ADM3483EARZ-REEL7 [ADI]

3.3 V, 【15 kV ESD-Protected, Half- and Full-Duplex, RS-485/RS-422 Transceivers; 3.3 V , 【 15千伏ESD保护,半双工和全双工, RS - 485 / RS -422收发器
ADM3483EARZ-REEL7
型号: ADM3483EARZ-REEL7
厂家: ADI    ADI
描述:

3.3 V, 【15 kV ESD-Protected, Half- and Full-Duplex, RS-485/RS-422 Transceivers
3.3 V , 【 15千伏ESD保护,半双工和全双工, RS - 485 / RS -422收发器

文件: 总20页 (文件大小:536K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3.3 V, ± ±1 ꢀV ꢁESD-Proteotꢂ, ꢃHalD Hꢄꢂ  
FuaaDSupatx, RED481/RED422 TPHꢄsetivtPs  
ASM3483ꢁ/ASM3486ꢁ/ASM3488ꢁ/ASM3490ꢁ/ASM349±ꢁ  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
V
TIA/EIA RS-485/RS-422 compliant  
15 kV ESD protection on RS-485 input/output pins  
Data rates  
CC  
ADM3483E/  
ADM3486E  
ADM3483E/ADM3488E: 250 kbps  
ADM3486E: 2.5 Mbps  
ADM3490E/ADM3491E: 12 Mbps  
Half- and full-duplex options  
R
RO  
RE  
DE  
A
B
DI  
D
Up to 32 nodes on the bus  
Receiver open-circuit, fail-safe design  
Low power shutdown current  
GND  
(ADM3483E/ADM3486E/ADM3491E only)  
Outputs high-Z when disabled or powered off  
Common-mode input range: −7 V to +12 V  
Thermal shutdown and short-circuit protection  
Industry-standard 75176 pinout  
8-lead and 14-lead narrow SOIC packages  
Figure 1.  
V
CC  
ADM3488E/  
ADM3490E  
A
B
R
RO  
DI  
APPLICATIONS  
Power/energy metering  
Telecommunications  
EMI-sensitive systems  
Industrial control  
Z
Y
D
GND  
Figure 2.  
Local area networks  
V
CC  
GENERAL DESCRIPTION  
The ADM3483E/ADM3486E/ADM3488E/ADM3490E/  
ADM3491E are 3.3 V, low power data transceivers with  
1ꢀ ꢁV EꢂD protection suitable for full- and half-duplex  
communication on multipoint bus transmission lines. They  
are designed for balanced data transmission, and they  
comply with TIA/EIA standards Rꢂ­48ꢀ and Rꢂ-422. The  
ADM3483E/ADM3486E are half-duplex transceivers that  
share differential lines and have separate enable inputs for  
the driver and receiver. The full-duplex ADM3488E/  
ADM3490E/ADM3491E transceivers have dedicated  
differential line driver outputs and receiver inputs. The  
ADM3491E also features separate enable inputs for the  
driver and receiver.  
ADM3491E  
A
B
R
RO  
RE  
DE  
Z
Y
DI  
D
GND  
Figure 3.  
The devices have a 12 ꢁΩ receiver input impedance,  
which allows up to 32 transceivers on a bus. Because only  
one driver should be enabled at any time, the output of a  
disabled or powered-down driver is tristated to avoid  
overloading the bus.  
(continued on Page 3)  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
ADM3483E/ADM3486E/ADM3488E/ADM3490E/ADM3491E  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 4  
Driver Timing Specifications...................................................... 5  
Receiver Timing Specifications .................................................. 6  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configurations and Function Descriptions ........................... 8  
Test Circuits and Switching Characteristics.................................. 9  
Typical Performance Characteristics ........................................... 11  
Circuit Description......................................................................... 14  
Devices Without Receiver/Driver EnableADM3488E/  
ADM3490E ................................................................................. 14  
Low Power Shutdown Mode—ADM3483E/ADM3486E/  
ADM3491E ................................................................................. 14  
Driver Output Protection.......................................................... 14  
Propagation Delay...................................................................... 14  
Line Length vs. Data Rate ......................................................... 14  
15 kꢀ ESD Protection ............................................................. 15  
Human Body Model .................................................................. 15  
Typical Applications................................................................... 15  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Devices with Receiver/Driver Enable—ADM3483E/  
ADM3486E/ADM3491E ........................................................... 14  
REVISION HISTORY  
10/06—Rev. 0 to Rev. A  
Added ADM3483E and ADM3488E ...............................Universal  
Changes to Figure 1 and Figure 2................................................... 1  
Inserted Table 3................................................................................. 5  
Changes to Figure 4 and Figure 5................................................... 8  
Inserted Figure 28 and Figure 29.................................................. 13  
Changes to Figure 31 and Figure 32............................................. 16  
Changes to Figure 34...................................................................... 17  
Updated Outline Dimensions....................................................... 18  
Changes to Ordering Guide .......................................................... 18  
8/06—Revision 0: Initial Version  
Rev. A | Page 2 of 20  
 
ASM3483ꢁ/ASM3486ꢁ/ASM3488ꢁ/ASM3490ꢁ/ASM349±ꢁ  
GꢁNꢁRAL SꢁECRI-TION  
(continued from Page 1)  
Excessive power dissipation caused by bus contention  
or by output shorting is prevented with a thermal shut-  
down circuit.  
The driver outputs of the ADM3483E/ADM3486E/  
ADM3488E are slew rate limited, in order to reduce EMI  
and data errors caused by reflections from improperly  
terminated buses. The receiver has a fail-safe feature that  
ensures a logic high output when the inputs are floating.  
The parts are fully specified over the industrial temperature range  
and are available in 8-lead and 14-lead narrow ꢂOIC pacꢁages.  
Table 1. Selection Table  
Guaranteed Data  
Rate (Mbps)  
Supply  
Voltage (V)  
Half/Full Slew Rate  
Driver/Receiver  
Enable  
15 kV ESD Protection  
on Bus Pins  
Part No.  
Duplex  
Half  
Half  
Full  
Limited  
Pin Count  
ADM3483E  
ADM3486E  
ADM3488E  
ADM3490E  
ADM3491E  
0.25  
2.5  
0.25  
12  
3.0 to 3.6  
3.0 to 3.6  
3.0 to 3.6  
3.0 to 3.6  
3.0 to 3.6  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
8
8
8
8
Full  
No  
12  
Full  
No  
14  
Rev. A | Page 3 of 20  
ADM3483E/ADM3486E/ADM3488E/ADM3490E/ADM3491E  
SPECIFICATIONS  
VCC = 3.3 V ꢀ.3 V, TA = TMIN to TMAX, unless otherwise noted.  
Table 2. ADM3483E/ADM3486E/ADM3488E/ADM3490E/ADM3491E  
Parameter  
Symbol Min  
Typ  
Max Unit  
Test Conditions/Comments  
DRIVER  
Differential Outputs  
Differential Output Voltage  
VOD  
2.0  
1.5  
1.5  
V
V
V
V
V
V
mA  
mA  
RL = 100 Ω (RS-422) (see Figure 7)  
RL = 54 Ω (RS-485) (see Figure 7)  
RL = 60 Ω (RS-485) (see Figure 8)  
RL = 54 Ω or 100 Ω (see Figure 7)  
RL = 54 Ω or 100 Ω (see Figure 7)  
RL = 54 Ω or 100 Ω (see Figure 7)  
VOUT = −7 V  
Δ|VOD| for Complementary Output States1  
Common-Mode Output Voltage  
Δ|VOC| for Complementary Output States1  
∆VOD  
VOC  
∆VOC  
IOSD  
0.2  
3
0.2  
Short-Circuit Output Current  
−250  
−20  
250  
20  
VOUT = 12 V  
Output Leakage (Y, Z) (ADM3491E Only)  
Normal Mode  
IO  
μA  
μA  
μA  
μA  
DE = 0 V, RE = 0 V, VCC = 0 V or 3.6 V,  
VOUT = 12 V  
DE = 0 V, RE = 0 V, VCC = 0 V or 3.6 V,  
VOUT = −7 V  
DE = 0 V, RE = VCC, VCC = 0 V or 3.6 V,  
VOUT = 12 V  
DE = 0 V, RE = VCC, VCC = 0 V or 3.6 V,  
VOUT = −7 V  
Shutdown Mode  
1
−1  
Logic Inputs  
Input High Voltage  
Input Low Voltage  
Logic Input Current  
VIH  
VIL  
IIN1  
2.0  
V
DE, DI, RE  
DE, DI, RE  
DE, DI, RE  
0.8  
2
V
μA  
RECEIVER  
Differential Inputs  
Differential Input Threshold Voltage  
Input Hysteresis  
Input Resistance (A, B)  
Input Current (A, B)  
VTH  
∆VTH  
RIN  
−0.2  
12  
0.2  
1.0  
V
−7 V < VCM < +12 V  
VCM = 0 V  
−7 V < VCM < +12 V  
50  
mV  
k  
mA  
mA  
IIN2  
DE = 0 V, VCC = 0 V or 3.6 V, VIN = 12 V  
DE = 0 V, VCC = 0 V or 3.6 V, VIN = −7 V  
−0.8  
VCC − 0.4  
8
RO Logic Output  
Output High Voltage  
Output Low Voltage  
Short-Circuit Output Current  
Tristate Output Leakage Current  
POWER SUPPLY  
VOH  
VOL  
IOSR  
IOZR  
V
V
mA  
μA  
IOUT = −1.5 mA, VID = 200 mV (see Figure 9)  
IOUT = 2.5 mA, VID = 200 mV (see Figure 9)  
0 V < VRO < VCC  
0.4  
60  
1
VCC = 3.6 V, 0 V < VOUT < VCC  
Voltage Range  
Supply Current  
VCC  
ICC  
3.0  
3.6  
2.2  
V
mA  
1.1  
No load, DI = 0 V or VCC, DE = VCC,  
RE = 0 V or VCC  
0.95  
0.002  
1.9  
1
mA  
μA  
No load, DI = 0 V or VCC, DE = 0 V,  
RE = 0 V  
Shutdown Current  
ISHDN  
DE = 0 V, RE = VCC, DI = 0 V or VCC  
ESD PROTECTION  
A, B, Y, Z Pins  
All Pins Except A, B, Y, Z Pins  
15  
4
kV  
kV  
Human body model  
Human body model  
1 Δ|VOD| and Δ|VOC| are the changes in VOD and VOC, respectively, when DI input changes state.  
Rev. A | Page 4 of 20  
 
 
ASM3483ꢁ/ASM3486ꢁ/ASM3488ꢁ/ASM3490ꢁ/ASM349±ꢁ  
DRIVER TIMING SPECIFICATIONS  
VCC = 3.3 V, TA = 2ꢀ°C.  
Table 3. ADM3483E/ADM3488E  
Parameter  
Symbol  
Min  
250  
600  
400  
Typ  
Max  
Unit  
kbps  
ns  
Test Conditions/Comments  
MAXIMUM DATA RATE  
DIFFERENTIAL OUTPUT DELAY  
DIFFERENTIAL OUTPUT TRANSITION TIME  
PROPAGATION DELAY  
tDD  
tTD  
900  
740  
1400  
1200  
RL = 60 Ω (see Figure 10)  
RL = 60 Ω (see Figure 10)  
ns  
From Low to High Level  
From High to Low Level  
|tPLH − tPHL| PROPAGATION DELAY SKEW1  
ENABLE/DISABLE TIMING (ADM3483E ONLY)  
Enable Time to Low Level  
tPLH  
tPHL  
tPDS  
700  
700  
930  
930  
50  
1500  
1500  
ns  
ns  
ns  
RL = 27 Ω (see Figure 11)  
RL = 27 Ω (see Figure 11)  
RL = 27 Ω (see Figure 11)  
tPZL  
tPZH  
tPLZ  
tPHZ  
tPSL  
tPSH  
900  
600  
50  
50  
1.9  
2.2  
1300  
800  
80  
80  
2.7  
3.0  
ns  
ns  
ns  
ns  
μs  
μs  
RL = 110 Ω (see Figure 13)  
RL = 110 Ω (see Figure 12)  
RL = 110 Ω (see Figure 13)  
RL = 110 Ω (see Figure 12)  
RL = 110 Ω (see Figure 13)  
RL = 110 Ω (see Figure 12)  
Enable Time to High Level  
Disable Time from Low Level  
Disable Time from High Level  
Enable Time from Shutdown to Low Level  
Enable Time from Shutdown to High Level  
1 Measured on |tPLH (Y) − tPHL (Y)| and |tPLH (Z) − tPHL (Z)|.  
VCC = 3.3 V, TA = 2ꢀ°C.  
Table 4. ADM3486E  
Parameter  
Symbol  
Min  
2.5  
20  
Typ  
Max  
Unit  
Mbps  
ns  
Test Conditions/Comments  
MAXIMUM DATA RATE  
DIFFERENTIAL OUTPUT DELAY  
DIFFERENTIAL OUTPUT TRANSITION TIME  
PROPAGATION DELAY  
tDD  
tTD  
42  
28  
70  
60  
RL = 60 Ω (see Figure 10)  
RL = 60 Ω (see Figure 10)  
15  
ns  
From Low to High Level  
From High to Low Level  
|tPLH − tPHL| PROPAGATION DELAY SKEW1  
tPLH  
tPHL  
tPDS  
20  
20  
42  
42  
−6  
75  
75  
12  
ns  
ns  
ns  
RL = 27 Ω (see Figure 11)  
RL = 27 Ω (see Figure 11)  
RL = 27 Ω (see Figure 11)  
ENABLE/DISABLE TIMING  
Enable Time to Low Level  
tPZL  
tPZH  
tPLZ  
tPHZ  
tPSL  
tPSH  
52  
52  
40  
40  
700  
700  
100  
100  
80  
80  
1000  
1000  
ns  
ns  
ns  
ns  
ns  
ns  
RL = 110 Ω (see Figure 13)  
RL = 110 Ω (see Figure 12)  
RL = 110 Ω (see Figure 13)  
RL = 110 Ω (see Figure 12)  
RL = 110 Ω (see Figure 13)  
RL = 110 Ω (see Figure 12)  
Enable Time to High Level  
Disable Time from Low Level  
Disable Time from High Level  
Enable Time from Shutdown to Low Level  
Enable Time from Shutdown to High Level  
1 Measured on |tPLH (Y) − tPHL (Y)| and |tPLH (Z) − tPHL (Z)|.  
Rev. A | Page 5 of 20  
 
 
 
ADM3483E/ADM3486E/ADM3488E/ADM3490E/ADM3491E  
VCC = 3.3 V, TA = 25°C.  
Table 5. ADM3490E/ADM3491E  
Parameter  
Symbol  
Min  
12  
1
Typ  
15  
Max  
Unit  
Mbps  
ns  
Test Conditions/Comments  
MAXIMUM DATA RATE  
DIFFERENTIAL OUTPUT DELAY  
DIFFERENTIAL OUTPUT TRANSITION TIME  
PROPAGATION DELAY  
tDD  
tTD  
22  
35  
25  
RL = 60 Ω (see Figure 10)  
RL = 60 Ω (see Figure 10)  
3
11  
ns  
From Low to High Level  
From High to Low Level  
|tPLH − tPHL| PROPAGATION DELAY SKEW1  
ENABLE/DISABLE TIMING (ADM3491E ONLY)  
Enable Time to Low Level  
tPLH  
tPHL  
tPDS  
7
7
23  
23  
35  
35  
±±  
ns  
ns  
ns  
RL = 27 Ω (see Figure 11)  
RL = 27 Ω (see Figure 11)  
RL = 27 Ω (see Figure 11)  
−1.4  
tPZL  
tPZH  
tPLZ  
tPHZ  
tPSL  
tPSH  
42  
42  
35  
35  
650  
650  
90  
90  
±0  
±0  
900  
900  
ns  
ns  
ns  
ns  
ns  
ns  
RL = 110 Ω (see Figure 13)  
RL = 110 Ω (see Figure 12)  
RL = 110 Ω (see Figure 13)  
RL = 110 Ω (see Figure 12)  
RL = 110 Ω (see Figure 13)  
RL = 110 Ω (see Figure 12)  
Enable Time to High Level  
Disable Time from Low Level  
Disable Time from High Level  
Enable Time from Shutdown to Low Level  
Enable Time from Shutdown to High Level  
1 Measured on |tPLH (Y) − tPHL (Y)| and |tPLH (Z) − tPHL (Z)|.  
RECEIVER TIMING SPECIFICATIONS  
VCC = 3.3 V, TA = 25°C.  
Table 6. ADM3483E/ADM3486E/ADM3488E/ADM3490E/ADM3491E  
Parameter  
Symbol Min Typ Max Unit  
Test Conditions/Comments  
PROPAGATION DELAY  
From Low to High Level  
tRPLH  
ADM34±6E/ADM3490E/ADM3491E  
ADM34±3E/ADM34±±E  
25  
25  
62  
75  
90  
120  
ns  
ns  
VID = 0 V to 3.0 V, CL = 15 pF (see Figure 14)  
VID = 0 V to 3.0 V, CL = 15 pF (see Figure 14)  
From High to Low Level  
tRPHL  
ADM34±6E/ADM3490E/ADM3491E  
ADM34±3E/ADM34±±E  
25  
25  
62  
75  
90  
120  
ns  
ns  
VID = 0 V to 3.0 V, CL = 15 pF (see Figure 14)  
VID = 0 V to 3.0 V, CL = 15 pF (see Figure 14)  
|tRPLH − tRPHL| PROPAGATION DELAY SKEW  
ADM34±6E/ADM3490E/ADM3491E  
ADM34±3E/ADM34±±E  
tRPDS  
+6  
±10  
ns  
ns  
VID = 0 V to 3.0 V, CL = 15 pF (see Figure 14)  
VID = 0 V to 3.0 V, CL = 15 pF (see Figure 14)  
+12 ±20  
ENABLE/DISABLE TIMING (ADM34±3E/ADM34±6E/  
ADM3491E ONLY)  
Enable Time to Low Level  
Enable Time to High Level  
tRPZL  
tRPZH  
tRPLZ  
tRPHZ  
tRPSL  
tRPSH  
tSHDN  
25  
25  
25  
25  
50  
50  
45  
45  
ns  
ns  
ns  
ns  
CL = 15 pF (see Figure 15)  
CL = 15 pF (see Figure 15)  
CL = 15 pF (see Figure 15)  
CL = 15 pF (see Figure 15)  
CL = 15 pF (see Figure 15)  
CL = 15 pF (see Figure 15)  
Disable Time from Low Level  
Disable Time from High Level  
Enable Time from Shutdown to Low Level  
Enable Time from Shutdown to High Level  
Time to Shutdown1  
720 1400 ns  
720 1400 ns  
190 300  
±0  
ns  
1 The transceivers are put into shutdown mode by bringing the high and the DE low. If the inputs are in this state for less than ±0 ns, the parts are guaranteed not to  
RE  
enter shutdown. If the parts are in this state for 300 ns or more, the parts are guaranteed to enter shutdown.  
Rev. A | Page 6 of 20  
 
 
 
ASM3483ꢁ/ASM3486ꢁ/ASM3488ꢁ/ASM3490ꢁ/ASM349±ꢁ  
ABEOLUTꢁ MAXIMUM RATINGE  
TA = 2ꢀ°C, unless otherwise noted.  
ꢂtresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 7.  
Parameter  
Rating  
−0.3 V to +6 V  
VCC to GND  
Digital Input/Output Voltage (DE, RE, DI) −0.3 V to +6 V  
Receiver Output Voltage (RO)  
−0.3 V to (VCC + 0.3 V)  
Driver Output (A, B, Y, Z)/Receiver Input  
(A, B) Voltage  
Driver Output Current  
−8 V to +13 V  
250 mA  
ESD CAUTION  
Operating Temperature Range  
Storage Temperature Range  
θJA Thermal Impedance  
8-Lead SOIC_N  
−40°C to +85°C  
−65°C to +150°C  
158°C/W  
120°C/W  
260°C  
14-Lead SOIC_N  
Lead Temperature, Soldering (20 sec)  
Rev. A | Page 7 of 20  
 
ASM3483ꢁ/ASM3486ꢁ/ASM3488ꢁ/ASM3490ꢁ/ASM349±ꢁ  
-IN CONFIGURATIONE ANS FUNCTION SꢁECRI-TIONE  
NC  
RO  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
V
CC  
CC  
RE  
A
ADM3491E  
TOP VIEW  
(Not to Scale)  
DE  
B
RO  
RE  
DE  
DI  
1
2
3
4
8
7
6
5
V
V
1
2
3
4
8
7
6
5
A
B
Z
DI  
Z
CC  
CC  
ADM3483E/  
ADM3486E  
ADM3488E/  
ADM3490E  
B
RO  
DI  
GND  
GND  
Y
A
TOP VIEW  
(Not to Scale)  
8
NC  
TOP VIEW  
(Not to Scale)  
GND  
GND  
Y
NC = NO CONNECT  
Figure 4. ADM3483E/ADM3486E  
Pin Configuration  
Figure 5. ADM3488E/ADM3490E  
Pin Configuration  
Figure 6. ADM3491E  
Pin Configuration  
Table 8. Pin Function Descriptions  
ADM3483E/  
ADM3486E  
Pin No.  
ADM3488E/  
ADM3490E  
Pin No.  
ADM3491E  
Pin No.  
Mnemonic Description  
Receiver Output. If A > B by 200 mV, RO is high; if A < B by 200 mV,  
RO is low.  
1
2
2
RO  
2
N/A  
3
RE  
Receiver Output Enable. A low level enables the receiver output. A high  
level places it in a high impedance state. If RE is high and DE is low, the  
device enters a low power shutdown mode.  
3
4
N/A  
3
4
5
DE  
DI  
Driver Output Enable. A high level enables the driver differential A and B  
outputs. A low level places it in a high impedance state. If RE is high and DE  
is low, the device enters a low power shutdown mode.  
Driver Input. With a half-duplex part when the driver is enabled, a logic low  
on DI forces A low and B high; a logic high on DI forces A high and B low.  
With a full-duplex part when the driver is enabled, a logic low on DI forces Y  
low and Z high; a logic high on DI forces Y high and Z low.  
5
N/A  
6
N/A  
N/A  
7
N/A  
8
4
5
N/A  
8
6
N/A  
7
1
6, 7  
9
N/A  
12  
10  
N/A  
11  
GND  
Y
A
A
Z
B
B
VCC  
NC  
Ground.  
Noninverting Driver Output.  
Noninverting Receiver Input A and Noninverting Driver Output A.  
Noninverting Receiver Input A.  
Inverting Driver Output.  
Inverting Receiver Input B and Inverting Driver Output B.  
Inverting Receiver Input B.  
Power Supply, 3.3 V 0.3 V. Bypass VCC to GND with a 0.1 μF capacitor.  
No Connect. Not internally connected. Can be connected to GND.  
13, 14  
1, 8  
N/A  
N/A  
Rev. A | Page 8 of 20  
 
ASM3483ꢁ/ASM3486ꢁ/ASM3488ꢁ/ASM3490ꢁ/ASM349±ꢁ  
TꢁET CIRCUITE ANS EWITCꢃING CꢃARACTꢁRIETICE  
V
OM  
Y
R
= 27ꢀ  
L
R /2  
L
S1  
V
OD  
OUT  
2
D
V
R /2  
L
OC  
C
= 15pF  
1
L
GENERATOR  
50ꢀ  
Z
V
CC  
Figure 7. Driver Differential Output Voltage and  
Common-Mode Output Voltage  
V
+ V  
OL  
OH  
V
=
1.5V  
OM  
2
375  
1
2
PPR = 250kHz, 50% DUTY CYCLE, tR 6.0ns, Z = 50.  
L
O
C
INCLUDES PROBE AND STRAY CAPACITANCE.  
V
=
CM  
–7V TO +12V  
D
V
R
L
OD  
3V  
0V  
V
CC  
IN  
1.5V  
1.5V  
375Ω  
Figure 8. Driver Differential Output Voltage with  
Varying Common-Mode Voltage  
tPLH  
tPHL  
V
V
OH  
OL  
Y
V
V
V
V
OM  
OM  
OUT  
tPHL  
tPLH  
R
V
ID  
V
V
OH  
OL  
0
Z
OUT  
I
I
OM  
OM  
V
V
OH  
OH  
(–)  
OL  
(+)  
OL  
Figure 11. Driver Propagation Delays  
Figure 9. Receiver Output Voltage High and Output Voltage Low  
S1  
C
L
OUT  
= 110ꢀ  
0V OR 3V  
D
R
60Ω  
=
L
OUT  
D
2
= 50pF  
R
C
L
L
1
GENERATOR  
50Ω  
V
1
CC  
GENERATOR  
50ꢀ  
2
C
= 15pF  
L
V
+ V  
OL  
OH  
V
=
1.5V  
OM  
2
1
2
PPR = 250kHz, 50% DUTY CYCLE, tR 6.0ns, Z = 50.  
L
O
C
INCLUDES PROBE AND STRAY CAPACITANCE.  
1
2
PPR = 250kHz, 50% DUTY CYCLE, tR 6.0ns, Z = 50.  
L
O
C
INCLUDES PROBE AND STRAY CAPACITANCE.  
+3V  
0V  
IN  
+1.5V  
+1.5V  
3V  
0V  
1.5V  
1.5V  
IN  
tDD  
90%  
tDD  
tPZH  
tPHZ  
+2V  
–2V  
90%  
50%  
10%  
50%  
10%  
V
OH  
OUT  
0.25V  
OUT  
V
OM  
tTD  
tTD  
0V  
Figure 10. Driver Differential Output Delay and Transition Times  
Figure 12. Driver Enable and Disable Times (tPZH, tPSH, tPHZ  
)
Rev. A | Page 9 of 20  
 
 
 
 
 
 
ASM3483ꢁ/ASM3486ꢁ/ASM3488ꢁ/ASM3490ꢁ/ASM349±ꢁ  
V
CC  
R
= 110ꢀ  
L
S1  
OUT  
OUT  
0V OR 3V  
D
V
ID  
R
1
GENERATOR  
2
C
= 50pF  
50ꢀ  
L
2
C
= 15pF  
L
1
GENERATOR  
50ꢀ  
1.5V  
0V  
V
CC  
V
=
OM  
2
1
2
PPR = 250kHz, 50% DUTY CYCLE, tR 6.0ns, Z = 50.  
L
1
2
O
PPR = 250kHz, 50% DUTY CYCLE, tR 6.0ns, Z = 50.  
L
O
C
INCLUDES PROBE AND STRAY CAPACITANCE.  
C
INCLUDES PROBE AND STRAY CAPACITANCE.  
3V  
0V  
3V  
0V  
IN  
1.5V  
1.5V  
1.5V  
1.5V  
IN  
tPSL  
tPLZ  
tRPLH  
tRPHL  
V
V
CC  
OUT  
V
V
CC  
OM  
0.25V  
V
V
OM  
OUT  
OM  
OL  
0V  
Figure 13. Driver Enable and Disable Times (tPZL, tPSL, tPLZ  
)
Figure 14. Receiver Propagation Delays  
S1  
S2  
S3  
+1.5V  
–1.5V  
V
CC  
1kꢀ  
V
ID  
R
2
C
L
1
GENERATOR  
50ꢀ  
1
PPR = 250kHz, 50% DUTY CYCLE, tR 6.0ns, Z = 50.  
L
O
2
C
INCLUDES PROBE AND STRAY CAPACITANCE.  
+3V  
+3V  
0V  
S1 OPEN  
S2 CLOSED  
S3 = +1.5V  
S1 CLOSED  
S2 OPEN  
S3 = –1.5V  
+1.5V  
IN  
+1.5V  
IN  
0V  
V
tRPZL  
tRPSL  
tRPZH  
tRPSH  
V
OH  
CC  
OUT  
OUT  
+1.5V  
+1.5V  
0V  
V
OL  
+3V  
0V  
+3V  
0V  
S1 OPEN  
S2 CLOSED  
S3 = +1.5V  
S1 CLOSED  
S2 OPEN  
S3 = –1.5V  
+1.5V  
+1.5V  
IN  
IN  
tRPHZ  
tRPLZ  
V
V
OH  
CC  
OL  
OUT  
OUT  
+0.25V  
0V  
V
+0.25V  
Figure 15. Receiver Enable and Disable Times  
Rev. A | Page 10 of 20  
 
 
ASM3483ꢁ/ASM3486ꢁ/ASM3488ꢁ/ASM3490ꢁ/ASM349±ꢁ  
TY-ICAL -ꢁRFORMANCꢁ CꢃARACTꢁRIETICE  
25  
20  
15  
10  
5
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
I
= 2.5mA  
RO  
0
–40  
10  
60  
85  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
TEMPERATURE (°C)  
OUTPUT LOW VOLTAGE (V)  
Figure 16. Output Current vs. Receiver Output Low Voltage  
Figure 19. Receiver Output Low Voltage vs. Temperature  
–18  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–16  
–14  
–12  
–10  
–8  
–6  
–4  
–2  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
OUTPUT HIGH VOLTAGE (V)  
DIFFERENTIAL OUTPUT VOLTAGE (V)  
Figure 17. Output Current vs. Receiver Output High Voltage  
Figure 20. Driver Output Current vs. Differential Output Voltage  
2.6  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
R
= 54  
I
= –1.5mA  
L
RO  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
–50  
–25  
0
25  
50  
75  
–50  
–25  
0
25  
50  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 18. Receiver Output High Voltage vs. Temperature  
Figure 21. Driver Differential Output Voltage vs. Temperature  
Rev. A | Page 11 of 20  
 
 
ASM3483ꢁ/ASM3486ꢁ/ASM3488ꢁ/ASM3490ꢁ/ASM349±ꢁ  
120  
100  
80  
60  
40  
20  
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
2
4
6
8
10  
12  
–50  
–25  
0
25  
50  
75  
OUTPUT LOW VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 22. Output Current vs. Driver Output Low Voltage  
Figure 25. Shutdown Current vs. Temperature  
120  
100  
80  
60  
40  
20  
0
DI  
3
Y
Z
CH1  
CH2  
CH1 1.0V  
CH3 2.0V  
CH2 1.0V  
IT 400ps/pt A CH3  
M20ns 1.25GS/s  
1.44V  
–7  
–6  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
OUTPUT HIGH VOLTAGE (V)  
Figure 23. Output Current vs. Driver Output High Voltage  
Figure 26. ADM3490E/ADM3491E Driver Propagation Delay  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
V
– V  
A
B
M1  
RO  
3
CH3 2.0V  
M200ns 250MS/s  
4ns/pt  
A CH2  
1.24V  
–40  
–10  
20  
50  
80  
MATH1 2.01V 200ns  
TEMPERATURE (°C)  
Figure 24. Supply Current vs. Temperature  
Figure 27. ADM3490E/ADM3491E Receiver Propagation Delay,  
Driven by External RS-485 Device  
Rev. A | Page 12 of 20  
 
 
ASM3483ꢁ/ASM3486ꢁ/ASM3488ꢁ/ASM3490ꢁ/ASM349±ꢁ  
DI  
3
V
– V  
B
A
Y
Z
1
RO  
M
CH1 500mV CH2 500mV M2.0µs 25.0MS/s 40.0ns/pt  
CH3 5.0V CH3 2.4V  
CH1 2.00V  
MATH 2.00V 20.0ms  
M20.0ms  
A
CH1  
40.0mV  
A
Figure 28. ADM3483E/ADM3488E Driver Propagation Delay  
Figure 29. ADM3483E/ADM3488E Receiver Propagation Delay  
Rev. A | Page 13 of 20  
ADM3483E/ADM3486E/ADM3488E/ADM3490E/ADM3491E  
CIRCUIT DESCRIPTION  
The ADM34xxE are low power transceivers for RS-485 and RS­422  
Table 12. Receiving Truth Table  
communications. The ADM3483E/ADM3488E operate at data  
rates up to 250 kbps. The ADM3486E operates at data rates up  
to 2.5 Mbps, and the ADM3490E/ADM3491E transmit at up to  
12 Mbps. The ADM3488E/ADM3490E/ADM3491E are full-  
duplex transceivers, and the ADM3483E/ADM3486E are half  
Receiving Input  
Receiving Output  
A – B  
RO  
1
≥ +0.2 V  
≤ −0.2 V  
0
Inputs open  
1
RE  
duplex. Driver enable (DE) and receiver enable ( ) pins are  
included on the ADM3483E/ADM3486E/ADM3491E. When  
disabled, the driver and receiver outputs are high impedance.  
LOW POWER SHUTDOWN MODE—ADM3483E/  
ADM3486E/ADM3491E  
DEVICES WITH RECEIVER/DRIVER ENABLE—  
ADM3483E/ADM3486E/ADM3491E  
The ADM3483E/ADM3486E/ADM3491E are put into a low  
RE  
power shutdown mode by bringing both  
high and DE low.  
The devices do not shut down unless both the driver and the  
receiver are disabled (high impedance). In shutdown mode, the  
devices typically draw less than 1 μA of supply current. For  
these devices, the tPSH and the tPSL enable times assume the part  
was in the low power shutdown mode; the tPZH and the tPZL  
enable times assume the receiver or the driver was disabled, but  
the part was not shut down.  
Table 9. Transmitting Truth Table  
Transmitting Inputs  
Transmitting Outputs  
A1, Y2  
RE  
DE  
DI  
B1, Z2  
Mode  
X3  
X3  
0
1
1
0
0
1
0
X3  
X3  
1
0
0
1
Normal  
Normal  
Normal  
Shutdown  
High-Z4  
High-Z4  
High-Z4  
High-Z4  
1
DRIVER OUTPUT PROTECTION  
1 ADM3483E and ADM3486E only.  
2 ADM3491E only.  
The ADM34xxE family implements two ways to prevent  
excessive output current and power dissipation caused by faults  
or by bus contention. A current limit on the output stage  
provides immediate protection against short circuits over the  
whole common-mode voltage range (see the Typical  
Performance Characteristics section). In addition, a thermal  
shutdown circuit forces the driver outputs into a high  
impedance state if the die temperature rises excessively.  
3 X = don’t care.  
4 High-Z = high impedance.  
Table 10. Receiving Truth Table  
Receiving Inputs  
RE DE1 DE2 A – B  
Receiving Output  
RO  
Mode  
0
0
0
1
0
0
0
0
X3  
X3  
X3  
X3  
+0.2 V  
−0.2 V  
Inputs open  
X3  
1
0
1
Normal  
Normal  
Normal  
Shutdown  
PROPAGATION DELAY  
High-Z4  
Figure 11, Figure 14, Figure 26, and Figure 27 show the typical  
propagation delays. Skew time is simply the difference between  
the low-to-high and the high-to-low propagation delays. Small  
driver/receiver skew times help maintain a symmetrical mark-  
space ratio (50% duty cycle).  
1 ADM3483E and ADM3486E only.  
2 ADM3491E only.  
3 X = don’t care.  
4 High-Z = high impedance.  
DEVICES WITHOUT RECEIVER/DRIVER ENABLE  
ADM3488E/ADM3490E  
The receiver skew time, |tPRHL – tPRHL|, is under 10 ns (20 ns for  
the ADM3483E/ADM3488E). The driver skew time is 8 ns for  
the ADM3490E/ADM3491E, 12 ns for the ADM3486E, and  
typically under 50 ns for the ADM3483E/ADM3488E.  
Table 11. Transmitting Truth Table  
Transmitting Input  
DI  
1
0
Transmitting Outputs  
Z
0
1
Y
1
0
LINE LENGTH VS. DATA RATE  
The RS-485/RS-422 standard covers line lengths up to 4000 feet.  
For line lengths greater than 4000 feet, Figure 34 illustrates an  
example of a line repeater.  
Rev. A | Page 14 of 20  
 
 
 
ASM3483ꢁ/ASM3486ꢁ/ASM3488ꢁ/ASM3490ꢁ/ASM349±ꢁ  
R1  
R2  
HIGH  
VOLTAGE  
GENERATOR  
15 kV ESD PROTECTION  
DEVICE  
UNDER  
TEST  
Two coupling methods are used for EꢂD testing: con-  
tact discharge and air-gap discharge. Contact discharge  
calls for a direct connection to the unit being tested. Air-  
gap discharge uses a higher test voltage but does not maꢁe  
direct contact with the test unit. With air-gap discharge,  
the discharge gun is moved toward the unit under test,  
developing an arc across the air gap, therefore the term air-  
gap discharge. This method is influenced by humidity,  
temperature, barometric pressure, distance, and rate of  
closure of the discharge gun. The contact discharge  
method, while less realistic, is more repeatable and is  
gaining acceptance and preference over the air-  
gap method.  
C1  
ESD TEST METHOD  
R2  
C1  
HUMAN BODY MODEL 1.5k100pF  
ESD ASSOC. STD 55.1  
100%  
90%  
Although very little energy is contained within an EꢂD pulse,  
the extremely fast rise time, coupled with high voltages, can  
cause failures in unprotected semiconductors. Catastrophic  
destruction can occur immediately as a result of arcing or  
heating. Even if catastrophic failure does not occur immediately,  
the device can suffer from parametric degradation that can  
result in degraded performance. The cumulative effects of  
continuous exposure can eventually lead to complete failure.  
36.8%  
10%  
TIME  
t
tDL  
tRL  
Figure 30. Human Body Model and Current Waveform  
TYPICAL APPLICATIONS  
Input/output lines are particularly vulnerable to EꢂD damage.  
ꢂimply touching or connecting an input/output cable can result  
in a static discharge that can damage or completely destroy the  
interface product connected to the input/output port. It is  
extremely important, therefore, to have high levels of EꢂD  
protection on the input/output lines.  
The ADM3483E/ADM3486E/ADM3491E transceivers are  
designed for bidirectional data communications on multipoint  
bus transmission lines. The ADM3488E/ADM3490E full-duplex  
transceiver is designed to be used in a daisy-chain networꢁ  
topology or in a point-to-point application (see Figure 32). The  
ADM3483E/ADM3486E are half-duplex Rꢂ-48ꢀ transceivers  
that can be used in a multidrop bus configuration, as shown in  
Figure 31. The ADM3488E/ADM3490E/ADM3491E can also  
be used as a line repeater, for use with cable lengths longer than  
4000 feet, as shown in Figure 34. To minimize reflections, the  
line must be terminated at both ends in its characteristic  
impedance, and stub lengths off the main line should be ꢁept as  
short as possible.  
The EꢂD discharge can induce latch-up in the device under test,  
so it is important that EꢂD testing on the input/output pins be  
carried out while device power is applied. This type of testing is  
more representative of a real-world input/output discharge,  
which occurs when the equipment is operating normally.  
The transmitter outputs and receiver inputs of the ADM34xxE  
family are characterized for protection to a 1ꢀ ꢁV limit using  
the human body model.  
HUMAN BODY MODEL  
Figure 30 shows the human body model and the current wave-  
form it generates when discharged into a low impedance. This  
model consists of a 100 pF capacitor charged to the EꢂD voltage  
of interest, which is then discharged into the test device  
through a 1.ꢀ ꢁΩ resistor.  
Rev. A | Page 15 of 20  
 
 
ASM3483ꢁ/ASM3486ꢁ/ASM3488ꢁ/ASM3490ꢁ/ASM349±ꢁ  
ADM3483E/  
ADM3486E  
ADM3483E/  
ADM3486E  
R
R
RO  
RO  
A
A
B
RE  
RE  
DE  
DI  
R
R
T
T
DE  
DI  
B
D
D
A
B
A
B
ADM3483E/  
ADM3486E  
ADM3483E/  
ADM3486E  
R
R
D
D
RO RE DE DI  
RO RE DE DI  
NOTES  
1. MAXIMUM NUMBER OF TRANSCEIVERS ON BUS: 32.  
2. R IS EQUAL TO THE CHARACTERISTIC IMPEDANCE OF THE CABLE USED.  
T
Figure 31. ADM3483E/ADM3486E Typical Half-Duplex RS-485 Network  
MASTER  
SLAVE  
ADM3488E/  
ADM3490E  
ADM3488E/  
ADM3490E  
A
Y
DI  
R
D
RO  
DI  
B
Z
Z
B
D
R
RO  
Y
A
Figure 32. ADM3488E/ADM3490E Full-Duplex Point-to-Point Applications  
Rev. A | Page 16 of 20  
 
 
ASM3483ꢁ/ASM3486ꢁ/ASM3488ꢁ/ASM3490ꢁ/ASM349±ꢁ  
MASTER  
SLAVE  
ADM3491E  
ADM3491E  
DE  
A
B
Y
Z
R
R
D
T
RO  
RE  
DE  
DI  
DI  
B
Z
Y
D
R
R
RO  
RE  
T
A
A
B
R
A
B
R
Y
Y
Z
Z
SLAVE  
SLAVE  
D
D
ADM3491E  
ADM3491E  
RO RE DE DI  
RO RE DE DI  
NOTES  
1. MAXIMUM NUMBER OF NODES: 32.  
2. R IS EQUAL TO THE CHARACTERISTIC IMPEDANCE OF THE CABLE USED.  
T
Figure 33. ADM3491E Full-Duplex RS-485 Network  
ADM3488E/  
ADM3490E/  
ADM3491E  
A
RO  
RE  
R
R
DATA IN  
R
T
B
DE  
DI  
Z
Y
D
DATA OUT  
T
NOTES  
1. R IS EQUAL TO THE CHARACTERISTIC  
T
IMPEDANCE OF THE CABLE USED.  
2. RE AND DE PINS ON ADM3491E ONLY.  
Figure 34. Line Repeater for ADM3488E/ADM3490E/ADM3491E  
Rev. A | Page 17 of 20  
 
ASM3483ꢁ/ASM3486ꢁ/ASM3488ꢁ/ASM3490ꢁ/ASM349±ꢁ  
OUTLINꢁ SIMꢁNEIONE  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 35. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
8.75 (0.3445)  
8.55 (0.3366)  
8
7
14  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
BSC  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 36. 14-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-14)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Temperature  
Range  
Model  
ADM3483EARZ1  
Package Description  
Package Option Ordering Quantity  
–40°C to +85°C 8-Lead Standard Small Outline Package (SOIC_N)  
R-8  
ADM3483EARZ-REEL71 –40°C to +85°C 8-Lead Standard Small Outline Package (SOIC_N)  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
1,000  
1,000  
1,000  
1,000  
1,000  
ADM3486EARZ1  
ADM3486EARZ-REEL71 –40°C to +85°C 8-Lead Standard Small Outline Package (SOIC_N)  
ADM3488EARZ1  
–40°C to +85°C 8-Lead Standard Small Outline Package (SOIC_N)  
ADM3488EARZ-REEL71 –40°C to +85°C 8-Lead Standard Small Outline Package (SOIC_N)  
ADM3490EARZ1  
–40°C to +85°C 8-Lead Standard Small Outline Package (SOIC_N)  
ADM3490EARZ-REEL71 –40°C to +85°C 8-Lead Standard Small Outline Package (SOIC_N)  
–40°C to +85°C 8-Lead Standard Small Outline Package (SOIC_N)  
ADM3491EARZ1  
–40°C to +85°C 14-Lead Standard Small Outline Package (SOIC_N) R-14  
ADM3491EARZ-REEL71 –40°C to +85°C 14-Lead Standard Small Outline Package (SOIC_N) R-14  
1 Z = Pb-free part.  
Rev. A | Page 18 of 20  
 
 
ASM3483ꢁ/ASM3486ꢁ/ASM3488ꢁ/ASM3490ꢁ/ASM349±ꢁ  
NOTꢁE  
Rev. A | Page 19 of 20  
ASM3483ꢁ/ASM3486ꢁ/ASM3488ꢁ/ASM3490ꢁ/ASM349±ꢁ  
NOTꢁE  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06284-0-10/06(A)  
Rev. A | Page 20 of 20  

相关型号:

ADM3483E_15

Full-Duplex, RS-485/RS-422 Transceivers
ADI

ADM3483_11

3.3 V Slew Rate Limited, Half- and Full-Duplex, RS-485/RS-422 Transceivers
ADI

ADM3483_15

Full-Duplex, RS-485/RS-422 Transceivers
ADI

ADM3485

3.3 V Slew Rate Limited, Half- and Full-Duplex, RS-485/RS-422 Transceivers
ADI

ADM3485AR

IC LINE TRANSCEIVER, PDSO8, SOIC-8, Line Driver or Receiver
ADI

ADM3485ARZ

3.3 V Slew Rate Limited, Half- and Full-Duplex, RS-485/RS-422 Transceivers
ADI

ADM3485E

ESD Protected, EMC Compliant, 3.3 V, 20 Mbps, EIA RS-485 Transceiver
ADI

ADM3485EAN

ESD Protected, EMC Compliant, 3.3 V, 20 Mbps, EIA RS-485 Transceiver
ADI

ADM3485EANZ

IC LINE TRANSCEIVER, PDIP8, MO-095AA, PLASTIC, DIP-8, Line Driver or Receiver
ADI

ADM3485EAR

ESD Protected, EMC Compliant, 3.3 V, 20 Mbps, EIA RS-485 Transceiver
ADI

ADM3485EAR-REEL

±15 kV ESD-Protected, 3.3 V,12 Mbps, EIA RS-485/RS-422 Transceiver
ADI

ADM3485EAR-REEL7

±15 kV ESD-Protected, 3.3 V,12 Mbps, EIA RS-485/RS-422 Transceiver
ADI