ADM7151ARDZ-04 [ADI]

800 mA Ultralow Noise, High PSRR, RF Linear Regulator;
ADM7151ARDZ-04
型号: ADM7151ARDZ-04
厂家: ADI    ADI
描述:

800 mA Ultralow Noise, High PSRR, RF Linear Regulator

光电二极管 输出元件 调节器
文件: 总25页 (文件大小:1178K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
800 mA Ultralow Noise,  
High PSRR, RF Linear Regulator  
ADM7151  
Data Sheet  
FEATURES  
TYPICAL APPLICATION CIRCUIT  
ADM7151-04  
Input voltage range: 4.5 V to 16 V  
Maximum output current: 800 mA  
Adjustable output from 1.5 V to 5.1 V  
Low noise  
V
= 6.2V  
V
= 5.0V  
IN  
OUT  
VIN  
VOUT  
REF  
C
10µF  
C
OUT  
10µF  
IN  
ON  
EN  
C
1µF  
REF  
OFF  
V
1.0 μV rms total integrated noise from 100 Hz to 100 kHz  
1.6 μV rms total integrated noise from 10 Hz to 100 kHz  
Noise spectral density: 1.7 nV√Hz from 10 kHz to 1 MHz  
Power supply rejection ratio (PSRR) at 400 mA load  
>90 dB from 1 kHz to 100 kHz, VOUT = 5 V  
>60 dB at 1 MHz, VOUT = 5 V  
BYP  
BYP  
C
BYP  
1µF  
R1  
V
= 1.5V × (R1 + R2)/R2  
OUT  
REF_SENSE  
GND  
R2  
1k< R2 < 200kΩ  
V
REG  
VREG  
C
REG  
10µF  
Dropout voltage: 0.6 V at VOUT = 5 V, 800 mA load  
Initial voltage accuracy: 1ꢀ  
Figure 1. ADM7151-04 with VOUT = 5 V  
Voltage accuracy over line, load and temperature: 2ꢀ  
Quiescent current (IGND): 4.3 mA at no load  
Low shutdown current: 0.1 μA  
Stable with a 10 μF ceramic output capacitor  
8-lead LFCSP package and 8-lead SOIC package  
APPLICATIONS  
Regulated power noise sensitive applications  
RF mixers, phase-locked loops (PLLs), voltage-controlled  
oscillators (VCOs), and PLLs with integrated VCOs  
Clock distribution circuits  
Ultrasound and other imaging applications  
High speed RF transceivers  
High speed, 16-bit or greater ADCs  
Communications and infrastructure  
Cable digital-to-analog converter (DAC) drivers  
but also providing excellent thermal performance for applications  
requiring up to 800 mA of output current in a small, low profile  
footprint.  
GENERAL DESCRIPTION  
The ADM7151 is a low dropout (LDO) linear regulator that  
operates from 4.5 V to 16 V and provides up to 800 mA of output  
current. Using an advanced proprietary architecture, it provides  
high power supply rejection (>90 dB from 1 kHz to 1 MHz),  
ultralow noise (1.7 nV√Hz from 10 kHz to 1 MHz), and excellent  
line and load transient response with a 10 μF ceramic output  
capacitor. The output voltage can be set to any voltage between  
1.5 V and 5.1 V with two resistors.  
100k  
C
C
C
C
= 1µF  
BYP  
BYP  
BYP  
BYP  
= 10µF  
= 100µF  
= 1mF  
10k  
1k  
The ADM7151 is available in two models that optimize power  
dissipation and PSRR performance as a function of input and  
output voltage. See Table 6 and Table 7 for selection guides.  
100  
10  
The ADM7151 regulator output noise is 1.0 μV rms from  
100 Hz to 100 kHz, and the noise spectral density is 1.7 nV/√Hz  
from 10 kHz to 1 MHz.  
1
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
The ADM7151 is available in 8-lead, 3 mm × 3 mm LFCSP and  
8-lead SOIC packages, making it not only a very compact solution,  
Figure 2. Noise Spectral Density (NSD) vs. Frequency for Various CBYP  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2013–2015 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
ADM7151* PRODUCT PAGE QUICK LINKS  
Last Content Update: 06/09/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
ADM7151 Material Declaration  
PCN-PDN Information  
EVALUATION KITS  
ADM7150 and ADM7151 Evaluation Board  
Quality And Reliability  
Symbols and Footprints  
DOCUMENTATION  
Data Sheet  
DISCUSSIONS  
View all ADM7151 EngineerZone Discussions.  
ADM7151: 800 mA Ultralow Noise, High PSRR, RF Linear  
Regulator Data Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
TOOLS AND SIMULATIONS  
ADI Linear Regulator Design Tool and Parametric Search  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
• ADIsimPower™ Voltage Regulator Design Tool  
REFERENCE MATERIALS  
DOCUMENT FEEDBACK  
Press  
Ultra-Low-Noise RF Low-Dropout Regulators Reduce  
Submit feedback for this data sheet.  
Phase Noise in Wideband Communication Systems  
Solutions Bulletins & Brochures  
Ultralow Noise, High Rejection Low Dropout Regulators  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
ADM7151  
Data Sheet  
TABLE OF CONTENTS  
Features........................................................................................... 1  
Theory of Operation.................................................................... 15  
Applications Information............................................................ 16  
Model Selection....................................................................... 16  
Capacitor Selection.................................................................. 16  
Enable (EN) and Undervoltage Lockout (UVLO) ................ 18  
Start-Up Time.......................................................................... 19  
REF, BYP, and VREG Pins....................................................... 19  
Current-Limit and Thermal Overload Protection................ 19  
Thermal Considerations......................................................... 19  
Printed Circuit Board Layout Considerations....................... 22  
Outline Dimensions.................................................................... 23  
Ordering Guide........................................................................ 24  
Applications................................................................................... 1  
Typical Application Circuit........................................................... 1  
General Description...................................................................... 1  
Revision History............................................................................ 2  
Specifications................................................................................. 3  
Input and Output Capacitor, Recommended Specifications.. 4  
Absolute Maximum Ratings......................................................... 5  
ThermalData............................................................................. 5  
Thermal Resistance................................................................... 5  
ESD Cautio n............................................................................... 5  
Pin Configurations and Function Descriptions .......................... 6  
Typical Performance Characteristics............................................ 7  
REVISION HISTORY  
4/15—Rev. 0 to Rev. A  
Change to Figure 4..........................................................................6  
Change to Figure 39......................................................................12  
9/13—Revision0: Initial Version  
Rev. A | Page 2 of 24  
Data Sheet  
ADM7151  
SPECIFICATIONS  
VIN = 4.5 V, VOUT = 1.5 V, V REF = VREF_SENSE (unity gain), VEN = VIN, IOUT = 10 mA, CIN = COUT = CREG = 10 µF, CREF = CBYP = 1 µF. TA = 25°C  
for typicalspecifications. TJ = −40°C to +125°C for minimum/maximum specifications,unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
VIN  
Test Conditions/Comments  
Min  
Typ Max  
Unit  
V
INPUT VOLTAGE RANGE  
OPERATING SUPPLY CURRENT  
4.5  
16  
IGND  
IOUT = 0 µA  
IOUT = 800 mA  
4.3  
8.6  
0.1  
1.6  
1.0  
1.7  
7.0  
12  
3
mA  
mA  
SHUTDOWN CURRENT  
OUTPUT NOISE  
IIN-SD  
VEN = GND  
µA  
OUTNOISE  
10 Hz to 100 kHz, independent of output voltage  
100 Hz to 100 kHz, independent ofoutput voltage  
10 kHz to 1 MHz, independent of output voltage  
µV rms  
µV rms  
nV/√Hz  
NOISE SPECTRAL DENSITY  
POWER SUPPLY REJECTION RATIO  
ADM7151-04  
NSD  
PSRR  
1 kHz to 100 kHz, VIN = 6.2 V, VOUT = 5 V at 800 mA  
1 MHz, VIN = 6.2 V, VOUT = 5 V at 800 mA  
1 kHz to 100 kHz, VIN = 6.2 V, VOUT = 5 V at 400 mA  
1 MHz, VIN = 6.2 V, VOUT = 5 V at 400 mA  
1 kHz to 100 kHz, VIN = 5.2 V, VOUT = 4 V at 800 mA  
1 MHz, VIN = 5.2 V, VOUT = 4 V at 800 mA  
1 kHz to 100 kHz, VIN = 5.2 V, VOUT = 4 V at 400 mA  
1 MHz, VIN = 5.2 V, VOUT = 4 V at 400 mA  
VOUT = VREF  
84  
53  
94  
67  
91  
50  
94  
58  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
ADM7151-02  
VOUT VOLTAGE ACCURACY  
Voltage Accuracy  
VOUT  
IOUT = 10 mA  
1 mA < IOUT < 800 mA, over line, load and  
temperature  
−1  
−2  
+1  
+2  
%
%
VOUT REG U L ATION  
Line Regulation  
ΔVOUT/ΔVIN  
ΔVOUT/ΔIOUT  
ILIMIT  
VIN = 4.5 V to 16 V  
IOUT = 1 mA to 800 mA  
−0.01  
1.0  
+0.01 %/V  
Load Regulation1  
0.5  
1.0  
%/A  
CURRENT-LIMIT THRESHOLD  
VREF Current Limit Threshold  
VOUT Current Limit Threshold2  
DROPOUT VOLTAGE3  
20  
mA  
A
1.3  
1.6  
VDROPOUT  
IOUT = 400 mA, VOUT = 5 V  
IOUT = 800 mA, VOUT = 5 V  
0.30 0.60  
0.60 1.20  
V
V
PULL-DOWN RESISTANCE  
VOUT Pull-Down Resistance  
VREG Pull-Down Resistance  
VREF Pull-Down Resistance  
VBYP Pull-Down Resistance  
START-UP TIME4  
VOUT-PULL  
VREG -PULL  
VREF-PULL  
VBYP-PULL  
VEN = 0 V, VOUT = 1 V  
VEN = 0 V, VREG = 1 V  
VEN = 0 V, VREF = 1 V  
VEN = 0 V, VBYP = 1 V  
VOUT = 5 V  
600  
34  
800  
500  
Ω
kΩ  
Ω
Ω
VOUT Start-Up Time  
VREG Start-Up Time  
VREF Start-Up Time  
tS TA R T -UP  
tREG -S TA R T -UP  
tREF-S TA R T -UP  
2.8  
1.0  
1.8  
ms  
ms  
ms  
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
UNDERVOLTAGE THRESHOLDS  
Input Voltage Rising  
TSSD  
TJ rising  
155  
15  
°C  
°C  
TSSD-HYS  
UVLORISE  
UVLOFA L L  
UVLOHYS  
TJ = −40°C to +125°C  
TJ = −40°C to +125°C  
4.49  
240  
V
V
mV  
Input Voltage Falling  
Hysteresis  
3.85  
Rev. A | Page 3 of 24  
 
ADM7151  
Data Sheet  
Parameter  
VREG 5 UNDERVOLTAGETHRESHOLDS  
VREG Rise  
Symbol  
Test Conditions/Comments  
Min  
2.55  
3.2  
Typ Max  
Unit  
VREGUVLORISE TJ = −40°C to +125°C  
3.1  
V
VREG Fall  
Hysteresis  
VREGUVLOFA L L TJ = −40°C to +125°C  
V
mV  
VREGUVLOHYS  
4.5 V ≤ VIN ≤ 16 V  
ENHIGH  
ENLOW  
ENHYS  
IEN-LKG  
210  
EN INPUT  
EN Input Logic High  
EN Input Logic Low  
EN Input Logic Hysteresis  
EN Input Leakage Current  
V
V
mV  
µA  
0.8  
1.0  
VIN = 5 V  
225  
0.1  
VEN = VIN or GND  
1 Based on an end-point calculation using 1 mA and 800 mA loads. See Figure 6 and Figure 13 for typical load regulation performance for loads less than 1 mA.  
2 Current-limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 5.0 V  
output voltage is defined as the current that causes the output voltage to drop to 90% of 5.0 V, or 4.5 V.  
3 Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to achieve the nominal output voltage. Dropout applies only for  
output voltages above 4.5 V.  
4 Start-up time is defined as the time between the rising edge of VEN to VOUT, VREG, or VREF being at 90% of its nominal value.  
5 The output voltage is turned off until the VREG UVLO rise threshold is crossed. The VREG output is turned off until the input voltage UVLO rising threshold is crossed.  
INPUT AND OUTPUT CAPACITOR, RECOMMENDEDSPECIFICATIONS  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
CAPACITANCE  
Minimum Input1  
TA = −40°C to +125°C  
CIN  
7.0  
7.0  
7.0  
0.1  
0.7  
µF  
µF  
µF  
µF  
µF  
Minimum Regulator1  
Minimum Output1  
Minimum Bypass  
Minimum Reference  
CAPACITOR EQUIVALENT SERIES RESISTANCE (ESR)  
CREG , COUT, CIN, CREF  
CREG  
COUT  
CBYP  
CREF  
RESR  
TA = −40°C to +125°C  
0.001  
0.001  
0.2  
2.0  
Ω
Ω
CBYP  
1 The minimum input, regulator, and output capacitance must be greater than 7.0 µF over the full range of operating conditions. The full range of operating conditions  
in the application must be considered during device selection to ensure that the minimum capacitance specification is met. X7R and X5R type capacitors are  
recommended; however, Y5V and Z5U capacitors are not recommended for use with any LDO.  
Rev. A | Page 4 of 24  
 
Data Sheet  
ADM7151  
ABSOLUTEMAXIMUM RATINGS  
Junction to ambient thermalresistance (θJA) of the package is  
based on modeling and calculation using a 4-layer board. The  
junction to ambient thermalresistanceis highly dependent on  
the applicationandboardlayout. In applicationswhere high  
maximumpower dissipation exists, close attention to thermal  
board design is required. The value of θJA mayvary, depending on  
PCB material, layout, and environmental conditions.The specified  
values of θJA are based on a 4-layer, 4in. × 3 in. circuit board.  
See JESD51-7 and JESD51-9for detailed information on the  
board construction.  
Table 3.  
Parameter  
VIN to GND  
VREG to GND  
Rating  
−0.3 V to +18 V  
−0.3 V to VIN, or +6 V  
(whichever is less)  
−0.3 V to VREG, or +6 V  
(whichever is less)  
VOUT to GND  
VOUT to BYP  
EN to GND  
0.3 V  
−0.3 V to18 V  
−0.3 V to VREG, or +6 V  
(whichever is less)  
BYP to GND  
ΨJB is the junction to board thermalcharacterization parameter  
with units of°C/W. ΨJB of the package is basedon modelingandthe  
calculation using a 4-layer board. TheJESD51-12, Guidelines for  
Reportingand UsingElectronic Package Thermal Information,  
states that thermalcharacterization parameters arenot the same  
as thermalresistances. ΨJB measures the component power  
flowing through multiple thermalpathsrather than a single  
path as in thermalresistance (θJB). Therefore, ΨJB thermalpaths  
include convection from the top of the package as wellas  
radiation from the package, factorsthat makeΨJB more useful  
in real-world applications. Maximum junction temperature (TJ)  
is calculated from the boardtemperature(TB) and power  
dissipation (PD) using the formula  
−0.3 V to VREG, or +6 V  
(whichever is less)  
REF to GND  
REF_SENSE to GND  
Storage Temperature Range  
Junction Temperature  
−0.3 V to +6 V  
−65°C to +150°C  
150°C  
Operating AmbientTemperatureRange –40°C to +125°C  
Soldering Conditions JEDEC J-STD-020  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damageto the product. This is a  
stress rating only; functionaloperation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditionsfor extended periods may  
affect product reliability.  
TJ = TB + (PD × ΨJB)  
See JESD51-8 and JESD51-12for more detailedinformation  
about ΨJB.  
THERMAL DATA  
Absolute maximum ratings apply individually only, not in  
combination. The ADM7151 can be damaged when the junction  
temperature limits are exceeded.Monitoring ambient temperature  
does not guarantee thatTJ is within the specified temperature  
limits. In applications with high power dissipation and poor  
thermalresistance, the maximumambient temperaturemay  
have to be derated.  
THERMAL RESISTANCE  
θJA, θJC, and ΨJB are specified for the worst-caseconditions, that  
is, a device soldered in a circuitboardfor surface-mount packages.  
Table 4. Thermal Resistance  
Package Type  
θJA  
θJC  
ΨJB  
Unit  
8-Lead LFCSP  
8-Lead SOIC  
36.7  
36.9  
23.5  
27.1  
13.3  
18.6  
°C/W  
°C/W  
In applications with moderate power dissipation and low  
printed circuit board (PCB)thermalresistance, the maximum  
ambient temperaturecan exceed the maximumlimit as long as  
the junction temperature is within specification limits. The  
junction temperature(TJ)of the device is dependent on the  
ambient temperature (TA), the power dissipation of the device  
(PD), and the junction toambient thermalresistance of the  
package (θJA).  
ESD CAUTION  
Maximum junction temperature (TJ) is calculated from the  
ambient temperature(TA) and power dissipation (PD) using the  
formula  
TJ = TA + (PD × θJA)  
Rev. A | Page 5 of 24  
 
 
 
 
ADM7151  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
VREG  
VOUT  
BYP  
1
2
3
4
8
7
6
5
VIN  
EN  
VREG  
VOUT  
BYP  
1
2
3
4
8
7
6
5
VIN  
ADM7151  
EN  
TOP VIEW  
ADM7151  
REF  
(Not to Scale)  
TOP VIEW  
REF  
GND  
REF_SENSE  
(Not to Scale)  
GND  
REF_SENSE  
NOTES  
NOTES  
1. EXPOSED PAD ON THE BOTTOM OF THE PACKAGE.  
EXPOSED PAD ENHANCES THERMAL PERFORMANCE AND IS  
ELECTRICALLY CONNECTED TO GND INSIDE THE PACKAGE.  
CONNECT THE EXPOSED PAD TO THE GROUND PLANE ON  
THE BOARD TO ENSURE PROPER OPERATION.  
1. EXPOSED PAD ON THE BOTTOM OF THE PACKAGE.  
EXPOSED PAD ENHANCES THERMAL PERFORMANCE AND IS  
ELECTRICALLY CONNECTED TO GND INSIDE THE PACKAGE.  
CONNECT THE EXPOSED PAD TO THE GROUND PLANE ON  
THE BOARD TO ENSURE PROPER OPERATION.  
Figure 4. 8-Lead SOIC Pin Configuration  
Figure 3. 8-Lead LFCSP Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
VREG  
Regulated Input Supply to LDO Amplifier. Bypass VREG to GND with a 10 μF or greater capacitor. Do not connect a  
load to ground.  
2
3
4
5
6
VOUT  
BYP  
GND  
Regulated Output Voltage. Bypass VOUT to GND with a 10 μF or greater capacitor.  
Low Noise Bypass Capacitor. Connect a 1 μF capacitor to GND to reduce noise. Do not connect a load to ground.  
Ground Connection.  
REF_SENSE External Resistor Divider Used to Set the Output Voltage. VOUT = VREF × (R1 + R2)/R2, where VREF = 1.5 V.  
REF  
Low Noise Reference Voltage Output. Bypass REF to GND with a 1 μF capacitor. Short REF_SENSE to REF for fixed  
output voltages. Do not connect a load to ground.  
7
EN  
Enable. Drive EN high to turn on the regulator and drive EN low to turn off the regulator. For automatic startup,  
connect EN to VIN.  
8
EP  
VIN  
EP  
Regulator Input Supply. Bypass VIN to GND with a 10 μF or greater capacitor.  
Exposed Pad on the Bottom of the Package. Exposed pad enhances thermal performance and is electrically  
connected to GND inside the package. Connect the exposed pad to the ground plane on the board to ensure  
proper operation.  
Rev. A | Page 6 of 24  
 
Data Sheet  
ADM7151  
TYPICAL PERFORMANCECHARACTERISTICS  
VIN = VOUT + 1.2 V or VIN = 4.5 V, whichever is greater, EN = VIN, IOUT = 10 mA, CIN = COUT = CREG = 10 µF, CREF = CBYP = 1 µF, TA = 25°C,  
unless otherwise noted.  
4.04  
4.03  
4.02  
4.01  
4.00  
3.99  
3.98  
3.97  
3.96  
10  
9
8
7
6
5
4
3
2
1
0
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 400mA  
LOAD = 800mA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 400mA  
LOAD = 800mA  
–40  
–5  
25  
85  
125  
–40  
–5  
25  
85  
125  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 5. Output Voltage (VOUT) vs. Junction Temperature (TJ), ADM7151-02,  
VOUT = 4 V  
Figure 8. Ground Current vs. Junction Temperature (TJ), ADM7151-02,  
VOUT = 4 V  
4.04  
4.03  
4.02  
4.01  
4.00  
3.99  
3.98  
3.97  
3.96  
10  
9
8
7
6
5
4
3
2
1
0
1
10  
100  
1000  
1
10  
100  
1000  
I
(mA)  
I
(mA)  
LOAD  
LOAD  
Figure 6. Output Voltage (VOUT) vs. Load Current (ILOAD), ADM7151-02,  
VOUT = 4 V  
Figure 9. Ground Current vs. Load Current (ILOAD), ADM7151-02, VOUT = 4 V  
4.04  
10  
9
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 400mA  
LOAD = 800mA  
4.03  
4.02  
4.01  
4.00  
3.99  
3.98  
3.97  
3.96  
8
7
6
5
4
3
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 400mA  
LOAD = 800mA  
2
1
0
5
6
7
8
9
10  
11  
(V)  
12  
13  
14  
15  
16  
5
6
7
8
9
10  
11  
(V)  
12  
13  
14  
15  
16  
V
V
IN  
IN  
Figure 7. Output Voltage (VOUT) vs. Input Voltage (VIN), ADM7151-02,  
VOUT = 4 V  
Figure 10. Ground Current vs. Input Voltage (VIN), ADM7151-02, VOUT = 4 V  
Rev. A | Page 7 of 24  
 
 
ADM7151  
Data Sheet  
10  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
4.94  
4.93  
4.92  
4.91  
4.90  
V
V
V
V
V
= 6.2V  
= 6.5V  
= 7.0V  
= 10V  
= 16V  
IN  
IN  
IN  
IN  
IN  
1
0.1  
0.01  
0.001  
0.0001  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 400mA  
LOAD = 800mA  
–40  
–5  
25  
85  
125  
6
8
10  
12  
14  
16  
TEMPERATURE (°C)  
V
(V)  
IN  
Figure 11. Shutdown Current vs. Temperature at Various Input Voltages  
Figure 14. Output Voltage (VOUT) vs. Input Voltage (VIN), ADM7151-04,  
VOUT = 5 V  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
4.94  
10  
9
8
7
6
5
4
4.93  
3
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 400mA  
LOAD = 800mA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 400mA  
LOAD = 800mA  
4.92  
2
4.91  
1
4.90  
0
–40  
–5  
25  
85  
125  
–40  
–5  
25  
85  
125  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 12. Output Voltage (VOUT) vs. JunctionTemperature (TJ), ADM7151-04,  
VOUT = 5 V  
Figure 15. Ground Current vs. Junction Temperature (TJ), ADM7151-04,  
VOUT = 5 V  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
4.94  
4.93  
4.92  
4.91  
4.90  
10  
9
8
7
6
5
4
3
2
1
0
1
10  
100  
1000  
1
10  
100  
1000  
I
(mA)  
I
(mA)  
LOAD  
LOAD  
Figure 13. Output Voltage (VOUT) vs. Load Current (ILOAD), ADM7151-04,  
VOUT = 5 V  
Figure 16. Ground Current vs. Load Current (ILOAD), ADM7151-04,  
VOUT = 5 V  
Rev. A | Page 8 of 24  
 
Data Sheet  
ADM7151  
10  
12  
10  
8
9
8
7
6
5
6
4
4
LOAD = 1mA  
3
2
1
0
I
I
I
I
I
I
= 5mA  
GND  
GND  
GND  
GND  
GND  
GND  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 400mA  
LOAD = 800mA  
= 10mA  
= 100mA  
= 200mA  
= 400mA  
= 800mA  
2
0
6
8
10  
12  
14  
16  
4.6  
4.8  
5.0  
5.2  
5.4  
(V)  
5.6  
5.8  
6.0  
V
(V)  
V
IN  
IN  
Figure 17. Ground Current vs. Input Voltage (VIN), ADM7151-04, VOUT = 5 V  
Figure 20. Ground Current vs. Input Voltage (VIN) in Dropout, ADM7151-04,  
VOUT = 5 V  
0
700  
600  
500  
400  
300  
200  
100  
0
LOAD = 800mA  
–10  
–20  
LOAD = 400mA  
LOAD = 200mA  
LOAD = 100mA  
LOAD = 10mA  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1000  
FREQUENCY (Hz)  
I
(mA)  
LOAD  
Figure 18. Dropout Voltage vs. Load Current (ILOAD), ADM7151-04, VOUT = 5 V  
Figure 21. Power Supply RejectionRatio (PSRR) vs. Frequency, ADM7151-02,  
VOUT = 4 V  
5.2  
5.0  
4.8  
4.6  
4.4  
0
LOAD = 800mA  
–10  
–20  
LOAD = 400mA  
LOAD = 200mA  
LOAD = 100mA  
LOAD = 10mA  
–30  
–40  
–50  
–60  
–70  
–80  
V
V
V
V
V
V
= 5mA  
DROPOUT  
DROPOUT  
DROPOUT  
DROPOUT  
DROPOUT  
DROPOUT  
= 10mA  
= 100mA  
= 200mA  
= 400mA  
= 800mA  
–90  
4.2  
4.0  
–100  
–110  
–120  
4.6  
4.8  
5.0  
5.2  
5.4  
(V)  
5.6  
5.8  
6.0  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
V
IN  
FREQUENCY (Hz)  
Figure 19. Output Voltage (VOUT) vs. Input Voltage (VIN) in Dropout,  
ADM7151-04, VOUT = 5 V  
Figure 22. Power Supply RejectionRatio (PSRR) vs. Frequency, ADM7151-04,  
VOUT = 5 V  
Rev. A | Page 9 of 24  
ADM7151  
Data Sheet  
0
0
–20  
600mV  
1.0V  
1.1V  
1.2V  
1.3V  
1.4V  
10Hz  
100Hz  
1kHz  
100kHz  
1MHz  
10MHz  
–10  
–20  
700mV  
800mV  
900mV  
10kHz  
–30  
–40  
–40  
–50  
–60  
–60  
–70  
–80  
–80  
–90  
–100  
–110  
–120  
–100  
–120  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
FREQUENCY (Hz)  
HEADROOM (V)  
Figure 23. Power Supply Rejection Ratio (PSRR) vs. Frequency for Various  
Headroom Voltages, ADM7151-02, VOUT = 4 V, 400 mA Load  
Figure 26. Power Supply Rejection Ratio (PSRR) vs. Headroom Voltage,  
ADM7151-02, VOUT = 4 V, 400 mA Load  
0
0
–20  
–40  
–60  
600mV  
700mV  
800mV  
900mV  
1.0V  
1.1V  
1.2V  
1.4V  
1.6V  
1.8V  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–80  
10Hz  
100Hz  
1kHz  
–90  
–100  
–110  
–120  
10kHz  
100kHz  
1MHz  
–100  
10MHz  
–120  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
FREQUENCY (Hz)  
HEADROOM (V)  
Figure 24. Power Supply Rejection Ratio (PSRR) vs. Frequency for Various  
Headroom Voltages, ADM7151-04, VOUT = 5 V, 400 mA Load  
Figure 27. Power Supply Rejection Ratio (PSRR) vs. Headroom Voltage,  
ADM7151-02, VOUT = 4 V, 800 mA Load  
0
0
–20  
–40  
–60  
10Hz  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
–20  
–40  
10MHz  
–60  
–80  
–80  
10Hz  
–100  
–120  
–140  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
–100  
–120  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
0.3  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
HEADROOM (V)  
HEADROOM (V)  
Figure 25. Power Supply Rejection Ratio (PSRR) vs. Headroom Voltage,  
ADM7151-02, VOUT = 4 V, 100 mA Load  
Figure 28. Power Supply Rejection Ratio (PSRR) vs. Headroom Voltage,  
ADM7151-04, VOUT = 5 V, 100 mA Load  
Rev. A | Page 10 of 24  
Data Sheet  
ADM7151  
0
2.0  
1.6  
1.2  
0.8  
0.4  
0
10Hz  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
–20  
10MHz  
–40  
100Hz TO 100kHz  
–60  
–80  
–100  
–120  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
10  
100  
1000  
HEADROOM (V)  
LOAD CURRENT (mA)  
Figure 29. Power Supply Rejection Ratio (PSRR) vs. Headroom Voltage,  
ADM7151-04, VOUT = 5 V, 400 mA Load  
Figure 32. RMS Output Noise vs. Load Current (ILOAD), 100 Hz to 100 kHz,  
ADM7151-04, VOUT = 5 V  
0
2.0  
10Hz  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
–20  
–40  
10MHz  
1.6  
10Hz TO 100kHz  
1.2  
0.8  
0.4  
0
–60  
–80  
–100  
–120  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
10  
100  
1000  
HEADROOM (V)  
LOAD CURRENT (mA)  
Figure 30. Power Supply Rejection Ratio (PSRR) vs. Headroom Voltage,  
ADM7151-04, VOUT = 5 V, 800 mA Load  
Figure 33. RMS Output Noise vs. Load Current (ILOAD), 10 Hz to 100 kHz,  
ADM7151-02, VOUT = 4 V  
2.0  
2.0  
1.6  
1.2  
1.6  
10Hz TO 100kHz  
1.2  
0.8  
0.4  
0
100Hz TO 100kHz  
0.8  
0.4  
0
10  
100  
1000  
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 31. RMS Output Noise vs. Load Current (ILOAD), 10 Hz to 100 kHz,  
ADM7151-04, VOUT = 5 V  
Figure 34. RMS Output Noise vs. Load Current (ILOAD), 100 Hz to 100 kHz,  
ADM7151-02, VOUT = 4 V  
Rev. A | Page 11 of 24  
ADM7151  
Data Sheet  
10  
100k  
10k  
1k  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 400mA  
LOAD = 800mA  
1
100  
10  
0.1  
1k  
1
0.1  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 35. Output Noise Spectral Density, 1 kHz to 10 MHz, ILOAD = 10 mA  
Figure 38. Output Noise Spectral Density at Different Load Currents,  
0.1 Hz to 1 MHz  
100k  
100k  
C
C
C
C
C
C
C
= 1µF  
BYP  
BYP  
BYP  
BYP  
BYP  
BYP  
BYP  
= 4.7µF  
= 10µF  
= 22µF  
= 47µF  
= 100µF  
= 470µF  
10k  
1k  
10k  
1k  
100  
10  
1
100  
10  
1
0.1  
1
10  
100  
1k  
10k  
100k  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 36. Output Noise Spectral Density, 0.1 Hz to 10 kHz, ILOAD = 10 mA  
Figure 39. Output Noise Spectral Density vs. at Different CBYP  
,
Load Current = 10 mA  
1k  
T
LOAD = 800mA  
LOAD = 400mA  
LOAD = 200mA  
LOAD = 100mA  
LOAD = 10mA  
100  
1
2
10  
1
0.1  
10  
B
B
W
CH1 500mA Ω  
CH2 20mV  
M20µs  
A
CH1  
200mA  
W
100  
1k  
10k  
100k  
1M  
10M  
T
10.40%  
FREQUENCY (Hz)  
Figure 37. Output Noise Spectral Density at Different Load Currents,  
10 Hz to 10 MHz  
Figure 40. Load Transient Response, ILOAD = 1 mA to 800 mA,  
OUT = 5 V, VIN = 6.2 V, CH1 = IOUT, CH2 = VOUT  
V
Rev. A | Page 12 of 24  
Data Sheet  
ADM7151  
T
T
1
1
2
2
B
B
W
B
B
CH1 1.0V  
CH2 2.0mV Ω  
M10µs  
10.0%  
A
CH1  
1.14V  
CH1 500mA Ω  
CH2 10mV  
M4µs  
W
A
CH1  
200mA  
W
W
T
T
11.0%  
Figure 44. Line Transient Response, 2 V Input Step, ILOAD = 800 mA,  
VOUT = 1.8 V, VIN = 4.5 V, CH1 = VIN, CH2 = VOUT  
Figure 41. Load Transient Response, ILOAD = 10 mA to 800 mA,  
VOUT = 5 V, VIN = 6.2 V, CH1 = IOUT, CH2 = VOUT  
T
T
1
1
2
2
B
B
W
B
B
CH1 1.0V  
CH2 2.0mV Ω  
M10µs  
10.0%  
A
CH3  
1.14V  
CH1 200mA Ω  
CH2 10mV  
M2µs  
W
A
CH1  
460mA  
W
W
T
T
11.0%  
Figure 45. Line Transient Response, 2 V Input Step, ILOAD = 800 mA,  
VOUT = 3.3 V, VIN = 4.5 V, CH1 = VIN, CH2 = VOUT  
Figure 42. Load Transient Response, ILOAD = 100 mA to 600 mA,  
VOUT = 5 V, VIN = 6.2 V, CH1 = IOUT, CH2 = VOUT  
T
T
1
1
2
2
B
B
W
B
B
CH1 1.0V  
CH2 2.0mV Ω  
M10µs  
10.0%  
A
CH3  
1.14V  
CH1 50.0mA Ω  
CH2 2.0mV  
M4µs  
W
A
CH1  
50.0mA  
W
W
T
T
10.0%  
Figure 46. Line Transient Response, 2 V Input Step, ILOAD = 800 mA,  
VOUT = 5 V, VIN = 6.2 V, CH1 = VIN, CH2 = VOUT  
Figure 43. Load Transient Response, ILOAD = 1 mA to 100 mA,  
VOUT = 5 V, VIN = 6.2 V, CH1 = IOUT, CH2 = VOUT  
Rev. A | Page 13 of 24  
ADM7151  
Data Sheet  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
V
V
EN  
REG  
REF  
OUT  
–0.5  
0
1
2
3
4
5
6
7
8
9
10  
TIME (ms)  
Figure 47. VOUT, VREF, VREG Start-Up Times After VEN Rising,  
VOUT = 3.3 V, VIN = 5 V  
Rev. A | Page 14 of 24  
Data Sheet  
ADM7151  
THEORY OF OPERATION  
ADM7151-04  
The ADM7151 is an adjustable, ultralow noise, high power  
supply rejection ratio (PSRR) linear regulator targeting radio  
frequency (RF) applications. The input voltage range is 4.5 V to  
16 V, and it can deliver up to 800 mA of output current. Typical  
shutdown current consumption is 0.1 μA at room temperature.  
V
= 6.2V  
ON  
V
= 5.0V  
IN  
OUT  
VIN  
VOUT  
C
10µF  
C
OUT  
10µF  
IN  
EN  
REF  
C
1µF  
REF  
OFF  
V
BYP  
BYP  
C
BYP  
1µF  
Optimized for use with 10 μF ceramic capacitors, the ADM7151  
provides excellent transient performance.  
R1  
V
= 1.5V × (R1 + R2)/R2  
OUT  
REF_SENSE  
GND  
R2  
1k< R2 < 200kΩ  
V
REG  
VREG  
ACTIVE  
RIPPLE  
FILTER  
C
10µF  
REG  
VIN  
VOUT  
SHORT CIRCUIT,  
THERMAL  
Figure 49. Typical Adjustable Output Voltage Application Schematic  
VREG  
BYP  
PROTECT  
GND  
The R2 value must be greater than 1 kΩ to prevent excessive  
loading of the reference voltage appearing on the REF pin. To  
minimize errors in the output voltage caused by the REF_SENSE  
pin input current, the R2 value must be less than 200 kΩ. For  
example, when R1 and R2 each equal 200 kΩ, the output  
voltage is 3.0 V. The output voltage error introduced by the  
REF_SENSE pin input current is 10 mV or 0.33%, assuming a  
maximum REF_SENSE pin input current of 100 nA at 125°C.  
OTA  
REFERENCE  
E/A  
REF_SENSE  
REF  
SHUTDOWN  
EN  
Figure 48. Adjustable Output Voltage Internal Block Diagram  
Internally, the ADM7151 consists of a reference, an error amplifier,  
a feedback voltage divider, and a P-channel MOSFET pass  
transistor. Output current is delivered via the PMOS pass  
device, which is controlled by the error amplifier. The error  
amplifier compares the reference voltage with the feedback  
voltage from the output and amplifies the difference. If the  
feedback voltage is lower than the reference voltage, the gate  
of the PMOS device is pulled lower, allowing more current to  
pass and increasing the output voltage. If the feedback voltage  
is higher than the reference voltage, the gate of the PMOS  
device is pulled higher, allowing less current to pass and  
decreasing the output voltage.  
The ADM7151 uses the EN pin to enable and disable the VOUT  
pin under normal operating conditions. When EN is high, VOUT  
turns on, and when EN is low, VOUT turns off. For automatic  
startup, EN can be tied to VIN.  
VIN  
18V  
VREG  
6V  
REF  
REF_SENSE  
BYP  
6V  
6V  
OUT  
By heavily filtering the reference voltage, the ADM7151 is able  
to achieve 1.7 nV/√Hz output typical from 10 kHz to 1 MHz.  
Because the error amplifier is always in unity gain, the output  
noise is independent of the output voltage.  
EN  
18V  
6V  
6V  
6V  
6V  
6V  
18V  
GND  
To maintain very high PSRR over a wide frequency range, the  
ADM7151 architecture uses an internal active ripple filter. This  
stage isolates the low output noise LDO from noise on VIN.  
The result is that the ADM7151 PSRR is significantly higher  
over a wider frequency range than any single stage LDO.  
Figure 50. Simplified ESD Protection Block Diagram  
The ESD protection devices are shown in the block diagram as  
Zener diodes (see Figure 50).  
The ADM7151 output voltage can be adjusted between 1.5 V  
and 5.1 V and is available in two models that optimize the input  
voltage and output voltage ranges to keep power dissipation as  
low as possible without compromising PSRR performance. The  
output voltage is determined by an external voltage divider  
according to the following equation:  
V
OUT = 1.5 V × (1 + R1/R2)  
Rev. A | Page 15 of 24  
 
 
ADM7151  
Data Sheet  
APPLICATIONS INFORMATION  
MODEL SELECTION  
Input and VREG Capacitor  
Connecting a 10 μF capacitor from VIN to GND reduces the  
circuit sensitivity to PCB layout, especially when long input  
traces or high source impedance are encountered.  
The ADM7151 is available in two models to allow the user to  
select the best combination of power dissipation and PSRR  
performance for a given application.  
To maintain the best possible stability and PSRR performance,  
connect a 10 μF capacitor from VREG to GND. When more  
than 10 μF of output capacitance is required, increase the input  
and VREG capacitors to match it.  
CAPACITOR SELECTION  
Output Capacitor  
The ADM7151 is designed for operation with ceramic capacitors  
but functions with most commonly used capacitors as long as  
care is taken with regard to the effective series resistance (ESR)  
value. The ESR of the output capacitor affects the stability of the  
LDO control loop. A minimum of 10 μF capacitance with an  
ESR of 0.2 Ω or less is recommended to ensure the stability of  
the ADM7151. Output capacitance also affects transient  
response to changes in load current. Using a larger value of  
output capacitance improves the transient response of the  
ADM7151 to large changes in load current. Figure 51 shows the  
transient responses for an output capacitance value of 10 μF.  
REF Capacitor  
The REF capacitor is necessary to stabilize the reference amplifier.  
Connect a capacitor of at least 1 μF between REF and GND.  
T
1
2
B
B
CH1 500mA Ω  
CH2 10mV  
M4µs  
11.0%  
A
CH1  
200mA  
W
W
T
Figure 51. Output Transient Response, VOUT = 5 V, COUT = 10 μF  
Table 6. Model Selection Guide for PSRR  
PSRR (dB) at 800 mA, 1.2 V Headroom  
PSRR (dB) at 400 mA, 1 V Headroom  
Model  
VOUT Range (V)  
1.5 to 4.0  
1.5 to 5.1  
10 kHz  
91  
84  
100 kHz  
91  
84  
1 MHz  
50  
53  
10 kHz  
94  
94  
100 kHz  
94  
94  
1 MHz  
58  
67  
ADM7151-02  
ADM7151-04  
Table 7. Model Selection Guide for Input Voltage  
Minimum VIN at 800 mA Load  
VOUT Range (V) VOUT < 3.3 V VOUT < 5 V VOUT ≥ 3.3 V VOUT ≥ 5 V  
Minimum VIN at 400 mA Load  
Model  
VOUT < 3.3 V VOUT < 5V VOUT ≥ 3.3 V VOUT ≥ 5 V  
ADM7151-02 1.5 to 4.0  
ADM7151-04 1.5 to 5.1  
4.5 V  
N/A1  
N/A1  
VOUT + 1.2 V  
N/A1  
N/A1  
VOUT + 1.2 V N/A1  
4.5 V  
N/A1  
6 V  
VOUT + 1.0 V  
N/A1  
N/A1  
VOUT + 1.0 V  
6.2 V  
1 N/A = not applicable.  
Rev. A | Page 16 of 24  
 
 
 
 
 
Data Sheet  
ADM7151  
X5R or X7R dielectrics with a voltage rating of 6.3 V to 50 V  
BYP Capacitor  
are recommended.However, Y5V and Z5U dielectrics are not  
recommendeddue to their poortemperatureand dcbias  
characteristics.  
The BYPcapacitor is necessary to filter the reference buffer. A  
1 µF capacitor is typically connected between BYPand GND.  
Capacitors as smallas 0.1µF can be used; however, the output  
noise voltage of the LDO increases as a result.  
Figure 54 depicts the capacitance vs. dc bias voltage of a 1206,  
10 µF, 10 V, X5R capacitor. The voltage stability of a capacitor is  
strongly influenced by the capacitor size and voltagerating.In  
general, a capacitor in a larger package or higher voltage rating  
exhibits better stability. The temperaturevariationof the X5R  
dielectric is ~ 15% over the −40°C to +85°C temperaturerange  
and is not a function of package or voltage rating.  
12  
In addition, the BYP capacitor can be increased to reduce the  
noise below 1kHzat the expense of increasing the start-up time  
of the LDO. Very large values of CBYP significantly reduce the  
noise below 10Hz. Tantalum capacitors are recommended for  
capacitorslarger than about 33µF. A 1 µF ceramic capacitor in  
parallelwith the larger tantalum capacitor is required to retain  
good noise performance at higher frequencies.  
100k  
C
C
C
C
C
C
C
C
= 1µF  
BYP  
BYP  
BYP  
BYP  
BYP  
BYP  
BYP  
BYP  
10  
8
= 4.7µF  
= 10µF  
= 22µF  
= 47µF  
= 100µF  
= 470µF  
= 1mF  
10k  
1k  
100  
10  
1
6
4
2
0
0
2
4
6
8
10  
DC BIAS VOLTAGE (V)  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
Figure 54. Capacitance vs. DC Bias Voltage  
FREQUENCY (Hz)  
Figure 52. Noise Spectral Density vs. Frequency, CBYP = 1 µF to 1 mF  
Use Equation 1to determine the worst-case capacitance  
accounting for capacitorvariation overtemperature,component  
tolerance, and voltage.  
10k  
1Hz  
3Hz  
10Hz  
100Hz  
400Hz  
30Hz  
300Hz  
1kHz  
C
EFF = CBIAS × (1 − TEMPCO) × (1 − TOL)  
(1)  
1k  
100  
10  
where:  
CBIAS is the effective capacitance at the operating voltage.  
TEMPCO is the worst-case capacitortemperature coefficient.  
TOL is the worst-case component tolerance.  
In this example, theworst-case temperature coefficient (TEMPCO)  
over −40°C to +85°Cis assumedtobe15% foran X5R dielectric.  
The tolerance of the capacitor(TOL) is assumed to be 10%, and  
CBIAS is 9.72 µF at 5 V, as shown in Figure 54.  
1
Substituting these valuesin Equation 1yields  
1
10  
100  
1000  
C
(µF)  
BYP  
CEFF = 9.72 µF × (1 − 0.15) × (1 − 0.1) = 7.44 µF  
Figure 53. Noise Spectral Density vs. CBYP for Different Frequencies  
Therefore,the capacitor chosen in this example meetsthe  
minimum capacitance requirement of the LDO over  
temperature and tolerance at the chosen output voltage.  
Capacitor Properties  
Any good quality ceramiccapacitors can be used with the  
ADM7151 as long as they meet the minimum capacitance  
and maximum ESR requirements. Ceramiccapacitorsare  
manufactured with a variety of dielectrics, each with different  
behavior overtemperatureand applied voltage. Capacitorsmust  
have a dielectricadequate to ensurethe minimumcapacitance  
over the necessary temperaturerangeand dcbias conditions.  
To guarantee theperformanceof the ADM7151, it is imperative  
that the effects of dcbias, temperature, and tolerances on the  
behavior of the capacitors be evaluated foreach application.  
Rev. A | Page 17 of 24  
 
ADM7151  
Data Sheet  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
ENABLE (EN) AND UNDERVOLTAGE LOCKOUT  
(UVLO)  
The ADM7151 uses the EN pin to enable and disablethe VOUT  
pin under normal operating conditions. As shown in Figure 55,  
when a rising voltage on EN crosses the upper threshold,  
VOUT turns on. When a falling voltage on EN crosses the lower  
threshold, VOUT turnsoff. The hysteresis varies as a function  
of the input voltage. For example, theEN hysteresis is  
approximately 200 mV with an input voltage of 4.5V.  
3.5  
–40°C  
+25°C  
+125°C  
3.0  
2.5  
6
8
10  
12  
14  
16  
V
(V)  
IN  
Figure 57. Typical EN Fall Threshold vs. Input Voltage (VIN) for Various  
Temperatures  
2.0  
VOUT_EN_FALL  
The ADM7151 also incorporates an internal undervoltage  
lockout circuit to disable the output voltage when the input  
voltage is less than the minimum input voltagerating of the  
regulator. The upper and lower thresholdsare internally fixed  
with approximately 300 mV of hysteresis.  
1.5  
VOUT_EN_RISE  
1.0  
0.5  
3.5  
0
1.0  
1.1  
1.2  
1.3  
(V)  
1.4  
1.5  
1.6  
V
EN  
3.0  
Figure 55. Typical VOUT Response to EN Pin Operation, VOUT = 3.3 V, VIN = 5 V  
2.5  
3.2  
VOUT_VIN_FALL  
2.0  
3.0  
2.8  
2.6  
1.5  
VOUT_VIN_RISE  
–40°C  
1.0  
2.4  
2.2  
2.0  
+125°C  
+25°C  
0.5  
0
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
1.8  
1.6  
1.4  
V
(V)  
IN  
Figure 58. Typical UVLO Hysteresis, VOUT = 3.3 V  
Figure 58 shows the typicalhysteresis of the UVLOfunction.  
This hysteresis prevents on/off oscillations that can occur due to  
noise on the input voltage as it passes through the threshold  
points.  
6
8
10  
12  
14  
16  
V
(V)  
IN  
Figure 56. Typical EN Rise Threshold vs. Input Voltage (VIN) for Various  
Temperatures  
Rev. A | Page 18 of 24  
 
Data Sheet  
ADM7151  
output load reaches 1.3A (typical). When the output load  
exceeds 1.3A, the output voltageis reduced to maintain a  
constant current limit.  
START-UP TIME  
The ADM7151 uses an internal soft start to limit the inrush  
current when the outputis enabled.The start-up time for a 5 V  
output is approximately3ms from the time the EN active threshold  
is crossed to when the output reaches90% of its finalvalue.  
Thermal overload protection is included, which limits the  
junction temperatureto a maximumof 155°C (typical). Under  
extreme conditions(that is, high ambient temperatureand/or  
high power dissipation)when the junction temperature starts to  
rise above 155°C, the output is turned off,reducing the output  
current to zero. When the junction temperaturedrops below  
140°C, the output is turned on again, and output current is  
restoredto its operating value.  
The rise time of theoutput voltage(10%to 90%)is approximately  
0.0012 × CBYP seconds  
where CBYP is in microfarads.  
6
ENABLE  
C
C
C
= 1µF  
= 4.7µF  
= 10µF  
BYP  
BYP  
BYP  
5
4
3
2
1
0
Considerthe case where a hard shortfrom VOUTto GND occurs.  
At first, the ADM7151 current limits, so that only 1.3 A is  
conducted into the short. If self heating of the junction is great  
enough to cause its temperatureto rise above 155°C, thermal  
shutdown activates, turning off the outputand reducing the  
output current to zero. As the junction temperaturecools and  
drops below 140°C, the output turnson and conducts 1.3 A into  
the short, again causing the junction temperature to rise above  
155°C. This thermaloscillation between 140°C and 155°C  
causes a current oscillation between 1.3 A and 0 mA that  
continues as long as the short remains at the output.  
0
0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020  
TIME (Seconds)  
Current-limit and thermallimit protections are intended to  
protect the device against accidentaloverloadconditions. For  
reliable operation, device powerdissipation mustbe externally  
limited so that the junction temperaturedoesnot exceed150°C.  
Figure 59. Typical Start-Up Behavior with CBYP = 1 µF to 10 µF  
6
5
4
3
2
THERMAL CONSIDERATIONS  
In applications with low input to output voltagedifferential, the  
ADM7151 doesnotdissipate much heat.However,in applications  
with high ambient temperatureand/orhigh input voltage, the  
heat dissipated in the package can becomelarge enough that it  
causes the junction temperature ofthe die to exceedthe maximum  
junction temperatureof 150°C.  
1
0
ENABLE  
When the junction temperatureexceeds 155°C, the converter  
enters thermalshutdown. It recovers only after the junction  
temperature decreasesbelow140°C to prevent any permanent  
damage. Therefore,thermalanalysis for the chosen application  
is important to guarantee reliable performance over all conditions.  
The junction temperatureof the die is the sum of the ambient  
temperature of the environment and the temperaturerise of the  
package due to the power dissipation,as shown in Equation 2.  
C
C
C
= 10µF  
= 47µF  
= 330µF  
BYP  
BYP  
BYP  
0
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20  
TIME (Seconds)  
Figure 60. Typical Start-Up Behavior with CBYP = 10 µF to 330 µF  
REF, BYP, AND VREGPINS  
REF, BYP, and VREG are internally generated voltagesthat  
require externalbypass capacitorsfor proper operation. Do not,  
under any circumstances, connect any loadsto thesepins  
because doing so compromisesthe noise and PSRR performance  
of the ADM7151. Using larger values of CBYP, CREF, and CREG is  
acceptable but can increase the start-up time, as described in  
the Start-Up Time section.  
To guarantee reliableoperation, the junction temperatureof the  
ADM7151 must not exceed 150°C. To ensure thatthe junction  
temperature stays below this maximumvalue, the user must be  
aware of the parameters that contribute to junction temperature  
changes. These parametersinclude ambient temperature, power  
dissipation in the powerdevice,andthermal resistancesbetween  
the junction and ambient air (θJA). The θJA number is dependent  
on the packageassemblycompoundsthatareused and theamount  
of copper used to solderthe package GND pin and exposed pad  
to the PCB.  
CURRENT-LIMIT ANDTHERMAL OVERLOAD  
PROTECTION  
The ADM7151 is protected againstdamage dueto excessive  
power dissipation by current and thermaloverloadprotection  
circuits. The ADM7151 is designed to current limit when the  
Rev. A | Page 19 of 24  
 
 
 
 
ADM7151  
Data Sheet  
Table 8shows typicalθJA values of the 8-lead SOIC and 8-lead  
LFCSPpackages for various PCBcoppersizes.  
Figure 61 to Figure 66 showjunction temperature calculations for  
different ambient temperatures, powerdissipation, and areas of  
PCB copper.  
Table 9shows the typicalΨJB values of the 8-lead SOIC and  
8-l e a d L F C S P.  
155  
145  
135  
125  
115  
105  
95  
Table 8. Typical θJA Values  
θJA (°C/W)  
Copper Size (mm2)  
251  
8-Lead LFCSP  
165.1  
8-Lead SOIC  
165  
100  
500  
125.8  
68.1  
126.4  
69.8  
85  
75  
1000  
6400  
56.4  
57.8  
65  
42.1  
43.6  
55  
45  
35  
25  
2
6400mm  
2
500mm  
1 Device soldered to minimum size pin traces.  
2
25mm  
T
MAX  
Table 9. Typical ΨJB Values  
Package  
J
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
TOTAL POWER DISSIPATION (W)  
ΨJB (°C/W)  
8-Lead LFCSP  
8-Lead SOIC  
15.1  
17.9  
Figure 61. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead LFCSP, TA = 25°C  
The junction temperatureof the ADM7151 is calculated from  
the following equation:  
160  
150  
140  
130  
120  
110  
100  
90  
TJ = TA + (PD × θJA)  
(2)  
where:  
TA is the ambient temperature.  
PD is the power dissipation in the die, given by  
PD = [(VIN VOUT) × ILOAD] + (VIN × IGND  
where:  
VIN and VOUT are thinput and outputvoltages, respectively.  
LOAD is the load current.  
GND is the groune d current.  
)
(3)  
80  
2
6400mm  
70  
2
500mm  
I
I
2
25mm  
60  
50  
T
MAX  
J
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
TOTAL POWER DISSIPATION (W)  
Power dissipation due to groundcurrent is quite small and can  
be ignored. Therefore,the junctiontemperature equation simplifies  
to the following:  
Figure 62. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead LFCSP, TA = 50°C  
TJ = TA + {[(VIN VOUT) × ILOAD] × θJA}  
(4)  
155  
145  
135  
125  
115  
105  
95  
As shownin Equation4, for a givenambienttemperature,input to  
output voltagedifferential, and continuousload current, there  
exists a minimum coppersize requirement forthe PCB to ensure  
that the junction temperaturedoesnot rise above 150°C.  
The heat dissipation fromthe packagecan be improvedby  
increasingtheamount of copper attached tothepinsand exposed  
pad of the ADM7151. Adding thermal planes underthe package  
also improves thermal performance. However,aslistedin Table 8, a  
point of diminishing returns is eventually reached, beyond  
which an increase in the copper area doesnot yield significant  
reduction in the junction to ambient thermalresistance.  
85  
75  
65  
2
6400mm  
2
500mm  
2
25mm  
T
MAX  
J
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
TOTAL POWER DISSIPATION (W)  
Figure 63. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead LFCSP, TA = 85°C  
Rev. A | Page 20 of 24  
 
 
 
Data Sheet  
ADM7151  
155  
145  
135  
125  
115  
102  
95  
Thermal Characterization Parameter (ΨJB)  
When the board temperatureis known, use the thermal  
characterization parameter, ΨJB, to estimatethe junction  
temperature rise (see Figure 67 and Figure 68). Maximum  
junction temperature(TJ) is calculated from the board  
temperature (TB) and power dissipation (PD) using the following  
formula:  
85  
75  
TJ = TB + (PD × ΨJB)  
(5)  
65  
55  
The typical value of ΨJB is 15.1°C/W for the 8-lead LFCSP  
package and 17.9°C/W for the 8-lead SOIC package.  
2
6400mm  
2
45  
500mm  
2
25mm  
35  
160  
T
MAX  
J
25  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
TOTAL POWER DISSIPATION (W)  
140  
120  
100  
80  
Figure 64. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead SOIC, TA = 25°C  
160  
150  
140  
130  
120  
110  
100  
90  
60  
T
T
T
T
T
= 25°C  
= 50°C  
= 65°C  
= 85°C  
MAX  
B
B
B
B
J
40  
20  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0  
TOTAL POWER DISSIPATION (W)  
80  
2
Figure 67. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead LFCSP  
6400mm  
70  
2
500mm  
2
25mm  
60  
50  
160  
140  
120  
100  
80  
T
MAX  
J
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
TOTAL POWER DISSIPATION (W)  
Figure 65. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead SOIC, TA = 50°C  
155  
145  
135  
125  
115  
105  
95  
60  
T
T
T
T
T
= 25°C  
= 50°C  
= 65°C  
= 85°C  
MAX  
B
B
B
B
J
40  
20  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5  
TOTAL POWER DISSIPATION (W)  
85  
75  
65  
2
Figure 68. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead SOIC  
6400mm  
2
500mm  
2
25mm  
T
MAX  
1.8  
J
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
2.0  
TOTAL POWER DISSIPATION (W)  
Figure 66. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead SOIC, TA = 85°C  
Rev. A | Page 21 of 24  
 
 
 
ADM7151  
Data Sheet  
PRINTED CIRCUIT BOARD LAYOUT  
CONSIDERATIONS  
Place the input capacitor as close as possible to the VIN and  
GND pins. Place the output capacitor as close as possible to the  
VOUT and GND pins. Place the bypass capacitors for VREG  
,
VREF, and VBYP close to the respective pins and GND. Use of an  
0805, 0603, or 0402 size capacitor achieves the smallest possible  
footprint solution on boards where area is limited.  
Figure 70. Example 8-Lead SOIC PCB Layout  
Figure 69. Example 8-Lead LFCSP PCB Layout  
Rev. A | Page 22 of 24  
 
Data Sheet  
ADM7151  
OUTLINEDIMENSIONS  
2.44  
2.34  
2.24  
3.10  
3.00 SQ  
2.90  
0.50 BSC  
8
5
PIN 1 INDEX  
EXPOSED  
PAD  
1.70  
1.60  
1.50  
AREA  
0.50  
0.40  
0.30  
0.20 MIN  
4
1
PIN 1  
TOP VIEW  
BOTTOM VIEW  
INDICATOR  
(R 0.15)  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-229-WEED  
Figure 71. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-8-11)  
Dimensions shown in millimeters  
5.00  
4.90  
4.80  
3.098  
0.356  
5
4
6.20  
6.00  
5.80  
8
1
4.00  
3.90  
3.80  
2.41  
0.457  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
BOTTOM VIEW  
45°  
1.27 BSC  
3.81 REF  
TOP VIEW  
SECTION OF THIS DATA SHEET.  
1.65  
1.25  
1.75  
1.35  
0.50  
0.25  
0.25  
0.17  
0.10 MAX  
0.05 NOM  
SEATING  
PLANE  
8°  
0°  
0.51  
0.31  
1.04 REF  
COPLANARITY  
0.10  
1.27  
0.40  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
Figure 72. 8-Lead Standard Small Outline Package, with Exposed Pad [SOIC_N_EP]  
Narrow Body  
(RD-8-2)  
Dimensions shown in millimeters  
Rev. A | Page 23 of 24  
 
ADM7151  
Data Sheet  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Output Voltage Range(V)  
1.5 to 4.0  
1.5 to 4.0  
Package Description  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
Evaluation Board  
Package Option  
Branding  
LNN  
LNN  
ADM7151ACPZ-02-R2  
ADM7151ACPZ-02-R7  
ADM7151ARDZ-02  
ADM7151ARDZ-02-R7  
ADM7151ACPZ-04-R2  
ADM7151ACPZ-04-R7  
ADM7151ARDZ-04  
ADM7151ARDZ-04-R7  
ADM7151CP-02-EVALZ  
CP-8-11  
CP-8-11  
RD-8-2  
RD-8-2  
CP-8-11  
CP-8-11  
RD-8-2  
RD-8-2  
1.5 to 4.0  
1.5 to 4.0  
1.5 to 5.1  
LNP  
LNP  
1.5 to 5.1  
1.5 to 5.1  
1.5 to 5.1  
1.5 to 4.0  
1 Z = RoHS Compliant Part.  
©2013–2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11480-0-4/15(A)  
Rev. A | Page 24 of 24  
 

相关型号:

ADM7154

High PSRR, RF Linear Regulator
ADI

ADM7154ACP

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7154ACPZ-1.8-R7

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7154ACPZ-3.3-R7

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7154ARD

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7154ARDZ-3.3-R7

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7155

High PSRR, RF Linear Regulator
ADI

ADM7155ACPZ-01-R7

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7155ACPZ-02-R7

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7155ACPZ-03-R7

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7155ACPZ-04

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7155ACPZ-04-R7

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI