ADL5801-EVALZ [ADI]

High IP3, 10 MHz to 6 GHz, Active Mixer; 高IP3 , 10 MHz至6 GHz的有源混频器
ADL5801-EVALZ
型号: ADL5801-EVALZ
厂家: ADI    ADI
描述:

High IP3, 10 MHz to 6 GHz, Active Mixer
高IP3 , 10 MHz至6 GHz的有源混频器

文件: 总20页 (文件大小:372K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High IP3,  
10 MHz to 6 GHz, Active Mixer  
ADL5801  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
VPLO GND NC IFON IFOP GND  
Broadband upconverter/downconverter  
Power conversion gain of 1.8 dB  
Broadband RF, LO, and IF ports  
SSB noise figure (NF) of 9.75 dB  
Input IP3: 28.5 dBm  
Input P1dB: 13.3 dBm  
Typical LO drive: 0 dBm  
Single-supply operation: 5 V at 130 mA  
Adjustable bias for low power operation  
Exposed paddle, 4 mm × 4 mm, 24-lead LFCSP package  
24  
23  
22  
21  
20  
19  
1
2
3
4
18  
17  
16  
15  
GND  
GND  
LOIP  
LOIN  
VPRF  
GND  
RFIP  
RFIN  
ADL5801  
V2I  
GND  
GND  
5
6
14 GND  
13 VPDT  
DET  
APPLICATIONS  
7
8
9
10  
11  
12  
Cellular base station receivers  
Radio link downconverters  
Broadband block conversion  
Instrumentation  
VPLO GND ENBL VSET DETO GND  
Figure 1.  
GENERAL DESCRIPTION  
The ADL5801 uses a high linearity, doubly balanced, active  
mixer core with integrated LO buffer amplifier to provide high  
dynamic range frequency conversion from 10 MHz to 6 GHz.  
The mixer benefits from a proprietary linearization architecture  
that provides enhanced input IP3 performance when subject to  
high input levels. A bias adjust feature allows the input linearity,  
SSB noise figure, and dc current to be optimized using a single  
control pin. An optional input power detector is provided for  
adaptive bias control. The high input linearity allows the device  
to be used in demanding cellular applications where in-band  
blocking signals may otherwise result in degradation in  
dynamic performance. The adaptive bias feature allows the part  
to provide high input IP3 performance when presented with  
large blocking signals. When blockers are removed, the  
ADL5801 can automatically bias down to provide low noise  
figure and low power consumption.  
The balanced active mixer arrangement provides superb LO-to-  
RF and LO-to-IF leakage, typically better than −40 dBm. The IF  
outputs are designed to provide a typical voltage conversion  
gain of 7.8 dB when loaded into a 200 Ω load. The broad  
frequency range of the open-collector IF outputs allows the  
ADL5801 to be applied as an upconverter for various transmit  
applications.  
The ADL5801 is fabricated using a SiGe high performance IC  
process. The device is available in a compact 4 mm × 4 mm,  
24-lead LFCSP package and operates over a −40°C to +85°C  
temperature range. An evaluation board is also available.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2010 Analog Devices, Inc. All rights reserved.  
 
 
 
 
ADL5801  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
RF Voltage-to-Current (V-to-I) Converter............................. 11  
Mixer Core .................................................................................. 11  
Mixer Output Load .................................................................... 11  
RF Detector ................................................................................. 11  
Bias Circuit.................................................................................. 12  
Applications Information .............................................................. 13  
Basic Connections...................................................................... 13  
RF and LO Ports ......................................................................... 13  
IF Port .......................................................................................... 14  
Evaluation Board ............................................................................ 15  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 17  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Typical Performance Characteristics ............................................. 6  
Spur Performance....................................................................... 10  
Circuit Description......................................................................... 11  
LO Amplifier and Splitter.......................................................... 11  
REVISION HISTORY  
2/10—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
ADL5801  
SPECIFICATIONS  
VS = 5 V, TA = 25°C, fRF = 900 MHz, fLO = 747 MHz, LO power = 0 dBm, Z01 = 50 Ω, VSET = 3.8 V, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions  
Min Typ  
Max  
Unit  
RF INPUT INTERFACE  
Return Loss  
Tunable to >20 dB over a limited bandwidth  
12  
dB  
Ω
Input Impedance  
RF Frequency Range  
OUTPUT INTERFACE  
Output Impedance  
IF Frequency Range  
DC Bias Voltage2  
50  
10  
6000 MHz  
Differential impedance, f = 200 MHz  
Can be matched externally to 3000 MHz  
Externally generated  
230  
LF  
4.75 VS  
Ω
MHz  
V
600  
5.25  
LO INTERFACE  
LO Power  
Return Loss  
−10  
0
15  
50  
+10  
dBm  
dB  
Ω
Input Impedance  
LO Frequency Range  
POWER INTERFACE  
Supply Voltage  
Quiescent Current  
Disable Current  
10  
6000 MHz  
4.75  
5
5.25  
200  
V
Resistor programmable  
ENBL pin high  
Time from ENBL pin low to enable  
Time from ENBL pin high to disable  
130  
50  
182  
28  
mA  
mA  
ns  
Enable Time  
Disable Time  
ns  
DYNAMIC PERFORMANCE at fRF = 900 MHz/1900 MHz  
Power Conversion Gain3  
fRF = 900 MHz  
1.8  
dB  
fRF = 1900 MHz  
fRF = 900 MHz  
fRF = 1900 MHz  
fCENT = 900 MHz, VSET = 2.0 V  
fCENT = 1900 MHz, VSET = 2.0 V  
fCENT = 900 MHz, VSET = 2.0 V  
fCENT = 1900 MHz, VSET = 2.0 V  
fCENT = 900 MHz  
fCENT = 1900 MHz  
fCENT = 900 MHz  
fCENT = 1900 MHz  
fRF = 900 MHz  
fRF = 1900 MHz  
Unfiltered IF output  
1.8  
7.8  
7.8  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBc  
dBc  
dBc  
dBc  
dBc  
Voltage Conversion Gain4  
SSB Noise Figure  
9.75  
11.5  
19.5  
20  
28.5  
26.4  
63  
49.7  
13.3  
12.7  
−27  
−30  
−35  
−67.5  
−53  
−65.5  
−72.6  
SSB Noise Figure Under Blocking5  
Input Third-Order Intercept6  
Input Second-Order Intercept7  
Input 1 dB Compression Point  
LO-to-IF Output Leakage  
LO-to-RF Input Leakage  
RF-to-IF Output Isolation  
IF/2 Spurious8  
0 dBm input power, fRF = 900 MHz  
0 dBm input power, fRF = 1900 MHz  
0 dBm input power, fRF = 900 MHz  
0 dBm input power, fRF = 1900 MHz  
1 Z0 is the characteristic impedance assumed for all measurements and the PCB.  
2 Supply voltage must be applied from an external circuit through choke inductors.  
3 Excluding 4:1 IF port transformer (TC4-1W+), RF and LO port transformers (TC1-1-13M+), and PCB loss.  
4 ZSOURCE = 50 Ω, differential; ZLOAD = 200 Ω differential; ZSOURCE is the impedance of the source instrument; ZLOAD is the load impedance at the output.  
5 fRF = fCENT, fBLOCKER = (fCENT − 5) MHz, fLO = (fCENT − 153) MHz, blocker level = 0 dBm.  
6 fRF1 = (fCENT − 1) MHz, fRF2 = (fCENT) MHz, fLO = (fCENT – 153) MHz, each RF tone at −10 dBm.  
7 fRF1 = (fCENT ) MHz, fRF2 = (fCENT + 100) MHz, fLO = (fCENT – 153) MHz, each RF tone at −10 dBm.  
8 For details, see the Spur Performance section.  
Rev. 0 | Page 3 of 20  
 
 
 
ADL5801  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Rating  
Supply Voltage, VPOS  
VSET, ENBL  
5.5 V  
5.5 V  
IFOP, IFON  
5.5 V  
RFIN Power  
20 dBm  
1.2 W  
26.5°C/W  
8.7°C/W  
150°C  
ESD CAUTION  
Internal Power Dissipation  
θJA (Exposed Paddle Soldered Down)1  
θJC (at Exposed Paddle)  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
−40°C to +85°C  
−65°C to +150°C  
1 As measured on the evaluation board. For details, see the Evaluation Board  
section.  
Rev. 0 | Page 4 of 20  
 
 
 
ADL5801  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
GND  
GND  
LOIP  
LOIN  
GND  
GND  
1
2
3
4
5
6
18 VPRF  
17 GND  
16 RFIP  
15 RFIN  
14 GND  
13 VPDT  
ADL5801  
TOP VIEW  
(Not to Scale)  
NOTES  
1. THERE IS AN EXPOSED PADDLE THAT  
MUST BE SOLDERED TO GROUND.  
2. NC = NO CONNECT.  
Figure 2. Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, 2, 5, 6, 8, 12,  
14, 17, 19, 23  
GND  
Device Common (DC Ground).  
3, 4  
7, 24  
9
LOIP, LOIN  
VPLO  
ENBL  
Differential LO Input Terminal. Internally matched to 50 Ω. Must be ac-coupled.  
Positive Supply Voltage for LO System.  
Device Enable. Pull high to disable the device; pull low to enable.  
10  
VSET  
Input IP3 Bias Adjustment. The voltage presented to the VSET pin sets the internal bias of the mixer core  
and allows for adaptive control of the input IP3 and NF characteristics of the mixer core.  
11  
DETO  
Detector Output. The DETO pin should be loaded with a capacitor to ground. The developed voltage is  
proportional to the rms input level. When the DETO output voltage is connected to the VSET input pin,  
the part auto biases and increases input IP3 performance when presented with large signal input levels.  
13  
VPDT  
Positive Supply Voltage for Detector.  
15, 16  
RFIN, RFIP  
Differential RF Input Terminal. Internally matched to 50 Ω differential input impedance. Must be  
ac-coupled.  
18  
VPRF  
Positive Supply Voltage for RF Input System.  
20, 21  
IFOP, IFON  
Differential IF Output Terminal. Bias must be applied through pull-up choke inductors or the center tap  
of the IF transformer.  
22  
NC  
Not Connected.  
EPAD  
The exposed paddle must be soldered to ground.  
Rev. 0 | Page 5 of 20  
 
ADL5801  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 5 V, TA = 25°C, VSET = 3.8 V as measured using a typical circuit schematic, unless otherwise noted. Insertion loss of input and  
output baluns (TC1-1-13M+, TC4-1W+) is extracted from the gain measurement.  
6
6
5
4
3
2
1
0
35  
30  
25  
20  
15  
10  
5
5
4
T
= –40°C  
A
3
T
= +25°C  
A
2
GAIN = 900MHz  
GAIN = 1900MHz  
1
INPUT IP3 = 900MHz  
INPUT IP3 = 1900MHz  
T
= +85°C  
A
0
–1  
–2  
–3  
–4  
500  
1000  
1500  
2000  
2500  
3000  
–15  
–10  
–5  
0
5
10  
15  
RF FREQUENCY (MHz)  
LO LEVEL (dBm)  
Figure 6. Power Conversion Gain and Input IP3 vs. LO Power  
Figure 3. Power Conversion Gain vs. RF Frequency  
100  
90  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
MEAN = 1.87  
80  
SD = 0.03  
70  
60  
50  
40  
30  
20  
10  
0
900MHz  
1900MHz  
0
50  
100  
150  
200  
250  
IF FREQUENCY (MHz)  
POWER CONVERSION GAIN (dB)  
Figure 4. Power Conversion Gain vs. IF Frequency  
Figure 7. Power Conversion Gain Distribution  
3.0  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
GAIN = 900MHz  
GAIN = 1900MHz  
T
T
= –40°C  
= +25°C  
A
I
I
= 900MHz  
POS  
POS  
2.5  
2.0  
1.5  
1.0  
0.5  
0
= 1900MHz  
A
T
= +85°C  
A
–0.5  
–1.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
4.7  
4.8  
4.9  
5.0  
SUPPLY (V)  
5.1  
5.2  
5.3  
VSET (V)  
Figure 8. Power Conversion Gain vs. Supply Voltage  
Figure 5. Power Conversion Gain and Supply Current vs. VSET  
Rev. 0 | Page 6 of 20  
 
ADL5801  
70  
60  
50  
40  
30  
20  
10  
0
35  
30  
25  
20  
15  
10  
5
T
= –40°C  
A
T
= +25°C  
A
T
= –40°C  
= +25°C  
= +85°C  
A
T
T
A
A
T
= +85°C  
A
0
500  
1000  
1500  
2000  
2500  
3000  
500  
1000  
1500  
2000  
2500  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 9. Input IP3 vs. RF Frequency  
Figure 12. Input IP2 vs. RF Frequency  
40  
35  
30  
25  
20  
15  
10  
80  
70  
60  
50  
40  
30  
20  
10  
0
900MHz  
900MHz  
1900MHz  
1900MHz  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 10. Input IP3 vs. IF Frequency  
Figure 13. Input IP2 vs. IF Frequency  
30  
25  
20  
15  
10  
5
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
18  
16  
14  
12  
10  
8
900MHz  
1900MHz  
INPUT IP3 = 900MHz  
INPUT IP3 = 1900MHz  
NF = 900MHz  
NF = 1900MHz  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
VSET (V)  
VSET (V)  
Figure 11. Input IP3 and Noise Figure vs. VSET  
Figure 14. Input IP2 vs. VSET  
Rev. 0 | Page 7 of 20  
ADL5801  
20  
18  
16  
14  
12  
10  
8
25  
20  
15  
10  
5
T
= +25°C  
A
T
= +85°C  
A
1900MHz  
900MHz  
T
= –40°C  
A
6
4
2
0
0
0
100  
200  
300  
400  
500  
600  
700  
500  
1000  
1500  
2000  
2500  
3000  
IF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 18. SSB Noise Figure vs. IF Frequency (VSET = 2.0 V)  
Figure 15. Input P1dB vs. RF Frequency  
30  
25  
20  
15  
10  
5
20  
18  
16  
14  
12  
10  
8
900MHz  
RF = 1846MHz, IF = 153 MHz  
BLOCKER = 1841MHz  
1900MHz  
6
RF = 951MHz, IF = 153 MHz  
BLOCKER = 946MHz  
4
2
0
0
0
–30  
–25  
–20  
–15  
–10  
–5  
0
5
50  
100  
150  
200  
250  
BLOCKER LEVEL (dBm)  
IF FREQUENCY (MHz)  
Figure 19. SSB Noise Figure vs. Blocker Level (VSET = 2.0 V)  
Figure 16. Input P1dB vs. IF Frequency  
20  
18  
16  
14  
12  
10  
8
T
= +85°C  
18  
16  
14  
12  
10  
8
A
T
= +25°C  
A
1900MHz  
900MHz  
T
= –40°C  
A
6
6
4
4
2
2
0
0
–15  
–10  
–5  
0
5
10  
15  
500  
1000  
1500  
2000  
2500  
3000  
LO LEVEL (dBm)  
RF FREQUENCY (MHz)  
Figure 20. SSB Noise Figure vs. LO Power (VSET = 2.0 V)  
Figure 17. SSB Noise Figure vs. RF Frequency (VSET = 2.0 V)  
Rev. 0 | Page 8 of 20  
ADL5801  
0
5
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
10  
15  
20  
25  
30  
35  
0
500  
1000  
1500  
2000  
2500  
3000  
1000  
1500  
2000  
2500  
3000  
500  
RF FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 21. RF Return Loss vs. RF Frequency  
Figure 24. LO-to-IF Leakage vs. LO Frequency  
0
5
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
10  
15  
20  
25  
30  
35  
0
500  
1000  
1500  
2000  
2500  
3000  
500  
1000  
1500  
2000  
2500  
3000  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 22. LO Return Loss vs. LO Frequency  
Figure 25. LO-to-RF Leakage vs. LO Frequency  
500  
400  
300  
200  
100  
4
0
–10  
–20  
–30  
–40  
–50  
–60  
2
0
T
= +85°C  
A
–2  
–4  
–6  
T
= +25°C  
A
T
= –40°C  
1500  
A
0
10  
100  
1000  
3000  
500  
1000  
2000  
2500  
3000  
IF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 23. IF Differential Output Impedance (R Parallel C Equivalent)  
Figure 26. RF-to-IF Leakage vs. RF Frequency  
Rev. 0 | Page 9 of 20  
ADL5801  
SPUR PERFORMANCE  
All spur tables are (N × fRF) − (M × fLO) and were measured using the standard evaluation board (see the Evaluation Board section). Mixer  
spurious products are measured in decibels relative to the carrier (dBc) from the IF output power level. Data was measured for frequencies  
less than 6 GHz only. The typical noise floor of the measurement system is −100 dBm.  
900 MHz Performance  
VS = 5 V, VSET = 3.8 V, TA = 25°C, RF power = 0 dBm, LO power = 0 dBm, fRF = 900 MHz, fLO = 703 MHz, Z0 = 50 Ω.  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
0
−33.1  
0.0  
−23.3  
−51.5  
−67.5  
−94.3  
−78.0  
−89.8  
−83.1  
−45.8  
−19.0  
−66.1  
−65.9  
−78.4  
−70.7  
−98.5  
−23.6  
−65.1  
−73.5  
−86.3  
−95.1  
−84.8  
−83.3  
−45.9  
−29.6  
−80.5  
−70.2  
−73.5  
−90.7  
−96.7  
−30.7  
−78.0  
−65.0  
−76.3  
−89.4  
−86.7  
−55.4  
−50.3  
−89.8  
−70.6  
−87.3  
−86.4  
−41.5  
−74.4  
−71.3  
−74.5  
1
−48.8  
−35.9  
−68.8  
−47.5  
−95.6  
−85.7  
−57.7  
−88.5  
−81.4  
2
−74.9  
−64.8  
−80.7  
−74.7  
−96.4  
−86.8  
−98.8  
3
≤−100 −99.6  
≤−100  
4
≤−100 −92.7  
−99.5  
−78.7  
−96.1  
−99.4  
−80.7  
−95.4  
−87.9  
≤−100 ≤−100  
5
−83.1  
−99.6  
−73.7  
−96.1  
−91.1  
−95.5  
−88.8  
≤−100 ≤−100  
≤−100 ≤−100  
6
≤−100 −89.4  
N
7
≤−100 ≤−100 −95.9  
≤−100 −97.2  
−99.8  
−83.1  
−86.0  
−84.1  
≤−100 ≤−100 −99.7  
−85.7  
≤−100  
8
≤−100 ≤−100 −99.0  
≤−100 ≤−100 ≤−100 ≤−100 ≤−100 ≤−100 ≤−100 ≤−100  
9
≤−100 ≤−100 ≤−100 −90.9  
−88.4  
−83.5  
−87.6  
−95.5  
−87.4  
≤−100 ≤−100 ≤−100 ≤−100 ≤−100  
10  
11  
12  
13  
14  
15  
≤−100 ≤−100 ≤−100 −97.9  
≤−100 ≤−100 −92.6  
−99.0  
−88.2  
≤−100 ≤−100 ≤−100 ≤−100  
−92.3 −99.3 ≤−100 ≤−100  
≤−100 ≤−100 ≤−100 ≤−100 ≤−100 ≤−100 ≤−100 ≤−100  
≤−100 ≤−100 −95.1 −96.5 −90.4 ≤−100  
≤−100 ≤−100 ≤−100 ≤−100 ≤−100  
≤−100 ≤−100 ≤−100 ≤−100  
1900 MHz Performance  
VS = 5 V, VSET = 3.8 V, TA = 25°C, RF power = 0 dBm, LO power = 0 dBm, fRF = 1900 MHz, fLO = 1703 MHz, Z0 = 50 Ω.  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
0
−31.4  
0.0  
−17.1  
−53.6  
−52.9  
−73.2  
−51.4  
−38.5  
−68.1  
−72.6  
−86.4  
−83.7  
1
−40.4  
−38.4  
−71.0  
−64.2  
−79.9  
−94.6  
−66.2  
2
−66.0  
−86.8  
−65.2  
−87.4  
−79.3  
3
≤−100 −66.2  
−92.8  
−81.5  
−89.0  
4
≤−100 −89.4  
≤−100  
−75.2  
5
≤−100 ≤−100  
6
≤−100 −86.4  
≤−100 −99.0  
−92.7  
−87.7  
≤−100 ≤−100  
N
7
≤−100 −92.4  
≤−100 −98.4  
≤−100 ≤−100  
≤−100 ≤−100  
≤−100 ≤−100 ≤−100 ≤−100 ≤−100 ≤−100 ≤−100  
≤−100 −97.2 −95.6 ≤−100 ≤−100 ≤−100 ≤−100  
8
≤−100 ≤−100 −97.5  
≤−100 −95.4  
9
10  
11  
12  
13  
14  
15  
≤−100 ≤−100 ≤−100 ≤−100 ≤−100 ≤−100  
≤−100 ≤−100 ≤−100 ≤−100 ≤−100  
≤−100 ≤−100 ≤−100 ≤−100  
≤−100 ≤−100  
≤−100  
Rev. 0 | Page 10 of 20  
 
ADL5801  
CIRCUIT DESCRIPTION  
The ADL5801 includes a double-balanced active mixer with a  
50 Ω input impedance and 250 Ω output impedance. In addition,  
the ADL5801 integrates a local oscillator (LO) amplifier and  
an RF power detector that can be used to optimize the mixer  
dynamic range. The RF and LO are differential, providing max-  
imum usable bandwidth at the input and output ports. The LO  
also operates with a 50 Ω input impedance and can, optionally,  
be operated differentially or single ended. The input, output, and  
LO ports can be operated over an exceptionally wide frequency  
range. The ADL5801 can be configured as a downconvert mixer  
or as an upconvert mixer.  
RF VOLTAGE-TO-CURRENT (V-TO-I) CONVERTER  
The differential RF input signal is applied to a V-to-I converter  
that converts the differential input voltage to output currents.  
The V-to-I converter provides a 50 Ω input impedance. The V-to-  
I section bias current can be adjusted up or down using the  
VSET pin. Adjusting the current up improves IP3 and P1dB  
input but degrades the SSB noise figure. Adjusting the current  
down improves the SSB noise figure but degrades IP3 and P1dB  
input. Conversion gain remains nearly constant over a wide  
range of VSET pin settings, allowing the part to be adjusted  
dynamically without affecting conversion gain. The current  
adjustment can be made by connecting a resistor from the  
VSET pin to the positive supply to increase the bias current or  
from the VSET pin to ground to decrease the bias current.  
Optionally, the VSET pin can be connected to the DETO pin to  
provide automatic setting of the mixer core current.  
The ADL5801 can be divided into the following sections: the  
LO amplifier and splitter, the RF voltage-to-current (V-to-I)  
converter, the mixer core, the output loads, the RF detector, and  
the bias circuit. A simplified block diagram of the device is  
shown in Figure 27. The LO block generates a pair of  
differential LO signals to drive two mixer cores. The RF input  
power is converted into RF currents by the V-to-I converter that  
then feed into the two-mixer core. The internal differential load  
of the mixer provides a wideband 250 Ω output impedance from  
the mixer. Reference currents to each section are generated by  
the bias circuit, which can be enabled or disabled using the ENBL  
pin. A detailed description of each section of the ADL5801  
follows.  
MIXER CORE  
The ADL5801 has a double-balanced mixer that uses high per-  
formance SiGe NPN transistors. This mixer is based on the  
Gilbert cell design of four cross-connected transistors.  
MIXER OUTPUT LOAD  
The mixer load uses a pair of 125 Ω resistors connected to the  
positive supply. This provides a 250 Ω differential output resis-  
tance. The mixer output should be pulled to the positive supply  
externally using a pair of RF chokes or using an output trans-  
former with the center tap connected to the positive supply. It  
is possible to exclude these components when the mixer core  
current is low, but both P1dB input and IP3 input are then  
reduced.  
VPLO GND NC IFON IFOP GND  
24  
23  
22  
21  
20  
19  
1
2
3
4
18  
17  
16  
15  
GND  
GND  
LOIP  
LOIN  
VPRF  
GND  
RFIP  
RFIN  
ADL5801  
V2I  
The mixer load output can operate from direct current (dc) up  
to approximately 600 MHz into a 200 Ω load. For upconversion  
applications, the mixer load can be matched using off-chip  
matching components. Transmit operation up to 2 GHz is  
possible. See the Applications Information section for matching  
circuit details.  
GND  
GND  
5
6
14 GND  
13 VPDT  
DET  
7
8
9
10  
11  
12  
VPLO GND ENBL VSET DETO GND  
RF DETECTOR  
Figure 27. Block Diagram  
An RF power detector is buffered from the V-to-I converter  
section. This detector has a power response range from  
approximately −25 dBm up to 0 dBm and provides a current  
output. The output current is designed to be connected to the  
VSET pin to boost the mixer core current when large RF signals  
are present at the mixer input. An external capacitor can be  
used to adjust the response time of this function. If not used,  
the DETO pin can be left open or connected to ground.  
LO AMPLIFIER AND SPLITTER  
The LO input is conditioned by a series of amplifiers to provide  
a well controlled and limited LO swing to the mixer core, result-  
ing in excellent input IP3. The LO input is amplified using a  
broadband low noise amplifier (LNA) and is then followed by  
LO limiting amplifiers. The LNA input impedance is nominally  
50 Ω. The LO circuit exhibits low additive noise, resulting in an  
excellent mixer noise figure and output noise under RF  
blocking. For optimal performance, the LO inputs should be  
driven differentially but at lower frequencies; single-ended drive  
is acceptable.  
Rev. 0 | Page 11 of 20  
 
 
 
 
 
 
 
ADL5801  
alter the current in the LO section and, therefore, does not  
provide a true power-down feature. In addition, if the VSET pin  
is connected to the positive supply through a resistor to increase  
the mixer core current, this continues to provide bias current to  
the mixer core unless the resistor supply is also removed.  
BIAS CIRCUIT  
A band gap reference circuit generates the reference currents  
used by mixers. The bias circuit can be enabled and disabled  
using the ENBL pin. If the ENBL pin is grounded or left open,  
the part is enabled. Pulling the ENBL pin high shuts off the bias  
circuit and disables the part. However, the ENBL pin does not  
Rev. 0 | Page 12 of 20  
 
ADL5801  
APPLICATIONS INFORMATION  
BASIC CONNECTIONS  
RF AND LO PORTS  
The ADL5801 is designed to translate between radio frequencies  
(RF) and intermediate frequencies (IF). For both upconversion  
and downconversion applications, RFIP (Pin 16) and RFIN  
(Pin 15) must be configured as the input interfaces. IFOP  
(Pin 20) and IFON (Pin 21) must be configured as the output  
interfaces. Individual bypass capacitors are needed in close  
proximity to each supply pin (Pin 7, Pin 13, Pin 18, and Pin 24),  
the VSET control pin (Pin 10), and the DETO detector output pin  
(Pin 11). When the on-chip detector is chosen to form a closed  
loop, automatically controlling the VSET pin, R7 can be  
The RF and LO input ports are designed for a differential input  
impedance of approximately 50 Ω. Figure 29 and Figure 30  
illustrate the RF and LO interfaces, respectively. It is recommended  
that each of the RF and LO differential ports be driven through a  
balun for optimum performance. It is also necessary to ac couple  
both RF and LO ports. Using proper value capacitors may help  
improve the input return loss over desired frequencies. Table 4  
lists the recommended components for various RF and LO  
frequency bands. The characterization data is available in the  
Typical Performance Characteristics section.  
populated with a 0 Ω resistor. Alternatively, simply use a jumper  
between the VSET and DETO test points for evaluation. Figure  
28 illustrates the basic connections for ADL5801 operation.  
IFOP IFON  
T1  
T5  
T8  
R11  
R13  
C50  
VPOS  
R3  
L1  
R2  
L2  
R50  
C20  
VPOS  
L3  
C2  
C3  
C19  
C13  
24  
23  
22  
21  
20  
19  
C10  
VPLO GND NC IFON IFOP GND  
1
GND  
18  
17  
16  
15  
VPRF  
GND  
RFIP  
RFIN  
VPOS  
GND  
LOIP  
LOIN  
GND  
GND  
2
3
4
5
6
R8  
R14  
R16  
C8  
C9  
C4  
C5  
L4  
L5  
RFIP  
RFIN  
LOIN  
LOIP  
ADL5801  
R4  
T3  
T6  
T9  
T2  
T4  
T7  
R12  
GND 14  
VPDT 13  
VPOS  
GND  
8
VPLO  
7
ENBL VSET DETO GND  
R10  
9
10  
11  
12  
ENBL  
C18 C17  
R9  
VPOS  
VSET  
C6  
C7  
R7  
C12  
DETO  
C1  
Figure 28. Basic Connections Schematic  
Rev. 0 | Page 13 of 20  
 
 
 
 
ADL5801  
The self-resonant frequency of the selected choke inductors  
must be higher than the intended IF frequency. A variety of  
suitable choke inductors is commercially available from  
manufacturers such as Coilcraft® and Murata. An impedance  
transforming network may be required to transform the final  
load impedance to 200 Ω at the IF outputs.  
17  
16  
15  
GND  
RFIP  
RFIN  
C8  
C9  
RFIP  
ADL5801  
T3  
GND 14  
IFOP  
T1  
T5  
Figure 29. RF Interface  
T8  
VPOS  
1
2
3
4
5
6
GND  
GND  
C50  
R3  
R2  
L3  
C13  
C4  
C5  
LOIP  
LOIN  
GND  
GND  
23  
22  
21  
20  
19  
ADL5801  
GND NC IFON IFOP GND  
LOIP  
T2  
ADL5801  
Figure 31. Biasing the IF Port Open-Collector Outputs  
Using a Center-Tapped Impedance Transformer  
Z
L
IMPEDANCE  
TRANSFORMING T5  
NETWORK  
T1  
Figure 30. LO Interface  
T8  
Table 4. Suggested Components for the RF and LO Interfaces  
RF and LO  
Frequency  
R3  
R2  
T1, T3, T5  
C8, C9  
5.6 pF  
5.6 pF  
2 pF  
C4, C5  
100 pF  
100 pF  
8 pF  
VPOS  
C20  
VPOS  
C19  
900 MHz  
1900 MHz  
2500 MHz  
Mini-Circuits® TC1-1-13M+  
Mini-Circuits TC1-1-13M+  
Mini-Circuits TC1-1-43+  
L1  
L2  
L3  
C13  
IF PORT  
23  
22  
21  
20  
19  
GND NC IFON IFOP GND  
The IF port features an open-collector, differential output  
interface. It is necessary to bias the open collector outputs using  
one of the schemes presented in Figure 31 and Figure 32.  
ADL5801  
Figure 32. Biasing the IF Port Open-Collector Outputs  
Using Pull-Up Choke Inductors  
Figure 31 shows the use of center-tapped impedance transformers.  
The turns ratio of the transformer should be selected to provide  
the desired impedance transformation. In the case of a 50 Ω  
load impedance, a 4:1 impedance ratio transformer should be  
used to transform the 50 Ω load into a 200 Ω differential load at  
the IF output pins.  
Figure 32 shows a differential IF interface where pull-up choke  
inductors are used to bias the open-collector outputs. The  
shunting impedance of the choke inductors used to couple dc  
current into the mixer core should be large enough at the IF  
frequency of operation not to load down the output current  
before it reaches the intended load. Additionally, the dc current  
handling capability of the selected choke inductors must be at  
least 45 mA.  
Rev. 0 | Page 14 of 20  
 
 
 
 
 
 
ADL5801  
EVALUATION BOARD  
An evaluation board is available for the ADL5801. The standard evaluation board is fabricated using Rogers® RO3003 material. Each RF,  
LO, and IF port is configured for single-ended signaling via a balun transformer. The schematic for the evaluation board is shown in  
Figure 33. Table 5 describes the various configuration options for the evaluation board. Layout for the board is shown in Figure 34 and  
Figure 35.  
IFOP IFON  
T1  
T5  
T8  
R11  
C50  
R13  
VPOS  
R3  
L1  
R2  
R50  
C20  
VPOS  
L2  
L3  
C2  
C3  
C19  
C13  
24  
23  
22  
21  
20  
19  
C10  
VPLO GND NC IFON IFOP GND  
1
GND  
18  
17  
16  
15  
VPRF  
GND  
RFIP  
RFIN  
VPOS  
GND  
LOIP  
LOIN  
GND  
GND  
2
3
4
5
6
R8  
R14  
R16  
L4  
C8  
C9  
C4  
C5  
RFIP  
RFIN  
LOIN  
LOIP  
ADL5801  
T2  
T4  
T7  
T3  
T6  
T9  
L5  
R12  
GND 14  
VPDT 13  
VPOS  
C11  
GND  
8
VPLO  
7
ENBL VSET DETO GND  
9
10  
11  
12  
R10  
C18 C17  
VPOS  
VSET  
ENBL  
DETO  
C6  
C7  
R9  
R7  
C12  
C1  
Figure 33. Evaluation Board Schematic  
Rev. 0 | Page 15 of 20  
 
 
ADL5801  
Table 5. Evaluation Board Configuration  
Components  
Function  
Default Conditions  
C2, C3, C6, C7, C10, C11 Power supply decoupling. Nominal supply decoupling consists of a  
0.1 µF capacitor to ground in parallel with 100 pF capacitors to ground,  
positioned as close to the device as possible. Series resistors are provided  
for enhanced supply decoupling using optional ferrite chip inductors.  
C2, C6, C10, C11 = 0.1 µF (size 0402)  
C3, C7 = 100 pF (size 0402)  
C8, C9, L4, L5, R4, R8,  
R12, T3, T6, T9, RFIN,  
RFIP  
RF input interfaces. Input channels are ac-coupled through C8 and C9.  
R8 and R12 provide options when additional matching is needed. T3 is  
a 1:1 balun used to interface to the 50 Ω differential inputs. T6 and T9  
provide options when high frequency baluns are used and require smaller  
balun footprints.  
C8, C9 = 5.6 pF (size 0402)  
L4, L5, R12 = 0 Ω (size 0402)  
R4, R8 = open (size 0402)  
T3 = TC1-1-13M+ (Mini-Circuits)  
C13, C19, C20, C50, L1,  
IF output interfaces. The 200 Ω open collector IF output interfaces are  
C13 = open (size 0402)  
C19, C20 = 100 pF (size 0402)  
C50 = 0.1 µF (size 0402)  
L1, L2 = open (size 0805)  
L3 = open (size 0402)  
L2, L3, R2, R3, R11, R13, biased through the center tap of a 4:1 impedance transformer at T1. C50  
R50, T1, T5, T8, IFON,  
IFOP  
provides local bypassing with R50 available for additional supply  
bypassing. L1 and L2 provide options when pull-up choke inductors are  
used to bias the open-collector outputs. C13, L3, R2, and R3 are provided  
for IF filtering and matching options. T5 and T8 provide options when high  
frequency baluns are used and require smaller balun footprints.  
R2, R3, R13, R50 = 0 Ω (size 0402)  
R11 = open (size 0402)  
T1 = TC4-1W+ (Mini-Circuits)  
C4, C5 = 100 pF (size 0402)  
R14 = 0 Ω (size 0402)  
R16 = open (size 0402)  
T2 = TC1-1-13M+ (Mini-Circuits)  
C1 = 0.1 µF (size 0603)  
C4, C5, R14, R16, T2, T4, LO interface. C4 and C5 provide ac coupling for the local oscillator input.  
T7, LOIN, LOIP  
T2 is a 1:1 balun that allows single-ended interfacing to the differential  
50 Ω local oscillator input. T4 and T7 provide options when high frequency  
baluns are used and require smaller balun footprints.  
C1, C12, R7, DETO  
DETO interface. C1 and C12 provide decoupling for the DETO pin. R7  
provides access to the VSET pin when automatic input IP3 control is  
needed.  
C12 = 100 pF (size 0402)  
R7 = open (size 0402)  
C17, C18, R9, R10, VSET VSET bias control. C17 and C18 provide decoupling for the VSET pin. R9  
and R10 form an optional resistor divider network between VPOS and  
GND, allowing for a fixed bias setting. Supply 3.8 V at the VSET pin when  
the DETO pin is not connected for automatic input IP3 control.  
C17 = 100 pF (size 0402)  
C18 = 0.1 µF (size 0603)  
R9, R10 = open (size 0402)  
Figure 34. Evaluation Board Top Layer  
Figure 35. Evaluation Board Bottom Layer  
Rev. 0 | Page 16 of 20  
 
 
 
ADL5801  
OUTLINE DIMENSIONS  
0.60 MAX  
4.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
1
24  
19  
18  
0.50  
BSC  
PIN 1  
INDICATOR  
2.65  
2.50 SQ  
2.35  
TOP  
VIEW  
3.75  
BSC SQ  
EXPOSED  
PA D  
(BOTTOMVIEW)  
0.50  
0.40  
0.30  
6
13  
7
12  
0.23 MIN  
0.80 MAX  
0.65 TYP  
2.50 REF  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-8  
Figure 36. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad (CP-24-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Package  
Option  
Ordering  
Model1  
Temperature Range  
Package Description  
Quantity  
1,500 per Reel  
1
ADL5801ACPZ-R7  
ADL5801-EVALZ  
−40°C to +85°C  
24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Evaluation Board  
CP-24-3  
1 Z = RoHS Complaint Part.  
Rev. 0 | Page 17 of 20  
 
 
 
ADL5801  
NOTES  
Rev. 0 | Page 18 of 20  
ADL5801  
NOTES  
Rev. 0 | Page 19 of 20  
ADL5801  
NOTES  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08079-0-2/10(0)  
Rev. 0 | Page 20 of 20  

相关型号:

ADL5801ACPZ-R7

High IP3, 10 MHz to 6 GHz, Active Mixer
ADI

ADL5802

Dual Channel High-IP3 100MHz-6GHz Active Mixer
ADI

ADL5802-EVALZ

Dual Channel High-IP3 100MHz-6GHz Active Mixer
ADI

ADL5802ACPZ-R7

Dual Channel, High IP3, 100 MHz to 6 GHz Active Mixer
ADI

ADL5802XCPZ-R7

Dual Channel High-IP3 100MHz-6GHz Active Mixer
ADI

ADL5802XCPZ-WP

Dual Channel High-IP3 100MHz-6GHz Active Mixer
ADI

ADL5802_09

Dual Channel, High IP3, 100 MHz to 6 GHz Active Mixer
ADI

ADL5811

High IP3, 700 MHz to 2800 MHz, Double Balanced, Passive Mixer, IF Amplifier, and Wideband LO Amplifier
ADI

ADL5811-EVALZ

High IP3, 700 MHz to 2800 MHz, Double Balanced, Passive Mixer, IF Amplifier, and Wideband LO Amplifier
ADI

ADL5811ACPZ-R7

High IP3, 700 MHz to 2800 MHz, Double Balanced, Passive Mixer, IF Amplifier, and Wideband LO Amplifier
ADI

ADL5812

Dual High IP3, 700 MHz to 2800 MHz, Double Balanced, Passive Mixer, IF Amplifier, and Wideband LO Amplifier
ADI

ADL5812-EVALZ

Dual High IP3, 700 MHz to 2800 MHz, Double Balanced, Passive Mixer, IF Amplifier, and Wideband LO Amplifier
ADI