ADN2526ACPZ-R2 [ADI]

11.3 Gbps Active Back-Termination, Differential Laser Diode Driver; 11.3 Gbps有源反向端接,差分激光二极管驱动器
ADN2526ACPZ-R2
型号: ADN2526ACPZ-R2
厂家: ADI    ADI
描述:

11.3 Gbps Active Back-Termination, Differential Laser Diode Driver
11.3 Gbps有源反向端接,差分激光二极管驱动器

驱动器 驱动程序和接口 二极管 激光二极管 接口集成电路
文件: 总16页 (文件大小:469K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
11.3 Gbps Active Back-Termination,  
Differential Laser Diode Driver  
ADN2526  
FEATURES  
GENERAL DESCRIPTION  
3.3 V operation  
Up to 11.3 Gbps operation  
Typical 24 ps rise/fall times  
The ADN2526 laser diode driver is designed for direct modula-  
tion of packaged laser diodes that have a differential resistance  
ranging from 5 Ω to 50 Ω. The active back-termination in the  
ADN2526 absorbs signal reflections from the TOSA end of the  
output transmission lines, enabling excellent optical eye quality to  
be achieved even when the TOSA end of the output transmission  
lines is significantly misterminated. ADN2526 is an SFP+ MSA-  
compliant device, and its small package and enhanced ESD  
protection provide the optimum solution for compact modules  
where laser diodes are packaged in low pin-count optical  
subassemblies.  
Full back-termination of output transmission lines  
Drives TOSAs with resistances ranging from 5 Ω to 50 Ω  
Bias current range: 10 mA to 100 mA  
Differential modulation current range: 10 mA to 80 mA  
Voltage input control for bias and modulation currents  
Data inputs sensitivity: 150 mV p-p diff  
Automatic laser shutdown (ALS)  
Cross point adjustment (CPA)  
XFP-compliant bias current monitor  
SFP+ MSA compliant  
The modulation and bias currents are programmable via the  
MSET and BSET control pins. By driving these pins with control  
voltages, the user has the flexibility to implement various  
average optical power and extinction ratio control schemes,  
including closed-loop or look-up table control. The automatic  
laser shutdown (ALS) feature allows the user to turn on/off the  
bias and modulation currents by driving the ALS pin with a  
LVTTL logic source.  
Optical evaluation board available  
Compact 3 mm × 3 mm LFCSP  
APPLICATIONS  
SONET OC-192 and SDH STM-64 optical transceivers  
10 Gb Fibre Channel transceivers  
10 Gb Ethernet optical transceivers  
SFP+/XFP/X2/XENPAK/XPAK/MSA 300 optical modules  
The product is available in a space-saving 3 mm × 3 mm LFCSP  
specified from −40°C to +85°C.  
FUNCTIONAL BLOCK DIAGRAM  
VCC  
CPA  
ALS  
VCC  
ADN2526  
VCC  
IMODP  
IMODN  
50  
50Ω  
50Ω  
IMOD  
VCC  
GND  
DATAP  
DATAN  
CROSS  
POINT  
ADJUST  
IBMON  
IBIAS  
800Ω  
800Ω  
200Ω  
200Ω  
200Ω  
2Ω  
MSET  
VEE  
BSET  
Figure 1.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
 
 
 
ADN2526  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Automatic Laser Shutdown (ALS) ........................................... 11  
Modulation Current................................................................... 11  
Load Mistermination................................................................. 12  
Crosspoint Adjustment.............................................................. 13  
Power Sequence.......................................................................... 13  
Power Consumption .................................................................. 13  
Applications Information.............................................................. 14  
Typical Application Circuit....................................................... 14  
Layout Guidelines....................................................................... 14  
Design Example.......................................................................... 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Thermal Specifications ................................................................ 4  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 10  
Input Stage................................................................................... 10  
Bias Current ................................................................................ 10  
REVISION HISTORY  
8/09—Rev. 0 to Rev. A  
Changes to θJ-PAD Maximum Value (Table 2)................................. 4  
Changes to Figure 5 and Figure 6................................................... 8  
1/09—Revision 0: Initial Version  
Rev. A | Page 2 of 16  
 
ADN2526  
SPECIFICATIONS  
VCC = VCCMIN to VCCMAX, TA = −40°C to +85°C, 50 Ω differential load resistance, unless otherwise noted. Typical values are specified at  
TA = 25°C, IMOD1  
D
= 40 mA, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
BIAS CURRENT (IBIAS)  
Bias Current Range  
Bias Current While ALS Asserted  
Compliance Voltage2  
10  
100  
300  
VCC  
VCC  
mA  
μA  
V
ALS = high  
IBIAS = 100 mA  
IBIAS = 10 mA  
0.6  
0.6  
V
MODULATION CURRENT (IMODP, IMODN)  
Modulation Current Range  
Modulation Current While ALS Asserted  
Rise Time (20% to 80%)3, 4  
Fall Time (20% to 80%)3, 4  
Random Jitter3, 4  
10  
80  
mA diff  
mA diff  
ps  
RLOAD = 5 Ω to 50 Ω differential  
ALS = high  
0.5  
32.5  
32.5  
0.9  
12  
24  
24  
0.4  
7.2  
2
ps  
ps rms  
ps p-p  
ps  
Deterministic Jitter3, 5  
Includes pulse width distortion  
PWD = (|THIGH – TLOW|)/2  
Pulse Width Distortion3, 4  
5
Differential |S22|  
−10  
−14  
dB  
dB  
5 GHz < f < 10 GHz, Z0 = 50 Ω differential  
f < 5 GHz, Z0 = 50 Ω differential  
Compliance Voltage2  
DATA INPUTS (DATAP, DATAN)  
Input Data Rate  
Differential Input Swing  
Differential |S11|  
Input Termination Resistance  
BIAS CONTROL INPUT (BSET)  
BSET Voltage to IBIAS Gain  
BSET Input Resistance  
VCC − 1.1  
0.15  
VCC + 1.1  
V
11.3  
1.6  
Gbps  
NRZ  
V p-p diff Differential, ac-coupled  
dB  
Ω
−16.8  
100  
f < 10 GHz, Z0 = 100 Ω differential  
Differential  
90  
1000  
mA/V  
Ω
MODULATION CONTROL INPUT (MSET)  
MSET Voltage to IMOD Gain  
MSET Input Resistance  
50  
78  
1000  
100  
mA/V  
Ω
See Figure 29  
BIAS MONITOR (IBMON)  
IBMON to IBIAS Ratio  
10  
μA/mA  
Accuracy of IBIAS to IBMON Ratio  
−5.0  
−4.0  
−2.5  
−2  
+5.0  
+4.0  
+2.5  
+2  
%
%
%
%
10 mA ≤ IBIAS < 20 mA, RIBMON = 1 kΩ  
20 mA ≤ IBIAS < 40 mA, RIBMON = 1 kΩ  
40 mA ≤ IBIAS < 70 mA, RIBMON = 1 kΩ  
70 mA ≤ IBIAS < 100 mA, RIBMON = 1 kΩ  
AUTOMATIC LASER SHUTDOWN (ALS)  
VIH  
2.0  
V
VIL  
IIL  
IIH  
0.8  
+30  
200  
2
V
−30  
0
μA  
μA  
μs  
ALS Assert Time  
Rising edge of ALS to falling edge of IBIAS and  
IMOD below 10% of nominal, see Figure 2  
ALS Negate Time  
10  
μs  
Falling edge of ALS to rise of IBIAS and IMOD  
above 90% of nominal, see Figure 2  
Rev. A | Page 3 of 16  
 
 
ADN2526  
Parameter  
POWER SUPPLY  
VCC  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
3.0  
3.3  
46  
74  
1.88  
50  
3.6  
55  
95  
V
6
ICC  
ISUPPLY  
mA  
mA  
V
VBSET = VMSET = 0 V  
7
VBSET = VMSET = 0 V; ISUPPLY = ICC + IMODP + IMODN  
In NC mode (refer to Table 4)  
From an optical eye in NC mode  
CPA  
Cross Point  
%
1 IMOD is the total modulation current sink capability for a differential driver. IMOD = IMODP + IMODN, the dynamic current sank by the IMODP and IMODN pins.  
2 Refers to the voltage between the pin for which the compliance voltage is specified and VEE.  
3 The pattern used is a repetitive sequence of eight 1s followed by eight 0s at 11.3 Gbps.  
4 Measured using the high speed characterization circuit shown in Figure 3.  
5 The pattern used is K28.5 (00111110101100000101) at a 11.3 Gbps rate.  
6 Only includes current in the VCC pins.  
7 Without laser diode loaded.  
THERMAL SPECIFICATIONS  
Table 2.  
Parameter  
Min  
2.6  
65  
Typ  
5.8  
72.2  
Max  
10.7  
79.4  
125  
Unit  
°C/W  
°C/W  
°C  
Conditions/Comments  
θJ-PAD  
θJ-TOP  
Thermal resistance from junction to bottom of exposed pad  
Thermal resistance from junction to top of package  
IC Junction Temperature  
ALS  
NEGATE TIME  
ALS  
t
IBIAS  
AND IMOD  
90%  
10%  
t
ALS  
ASSERT TIME  
Figure 2. ALS Timing Diagram  
Rev. A | Page 4 of 16  
 
 
 
 
ADN2526  
VEE  
VEE  
VEE  
GND  
1k  
TP2  
10Ω  
VBSET  
TP1  
10nF  
GND  
GND  
BSET IBMON IBIAS VEE  
GND  
BIAS  
VCC  
VCC  
GND  
GND  
TEE  
50Ω  
ADN2526  
Z
= 50Ω  
Z
= 50Ω  
= 50Ω  
Z
Z
= 25Ω  
Z
Z
= 50Ω  
0
0
0
0
10nF  
35Ω  
ADAPTER ATTENUATOR  
ADAPTER ATTENUATOR  
J2  
J3  
DATAP  
IMODP  
GND  
GND  
= 50Ω  
GND  
GND  
= 50Ω  
GND  
OSCILLOSCOPE  
70Ω  
35Ω  
Z
0
Z
= 25Ω  
0
0
0
10nF  
DATAN  
IMODN  
50Ω  
GND  
GND  
GND  
GND  
GND  
BIAS  
TEE  
GND  
VCC  
VCC  
VEE  
GND  
GND  
MSET CPA ALS  
GND  
VMSET  
BIAS TEE: PICOSECOND PULSE LABS MODEL 5542-219  
ADAPTER: PASTERNACK PE-9436 2.92mm FEMALE-TO-FEMALE ADAPTER  
ATTENUATOR: PASTERNACK PE-7046 2.92mm 20dB ATTENUATOR  
GND  
VEE  
10nF  
22µF  
VEE  
VEE  
J5  
VCPA  
J8  
VEE  
GND GND  
GND  
Figure 3. High Speed Characterization Circuit  
Rev. A | Page 5 of 16  
 
ADN2526  
ABSOLUTE MAXIMUM RATINGS  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
VEE connected to supply ground.  
Table 3.  
Parameter  
Rating  
Supply Voltage, VCC to VEE  
IMODP, IMODN to VEE  
DATAP, DATAN to VEE  
All Other Pins  
HBM ESD on IMODP, IMODN  
HBM ESD on All Other Pins  
Junction Temperature  
Storage Temperature Range  
−0.3 V to +4.2 V  
1.1 V to 4.75 V  
VCC − 1.8 V to VCC − 0.4 V  
−0.3 V to VCC + 0.3 V  
200 V  
1 kV  
150°C  
−65°C to +150°C  
300°C  
ESD CAUTION  
Soldering Temperature  
(Less Than 10 sec)  
Rev. A | Page 6 of 16  
 
 
ADN2526  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
12 BSET  
11 IBMON  
10 IBIAS  
MSET  
CPA  
ALS  
1
2
3
4
ADN2526  
TOP VIEW  
(Not to Scale)  
VEE  
9 VEE  
NOTES  
1. THE EXPOSED PAD ON THE BOTTOM OF THE PACKAGE  
MUST BE CONNECTED TO VCC OR THE GND PLANE.  
Figure 4. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
MSET  
CPA  
I/O1 Description  
1
2
AI  
AI  
DI  
P
Modulation Current Control Input.  
Adjustable Cross Point. Defaults to not connected (NC) mode (floating).  
Automatic Laser Shutdown.  
Negative Power Supply. Normally connected to system ground.  
Positive Power Supply.  
3
4
ALS  
VEE  
5
VCC  
P
6
7
8
IMODN  
IMODP  
VCC  
AI  
AI  
P
Modulation Current Sink, Negative.  
Modulation Current Sink, Positive.  
Positive Power Supply.  
9
VEE  
P
Negative Power Supply. Normally connected to system ground.  
Bias Current Sink.  
Bias Current Monitoring Output.  
Bias Current Control Input.  
Positive Power Supply.  
Data Signal Positive Input.  
10  
11  
12  
13  
14  
15  
16  
IBIAS  
IBMON  
BSET  
AI  
AO  
AI  
P
AI  
AI  
P
VCC  
DATAP  
DATAN  
VCC  
Data Signal Negative Input.  
Positive Power Supply.  
17 (EPAD) Exposed Pad (EPAD)  
P
The exposed pad on the bottom of the package must be connected to VCC or the GND plane.  
1 AI = analog input, DI = digital input, P = power, AO = analog output.  
Rev. A | Page 7 of 16  
 
 
ADN2526  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VCC = 3.3 V, unless otherwise noted.  
27.0  
9
8
7
6
5
4
3
2
1
0
26.5  
26.0  
25.5  
25.0  
24.5  
24.0  
23.5  
23.0  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
IMOD (mA)  
IMOD (mA)  
Figure 5. Rise Time vs. IMOD  
Figure 8. Deterministic Jitter vs. IMOD  
27.0  
26.5  
26.0  
25.5  
25.0  
24.5  
24.0  
23.5  
23.0  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
IBIAS = 100  
IBIAS = 50  
IBIAS = 10  
0
20  
40  
60  
80  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
IMOD (mA)  
IMOD (mA)  
Figure 6. Fall Time vs. IMOD  
Figure 9. Total Supply Current vs. IMOD  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
0
20  
40  
60  
80  
100  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
FREQUENCY (GHz)  
IMOD (mA)  
Figure 7. Random Jitter vs. IMOD  
Figure 10. Differential |S11|  
Rev. A | Page 8 of 16  
 
ADN2526  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
FREQUENCY (GHz)  
Figure 11. Differential |S22|  
Figure 14. Electrical Eye Diagram  
(11.3 Gbps, PRBS31, IMOD = 80 mA)  
16  
14  
12  
10  
8
6
4
2
0
23  
24  
25  
26  
27  
28  
29  
30  
RISE TIME (ps)  
Figure 12. Worst-Case Rise Time Distribution  
(VCC = 3.07 V, IBIAS = 100 mA, IMOD = 80 mA, TA = 85°C)  
Figure 15. Filtered SONET OC192 Optical Eye Diagram (for Reference)  
16  
14  
12  
10  
8
6
4
2
0
23  
24  
25  
26  
27  
28  
29  
30  
FALL TIME (ps)  
Figure 16. Filtered 10 Gb Ethernet Optical Eye  
Figure 13. Worst-Case Fall Time Distribution  
(VCC = 3.07 V, IBIAS = 100 mA, IMOD = 80 mA, TA = 85°C)  
Rev. A | Page 9 of 16  
 
 
ADN2526  
THEORY OF OPERATION  
ADN2526  
As shown in Figure 1, the ADN2526 consists of an input stage  
and two voltage-controlled current sources for bias and modula-  
tion. The bias current, which is available at the IBIAS pin, is  
controlled by the voltage applied at the BSET pin and can be  
monitored at the IBMON pin. The differential modulation  
current, which is available at the IMODP and IMODN pins, is  
controlled by the voltage applied to the MSET pin. The output  
stage implements the active back-match circuitry for proper  
transmission line matching and power consumption reduction.  
The ADN2526 can drive a load having differential resistance  
ranging from 5 Ω to 50 Ω. The excellent back-termination in  
the ADN2526 absorbs the signal reflections from the TOSA  
end, enabling excellent optical eye quality, even though the  
TOSA is significantly misterminated.  
50  
50Ω  
C
C
DATAP  
DATAN  
DATA SIGNAL SOURCE  
Figure 18. AC-Coupling the Data Source to the ADN2526 Data Inputs  
BIAS CURRENT  
The bias current is generated internally using a voltage-to-current  
converter consisting of an internal operational amplifier and a  
transistor, as shown in Figure 19.  
VCC  
INPUT STAGE  
ADN2526  
R
R
The input stage of the ADN2526 converts the data signal applied  
to the DATAP and DATAN pins to a level that ensures proper  
operation of the high speed switch. The equivalent circuit of the  
input stage is shown in Figure 17.  
I
BMON  
BIAS  
BSET  
IBMON  
IBIAS  
800  
200Ω  
I
VCC  
DATAP  
200Ω  
2Ω  
VCC  
50  
GND  
Figure 19. Voltage-to-Current Converter Used to Generate IBIAS  
The voltage-to-current conversion factor is set at 100 mA/V by  
the internal resistors, and the bias current is monitored using a  
current mirror with a gain equal to 1/100. By connecting a 1 kΩ  
resistor between IBMON and VEE, the bias current can be moni-  
tored as a voltage across the resistor. A low temperature coefficient  
precision resistor must be used for the IBMON resistor (RIBMON).  
Any error in the value of RIBMON that is due to tolerances or to drift  
in its value over temperature contributes to the overall error  
budget for the IBIAS monitor voltage. If the IBMON voltage is  
connected to an ADC for analog-to-digital conversion, RIBMON  
should be placed close to the ADC to minimize errors due to  
voltage drops on the ground plane.  
50Ω  
DATAN  
Figure 17. Equivalent Circuit of the Input Stage  
The DATAP and DATAN pins are terminated internally with a  
100 Ω differential termination resistor. This minimizes signal  
reflections at the input, which can otherwise lead to degradation in  
the output eye diagram. It is not recommended to drive the  
ADN2526 with single-ended data signal sources.  
The ADN2526 input stage must be ac-coupled to the signal  
source to eliminate the need for matching between the common-  
mode voltages of the data signal source and the input stage of  
the driver (see Figure 18). The ac-coupling capacitors should  
have an impedance much less than 50 Ω over the required  
frequency range. Generally, this is achieved using 10 nF to 100 nF  
capacitors.  
The equivalent circuits of the BSET, IBIAS, and IBMON pins  
are shown in Figure 20, Figure 21, and Figure 22.  
VCC  
VCC  
BSET  
800  
In SFP+ MSA applications, the DATAP and DATAN pins need  
to be connected to the SFP+ connector directly. This connection  
requires enhanced ESD protection to support the SFP+ module  
hot plug-in application.  
200Ω  
Figure 20. Equivalent Circuit of the BSET Pin  
Rev. A | Page 10 of 16  
 
 
 
 
 
 
 
ADN2526  
IBIAS  
VCC  
2k  
Table 5. ALS Functions  
ALS Logic State  
VCC  
IBIAS and IMOD  
Disabled  
Enabled  
High  
Low  
100Ω  
Floating  
Enabled  
2Ω  
The ALS pin is compatible with 3.3 V CMOS and LVTTL logic  
levels. Its equivalent circuit is shown in Figure 24.  
Figure 21. Equivalent Circuit of the IBIAS Pin  
VCC  
VCC  
VCC  
VCC  
500  
100  
40kΩ  
ALS  
2kΩ  
Figure 24. Equivalent Circuit of the ALS Pin  
100Ω  
MODULATION CURRENT  
VCC  
The modulation current can be controlled by applying a dc  
voltage to the MSET pin. This voltage is converted into a dc  
current by using a voltage-to-current converter using an  
operational amplifier and a bipolar transistor, as shown in  
Figure 25.  
IBMON  
Figure 22. Equivalent Circuit of the IBMON Pin  
The recommended configuration for BSET, IBIAS, and IBMON  
is shown in Figure 23.  
TO LASER CATHODE  
VCC  
L
IBIAS  
IMODP  
IBIAS  
50  
IMOD  
ADN2526  
IMODN  
BSET  
IBMON  
IBMON  
g
× V  
O
FROM INPUT STAGE  
m
R
1k  
GND  
MSET  
V
BSET  
800Ω  
V
Figure 23. Recommended Configuration for the BSET, IBIAS, and IBMON Pins  
O
The circuit used to drive the BSET voltage must be able to drive  
the 1 kΩ input resistance of the BSET pin. For proper operation  
of the bias current source, the voltage at the IBIAS pin must be  
between the compliance voltage specifications for this pin over  
supply, temperature, and bias current range (see Table 1). The  
maximum compliance voltage is specified for only two bias  
current levels (10 mA and 100 mA), but it can be calculated for  
any bias current by  
200Ω  
ADN2526  
GND  
Figure 25. Generation of Modulation Current on the ADN2526  
This dc current is switched by the data signal applied to the  
input stage (DATAP and DATAN pins) and amplified by the  
output stage to generate the differential modulation current at  
the IMODP and IMODN pins.  
V
COMPLIANCE_MAX (V) = VCC (V) − 0.75 − 4.4 × IBIAS  
(1)  
The output stage also generates the active back-termination,  
which provides proper transmission line termination. Active  
back-termination uses feedback around an active circuit to  
synthesize a broadband termination resistance. This provides  
excellent transmission line termination, while dissipating less  
power than a traditional resistor passive back-termination.  
A small portion of the modulation current flows in the virtual  
50 Ω active back-termination resistor. All of the preset IMOD  
modulation current, the range specified in Table 1, flows into  
the external load. The equivalent circuits for MSET, IMODP, and  
IMODN are shown in Figure 26 and Figure 27. The two 25 Ω  
resistors in Figure 27 are not actual resistors. They represent the  
active back-termination resistance.  
See the Applications Information section for examples of  
headroom calculations.  
The function of the inductor, L, is to isolate the capacitance of  
the IBIAS output from the high frequency signal path. For  
recommended components, see Table 7.  
AUTOMATIC LASER SHUTDOWN (ALS)  
The ALS pin is a digital input that enables/disables both the bias  
and modulation currents, depending on the logic state applied,  
as shown in Table 5.  
Rev. A | Page 11 of 16  
 
 
 
 
 
 
 
 
ADN2526  
VCC  
VCC  
Using the resistance of the TOSA, the user can calculate the  
voltage range that should be applied to the MSET pin to generate  
the required modulation current range (see the example in the  
Applications Information section).  
MSET  
800Ω  
200Ω  
The circuit used to drive the MSET voltage must be able to  
drive the 1 kΩ resistance of the MSET pin. To be able to drive  
80 mA modulation currents through the differential load, the  
output stage of the ADN2526 (the IMODP and IMODN pins)  
must be ac-coupled to the load. The voltages at these pins have  
a dc component equal to VCC and an ac component with  
single-ended, peak-to-peak amplitude of IMOD × 25 Ω. This is  
the case even if the load impedance is less than 50 Ω differential,  
because the transmission line characteristic impedance sets the  
peak-to-peak amplitude. For proper operation of the output stage,  
the voltages at the IMODP and IMODN pins must be between  
the compliance voltage specifications for these pins over supply,  
temperature, and modulation current range, as shown in Figure 30.  
See the Applications Information section for examples of  
headroom calculations.  
Figure 26. Equivalent Circuit of the MSET Pin  
VCC  
25  
VCC  
25Ω  
IMODN  
IMODP  
3.3Ω  
3.3Ω  
Figure 27. Equivalent IMODP and IMODN Pins, As Seen From Laser Side  
The recommended configuration of the MSET, IMODP,  
and IMODN pins is shown in Figure 28. See Table 7 for the  
recommended components.  
IMODP, IMODN  
IBIAS  
VCC  
ADN2526  
L
L
VCC + 1.1V  
Z
Z
= 25  
= 25Ω  
Z
Z
= 25Ω  
= 25Ω  
0
0
0
C
C
IMODP  
NORMAL OPERATION REGION  
VCC  
TOSA  
0
MSET  
IMODN  
VEE  
VCC – 1.1V  
V
MSET  
L
L
VCC VCC  
Figure 28. Recommended Configuration for the MSET, IMODP, and IMODN Pins  
Figure 30. Allowable Range for the Voltage at IMODP and IMODN  
The ratio between the voltage applied to the MSET pin and the  
differential modulation current available at the IMODP and  
IMODN pins is a function of the load resistance value, as shown  
in Figure 29.  
LOAD MISTERMINATION  
Due to its excellent S22 performance, the ADN2526 can drive  
differential loads that range from 5 Ω to 50 Ω. In practice, many  
TOSAs have differential resistance less than 50 Ω. In this case, with  
50 Ω differential transmission lines connecting the ADN2526 to  
the load, the load end of the transmission lines are misterminated.  
This mistermination leads to signal reflections back to the driver.  
The excellent back-termination in the ADN2526 absorbs these  
reflections, preventing their reflection back to the load. This  
enables excellent optical eye quality to be achieved, even when  
the load end of the transmission lines is significantly mistermi-  
nated. The connection between the load and the ADN2526 must  
be made with 50 Ω differential (25 Ω single-ended) transmission  
lines so that the driver end of the transmission lines is properly  
terminated.  
220  
210  
200  
190  
180  
170  
MAXIMUM  
160  
150  
140  
TYPICAL  
MINIMUM  
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
0
10  
20  
30  
40  
50  
60  
DIFFERENTIAL LOAD RESISTANCE ()  
Figure 29. MSET Voltage-to-Modulation Current Ratio vs.  
Differential Load Resistance  
Rev. A | Page 12 of 16  
 
 
 
 
 
 
ADN2526  
junction-to-ambient thermal resistance (θJA) do not yield  
accurate results.  
CROSSPOINT ADJUSTMENT  
The optical eye cross point is adjustable between 35% and 65%  
using the cross point adjust (CPA) control input. The equivalent  
circuit for the CPA pin is shown in Figure 31. In a default CPA  
setting, leave CPA unconnected (maintain pin-to-pin compatibil-  
ity with the ADN2525). The internal bias circuit presents about  
1.9 V at the CPA pin and the eye cross point is set to 50%. To set  
the cross point at various points, apply an external voltage to the  
CPA pin.  
THERMAL COMPOUND  
MODULE CASE  
T
TOP  
DIE  
T
THERMOCOUPLE  
J
PACKAGE  
T
PAD  
PCB  
COPPER PLANE  
VIAS  
7kΩ  
7kΩ  
Figure 32. Typical Optical Module Structure  
7kΩ  
The parameters in Table 6 can be used to estimate the IC  
junction temperature.  
VCC  
Table 6. Definitions  
Parameter Description  
CPA  
Unit  
Figure 31. Equivalent Circuit for CPA Pin  
TTOP  
TPAD  
TJ  
P
θJ-TOP  
Temperature at the top of the package  
Temperature at the package exposed paddle °C  
IC junction temperature  
Power dissipation  
Thermal resistance from the IC junction to  
the package top  
°C  
POWER SEQUENCE  
°C  
W
°C/W  
To ensure reliable operation, the recommended power-up  
sequence is: the supply rail to ADN2526 first, then the BSET  
pin, followed by the MSET pin, and, finally, the CPA pin.  
θJ-PAD  
Thermal resistance from the IC junction to  
the package exposed paddle  
°C/W  
To turn off the ADN2526, the operation is reversed: shut down  
CPA first, then MSET, followed by BSET, and, last, the supply rail.  
TTOP and TPAD can be determined by measuring the temperature  
at points inside the module, as shown in Figure 32. The thermo-  
couples should be positioned to obtain an accurate measurement  
of the package top and paddle temperatures. Using the model  
shown in Figure 33, the junction temperature can be calculated by  
POWER CONSUMPTION  
The power dissipated by the ADN2526 is given by  
V
13.5  
MSET  
P =VCC ×  
+ ISUPPLY +VIBIAS × IBIAS  
P ×  
(
θJ PAD ×θJ TOP  
)
+TTOP ×θJ PAD +TPAD ×θJTOP  
where:  
VCC is the power supply voltage.  
MSET is the voltage applied to the MSET pin.  
SUPPLY is the sum of the currents that flow into VCC, IMODP,  
and IMODN, which are sank by the ADN2526 when VBSET  
TJ =  
θ JPAD +θJTOP  
V
I
where:  
J-TOP and θJ-PAD are given in Table 2.  
P is the power dissipated by the ADN2526.  
θ
=
V
MSET = 0 V, expressed in amps (see Table 1).  
T
TOP  
V
IBIAS is the average voltage presented on the IBIAS pin.  
IBIAS is the bias current sank by the ADN2526.  
T
θJ-TOP  
TOP  
Considering VBSET/IBIAS = 10 mV/mA as the conversion factor  
from VBSET to IBIAS, the dissipated power becomes  
P
θJ-PAD  
V
VBSET  
MSET  
P =VCC ×  
+ ISUPPLY  
+
×VIBIAS  
13.5  
10  
T
PAD  
To ensure long-term reliable operation, the junction tempera-  
ture of the ADN2526 must not exceed 125°C, as specified in  
Table 2. For improved heat dissipation, the SFP+ module case  
can work as a heat sink, as shown in Figure 32. A compact  
optical module is a complex thermal environment, and  
calculations of device junction temperature using the package  
Figure 33. Electrical Model for Thermal Calculations  
Rev. A | Page 13 of 16  
 
 
 
 
 
 
 
ADN2526  
APPLICATIONS INFORMATION  
TYPICAL APPLICATION CIRCUIT  
LAYOUT GUIDELINES  
Due to the high frequencies at which the ADN2526 operates,  
care should be taken when designing the PCB layout to obtain  
optimum performance. Well controlled transmission line  
impedance must be used for the high speed signal paths. The  
length of the transmission lines must be kept to a minimum to  
reduce losses and pattern-dependent jitter. The PCB layout  
must be symmetrical, on both the DATAP and DATAN inputs  
and the IMODP and IMODN outputs, to ensure a balance  
between the differential signals. All VCC and VEE pins must be  
connected to solid copper planes by using low inductance  
connections. When the connections are made through vias,  
multiple vias should be used in parallel to reduce the parasitic  
inductance. Each VEE pin must be locally decoupled with high  
quality capacitors. If proper decoupling cannot be achieved  
using a single capacitor, the user can use multiple capacitors in  
parallel for each VEE pin. A 20 μF tantalum capacitor must be  
used as a general decoupling capacitor for the entire module. For  
guidelines on the surface-mount assembly of the ADN2526, see  
the Amkor Technology® Application Notes for Surface Mount  
Assembly of Amkors MicroLeadFrame® (MLF®) Packages.  
Figure 34 shows the typical application circuit for the ADN2526.  
The dc voltages applied to the BSET and MSET pins control the  
bias and modulation currents. The bias current can be monitored  
as a voltage drop across the 1 kΩ resistor connected between  
the IBMON pin and GND. The ALS pin allows the user to turn  
on or turn off the bias and modulation currents, depending on  
the logic level applied to the pin. The data signal source must be  
connected to the DATAP and DATAN pins of the ADN2526  
using 50 Ω transmission lines. The modulation current outputs,  
IMODP and IMODN, must be connected to the load (TOSA)  
using 50 Ω differential (25 Ω single-ended) transmission lines.  
It is recommended that the components shown in Table 7 be  
used between the ADN2526 and the TOSA for an example ac  
coupling circuit. For up-to-date component recommendations,  
contact your local Analog Devices, Inc., sales representative.  
Working with a TOSA laser sample, the circuit in Figure 34  
delivers optical performance shown in Figure 15 and Figure 16.  
For additional applications information and optical eye perfor-  
mance of other laser samples, contact your local Analog Devices  
sales representative.  
Table 7. Recommended Components for AC-Coupling  
Component  
Value  
Description  
R1, R2  
R3, R4  
C3, C4  
L2, L3  
36 Ω  
0603 size resistor  
0603 size resistor  
0603 size capacitor, Phycomp 223878615649  
0402 size inductor, Murata LQW15AN20NJ0  
200 Ω  
100 nF  
20 nH  
L6, L7  
L1, L4, L5, L8  
0402 size ferrite Murata BLM15HG102SN1  
10 μH 0603 size inductor, Murata LQM21FN100M70L  
VCC  
GND  
R5  
1k  
GND  
C5  
10nF  
BSET  
TP1  
L1  
R1 L8  
R4  
VCC  
BSET IBMON IBIAS VEE  
VCC  
= 50Ω  
VCC  
VCC  
VCC  
L2  
L7  
Z
Z
Z
Z
= 25Ω  
Z
Z
= 25Ω  
= 25Ω  
0
0
0
0
DATAP  
DATAN  
DATAP  
IMODP  
C1  
C4  
GND  
= 25Ω  
TOSA  
ADN2526  
= 50Ω  
0
0
DATAN  
VCC  
IMODN  
VCC  
C2  
C3  
L6  
GND  
L3  
VCC  
VCC  
MSET CPA ALS VEE  
VCC  
L4  
R2 L5  
R3  
C6  
10nF  
MSET  
3.3V  
VCC  
C7  
GND  
CPA ALS  
VCC  
VCC  
200µF  
GND  
Figure 34. Typical Application Circuit  
Rev. A | Page 14 of 16  
 
 
 
 
 
ADN2526  
V
LB is the dc voltage drop across L1, L2, L3, and L4. Assuming  
DESIGN EXAMPLE  
This design example covers:  
that VLB = 0 V and IMOD = 60 mA, the minimum voltage at the  
modulation output pins is equal to  
Headroom calculations for the IBIAS, IMODP, and  
IMODN pins.  
VCC − (IMOD × 25)/2 = VCC − 0.75  
VCC − 0.75 > VCC − 1.1 V, which satisfies the requirement.  
The maximum voltage at the modulation pins is equal to  
VCC + (IMOD × 25)/2 = VCC + 0.75  
Calculation of the typical voltage required at the BSET and  
MSET pins to produce the desired bias and modulation  
currents.  
This design example assumes that the resistance of the TOSA is  
25 Ω, the forward voltage of the laser at low current is VF = 1 V,  
IBIAS = 40 mA, IMOD = 60 mA, and VCC = 3.3 V.  
VCC + 0.75 < VCC + 1.1 V, which satisfies the requirement.  
Headroom calculations must be repeated for the minimum and  
maximum values of the required IBIAS and IMOD ranges to  
ensure proper device operation over all operating conditions.  
Headroom Calculations  
To ensure proper device operation, the voltages on the IBIAS,  
IMODP, and IMODN pins must meet the compliance voltage  
specifications in Table 1.  
BSET and MSET Pin Voltage Calculation  
To set the desired bias and modulation currents, the BSET and  
MSET pins of the ADN2526 must be driven with the appropriate  
dc voltage. The voltage range required at the BSET pin to generate  
the required IBIAS range can be calculated using the BSET voltage  
to IBIAS gain specified in Table 1. Assuming that IBIAS = 40 mA  
and the typical IBIAS/VBSET ratio of 100 mA/V, the BSET voltage  
is given by  
Considering the typical application circuit shown in Figure 34,  
the voltage at the IBIAS pin can be written as  
VIBIAS = VCC VF − (IBIAS × RTOSA) − VLA  
where:  
VCC is the supply voltage.  
VF is the forward voltage across the laser at low current.  
IBIAS (mA)  
100 mA/V  
40  
100  
VBSET  
=
=
= 0.4 V  
R
TOSA is the resistance of the TOSA.  
LA is the dc voltage drop across L5, L6, L7, and L8.  
V
The BSET voltage range can be calculated using the required  
IBIAS range and the minimum and maximum BSET voltage to  
IBIAS gain values specified in Table 1.  
For proper operation, the minimum voltage at the IBIAS pin  
should be greater than 0.6 V, as specified by the minimum  
IBIAS compliance specification in Table 1.  
The voltage required at the MSET pin to produce the desired  
modulation current can be calculated using  
Assuming that the voltage drop across the 25 Ω transmission  
lines is negligible and that VLA = 0 V, VF = 1 V, and IBIAS =  
40 mA  
IMOD  
K
VMSET  
=
VIBIAS = 3.3 − 1 − (0.04 × 25) = 1.3 V  
where K is the MSET voltage to IMOD ratio.  
VIBIAS = 1.3 V > 0.6 V, which satisfies the requirement.  
The value of K depends on the actual resistance of the TOSA.  
It can be read using the plot shown in Figure 29. For a TOSA  
resistance of 25 Ω, the typical value of K is equal to 120 mA/V.  
Assuming that IMOD = 60 mA and using the preceding  
equation, the MSET voltage is given by  
The maximum voltage at the IBIAS pin must be less than the  
maximum IBIAS compliance specification as described by  
V
COMPLIANCE_MAX = VCC − 0.75 − 4.4 × IBIAS  
For this example,  
VCOMPLIANCE_MAX = VCC – 0.75 − 4.4 × 0.04 = 2.53 V  
IBIAS = 1.3 V < 2.53 V, which satisfies the requirement.  
To calculate the headroom at the modulation current pins  
(2)  
IMOD (mA)  
120 mA/V  
60  
120  
VMSET  
=
=
= 0.5 V  
V
The MSET voltage range can be calculated using the required  
IMOD range and the minimum and maximum K values. These  
can be obtained from the minimum and maximum curves in  
Figure 29.  
(IMODP and IMODN), the voltage has a dc component equal  
to VCC, due to the ac-coupled configuration, and a swing equal  
to IMOD × 25 Ω. For proper operation of the ADN2526, the  
voltage at each modulation output pin should be within the  
normal operation region shown in Figure 30.  
Rev. A | Page 15 of 16  
 
ADN2526  
OUTLINE DIMENSIONS  
0.50  
0.40  
0.30  
0.60 MAX  
3.00  
BSC SQ  
PIN 1  
INDICATOR  
BOTTOM VIEW  
*
1.65  
1.50 SQ  
1.35  
13  
12  
16  
1
0.45  
PIN 1  
INDICATOR  
2.75  
BSC SQ  
TOP  
VIEW  
EXPOSED  
PAD  
4
9
8
0.50  
BSC  
5
0.25 MIN  
1.50 REF  
0.80 MAX  
12° MAX  
0.65 TYP  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.90  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.23  
0.18  
0.20 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VEED-2  
EXCEPT FOR EXPOSED PAD DIMENSION.  
Figure 35. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
3 mm × 3 mm Body, Very Thin Quad  
(CP-16-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADN2526ACPZ1  
ADN2526ACPZ-R21  
ADN2526ACPZ-R71  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
CP-16-3  
CP-16-3  
Branding  
F0C  
F0C  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ, 7”Tape & Reel, 250-Piece Reel  
16-Lead LFCSP_VQ, 7”Tape & Reel, 1,500-Piece Reel  
CP-16-3  
F0C  
1 Z = RoHS Compliant Part.  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07511-0-8/09(A)  
Rev. A | Page 16 of 16  
 
 
 

相关型号:

ADN2526ACPZ-R7

11.3 Gbps Active Back-Termination, Differential Laser Diode Driver
ADI

ADN2530

11.3 Gbps, Active Back-Termination, Differential VCSEL Driver
ADI

ADN2530YCPZ-500R7

11.3 Gbps, Active Back-Termination, Differential VCSEL Driver
ADI

ADN2530YCPZ-500R7

SPECIALTY INTERFACE CIRCUIT, PQCC16, 3 X 3 MM, LEAD FREE, MO-220VEED-2,LFCSP-16
ROCHESTER

ADN2530YCPZ-R2

11.3 Gbps, Active Back-Termination, Differential VCSEL Driver
ADI

ADN2530YCPZ-REEL7

11.3 Gbps, Active Back-Termination, Differential VCSEL Driver
ADI

ADN2530YCPZ-WP

11.3 Gbps, Active Back-Termination, Differential VCSEL Driver
ADI

ADN2531

11.3 Gbps, Active Back-Termination, Differential Laser Diode Driver
ADI

ADN2531ACPZ

11.3 Gbps, Active Back-Termination, Differential Laser Diode Driver
ADI

ADN2531ACPZ-R2

11.3 Gbps, Active Back-Termination, Differential Laser Diode Driver
ADI

ADN2531ACPZ-R7

11.3 Gbps, Active Back-Termination, Differential Laser Diode Driver
ADI

ADN2531ACPZ-WP

11.3 Gbps, Active Back-Termination, Differential Laser Diode Driver
ADI