ADL5367ACPZ-R7 [ADI]

500 MHz to 1700 MHz Balanced Mixer, LO Buffer and RF Balun; 500 MHz至1700 MHz的平衡混频器, LO缓冲器和RF巴伦
ADL5367ACPZ-R7
型号: ADL5367ACPZ-R7
厂家: ADI    ADI
描述:

500 MHz to 1700 MHz Balanced Mixer, LO Buffer and RF Balun
500 MHz至1700 MHz的平衡混频器, LO缓冲器和RF巴伦

射频和微波 射频混频器 微波混频器 分离技术 隔离技术 信息通信管理 局域网
文件: 总24页 (文件大小:581K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
500 MHz to 1700 MHz Balanced Mixer,  
LO Buffer and RF Balun  
ADL5367  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
VCMI  
20  
IFOP  
19  
IFON  
18  
PWDN  
17  
COMM  
16  
RF frequency range of 500 MHz to 1700 MHz  
IF frequency range of 30 MHz to 450 MHz  
Power conversion loss: 7.7 dB  
SSB noise figure of 8.3 dB  
SSB noise figure with 5 dBm blocker of 21 dB  
Input IP3 of 34 dBm  
ADL5367  
1
2
3
4
5
15  
14  
13  
12  
11  
VPMX  
RFIN  
LOI2  
VPSW  
VGS1  
VGS0  
LOI1  
Typical LO drive of 0 dBm  
Single-ended, 50 Ω RF and LO input ports  
High isolation SPDT LO input switch  
Single-supply operation: 3.3 V to 5 V  
Exposed paddle 5 mm × 5 mm, 20-lead LFCSP  
1500 V HBM/500 V FICDM ESD performance  
RFCT  
COMM  
COMM  
BIAS  
GENERATOR  
APPLICATIONS  
Cellular base station receivers  
Transmit observation receivers  
Radio link downconverters  
6
7
LGM3  
8
9
10  
VLO3  
VLO2  
LOSW  
NC  
NC = NO CONNECT  
Figure 1.  
GENERAL DESCRIPTION  
The ADL5367 provides two switched LO paths that can be  
used in TDD applications where it is desirable to rapidly switch  
between two local oscillators. LO current can be externally set  
using a resistor to minimize dc current commensurate with the  
desired level of performance. For low voltage applications, the  
ADL5367 is capable of operation at voltages down to 3.3 V with  
substantially reduced current. Under low voltage operation, an  
additional logic pin is provided to power down (<200 μA) the  
circuit when desired.  
The ADL5367 uses a highly linear, doubly balanced passive  
mixer core along with integrated RF and LO balancing circuitry  
to allow for single-ended operation. The ADL5367 incorporates  
an RF balun, allowing optimal performance over a 500 MHz to  
1700 MHz RF input frequency range. Performance is optimized for  
RF frequencies from 500 MHz to 1200 MHz using a high-side LO  
and for RF frequencies from 900 MHz to 1700 MHz using a  
low-side LO. The balanced passive mixer arrangement provides  
good LO-to-RF leakage, typically better than −35 dBm, and  
excellent intermodulation performance. The balanced mixer  
core also provides extremely high input linearity, allowing the  
device to be used in demanding cellular applications where in-  
band blocking signals may otherwise result in the degradation  
of dynamic performance. A high linearity IF buffer amplifier  
follows the passive mixer core to yield a typical power conversion  
loss of 7.7 dB and can be used with a wide range of output  
impedances.  
The ADL5367 is fabricated using a BiCMOS high performance  
IC process. The device is available in a 5 mm × 5 mm, 20-lead  
LFCSP and operates over a −40°C to +85°C temperature range.  
An evaluation board is also available.  
Table 1. Passive Mixers  
RF Frequency  
(MHz)  
Single  
Mixer  
Single Mixer +  
IF Amp  
Dual Mixer +  
IF Amp  
500 to 1700  
ADL5367 ADL5357  
ADL5365 ADL5355  
ADL5358  
ADL5356  
1200 to 2500  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
ADL5367  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Upconversion.............................................................................. 15  
Spur Tables .................................................................................. 16  
Circuit Description......................................................................... 17  
RF Subsystem.............................................................................. 17  
LO Subsystem ............................................................................. 17  
Applications Information.............................................................. 19  
Basic Connections...................................................................... 19  
IF Port .......................................................................................... 19  
Bias Resistor Selection ............................................................... 19  
Mixer VGS Control DAC.......................................................... 19  
Evaluation Board ............................................................................ 20  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
5 V Performance........................................................................... 4  
3.3 V Performance........................................................................ 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
5 V Performance........................................................................... 7  
3.3 V Performance...................................................................... 14  
REVISION HISTORY  
10/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
ADL5367  
SPECIFICATIONS  
VS = 5 V, IS = 97 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, ZO = 50 Ω, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RF INPUT INTERFACE  
Return Loss  
Tunable to >20 dB over a limited bandwidth  
14  
50  
dB  
Ω
MHz  
Input Impedance  
RF Frequency Range  
OUTPUT INTERFACE  
Output Impedance  
IF Frequency Range  
DC Bias Voltage1  
LO INTERFACE  
500  
1700  
Differential impedance, f = 200 MHz  
Externally generated  
34||1.9  
5.0  
Ω||pF  
MHz  
V
30  
3.3  
450  
5.5  
LO Power  
−6  
0
+10  
1670  
0.4  
dBm  
dB  
Ω
Return Loss  
12.6  
50  
Input Impedance  
LO Frequency Range  
POWER-DOWN (PWDN) INTERFACE  
PWDN Threshold  
Logic 0 Level  
730  
MHz  
2
1.0  
V
V
Logic 1 Level  
1.4  
V
PWDN Response Time  
Device enabled, IF output to 90% of its final level  
Device disabled, supply current < 5 mA  
Device enabled  
160  
220  
0.0  
70  
ns  
ns  
μA  
μA  
PWDN Input Bias Current  
Device disabled  
1 Apply the supply voltage from the external circuit through the choke inductors.  
2 PWDN function is intended for use with VS ≤ 3.6 V only.  
Rev. 0 | Page 3 of 24  
 
ADL5367  
5 V PERFORMANCE  
VS = 5 V, IS = 97 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless  
otherwise noted.  
Table 3.  
Parameter  
Conditions  
Min Typ Max Unit  
DYNAMIC PERFORMANCE  
Power Conversion Loss  
Voltage Conversion Loss  
SSB Noise Figure  
Including 1:1 IF port transformer and PCB loss  
ZSOURCE = 50 Ω, differential ZLOAD = 50 Ω differential  
6.5  
28  
7.7  
1.4  
8.3  
21  
8.5  
dB  
dB  
dB  
dB  
SSB Noise Figure Under Blocking  
5 dBm blocker present 10 MHz from wanted RF input,  
LO source filtered  
fRF1 = 899.5 MHz, fRF2 = 900.5 MHz, fLO = 1103 MHz,  
each RF tone at 0 dBm  
fRF1 = 950 MHz, fRF2 = 900 MHz, fLO = 1103 MHz,  
each RF tone at 0 dBm  
Input Third-Order Intercept (IIP3)  
Input Second-Order Intercept (IIP2)  
34  
80  
dBm  
dBm  
Input 1 dB Compression Point (IP1dB)1 Exceeding 20 dBm RF power results in damage to the device  
25  
dBm  
dBm  
dBm  
dBc  
dBc  
dBc  
LO-to-IF Leakage  
LO-to-RF Leakage  
RF-to-IF Isolation  
IF/2 Spurious  
Unfiltered IF output  
−15  
−40  
−47  
−75  
−72  
0 dBm input power  
0 dBm input power  
IF/3 Spurious  
POWER SUPPLY  
Positive Supply Voltage  
Total Quiescent Current  
4.5  
5
97  
5.5  
V
mA  
VS = 5 V  
1 Exceeding 20 dBm RF power results in damage to the device.  
3.3 V PERFORMANCE  
VS = 3.3 V, IS = 56 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, R9 = 226 Ω, VGS0 = VGS1 = 0 V, and ZO = 50 Ω,  
unless otherwise noted.  
Table 4.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Power Conversion Loss  
Voltage Conversion Loss  
SSB Noise Figure  
Including 4:1 IF port transformer and PCB loss  
ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω differential  
7.3  
1
8.1  
28.5  
dB  
dB  
dB  
dBm  
Input Third-Order Intercept (IIP3)  
fRF1 = 1949.5 MHz, fRF2 = 1950.5 MHz, fLO = 1750 MHz,  
each RF tone at −10 dBm  
Input Second-Order Intercept (IIP2)  
fRF1 = 1950 MHz, fRF2 = 1900 MHz, fLO = 1750 MHz,  
each RF tone at −10 dBm  
75  
dBm  
POWER INTERFACE  
Supply Voltage  
Quiescent Current  
Power-Down Current  
3.0  
3.3  
56  
150  
3.6  
V
mA  
μA  
Resistor programmable  
Device disabled  
Rev. 0 | Page 4 of 24  
 
 
ADL5367  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Parameter  
Supply Voltage, VS  
RF Input Level  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
5.5 V  
20 dBm  
13 dBm  
6.0 V  
LO Input Level  
IFOP, IFON Bias Voltage  
VGS0, VGS1, LOSW, PWDN  
Internal Power Dissipation  
θJA  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature Range (Soldering, 60 sec)  
5.5 V  
1.2 W  
25°C/W  
150°C  
−40°C to +85°C  
−65°C to +150°C  
260°C  
ESD CAUTION  
Rev. 0 | Page 5 of 24  
 
ADL5367  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
VPMX  
RFIN  
RFCT  
COMM  
COMM  
1
2
3
4
5
15 LOI2  
14 VPSW  
13 VGS1  
12 VGS0  
11 LOI1  
ADL5367  
TOP VIEW  
(Not to Scale)  
NOTES  
1. NC = NO CONNECT.  
2. EXPOSED PAD. MUST BE SOLDERED  
TO GROUND.  
Figure 2. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
VPMX  
RFIN  
RFCT  
COMM  
Positive Supply Voltage for IF Amplifier.  
RF Input. This pin must be ac-coupled.  
RF Balun Center Tap (AC Ground).  
Device Common (DC Ground).  
4, 5, 16  
6, 8  
7
9
10  
VLO3, VLO2 Positive Supply Voltages for LO Amplifier.  
LGM3  
LOSW  
NC  
LO Amplifier Bias Control.  
LO Switch. LOI1 selected for 0 V, or LOI2 selected for 3 V.  
No Connect.  
11, 15  
12, 13  
14  
LOI1, LOI2  
LO Inputs. This pin must be ac-coupled.  
VGS0, VGS1 Mixer Gate Bias Controls. 3 V logic. Ground these pins for nominal setting.  
VPSW  
Positive Supply Voltage for LO Switch.  
17  
18, 19  
20  
PWDN  
IFON, IFOP  
VCMI  
Power Down. Connect this pin to ground for normal operation or connect this pin to 3.0 V for disable mode.  
Differential IF Outputs.  
No Connect. This pin can be grounded.  
EPAD (EP)  
Exposed pad must be soldered to ground.  
Rev. 0 | Page 6 of 24  
 
ADL5367  
TYPICAL PERFORMANCE CHARACTERISTICS  
5 V PERFORMANCE  
VS = 5 V, IS = 97 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless  
otherwise noted.  
110  
105  
100  
95  
100  
90  
80  
70  
60  
50  
40  
T
= –40°C  
A
T
= –40°C  
A
T
= +25°C  
A
T
= +85°C  
A
T
= +85°C  
90  
A
T
= +25°C  
85  
A
80  
700 750 800 850 900 950 1000 1050 1100 1150 1200  
700 750 800 850 900 950 1000 1050 1100 1150 1200  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 3. Supply Current vs. RF Frequency  
Figure 6. Input IP2 vs. RF Frequency  
12  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
11  
10  
9
T
= +85°C  
A
T
= +25°C  
A
T
= +85ºC  
= +25ºC  
A
T
A
8
T
= –40ºC  
A
T
= –40°C  
A
7
6
5
700 750 800 850 900 950 1000 1050 1100 1150 1200  
700 750 800 850 900 950 1000 1050 1100 1150 1200  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 4. Power Conversion Loss vs. RF Frequency  
Figure 7. SSB Noise Figure vs. RF Frequency  
40  
38  
36  
34  
32  
30  
28  
26  
T
= +25°C  
A
T
= –40°C  
A
T
= +85°C  
A
700 750 800 850 900 950 1000 1050 1100 1150 1200  
RF FREQUENCY (MHz)  
Figure 5. Input IP3 vs. RF Frequency  
Rev. 0 | Page 7 of 24  
 
ADL5367  
VS = 5 V, IS = 97 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless  
otherwise noted.  
110  
105  
100  
95  
86  
84  
82  
80  
78  
76  
74  
72  
70  
V
= 5.25V  
POS  
V
= 5.25V  
POS  
V
= 5V  
POS  
V
= 5V  
POS  
V
= 4.75V  
POS  
V
= 4.75V  
90  
POS  
85  
80  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 8. Supply Current vs. Temperature  
Figure 11. Input IP2 vs. Temperature  
12  
11  
10  
9
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
V
V
V
= 4.75V  
POS  
POS  
POS  
= 5V  
= 5.25V  
V
= 5.25V  
POS  
V
= 5V  
8
POS  
V
= 4.75V  
POS  
7
6
5
–40  
–40  
–20  
0
20  
40  
60  
80  
–20  
0
20  
40  
60  
80  
TEMPERATURE (ºC)  
TEMPERATURE (°C)  
Figure 9. Power Conversion Loss vs. Temperature  
Figure 12. SSB Noise Figure vs. Temperature  
40  
38  
36  
34  
32  
30  
28  
26  
V
V
= 5.25V  
= 4.75V  
POS  
V
= 5V  
POS  
POS  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 10. Input IP3 vs. Temperature  
Rev. 0 | Page 8 of 24  
ADL5367  
VS = 5 V, IS = 97 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless  
otherwise noted.  
110  
85  
80  
75  
70  
65  
60  
55  
50  
T
= +25°C  
A
105  
100  
T
= –40°C  
A
T
= +25°C  
A
95  
90  
85  
80  
T
= +85°C  
A
T
= +85°C  
A
T
= –40°C  
A
30  
80  
130  
180  
230  
280  
330  
380  
430  
430  
430  
30  
80  
130  
180  
230  
280  
330  
380  
430  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 13. Supply Current vs. IF Frequency  
Figure 16. Input IP2 vs. IF Frequency  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
12  
11  
10  
9
T
= +85°C  
A
T
= +25°C  
A
8
T
= –40°C  
A
7
6
5
30  
30  
80  
130  
180  
230  
280  
330  
380  
80  
130  
180  
230  
280  
330  
380  
430  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 17. SSB Noise Figure vs. IF Frequency  
Figure 14. Power Conversion Loss vs. IF Frequency  
40  
38  
36  
34  
32  
30  
28  
26  
T
= –40°C  
A
T
= +25°C  
A
T
= +85°C  
A
30  
80  
130  
180  
230  
280  
330  
380  
IF FREQUENCY (MHz)  
Figure 15. Input IP3 vs. IF Frequency  
Rev. 0 | Page 9 of 24  
ADL5367  
VS = 5 V, IS = 97 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless  
otherwise noted.  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
= +85°C  
A
T
= +25°C  
A
T
= –40°C  
A
T
= –40°C  
A
T
= +85°C  
A
T
= +25°C  
A
–6  
–4  
–2  
0
2
4
6
8
10  
10  
10  
700 750 800 850 900 950 1000 1050 1100 1150 1200  
LO POWER (dBm)  
RF FREQUENCY (MHz)  
Figure 18. Power Conversion Loss vs. LO Power  
Figure 21. IF/2 Spurious vs. RF Frequency  
40  
38  
36  
34  
32  
30  
28  
26  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
T
= –40°C  
A
T
= +25°C  
A
T
= +85°C  
A
T
= +85°C  
A
T
= –40°C  
A
T
= +25°C  
A
–6  
–4  
–2  
0
2
4
6
8
700 750 800 850 900 950 1000 1050 1100 1150 1200  
LO POWER (dBm)  
RF FREQUENCY (MHz)  
Figure 19. Input IP3 vs. LO Power  
Figure 22. IF/3 Spurious vs. RF Frequency  
90  
85  
80  
75  
70  
65  
60  
55  
50  
T
= +25°C  
A
T
= –40°C  
A
T
= +85°C  
A
–6  
–4  
–2  
0
2
4
6
8
LO POWER (dBm)  
Figure 20. Input IP2 vs. LO Power  
Rev. 0 | Page 10 of 24  
ADL5367  
VS = 5 V, IS = 97 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless  
otherwise noted.  
100  
36.5  
36.0  
35.5  
35.0  
34.5  
34.0  
33.5  
33.0  
32.5  
32.0  
31.5  
31.0  
30.5  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
80  
60  
40  
20  
MEAN: 7.7  
STANDARD DEVIATION: 0.18  
0
7.2  
7.4  
7.6  
7.8  
8.0  
8.2  
30  
80  
130  
180  
230  
280  
330  
380  
430  
CONVERSION LOSS (dB)  
IF FREQUENCY (MHz)  
Figure 23. Conversion Loss Distribution  
Figure 26. IF Port Return Loss  
100  
80  
60  
40  
20  
0
0
5
10  
15  
20  
MEAN: 34.67  
STANDARD DEVIATION: 0.19  
25  
31  
33  
35 37  
INPUT IP3 (dBm)  
39  
700 750 800 850 900 950 1000 1050 1100 1150 1200  
RF FREQUENCY (MHz)  
Figure 24. Input IP3 Distribution  
Figure 27. RF Port Return Loss, Fixed IF  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
SELECTED  
UNSELECTED  
MEAN: 8.3  
STANDARD DEVIATION: 0.05  
7.8  
8.0  
8.2  
8.4 8.8  
8.6  
9.0  
900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400  
NOISE FIGURE (dB)  
LO FREQUENCY (MHz)  
Figure 28. LO Return Loss, Selected and Unselected  
Figure 25. SSB Noise Figure Distribution  
Rev. 0 | Page 11 of 24  
 
ADL5367  
VS = 5 V, IS = 97 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless  
otherwise noted.  
70  
65  
60  
55  
50  
45  
40  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
T
= +25°C  
A
T
= –40°C  
A
T
= +85°C  
A
T
= +85°C  
T
= –40°C  
A
A
T
= +25°C  
A
700 750 800 850 900 950 1000 1050 1100 1150 1200  
900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400  
RF FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 29. LO Switch Isolation vs. RF Frequency  
Figure 32. LO-to-RF Leakage vs. LO Frequency  
–40  
–42  
–44  
–46  
–48  
–50  
–52  
–54  
–56  
–58  
–60  
0
T
= +85°C  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
A
T
= +25°C  
A
2LO TO RF  
T
= –40°C  
A
2LO TO IF  
900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400  
900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400  
RF FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 33. 2LO Leakage vs. LO Frequency  
Figure 30. RF-to-IF Isolation vs. RF Frequency  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–5  
–10  
–15  
–20  
–25  
–30  
T
= –40°C  
A
3LO TO IF  
T
= +25°C  
A
T
= +85°C  
A
3LO TO RF  
900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400  
900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400  
LO FREQUENCY (MHz)  
LO FREUQENCY (MHz)  
Figure 31. LO-to-IF Leakage vs. LO Frequency  
Figure 34. 3LO Leakage vs. LO Frequency  
Rev. 0 | Page 12 of 24  
ADL5367  
VS = 5 V, IS = 97 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless  
otherwise noted.  
10  
15  
14  
13  
12  
11  
10  
9
30  
25  
9
CONVERSION LOSS  
8
7
20  
15  
10  
5
6
5
NOISE FIGURE  
4
3
8
2
7
VGS = 0, 0  
VGS = 0, 1  
VGS = 1, 0  
VGS = 1, 1  
1
0
6
5
0
–30  
700 750 800 850 900 950 1000 1050 1100 1150 1200  
–25  
–20  
–15  
–10  
–5  
0
5
10  
RF FREQUENCY (MHz)  
BLOCKER POWER (dBm)  
Figure 38. SSB Noise Figure vs.10 MHz Offset Blocker Level  
Figure 35. Power Conversion Loss and SSB Noise Figure vs. RF Frequency  
140  
40  
VGS = 0, 0  
VGS = 0, 1  
38  
36  
VGS = 1, 0  
VGS = 1, 1  
120  
100  
80  
60  
40  
20  
0
34  
32  
30  
28  
26  
24  
22  
20  
600  
800  
1000  
1200  
1400  
1600  
1800  
700 750 800 850 900 950 1000 1050 1100 1150 1200  
BIAS RESISTOR VALUE ()  
RF FREQUENCY (MHz)  
Figure 36. Input IP3 vs. RF Frequency  
Figure 39. LO Supply Current vs. LO Bias Resistor Value  
12  
11  
40  
35  
INPUT IP3  
10  
9
30  
25  
20  
15  
10  
5
NOISE FIGURE  
8
CONVERSION LOSS  
7
6
5
4
600  
0
800  
1000  
1200  
1400  
1600  
1800  
BIAS RESISTOR VALUE ()  
Figure 37. Power Conversion Loss, SSB Noise Figure, and  
Input IP3 vs. LO Bias Resistor Value  
Rev. 0 | Page 13 of 24  
 
 
 
ADL5367  
3.3 V PERFORMANCE  
VS = 3.3 V, IS = 56 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, R9 = 226 Ω, VGS0 = VGS1 = 0 V, and ZO = 50 Ω,  
unless otherwise noted.  
85  
64  
80  
T
= –40°C  
A
62  
60  
58  
56  
54  
52  
50  
75  
70  
65  
60  
55  
50  
45  
40  
T
= –40°C  
A
T = +25°C  
A
T
= +25°C  
A
T
= +85°C  
A
T
= +85°C  
A
700 750 800 850 900 950 1000 1050 1100 1150 1200  
700 750 800 850 900 950 1000 1050 1100 1150 1200  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 40. Supply Current vs. RF Frequency at 3.3 V  
Figure 43. Input IP2 vs. RF Frequency at 3.3 V  
10.0  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
T
T
= +85°C  
= +25°C  
A
T
= +85°C  
A
A
T
= +25°C  
A
T
= –40°C  
A
T
= –40°C  
A
700 750 800 850 900 950 1000 1050 1100 1150 1200  
700 750 800 850 900 950 1000 1050 1100 1150 1200  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 41. Power Conversion Loss vs. RF Frequency at 3.3 V  
Figure 44. SSB Noise Figure vs. RF Frequency at 3.3 V  
34  
32  
30  
28  
26  
24  
22  
20  
T
= –40°C  
A
T
= +85°C  
A
T
= +25°C  
A
700 750 800 850 900 950 1000 1050 1100 1150 1200  
RF FREQUENCY (MHz)  
Figure 42. Input IP3 vs. RF Frequency at 3.3 V  
Rev. 0 | Page 14 of 24  
 
ADL5367  
UPCONVERSION  
TA = 25°C, fIF = 153 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted.  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
T
= +85°C  
= –40°C  
A
T
= +85°C  
A
T
= +25°C  
A
T
A
T
= +25°C  
A
T
= –40°C  
A
700 750 800 850 900 950 1000 1050 1100 1150 1200  
700 750 800 850 900 950 1000 1050 1100 1150 1200  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 45. Power Conversion Loss vs. RF Frequency, VS = 5 V, Upconversion  
Figure 47. Power Conversion Loss vs. RF Frequency at 3.3 V, Upconversion  
34  
32  
34  
T
A
= –40°C  
A
T = +25°C  
A
32  
30  
28  
26  
24  
22  
20  
T
= +85°C  
30  
28  
26  
24  
22  
20  
T
= –40°C  
A
T
= +85°C  
A
T
= +25°C  
A
700 750 800 850 900 950 1000 1050 1100 1150 1200  
700 750 800 850 900 950 1000 1050 1100 1150 1200  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 46. Input IP3 vs. RF Frequency, VS = 5 V, Upconversion  
Figure 48. Input IP3 vs. RF Frequency at 3.3 V, Upconversion  
Rev. 0 | Page 15 of 24  
 
ADL5367  
SPUR TABLES  
All spur tables are (N × fRF) − (M × fLO) and were measured using the standard evaluation board. Mixer spurious products are measured  
in dBc from the IF output power level. Data was measured only for frequencies less than 6 GHz. Typical noise floor of the measurement  
system = −100 dBm.  
5 V Performance  
VS = 5 V, IS = 97 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = 0 dBm, VGS0 = VGS1 = 0 V, and  
ZO = 50 Ω, unless otherwise noted.  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
0
−7.8  
0.0  
−24.6  
−45.0  
−77.4  
−95.5  
−35.7  
−27.5  
−72.8  
−75.9  
−53.0  
−53.0  
−80.2  
−97.9  
−47.4  
−54.4  
−80.9  
−91.7  
1
−39.7  
−84.6  
−71.8  
−87.8  
2
−68.8  
−96.8  
3
<−100 −78.6  
<−100 <−100  
4
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
5
6
7
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
N
8
9
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
10  
11  
12  
13  
14  
15  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
3.3 V Performance  
VS = 3.3 V, IS = 56 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = 0 dBm, R9 = 226 Ω, VGS0 = VGS1 =  
0 V, and ZO = 50 Ω, unless otherwise noted.  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
0
−12.6  
0.0  
−28.8  
−42.7  
−64.8  
−90.1  
−40.6  
−27.1  
−68.0  
−63.0  
−95.5  
−43.0  
−53.2  
−65.9  
−90.5  
−97.0  
−59.6  
−50.7  
−73.0  
−77.8  
1
−40.5  
−78.6  
−93.9  
−71.8  
−75.4  
−96.4  
2
−59.5  
−66.3  
−89.4  
−95.6  
3
4
<−100 <−100 −95.6  
<−100 <−100 <−100 <−100  
5
<−100 <−100 <−100 <−100 <−100 −98.9  
<−100 <−100 <−100 <−100  
6
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
7
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
N
8
9
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
10  
11  
12  
13  
14  
15  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
Rev. 0 | Page 16 of 24  
 
ADL5367  
CIRCUIT DESCRIPTION  
The ADL5367 consists of two primary components: the radio  
frequency (RF) subsystem and the local oscillator (LO) subsystem.  
The combination of design, process, and packaging technology  
allows the functions of these subsystems to be integrated  
into a single die, using mature packaging and interconnection  
technologies to provide a high performance, low cost design  
with excellent electrical, mechanical, and thermal properties.  
In addition, the need for external components is minimized,  
optimizing cost and size.  
The resulting balanced RF signal is applied to a passive mixer  
that commutates the RF input with the output of the LO subsystem.  
The passive mixer is essentially a balanced, low loss switch that  
adds minimum noise to the frequency translation. The only  
noise contribution from the mixer is due to the resistive loss  
of the switches, which is in the order of a few ohms.  
Because the mixer is inherently broadband and bidirectional, it  
is necessary to properly terminate all the idler (M × N product)  
frequencies generated by the mixing process. Terminating the  
mixer avoids the generation of unwanted intermodulation  
products and reduces the level of unwanted signals at the IF  
output. This termination is accomplished by the addition of a  
sum network between the IF output and the mixer.  
The RF subsystem consists of an integrated, low loss RF balun,  
passive MOSFET mixer, sum termination network, and IF  
amplifier.  
The LO subsystem consists of an SPDT-terminated FET switch  
and a three-stage limiting LO amplifier. The purpose of the LO  
subsystem is to provide a large, fixed amplitude, balanced signal  
to drive the mixer independent of the level of the LO input.  
The IP3 performance can be optimized by adjusting the supply  
current with an external resistor. Figure 37 and Figure 39  
illustrate how various bias resistors affect the performance with a  
5 V supply. Additionally, dc current can be saved by increasing  
the resistor. It is permissible to reduce the dc supply voltage to  
as low as 3.3 V, further reducing the dissipated power of the  
part. (Note that no performance enhancement is obtained by  
reducing the value of these resistors and excessive dc power  
dissipation may result.)  
A block diagram of the device is shown in Figure 49.  
VCMI  
IFOP  
19  
IFON  
18  
PWDN  
17  
COMM  
16  
20  
ADL5367  
1
2
3
4
5
15  
14  
13  
12  
11  
VPMX  
RFIN  
LOI2  
LO SUBSYSTEM  
VPSW  
VGS1  
VGS0  
LOI1  
The LO amplifier is designed to provide a large signal level to  
the mixer to obtain optimum intermodulation performance.  
The resulting amplifier provides extremely high performance  
centered on an operating frequency of 1100 MHz. The best  
operation is achieved with either high-side LO injection for RF  
signals in the 500 MHz to 1200 MHz range or low-side injection  
for RF signals in the 900 MHz to 1700 MHz range. Operation  
outside these ranges is permissible, and conversion loss is  
extremely wideband, easily spanning 500 MHz to 1700 MHz,  
but intermodulation is optimal over the aforementioned ranges.  
RFCT  
COMM  
COMM  
BIAS  
GENERATOR  
6
7
LGM3  
8
9
10  
The ADL5367 has two LO inputs permitting multiple synthesizers  
to be rapidly switched with extremely short switching times  
(<40 ns) for frequency agile applications. The two inputs are  
applied to a high isolation SPDT switch that provides a constant  
input impedance, regardless of whether the port is selected, to  
avoid pulling the LO sources. This multiple section switch also  
ensures high isolation to the off input, minimizing any leakage  
from the unwanted LO input that may result in undesired IF  
responses.  
VLO3  
VLO2  
LOSW  
NC  
NC = NO CONNECT  
Figure 49. Simplified Schematic  
RF SUBSYSTEM  
The single-ended, 50 Ω RF input is internally transformed to a  
balanced signal using a low loss (<1 dB) unbalanced-to-balanced  
(balun) transformer. This transformer is made possible by an  
extremely low loss metal stack, which provides both excellent  
balance and dc isolation for the RF port. Although the port can  
be dc connected, it is recommended that a blocking capacitor be  
used to avoid running excessive dc current through the part.  
The RF balun can easily support an RF input frequency range  
of 500 MHz to 1700 MHz.  
The single-ended LO input is converted to a fixed amplitude  
differential signal using a multistage, limiting LO amplifier.  
This results in consistent performance over a range of LO input  
power. Optimum performance is achieved from −6 dBm to  
+10 dBm, but the circuit continues to function at considerably  
lower levels of LO input power.  
Rev. 0 | Page 17 of 24  
 
 
ADL5367  
The performance of this amplifier is critical in achieving a  
high intercept passive mixer without degrading the noise floor  
of the system. This is a critical requirement in an interferer rich  
environment, such as cellular infrastructure, where blocking  
interferers can limit mixer performance. The bandwidth of the  
intermodulation performance is somewhat influenced by the  
current in the LO amplifier chain. For dc current sensitive  
applications, it is permissible to reduce the current in the  
LO amplifier by raising the value of the external bias control  
resistor. For dc current critical applications, the LO chain  
can operate with a supply voltage as low as 3.3 V, resulting in  
substantial dc power savings.  
In addition, when operating with supply voltages below 3.6 V,  
the ADL5367 has a power-down mode that permits the dc  
current to drop to <200 μA.  
All of the logic inputs are designed to work with any logic family  
that provides a Logic 0 input level of less than 0.4 V and a Logic 1  
input level that exceeds 1.4 V. All logic inputs are high impedance  
up to Logic 1 levels of 3.3 V. At levels exceeding 3.3 V, protection  
circuitry permits operation up to 5.5 V, although a small bias  
current is drawn.  
Rev. 0 | Page 18 of 24  
ADL5367  
APPLICATIONS INFORMATION  
BASIC CONNECTIONS  
BIAS RESISTOR SELECTION  
An external resistor, RBIAS LO, is used to adjust the bias current of the  
integrated amplifiers at the LO terminals. It is necessary to have  
a sufficient amount of current to bias the internal LO amplifier  
to optimize dc current vs. optimum IIP3 performance. Figure 37  
and Figure 39 provide the reference for the bias resistor selection  
when lower power consumption is considered at the expense of  
conversion gain and IP3 performance.  
The ADL5367 mixer is designed to upconvert or downconvert  
between radio frequencies (RF) from 500 MHz to 1700 MHz and  
intermediate frequencies (IF) from dc to 450 MHz. Figure 50  
depicts the basic connections of the mixer. It is recommended  
to ac-couple the RF and LO input ports to prevent non-zero dc  
voltages from damaging the RF balun or LO input circuit. The  
RFIN capacitor value of 8 pF is recommended to provide the  
optimized RF input return loss for the desired frequency band.  
MIXER VGS CONTROL DAC  
For upconversion, the IF input, Pin 18 (IFON) and Pin 19 (IFOP),  
must be driven differentially or using a 1:1 ratio transformer for  
single ended operation. An 8 pF capacitor is recommended for  
the RF output, Pin 2 (RFIN).  
The ADL5367 features two logic control pins, Pin 12 (VGS0)  
and Pin 13 (VGS1), that allow programmability for internal  
gate-to-source voltages for optimizing mixer performance over  
desired frequency bands. The evaluation board defaults both  
VGS0 and VGS1 to ground. Power conversion loss, NF, and  
IIP3 can be optimized, as shown in Figure 35 and Figure 36.  
IF PORT  
The real part of the output impedance is approximately 50 Ω,  
as seen in Figure 26, which matches many commonly used SAW  
filters without the need for a transformer. This results in a voltage  
conversion loss that is approximately the same as the power  
conversion loss, as shown in Table 3.  
IF1_OUT  
T1  
R1  
0  
C25  
560pF  
C24  
560pF  
10kΩ  
+5V  
20  
19  
18  
17  
16  
10pF  
4.7µF  
22pF  
ADL5367  
+5V  
1
2
3
4
5
15  
14  
13  
12  
11  
LO2_IN  
+5V  
8pF  
RF-IN  
10pF  
0.01µF  
10pF  
BIAS  
GENERATOR  
22pF  
LO1_IN  
6
7
8
9
10  
R
BIAS LO  
10kΩ  
+5V  
10pF  
10pF  
Figure 50. Typical Application Circuit  
Rev. 0 | Page 19 of 24  
 
 
ADL5367  
EVALUATION BOARD  
An evaluation board is available for the family of double balanced  
mixers. The standard evaluation board schematic is shown in  
Figure 51. The evaluation board is fabricated using Rogers®  
RO3003 material. Table 7 describes the various configuration  
options of the evaluation board. Evaluation board layout is shown  
in Figure 52 to Figure 55.  
IF1_OUT  
R1  
0Ω  
T1  
C25  
560pF  
C24  
560pF  
PWR_UP  
R21  
10kΩ  
R14  
0Ω  
L3  
0Ω  
C12  
22pF  
LO2_IN  
VPOS  
VPOS  
VPMX  
RFIN  
LOI2  
VPSW  
VGS1  
VGS0  
LOI1  
C2  
C21  
C20  
R22  
10kΩ  
10µF  
10pF  
10pF  
RF-IN  
C22  
1nF  
C1  
8pF  
R23  
15kΩ  
ADL5367  
RFCT  
COMM  
COMM  
C5  
0.01µF  
C4  
10pF  
VGS1  
VGS0  
LO1_IN  
C10  
22pF  
LOSEL  
VPOS  
R9  
1.1kΩ  
C6  
10pF  
R4  
10kΩ  
VPOS  
C8  
10pF  
Figure 51. Evaluation Board Schematic  
Rev. 0 | Page 20 of 24  
 
 
ADL5367  
Table 7. Evaluation Board Configuration  
Components  
Description  
Default Conditions  
C2, C6, C8,  
C20, C21  
Power Supply Decoupling. Nominal supply decoupling consists of  
a 10 μF capacitor to ground in parallel with a 10 pF capacitor to  
ground positioned as close to the device as possible.  
C2 = 10 μF (Size 0603),  
C6, C8, C20, C21 = 10 pF (Size 0402)  
C1, C4, C5  
RF Input Interface. The input channels are ac-coupled through C1.  
C4 and C5 provide bypassing for the center taps of the RF input baluns.  
C1 = 3 pF (Size 0402), C4 = 10 pF (Size 0402),  
C5 = 0.01 μF (Size 0402)  
T1, R1, C24, C25 IF Output Interface. T1 is a 1:1 impedance transformer used to provide  
a single-ended IF output interface. Remove R1 for balanced output  
T1 = TC1-1-13M+ (Mini-Circuits),  
R1 = 0 Ω (Size 0402),  
operation. C24 and C25 are used to block the dc bias at the IF ports.  
C24, C25 = 560 pF (Size 0402)  
C10, C12, R4  
LO Interface. C10 and C12 provide ac coupling for the LO1_IN and  
LO2_IN local oscillator inputs. LOSEL selects the appropriate LO input  
for both mixer cores. R4 provides a pull-down to ensure that LO1_IN is  
enabled when the LOSEL test point is logic low. LO2_IN is enabled  
when LOSEL is pulled to logic high.  
C10, C12 = 22 pF (Size 0402),  
R4 = 10 kΩ (Size 0402)  
R21  
PWDN Interface. R21 pulls the PWDN logic low and enables the device.  
The PWR_UP test point allows the PWDN interface to be exercised  
using the an external logic generator. Grounding the PWDN pin for  
nominal operation is allowed. Using the PWDN pin when supply  
voltages exceed 3.3 V is not allowed.  
R21 = 10 kΩ (Size 0402)  
C22, L3, R9, R14,  
R22, R23, VGS0,  
VGS1  
Bias Control. R22 and R23 form a voltage divider to provide 3 V for  
logic control, bypassed to ground through C22. VGS0 and VGS1  
jumpers provide programmability at the VGS0 and VGS1 pins. It is  
recommended to pull these two pins to ground for nominal operation.  
R9 sets the bias point for the internal LO buffers. R14 sets the bias point  
for the internal IF amplifier.  
C22 = 1 nF (Size 0402), L3 = 0 Ω (Size 0603),  
R9 = 1.1 kΩ (Size 0402), R14 = 0 Ω (Size 0402),  
R22 = 10 kΩ (Size 0402), R23 = 15 kΩ (Size 0402),  
VGS0 = VGS1 = 3-pin shunt  
Rev. 0 | Page 21 of 24  
 
ADL5367  
Figure 52. Evaluation Board Top Layer  
Figure 54. Evaluation Board Power Plane, Internal Layer 2  
Figure 53. Evaluation Board Ground Plane, Internal Layer 1  
Figure 55. Evaluation Board Bottom Layer  
Rev. 0 | Page 22 of 24  
 
 
ADL5367  
OUTLINE DIMENSIONS  
0.60 MAX  
5.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
15  
16  
20  
1
5
0.65  
BSC  
PIN 1  
INDICATOR  
4.75  
BSC SQ  
3.20  
3.10 SQ  
3.00  
EXPOSED  
PAD  
(BOTTOM VIEW)  
10  
11  
6
0.75  
0.60  
0.50  
TOP VIEW  
2.60 BSC  
0.70  
0.65  
0.60  
12° MAX  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.90  
0.85  
0.80  
0.05 MAX  
0.01 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.05  
0.35  
0.28  
0.23  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHC  
Figure 56. 20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
5 mm × 5 mm Body, Very Thin Quad (CP-20-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Package Ordering  
Model  
Temperature Range  
Package Description  
Option  
Quantity  
1,500  
1
ADL5367ACPZ-R71 −40°C to +85°C  
ADL5367-EVALZ1  
20-Lead Lead Frame Chip Scale Package [LFCSP_VQ], 7”Tape and Reel  
Evaluation Board  
CP-20-5  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 23 of 24  
 
 
ADL5367  
NOTES  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08083-0-10/09(0)  
Rev. 0 | Page 24 of 24  

相关型号:

ADL5369

300 MHz to 1100 MHz Balanced Mixer, LO Buffer, and RF Balun
ADI

ADL5369-EVALZ

300 MHz to 1100 MHz Balanced Mixer, LO Buffer, and RF Balun
ADI

ADL5369ACPZ-R7

300 MHz to 1100 MHz Balanced Mixer, LO Buffer, and RF Balun
ADI

ADL5370

300 MHz to 1000 MHz Quadrature Modulator
ADI

ADL5370-EVALZ

300 MHz to 1000 MHz Quadrature Modulator
ADI

ADL5370ACPZ-R2

300 MHz to 1000 MHz Quadrature Modulator
ADI

ADL5370ACPZ-R7

300 MHz to 1000 MHz Quadrature Modulator
ADI

ADL5370ACPZ-R7

250 MHz - 1300 MHz RF/MICROWAVE QUADRAPHASE MODULATOR, LEAD FREE, MO-220VGGD-2, LFCSP-24
ROCHESTER

ADL5370ACPZ-WP

300 MHz to 1000 MHz Quadrature Modulator
ADI

ADL5370ACPZ-WP

250 MHz - 1300 MHz RF/MICROWAVE QUADRAPHASE MODULATOR, LEAD FREE, MO-220VGGD-2, LFCSP-24
ROCHESTER

ADL5371

300 MHz to 1000 MHz Quadrature Modulator
ADI

ADL5371ACPZ-R7

500 MHz TO 1500 MHz Quadrature Modulator
ADI