ADN2848ACP-32 [ADI]

3 V Dual-Loop 50 Mbps to 1.25 Gbps Laser Diode Driver; 3 V双回路50 Mbps到1.25 Gbps的激光二极管驱动器
ADN2848ACP-32
型号: ADN2848ACP-32
厂家: ADI    ADI
描述:

3 V Dual-Loop 50 Mbps to 1.25 Gbps Laser Diode Driver
3 V双回路50 Mbps到1.25 Gbps的激光二极管驱动器

驱动器 二极管 激光二极管
文件: 总12页 (文件大小:255K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3 V Dual-Loop 50 Mbps to 1.25 Gbps  
Laser Diode Driver  
a
ADN2848  
FEATURES  
GENERAL DESCRIPTION  
50 Mbps to 1.25 Gbps Operation  
Single 3.3 V Operation  
The ADN2848 uses a unique control algorithm to control both  
the average power and extinction ratio of the laser diode, LD,  
after initial factory setup. External component count and PCB  
area are low as both power and extinction ratio control are  
fully integrated. Programmable alarms are provided for laser fail  
(end of life) and laser degrade (impending fail).  
Bias Current Range 2 mA to 100 mA  
Modulation Current Range 5 mA to 80 mA  
Monitor Photo Diode Current 50 A to 1200 A  
50 mA Supply Current at 3.3 V  
Closed-Loop Control of Power and Extinction Ratio  
Full Current Parameter Monitoring  
Laser Fail and Laser Degrade Alarms  
Automatic Laser Shutdown, ALS  
Optional Clocked Data  
Supports FEC Rates  
32-Lead (5 mm × 5 mm) LFCSP Package  
APPLICATIONS  
SONET OC-1/3/12  
SDH STM-0/1/4  
Fibre Channel  
Gigabit Ethernet  
FUNCTIONAL BLOCK DIAGRAM  
V
CC  
V
CC  
IMODN  
LD  
V
CC  
IMODP  
MPD  
IMPD  
DATAP  
DATAN  
CLKP  
CLKN  
I
MOD  
CONTROL  
PSET  
I
BIAS  
I
BIAS  
ASET  
GND  
GND  
ERSET  
ADN2848  
GND  
ERCAP  
PAVCAP  
LBWSET  
GND  
GND  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
(VCC = 3.0 V to 3.6 V. All specifications TMIN to TMAX, unless otherwise noted.1  
ADN2848–SPECIFICATIONS Typical values as specified at 25C.)  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions/Comments  
LASER BIAS (BIAS)  
Output Current IBIAS  
Compliance Voltage  
IBIAS During ALS  
ALS Response Time  
CCBIAS Compliance Voltage  
2
1.2  
100  
VCC  
0.1  
5
mA  
V
mA  
s  
V
IBIAS < 10% of nominal  
1.2  
VCC  
MODULATION CURRENT (IMODP, IMODN)  
Output Current IMOD  
Compliance Voltage  
5
1.5  
80  
mA  
V
mA  
ps  
ps  
ps  
VCC  
0.1  
170  
170  
1.5  
I
MOD During ALS  
Rise Time2  
80  
80  
1
Fall Time2  
Random Jitter2  
Pulsewidth Distortion2  
RMS  
IMOD = 40 mA  
15  
ps  
MONITOR PD (MPD)  
Current  
Compliance Voltage  
50  
1200  
1.65  
A  
V
Average Current  
Average Current  
POWER SET INPUT (PSET)  
Capacitance  
Monitor Photodiode Current into RPSET Resistor  
Voltage  
80  
1200  
1.3  
pF  
A  
V
50  
1.1  
1.2  
1.2  
EXTINCTION RATIO SET INPUT (ERSET)  
Allowable Resistance Range  
Voltage  
1.2  
1.1  
25  
1.3  
k  
V
ALARM SET (ASET)  
Allowable Resistance Range  
Voltage  
1.2  
1.1  
25  
1.3  
kΩ  
V
%
1.2  
5
Hysteresis  
CONTROL LOOP  
Time Constant  
Low Loop Bandwidth Selection  
LBWSET = GND  
LBWSET = VCC  
0.22  
2.25  
s
s
DATA INPUTS (DATAP, DATAN, CLKP, CLKN)3  
V p-p (Single-Ended, Peak-to-Peak)  
Input Impedance (Single-Ended)  
tSETUP4 (see Figure 1)  
100  
500  
mV  
Data and Clock Inputs Are  
AC-Coupled  
50  
50  
100  
ps  
tHOLD4 (see Figure 1)  
ps  
LOGIC INPUTS (ALS, LBWSET, CLKSEL)  
VIH  
VIL  
2.4  
2.4  
V
V
0.8  
0.8  
ALARM OUTPUTS (Internal 30 kPull-Up)  
VOH  
VOL  
V
V
IBMON, IMMON, IMPDMON  
IMMON Division Ratio  
IMPDMON  
100  
1
A/A  
A/A  
V
Compliance Voltage  
0
VCC – 1.2  
3.6  
SUPPLY  
5
ICC  
50  
3.3  
mA  
V
IBIAS = IMOD = 0  
6
VCC  
3.0  
NOTES  
1Temperature range is as follows: –40°C to +85°C.  
2Measured into a 25 load using a 0-1 pattern at 622 Mbps.  
3When the voltage on DATAP is greater than the voltage on DATAN, the modulation current flows in the IMODP pin.  
4Guaranteed by design and characterization. Not production tested.  
5ICCMIN for power calculation on page 6 is the typical ICC given.  
6All VCC pins should be shorted together.  
Specifications subject to change without notice.  
–2–  
REV. 0  
ADN2848  
ABSOLUTE MAXIMUM RATINGS1  
(TA = 25°C, unless otherwise noted.)  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
VCC to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 V  
Digital Inputs  
Model  
(ALS, LBWSET, CLKSEL) . . . . . . . . . –0.3 V to VCC + 0.3 V  
IMODN, IMODP . . . . . . . . . . . . . . . . . . . . . . . . . VCC + 1.2 V  
Operating Temperature Range  
ADN2848ACP-32  
ADN2848ACP-32-RL  
ADN2848ACP-32-RL7 –40°C to +85°C 32-Lead LFCSP  
–40°C to +85°C 32-Lead LFCSP  
–40°C to +85°C 32-Lead LFCSP  
Industrial . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Junction Temperature (TJ max) . . . . . . . . . . . . . . . . . . . 150°C  
32-Lead LFCSP Package  
Power Dissipation2 . . . . . . . . . . . . . . . . (TJ max – TA)/θJA W  
HOLD  
tH  
SETUP  
tS  
θ
JA Thermal Impedance3 . . . . . . . . . . . . . . . . . . . . . 32°C/W  
Lead Temperature (Soldering for 10 sec) . . . . . . . . . . 300°C  
NOTES  
DATAP/DATAN  
CLKP  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute maximum rating condi-  
tions for extended periods may affect device reliability.  
2Power consumption formulae are provided on Page 6.  
Figure 1. Setup and Hold Time  
3θJA is defined when device is soldered in a 4-layer board.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
ADN2848 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
REV. 0  
–3–  
ADN2848  
PIN CONFIGURATION  
V
2 25  
16 CLKN  
15 CLKP  
14 GND1  
13 DATAP  
12 DATAN  
CC  
IMODN 26  
GND2 27  
IMODP 28  
GND2 29  
GND2 30  
ADN2848  
TOP VIEW  
11 V  
1
CC  
I
31  
10 PAVCAP  
9 ERCAP  
BIAS  
CCBIAS 32  
PIN FUNCTION DESCRIPTIONS  
Pin Number  
Mnemonic  
Function  
1
2
LBWSET  
ASET  
Loop Bandwidth Select  
Alarm Threshold Set Pin  
3
4
ERSET  
PSET  
Extinction Ratio Set Pin  
Average Optical Power Set Pin  
5
IMPD  
Monitor Photodiode Input  
6
7
IMPDMON  
GND4  
Mirrored Current from Monitor Photodiode—Current Source  
Supply Ground  
8
VCC  
4
Supply Voltage  
9
ERCAP  
PAVCAP  
Extinction Ratio Loop Capacitor  
Average Power Loop Capacitor  
Supply Voltage  
Data Negative Differential Terminal  
Data Positive Differential Terminal  
Supply Ground  
Data Clock Positive Differential Terminal, Used if CLKSEL = VCC  
Data Clock Negative Differential Terminal, Used if CLKSEL = VCC  
Clock Select (Active = VCC), Used if Data Is Clocked into Chip  
DEGRADE Alarm Output  
FAIL Alarm Output  
Automatic Laser Shutdown  
Supply Voltage  
Supply Ground  
Modulation Current Mirror Output—Current Source  
Bias Current Mirror Output—Current Source  
Supply Voltage  
Modulation Current Negative Output, Connect via Matching Resistor to VCC  
Supply Ground  
Modulation Current Positive Output, Connect to Laser Diode  
Supply Ground  
Supply Ground  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
VCC  
1
DATAN  
DATAP  
GND1  
CLKP  
CLKN  
CLKSEL  
DEGRADE  
FAIL  
ALS  
VCC  
3
GND3  
IMMON  
IBMON  
VCC  
2
IMODN  
GND2  
IMODP  
GND2  
GND2  
IBIAS  
Laser Diode Bias Current Output  
Extra Laser Diode Bias When AC-Coupled—Current Sink  
CCBIAS  
–4–  
REV. 0  
ADN2848  
GENERAL  
Note that IERSET and IPSET will change from device to device;  
however, the control loops will determine the actual values.  
It is not required to know the exact values for LI or MPD  
optical coupling.  
Laser diodes have current-in to light-out transfer functions as  
shown in Figure 2. Two key characteristics of this transfer func-  
tion are the threshold current, ITH, and slope in the linear region  
beyond the threshold current, referred to as slope efficiency, LI.  
Loop Bandwidth Selection  
For continuous operation, the user should hardwire the LBWSET  
pin high and use 1 µF capacitors to set the actual loop band-  
width. These capacitors are placed between the PAVCAP and  
ERCAP pins and ground. It is important that these capaci-  
tors are low leakage multilayer ceramics with an insulation  
resistance greater than 100 Gor a time constant of 1,000 sec,  
whichever is less.  
P1  
ER =  
P0  
P1 + P0  
P
=
AV  
2
P1  
P  
P
AV  
P  
I  
LI =  
I  
P0  
Operation  
Mode  
Recommended Recommended  
LBWSET PAVCAP  
ERCAP  
I
CURRENT  
TH  
Continuous  
50 Mbps to  
1.25 Gbps  
High  
1 µF  
1 µF  
Figure 2. Laser Transfer Function  
Control  
Optimized  
for 1.25 Gbps  
Low  
47 nF  
47 nF  
A monitor photodiode, MPD, is required to control the LD.  
The MPD current is fed into the ADN2848 to control the power  
and extinction ratio, continuously adjusting the bias current and  
modulation current in response to the laser’s changing threshold  
current and light-to-current slope efficiency.  
Setting LBSET low and using 47 nF capacitors results in a  
shorter loop time constant (a 10× reduction over using 1 µF  
capacitors and keeping LBWSET high).  
The ADN2848 uses automatic power control, APC, to maintain  
a constant average power over time and temperature.  
Alarms  
The ADN2848 is designed to allow interface compliance to  
ITU-T-G958 (11/94) section 10.3.1.1.2 (transmitter fail) and  
section 10.3.1.1.3 (transmitter degrade). The ADN2848 has two  
active high alarms, DEGRADE and FAIL. A resistor between  
ground and the ASET pin is used to set the current at which these  
alarms are raised. The current through the ASET resistor is a ratio  
of 100:1 to the FAIL alarm threshold. The DEGRADE alarm will  
be raised at 90% of this level.  
The ADN2848 uses closed-loop extinction ratio control to  
allow optimum setting of extinction ratio for every device. Thus  
SONET/SDH interface standards can be met over device  
variation, temperature, and laser aging. Closed-loop modulation  
control eliminates the need to either overmodulate the LD or  
include external components for temperature compensation.  
This reduces research and development time and second  
sourcing issues caused by characterizing LDs.  
Example:  
Average power and extinction ratio are set using the PSET and  
ERSET pins, respectively. Potentiometers are connected  
between these pins and ground. The potentiometer RPSET is  
used to change the average power. The potentiometer RERSET is  
used to adjust the extinction ratio. Both PSET and ERSET are  
kept 1.2 V above GND.  
IFAIL = 50 mA so IDEGRADE = 45 mA  
IFAIL 50 mA  
IASET  
=
=
= 500 A  
100  
1.2V  
100  
1.2  
*RASET  
=
=
= 2.4 kꢁ  
IASET 500A  
For an initial setup, RPSET and RERSET potentiometers may be  
calculated using the following formulas.  
*The smallest valid value for RASET is 1.2 k, since this corresponds to the IBIAS  
maximum of 100 A.  
1.2V  
IAV  
RPSET  
=
()  
The laser degrade alarm, DEGRADE, is provided to give a  
warning of imminent laser failure if the laser diode degrades  
further or environmental conditions continue to stress the LD,  
such as increasing temperature.  
1.2V  
RERSET  
()  
IMPD _ CW ER 1  
×
× PAV  
The laser fail alarm, FAIL, is activated when the transmitter can  
no longer be guaranteed to be SONET/SDH compliant. This  
occurs when one of the following conditions arise:  
PCW  
ER +1  
where:  
I
P
AV is the average MPD current.  
CW is the dc optical power specified on the laser data sheet.  
The ASET threshold is reached.  
The ALS pin is set high. This shuts off the modulation and  
bias currents to the LD, resulting in the MPD current drop-  
ping to zero. This gives closed-loop feedback to the system  
that ALS has been enabled.  
I
P
MPD_CW is the MPD current at that specified PCW.  
AV is the average power required.  
ER is the desired extinction ratio (ER = P1/P0).  
DEGRADE will be raised only when the bias current exceeds  
90% of ASET current.  
REV. 0  
–5–  
ADN2848  
Monitor Currents  
CCBIAS  
IBMON, IMMON, and IMPDMON are current controlled  
current sources from VCC. They mirror the bias, modulation,  
and MPD current for increased monitoring functionality. An  
external resistor to GND gives a voltage proportional to the  
current monitored.  
When the laser is used in ac-coupled mode, the CCBIAS and  
the IBIAS pins should be tied together (see Figure 7). In dc-  
coupled mode, CCBIAS should be tied to VCC  
.
Automatic Laser Shutdown  
The ADN2848 ALS allows compliance to ITU-T-G958 (11/94),  
section 9.7. When ALS is logic high, both bias and modulation  
currents are turned off. Correct operation of ALS can be con-  
firmed by the FAIL alarm being raised when ALS is asserted.  
Note that this is the only time that DEGRADE will be low  
while FAIL is high.  
If the monitoring function IMPDMON is not required, the  
IMPD pin must be grounded and the monitor photodiode  
output must be connected directly to the PSET pin.  
Data and Clock Inputs  
Data and clock inputs are ac-coupled (10 nF capacitors recom-  
mended) and terminated via a 100 internal resistor between  
DATAP and DATAN and also between the CLKP and CLKN  
pins. There is a high impedance circuit to set the common-  
mode voltage, which is designed to allow for maximum input  
voltage headroom over temperature. It is necessary that ac  
coupling be used to eliminate the need for matching between  
common-mode voltages.  
Alarm Interfaces  
The FAIL and DEGRADE outputs have an internal 30 kpull-  
up resistor that is used to pull the digital high value to VCC  
.
However, the alarm output may be overdriven with an external  
resistor allowing alarm interfacing to non-VCC levels. Non-VCC  
alarm output levels must be below the VCC used for the  
ADN2848.  
Power Consumption  
The ADN2848 die temperature must be kept below 125oC. The  
LFCSP package has an exposed paddle. The exposed paddle  
should be connected in such a manner that it is at the same  
potential as the ADN2848 ground pins. The θJA for the package  
is shown under the Absolute Maximum Ratings. Power con-  
sumption can be calculated using  
ADN2848  
DATAP  
(TO FLIP-FLOPS)  
DATAN  
5050ꢃ  
V
REG  
R
I
CC = ICCMIN + 0.3 IMOD  
R = 2.5k, DATA  
R = 3k, CLK  
P = VCC ICC + (IBIAS VBIAS_PIN) + IMOD (VMODP_PIN  
+
VMODN_PIN)/2  
400ATYP  
T
DIE = TAMBIENT + θJA P  
Thus, the maximum combination of IBIAS + IMOD must be calcu-  
lated. Where:  
Figure 3. AC Coupling of Data Inputs  
ICCMIN  
= 50 mA, the typical value of ICC provided on Page 2  
For input signals that exceed 500 mV p-p single-ended, it is  
necessary to insert an attenuation circuit as shown in Figure 4.  
with IBIAS = IMOD = 0  
T
T
DIE = die temperature  
AMBIENT = ambient temperature  
ADN2848  
R1  
R2  
DATAP/CLKP  
DATAN/CLKN  
V
V
V
BIAS_PIN = voltage at IBIAS pin  
R
R3  
IN  
MODP_PIN = average voltage at IMODP pin  
MODN_PIN = average voltage at IMODN pin  
Laser Disode Interfacing  
NOTETHAT R = 100=THE DIFFERENTIAL  
IN  
Many laser diodes designed for 1.25 Gbps operation are pack-  
aged with an internal resistor to bring the effective impedance  
up to 25 in order to minimize transmission line effects. In  
high current applications, the voltage drop across this resistor,  
combined with the laser diode forward voltage, makes direct  
connection between the laser and the driver impractical in a 3 V  
system. AC coupling the driver to the laser diode removes this  
headroom constraint.  
INPUT IMPEDANCE OFTHE ADN2848  
Figure 4. Attenuation Circuit  
–6–  
REV. 0  
ADN2848  
V
CC  
Caution must be used when choosing component values for ac  
coupling to ensure that the time constant (L/R and RC, see  
Figure 7) are sufficiently long for the data rate and expected  
number of CIDs (consecutive identical digits). Failure to do this  
could lead to pattern dependent jitter and vertical eye closure.  
For designs with low series resistance, or where external  
components become impractical, the ADN2848 supports direct  
connection to the laser diode (see Figure 6). In this case, care  
must be taken to ensure that the voltage drop across the laser  
diode does not violate the minimum compliance voltage on the  
IMODP pin.  
V
CC  
V
CC  
IMPD  
ADN2848  
ADN2850  
SDI  
IMODP  
I
BIAS  
TX  
RX  
SDO  
PSET  
DAC1  
DAC2  
ERSET  
CLK  
CLK  
CS  
CS  
Optical Supervisor  
The PSET and ERSET potentiometers may be replaced with a  
dual-digital potentiometer, the ADN2850 (see Figure 5). The  
ADN2850 provides an accurate digital control for the average  
optical power and extinction ratio and ensures excellent stability  
over temperature.  
DATAP  
DATAN  
IDTONE  
Figure 5. Application Using the ADN2850 Dual 10-Bit  
Digital Potentiometer with Extremely Low Temperature  
Coefficient as an Optical Supervisor  
FAIL  
DEGRADE  
ALS  
1kꢃ  
1.5kꢃ  
1.5kꢃ  
24  
17  
25  
16  
10nF  
V
2
CLKN  
CLKN  
V
CC  
CC  
IMODN  
GND2  
IMODP  
GND2  
GND2  
CLKP  
CLKP  
V
CC  
*
10nF  
GND1  
10nF  
MPD  
LD  
*
DATAP  
DATAN  
DATAP  
*
ADN2848  
DATAN  
*
10nF  
1F  
V
1
CC  
I
PAVCAP  
ERCAP  
BIAS  
10H  
CCBIAS  
1F  
V
CC 32  
9
V
s SHOULD HAVE BYPASS CAPACITORS AS CLOSE  
CC  
AS POSSIBLETOTHE ACTUAL SUPPLY PINS ONTHE  
ADN2848 ANDTHE LASER DIODE USED.  
CONSERVATIVE DECOUPLINGWOULD INCLUDE 100pF  
CAPACITORS IN PARALLELWITH 10nF CAPACITORS.  
1
8
**  
**  
1.5kꢃ  
V
CC  
LD = LASER DIODE  
MPD = MONITOR PHOTODIODE  
10nF  
10nF  
10nF  
10nF  
10F  
GND  
NOTES  
DESIGNATES COMPONENTSTHAT NEEDTO BE OPTIMIZED FORTHETYPE OF LASER USED.  
** FOR DIGITAL PROGRAMMING,THE ADN2850 ORTHE ADN2860 OPTICAL SUPERVISOR CAN BE USED.  
*
Figure 6. DC-Coupled 50 Mbps to 1.25 Gbps Test Circuit, Data Not Clocked  
REV. 0  
–7–  
ADN2848  
FAIL  
DEGRADE  
V
CC  
ALS  
1kꢃ  
*
*
*
*
*
1.5kꢃ  
1.5kꢃ  
*
24  
17  
25  
16  
10nF  
V
2
CLKN  
V
CLKN  
CLKP  
CC  
CC  
IMODN  
CLKP  
GND1  
10nF  
10nF  
GND2  
IMODP  
GND2  
GND2  
MPD  
LD  
*
DATAP  
DATAN  
DATAP  
DATAN  
*
*
ADN2848  
*
10nF  
V
1
CC  
1F  
I
PAVCAP  
ERCAP  
BIAS  
10H  
CCBIAS  
1F  
32  
9
V
s SHOULD HAVE BYPASS CAPACITORS AS CLOSE  
CC  
AS POSSIBLETOTHE ACTUAL SUPPLY PINS ONTHE  
ADN2848 ANDTHE LASER DIODE USED.  
1
8
CONSERVATIVE DECOUPLINGWOULD INCLUDE 100pF  
CAPACITORS IN PARALLELWITH 10nF CAPACITORS.  
**  
**  
1.5kꢃ  
V
CC  
LD = LASER DIODE  
MPD = MONITOR PHOTODIODE  
10nF  
10nF  
10nF  
10nF  
10F  
GND  
NOTES  
DESIGNATES COMPONENTSTHAT NEEDTO BE OPTIMIZED FORTHETYPE OF LASER USED.  
** FOR DIGITAL PROGRAMMING,THE ADN2850 ORTHE ADN2860 OPTICAL SUPERVISOR CAN BE USED.  
*
Figure 7. AC-Coupled 50 Mbps to 1.25 Gbps Test Circuit, Data Not Clocked  
Figure 8. A 1.244 Mbps Optical Eye. Temperature at 25C.  
Figure 9. A 1.244 Mbps Optical Eye. Temperature at 85C.  
Average Power = 0 dBm, Extinction Ratio = 10 dBm, PRBS  
31 Pattern, 1 Gb Ethernet Mask. Eye Obtained Using a  
DFB Laser.  
Average Power = 0 dBm, Extinction Ratio = 10 dB, PRBS  
31 Pattern, 1 Gb Ethernet Mask. Eye Obtained Using a  
DFB Laser.  
–8–  
REV. 0  
ADN2848  
OUTLINE DIMENSIONS  
32-Lead Frame Chip Scale Package [LFCSP]  
(CP-32)  
Dimensions shown in millimeters  
5.00  
BSC SQ  
0.60 MAX  
PIN 1  
0.60 MAX  
INDICATOR  
25  
24  
32  
1
PIN 1  
INDICATOR  
0.50  
BSC  
2.25  
1.70 SQ  
0.75  
4.75  
BSC SQ  
TOP  
VIEW  
BOTTOM  
VIEW  
0.50  
0.40  
0.30  
17  
16  
8
9
3.50  
REF  
0.70 MAX  
0.65 NOM  
12MAX  
0.05 MAX  
0.02 NOM  
1.00  
0.30  
0.23  
0.18  
0.90  
0.80  
COPLANARITY  
0.08  
0.25 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2  
REV. 0  
–9–  
–10–  
–11–  
–12–  

相关型号:

ADN2848ACP-32-RL

3 V Dual-Loop 50 Mbps to 1.25 Gbps Laser Diode Driver
ADI

ADN2848ACP-32-RL7

3 V Dual-Loop 50 Mbps to 1.25 Gbps Laser Diode Driver
ADI

ADN2848ACPZ-32

SPECIALTY INTERFACE CIRCUIT, QCC32, 5 X 5 MM, MO-220-VHHD-2, LFCSP-32
ROCHESTER

ADN2848ACPZ-32-RL7

SPECIALTY INTERFACE CIRCUIT, QCC32, 5 X 5 MM, MO-220-VHHD-2, LFCSP-32
ROCHESTER

ADN2848ACPZ-32-RL7

3.3 V Dual-Loop 50 Mbps to 1.25 Gbps Laser Diode Driver
ADI

ADN2849

10.7 Gbps Electro-Absorption Modulator Driver
ADI

ADN2849ACP

10.7 Gbps Electro-Absorption Modulator Driver
ADI

ADN2849ACP-RL

10.7 Gbps Electro-Absorption Modulator Driver
ADI

ADN2849ACP-RL7

10.7 Gbps Electro-Absorption Modulator Driver
ADI

ADN2849SURF

10.7 Gbps Electro-Absorption Modulator Driver
ADI

ADN2850

Nonvolatile Memory, Dual 1024 Position Programmable Resistors
ADI

ADN2850ACP25

Nonvolatile Memory, Dual 1024 Position Programmable Resistors
ADI