checking enabled.  
Address mode is the default mode for the ADGS1612 on  
power-up. A single SPI frame in address mode is bounded by a  
CS  
CS  
falling edge and the succeeding rising edge. The SPI frame  
is composed of 16 SCLK cycles. The timing diagram for address  
mode is shown in Figure 39. The first SDI bit indicates whether  
the SPI command is a read or write command. When the first  
bit is set to ꢀ, a write command is issued, and if the first bit is set  
to 1, a read command is issued. The next seven bits determine the  
target register address. The remaining eight bits provide the data  
to the addressed register. The last eight bits are ignored during a  
read command, because during these clock cycles, SDO  
During an SPI write, the microcontroller/CPU provides the  
CRC byte through SDI. The SPI block checks the CRC byte just  
before the 24th SCLK rising edge. On this same edge, the register  
write is prevented if an incorrect CRC byte is received by the  
SPI interface. The CRC error flag is asserted in the error flags  
register in the case of the incorrect CRC byte being detected.  
During an SPI read, the CRC byte is provided to the microcon-  
troller through SDO.  
propagates out the data contained in the addressed register.  
The target register address of an SPI command is determined on  
the eighth SCLK rising edge. Data from this register propagates out  
on SDO from the ninth to the 16th SCLK falling edge during SPI  
The CRC error detection feature is disabled by default and can  
be configured by the user through the error configuration register.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
CS  
SCLK  
SDI  
R/W A6  
0
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDO  
0
1
0
0
1
0
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 39. Address Mode Timing Diagram  
1
2
8
9
10  
16  
17  
18  
19  
20  
21  
22  
23  
24  
CS  
SCLK  
SDI  
R/W A6  
0
A0  
D7  
D6  
D0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
SDO  
0
1
D7  
D6  
D0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
Figure 40. Timing Diagram with CRC Enabled  
Rev. 0 | Page 22 of 29  
 
 
 
 
 
Data Sheet  
ADGS161ꢁ  
SCLK Count Error Detection  
BURST MODE  
SCLK count error detection allows the user to detect if an incorrect  
number of SCLK cycles are sent by the microcontroller or CPU.  
When in address mode, with CRC disabled, 16 SCLK cycles are  
expected. If 16 SCLK cycles are not detected, the SCLK count  
error flag asserts in the error flags register. When less than  
16 SCLK cycles are received by the device, a write to the register  
map never occurs. When the ADGS1612 receives more than  
16 SCLK cycles, a write to the memory map still occurs at the  
16th SCLK rising edge, and the flag asserts in the error flags  
register. With CRC enabled, the expected number of SCLK  
cycles is 24. SCLK count error detection is enabled by default  
and can be configured by the user through the error  
The SPI interface can accept consecutive SPI commands  
CS  
mode. Burst mode is enabled through the burst enable register.  
This mode uses the same 16-bit command to communicate  
with the device. In addition, the response of the device at SDO  
is still aligned with the corresponding SPI command. Figure 41  
shows an example of SDI and SDO during burst mode.  
without the need to deassert the  
line, which is called burst  
The invalid read/write address and CRC error checking functions  
operate similarly during burst mode as they do during address  
mode. However, SCLK count error detection operates in a  
slightly different manner. The total number of SCLK cycles  
CS  
within a given  
frame are counted, and if the total is not a  
configuration register.  
multiple of 16 or a multiple of 24 when CRC is enabled, the  
SCLK count error flag asserts.  
Invalid Read/Write Address Error  
An invalid read/write address error detects when a nonexistent  
register address is a target for a read or write. In addition, this  
error asserts when a write to a read only register is attempted.  
The invalid read/write address error flag asserts in the error  
flags register when an invalid read/write address error occurs.  
The invalid read/write address error is detected on the ninth  
SCLK rising edge, which means a write to the register never  
occurs when an invalid address is targeted. Invalid read/write  
address error detection is enabled by default and can be  
disabled by the user through the error configuration register.  
CS  
SDI  
COMMAND 0[15:0] COMMAND 1[15:0] COMMAND 2[15:0] COMMAND 3[15:0]  
SDO  
RESPONSE 0[15:0] RESPONSE 1[15:0] RESPONSE 2[15:0] RESPONSE 3[15:0]  
Figure 41. Burst Mode Frame  
SOFTWARE RESET  
When in address mode, the user can initiate a software reset. To  
do so, write two consecutive SPI commands, namely ꢀxA3 fol-  
lowed by ꢀxꢀ5, targeting Register ꢀxꢀB. After a software reset,  
all register values are set to default.  
CLEARING THE ERROR FLAGS REGISTER  
DAISY-CHAIN MODE  
To clear the error flags register, write the special 16-bit SPI  
frame, ꢀx6CA9, to the device. This SPI command does not  
trigger the invalid R/W address error. When CRC is enabled,  
the user must also send the correct CRC byte to complete an  
error clear command. At the 16th or 24th SCLK rising edge, the  
error flags register resets to zero.  
The connection of several ADGS1612 devices in a daisy-chain  
configuration is possible, and Figure 42 shows this setup. All  
devices share the same and SCLK line, whereas the SDO pin of  
a device forms a connection to the SDI pin of the next device,  
creating a shift register. In daisy-chain mode, SDO is an eight-cycle  
delayed version of SDI. When in daisy-chain mode, all commands  
target the switch data register. Therefore, it is not possible to  
CS  
make configuration changes while in daisy-chain mode.  
DEVICE 1  
DEVICE 2  
ADGS1612  
ADGS1612  
S1  
S2  
S3  
S4  
D1  
S1  
S2  
S3  
S4  
D1  
D2  
D3  
D4  
D2  
D3  
RESET/V  
D4  
L
SDO  
SPI  
INTERFACE  
SPI  
INTERFACE  
SDO  
SDI  
SCLK  
CS  
RESET/V  
L
Figure 42. Two SPI Controlled Switches Connected in a Daisy-Chain Configuration  
Rev. 0 | Page 23 of 29  
 
 
 
 
 
ADGS161ꢁ  
Data Sheet  
The ADGS1612 can only enter daisy-chain mode when in  
address mode by sending the 16-bit SPI command, ꢀx25ꢀꢀ  
(see Figure 43). When the ADGS1612 receives this command,  
the SDO of the device sends out the same command because  
the alignment bits at SDO are ꢀx25, which allows multiple  
daisy-connected devices to enter daisy-chain mode in a single  
SPI frame. A hardware reset is required to exit daisy-chain mode.  
An SCLK rising edge reads in data on SDI while data is  
propagated out of SDO on an SCLK falling edge. The expected  
CS  
goes high; if this is not the case, the SPI interface sends the last  
eight bits received to the switch data register.  
number of SCLK cycles must be a multiple of eight before  
POWER-ON RESET  
The digital section of the ADGS1612 enters an initialization phase  
during VL power-up. This initialization also occurs after a  
hardware or software reset. After VL power-up or a reset, ensure  
that a minimum of 12ꢀ μs from the time of power-up or reset  
before any SPI command is issued. Ensure that VL does not  
drop out during the 12ꢀ μs initialization phase because this may  
result in incorrect operation of the ADGS1612.  
For the timing diagram of a typical daisy-chain SPI frame, see  
CS  
Figure 44. When  
goes high, Device 1 writes Command ꢀ,  
Bits[7:ꢀ] to its switch data register, Device 2 writes Command 1,  
Bits[7:ꢀ] to its switches, and so on. The SPI block uses the last  
eight bits it received through SDI to update the switches. After  
entering daisy-chain mode, the first eight bits sent out by SDO  
CS  
on each device in the chain are ꢀxꢀꢀ. When  
goes high, the  
internal shift register value does not reset back to zero.  
1
2
3
4
5
6
7
0
8
1
9
10  
11  
12  
13  
14  
15  
16  
CS  
SCLK  
SDI  
0
0
1
0
0
1
0
0
0
0
0
0
0
0
SDO  
0
0
1
0
0
1
0
1
0
0
0
0
0
0
0
0
Figure 43. SPI Command to Enter Daisy-Chain Mode  
CS  
SDI  
COMMAND 3[7:0] COMMAND 2[7:0] COMMAND 1[7:0] COMMAND 0[7:0]  
DEVICE 1  
DEVICE 2  
DEVICE 3  
DEVICE 4  
SDO  
8’h00  
8’h00  
8’h00  
COMMAND 3[7:0] COMMAND 2[7:0] COMMAND 1[7:0]  
SDO2  
SDO3  
8’h00  
8’h00  
COMMAND 3[7:0] COMMAND 2[7:0]  
8’h00 COMMAND 3[7:0]  
NOTES  
1. SDO2 AND SDO3 ARE THE OUTPUT COMMANDS FROM DEVICE 2 AND DEVICE 3, RESPECTIVELY.  
Figure 44. Example of an SPI Frame When Four ADGS1612 Devices Are Connected in Daisy-Chain Mode  
Rev. 0 | Page 2± of 29  
 
 
 
Data Sheet  
ADGS161ꢁ  
APPLICATIONS INFORMATION  
BREAK-BEFORE-MAKE SWITCHING  
DIGITAL INPUT BUFFERS  
The ADGS1612 exhibits break-before-make switching action,  
which allows the use of the device in multiplexer applications. A  
multiplexer can be achieved by externally hardwiring the device  
in the mux configuration that is required, as shown in Figure 45.  
4:1 MUX  
There are input buffers present on the digital inputs pins,  
SCLK, and SDI. These buffers are active at all times. Therefore,  
there is current draw from the VL supply if SCLK or SDI is  
,
CS  
toggling, regardless of whether  
is active. For typical values of  
CS  
this current draw, refer to the Specifications section and Figure 26.  
POWER SUPPLY RAILS  
4 × SPST  
To guarantee correct operation of the ADGS1612, ꢀ.1 μF  
decoupling capacitors are required.  
S1  
The ADGS1612 can operate with bipolar supplies between  
3.3 V and 8 V. The supplies on VDD and VSS do not have to be  
symmetrical; however, the VDD to VSS range must not exceed  
16 V. The ADGS1612 can also operate with single supplies  
between 3.3 V and 16 V with VSS connected to GND.  
S2  
1
D
S3  
S4  
The voltage range that can be supplied to VL is from 2.7 V to 5.5 V.  
SPI  
The device is fully specified at 5 V, 12 V, 5 V, and 3.3 V analog  
supply voltage ranges.  
INTERFACE  
SCLK SDI CS RESET/V  
L
1
ALL Dx PINS ARE CONNECTED AS ONE DRAIN.  
Figure 45. SPI Controlled Switch Configured as a 4:1 Mux  
Rev. 0 | Page 2ꢀ of 29  
 
 
 
 
 
ADGS161ꢁ  
Data Sheet  
REGISTER SUMMARY  
Table 11. Register Summary  
Reg. Name  
Bits Bit 7 Bit 6 Bit 5 Bit 4 Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
0x00  
RW  
R/W  
R/W  
R
0x01 SW_DATA  
0x02 ERR_CONFIG  
0x03 ERR_FLAGS  
0x0ꢀ BURST_EN  
0x0B SOFT_RESETB  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
RESERVED  
RESERVED  
RESERVED  
SW±_EN SW3_EN  
SW2_EN  
SW1_EN  
RW_ERR_EN  
RW_ERR_FLAG  
RESERVED  
SOFT_RESETB  
SCLK_ERR_EN  
SCLK_ERR_FLAG  
CRC_ERR_EN  
CRC_ERR_FLAG  
BURST_MODE_EN  
0x06  
0x00  
0x00  
R/W  
R/W  
0x00  
Rev. 0 | Page 26 of 29  
 
Data Sheet  
ADGS161ꢁ  
REGISTER DETAILS  
SWITCH DATA REGISTER  
Address: 0x01, Reset: 0x00, Name: SW_DATA  
The switch data register controls the status of the four switches of the ADGS1612.  
Table 12. Bit Descriptions for SW_DATA  
Bits  
[7:±]  
3
Bit Name  
RESERVED  
SW±_EN  
Settings  
Description  
Default  
0x0  
Access  
R
These bits are reserved; set these bits to 0.  
Enable bit for SW±.  
SW± open.  
0x0  
R/W  
0
1
SW± closed.  
2
1
0
SW3_EN  
SW2_EN  
SW1_EN  
Enable bit for SW3.  
SW3 open.  
SW3 closed.  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
0
1
Enable bit for SW2.  
SW2 open.  
SW2 closed.  
0
1
Enable bit for SW1.  
SW1 open.  
SW1 closed.  
0
1
ERROR CONFIGURATION REGISTER  
Address: 0x02, Reset: 0x06, Name: ERR_CONFIG  
The error configuration register allows the user to enable or disable the relevant error features as required.  
Table 13. Bit Descriptions for ERR_CONFIG  
Bits Bit Name  
Settings Description  
Default Access  
[7:3] RESERVED  
These bits are reserved; set these bits to 0.  
0x0  
0x1  
R
2
1
RW_ERR_EN  
Enable bit for detecting an invalid read/write address.  
Disabled.  
Enabled.  
R/W  
0
1
SCLK_ERR_EN  
Enable bit for detecting the correct number of SCLK cycles in an SPI frame. When  
CRC is disabled and burst mode is disabled, 16 SCLK cycles are expected. When  
CRC is enabled and burst mode is disabled, 2± SCLK cycles are expected. A multiple  
of 16 SCLK cycles is expected when CRC is disabled and burst mode is enabled. A  
multiple of 2± SCLK cycles is expected when CRC is enabled and burst mode is  
enabled.  
0x1  
0x0  
R/W  
R/W  
0
1
Disabled.  
Enabled.  
0
CRC_ERR_EN  
Enable bit for CRC error detection. SPI frames must be 2± bits wide when enabled.  
0
1
Disabled.  
Enabled.  
Rev. 0 | Page 27 of 29  
 
 
 
ADGS161ꢁ  
Data Sheet  
ERROR FLAGS REGISTER  
Address: 0x03, Reset: 0x00, Name: ERR_FLAGS  
The error flags register allows the user to determine if an error occurred. To clear the error flags register, the special 16-bit SPI command,  
ꢀx6CA9, must be written to the device. This SPI command does not trigger the invalid R/W address error. When CRC is enabled, then  
the user must include the correct CRC byte during the SPI write for the clear error flags register command to complete.  
Table 14. Bit Descriptions for ERR_FLAGS  
Bits Bit Name  
Settings Description  
Default Access  
[7:3] RESERVED  
These bits are reserved and are set to 0.  
0x0  
0x0  
R
R
2
RW_ERR_FLAG  
Error flag for invalid read/write address. The error flag asserts during an SPI read  
if the target address does not exist. The error flag also asserts when the target  
address of an SPI write does not exist or is read only.  
0
1
No error.  
Error.  
1
0
SCLK_ERR_FLAG  
CRC_ERR_FLAG  
Error flag for the detection of the correct number of SCLK cycles in an SPI frame.  
No error.  
Error.  
0x0  
0x0  
R
R
0
1
Error flag that determines if a CRC error occurs during a register write.  
0
1
No error.  
Error.  
BURST ENABLE REGISTER  
Address: 0x05, Reset: 0x00, Name: BURST_EN  
The burst enable register allows the user to enable or disable burst mode. When enabled, the user can send multiple consecutive SPI  
commands without deasserting  
.
CS  
Table 15. Bit Descriptions for BURST_EN  
Bits  
[7:1]  
0
Bit Name  
Settings  
Description  
Default  
0x0  
Access  
R
RESERVED  
These bits are reserved; set these bits to 0.  
BURST_MODE_EN  
Burst mode enable bit.  
Disabled.  
Enabled.  
0x0  
R/W  
0
1
SOFTWARE RESET REGISTER  
Address: 0x0B, Reset: 0x00, Name: SOFT_RESETB  
This software reset register is used to perform a software reset. Consecutively write ꢀxA3 and ꢀxꢀ5 to this register, and the device registers  
reset to their default states.  
Table 16. Bit Descriptions for SOFT_RESETB  
Bits Bit Name  
Settings Description  
To perform a software reset, consecutively write 0xA3 followed by 0x0ꢀ to this  
register.  
Default Access  
0x0 R/W  
[7:0] SOFT_RESETB  
Rev. 0 | Page 28 of 29  
 
 
 
Data Sheet  
ADGS161ꢁ  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN  
1
INDIC ATOR AREA OPTIONS  
(SEE DETAIL A)  
24  
19  
18  
1
0.50  
BSC  
2.70  
2.60 SQ  
2.50  
EXPOSED  
PAD  
13  
12  
6
7
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
1.00  
0.95  
0.90  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-8.  
Figure 46. 24-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm × 4 mm Body and 0.95 mm Package Height  
(CP-24-17)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADGS1612BCPZ  
ADGS1612BCPZ-RL7  
EVAL-ADGS1612SDZ  
Temperature Range  
−±0°C to +12ꢀ°C  
−±0°C to +12ꢀ°C  
Package Description  
Package Option  
CP-2±-17  
CP-2±-17  
2±-Lead Lead Frame Chip Scale Package [LFCSP]  
2±-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D16054-0-1/18(0)  
Rev. 0 | Page 29 of 29  
 
 

相关型号:

ADGS1612BCPZ

SPI Interface, 1 &Omega; RON, ±5 V, 12 V, 5 V, 3.3 V, Mux Configurable, Quad SPST Switch
ADI

ADGS1612BCPZ-RL7

SPI Interface, 1 Ω RON, ±5 V, 12 V, 5 V, 3.3 V, Mux Configurable, Quad SPST Switch
ADI

ADGS5412

SPI Interface, 4× SPST Switches, 9.8 Ω RON, ±20 V/36 V, Mux Configurable
ADI

ADGS5412BCPZ

SPI Interface, 4× SPST Switches, 9.8 Ω RON, ±20 V/36 V, Mux Configurable
ADI

ADGS5412BCPZ-RL7

SPI Interface, 4× SPST Switches, 9.8 Ω RON, ±20 V/36 V, Mux Configurable
ADI

ADGS5414

SPI Interface, Octal SPST Switches, 13.5 Ω RON, ±20 V/36 V, Mux
ADI

ADGS5414BCPZ

SPI Interface, Octal SPST Switches, 13.5 Ω RON, ±20 V/36 V, Mux
ADI

ADGS5414BCPZ-RL7

SPI Interface, Octal SPST Switches, 13.5 &Omega; RON, ±20 V/+36 V, Mux
ADI

ADH-030-10-1

12-Bit Digital-to-Analog Converter
ETC

ADH-030-10-3

12-Bit Digital-to-Analog Converter
ETC

ADH-030-11-1

12-Bit Digital-to-Analog Converter
ETC

ADH-030-11-3

12-Bit Digital-to-Analog Converter
ETC