ADN2892ACPZ-RL7 [ADI]

3.3 V, 4.25 Gbps, Limiting Amplifier; 3.3 V , 4.25 Gbps的速率,限幅放大器
ADN2892ACPZ-RL7
型号: ADN2892ACPZ-RL7
厂家: ADI    ADI
描述:

3.3 V, 4.25 Gbps, Limiting Amplifier
3.3 V , 4.25 Gbps的速率,限幅放大器

电信集成电路 电信电路 放大器 异步传输模式 ATM
文件: 总16页 (文件大小:451K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3.3 V, 4.25 Gbps,  
Limiting Amplifier  
Data Sheet  
ADN2892  
FEATURES  
GENERAL DESCRIPTION  
Input sensitivity: 3.5 mV p-p  
70 ps rise/fall times  
The ADN2892 is a 4.25 Gbps limiting amplifier with integrated  
loss of signal (LOS) detection circuitry and a received signal  
strength indicator (RSSI). This part is optimized for Fibre  
Channel (FC) and Gigabit Ethernet (GbE) optoelectronic  
conversion applications. The ADN2892 has a differential input  
sensitivity of 3.5 mV p-p and accepts up to a 2.0 V p-p  
CML outputs: 750 mV p-p differential  
Bandwidth selectable for multirate 1×/2×/4× FC modules  
Optional LOS output inversion  
Programmable LOS detector: 3.5 mV to 35 mV  
Rx signal strength indicator (RSSI)  
differential input overload voltage. The ADN2892 has current  
mode logic (CML) outputs with controlled rise and fall times.  
SFF-8472-compliant average power measurement  
Single-supply operation: 3.3 V  
The ADN2892 has a selectable low-pass filter with a −3 dB  
cutoff frequency of 1.5 GHz. By setting BW_SEL to Logic 0, the  
filter can limit the relaxation oscillation of a low cost CD laser  
used in a legacy 1 Gbps FC transmitter. The limited BW also  
reduces the rms noise and in turn improves the receiver optical  
sensitivity for a lower data rate application, such as 1× FC and  
GbE.  
Low power dissipation: 160 mW  
Available in space-saving, 3 mm × 3 mm, 16-lead LFCSP  
Extended temperature range: −40°C to +95°C  
SFP reference design available  
APPLICATIONS  
1×, 2×, and 4× FC transceivers  
SFP/SFF/GBIC optical transceivers  
GbE transceivers  
By monitoring the bias current through a photodiode, the on-  
chip RSSI detector measures the average power received with  
2% typical linearity over the entire valid input range of the  
photodiode. The on-chip RSSI detector facilitates SFF-8472-  
compliant optical transceivers by eliminating the need for  
external RSSI detector circuitry.  
Backplane receivers  
Additional features include a programmable loss-of-signal  
(LOS) detector and output squelch. The ADN2892 is available  
in a 3 mm × 3 mm, 16-lead LFCSP.  
FUNCTIONAL BLOCK DIAGRAM  
AVCC AVEE  
BW_SEL  
SQUELCH  
DRVEE  
DRVCC  
ADN2892  
50W  
50W  
OUTP  
OUTN  
PIN  
NIN  
ADN2882  
LPF  
50W  
50W  
V+  
10kW  
3.5kW  
LOS  
V
REF  
PD_VCC  
RSSI/LOS  
DETECTOR  
ADuC7020  
RSSI_OUT  
PD_CATHODE  
THRADJ  
LOS_INV  
Figure 1. RSSI Function Capable—Applications Setup Block Diagram  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2005–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
ADN2892  
Data Sheet  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Squelch Mode ............................................................................. 10  
BW_SEL (Bandwidth Selection) Mode................................... 10  
LOS_INV (Lose of Signal_Invert) Mode ................................ 10  
Applications..................................................................................... 11  
PCB Design Guidelines ............................................................. 11  
Pad Coating and Pb-Free Soldering ........................................ 12  
Outline Dimensions....................................................................... 13  
Ordering Guide .......................................................................... 13  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ...................................................................... 10  
Limiting Amplifier ..................................................................... 10  
Loss-of-Signal (LOS) Detector ................................................. 10  
Received Signal Strength Indicator (RSSI).............................. 10  
REVISION HISTORY  
7/13—Rev. 0 to Rev. A  
Change to Output Voltage Swing Parameter, Table 1...................3  
Changes to Figure 2...........................................................................6  
Updated Outline Dimensions........................................................13  
Changes to Ordering Guide ...........................................................13  
4/05—Revision 0: Initial Version  
Rev. A | Page 2 of 16  
Data Sheet  
ADN2892  
SPECIFICATIONS  
Test Conditions: VCC = 2.9 V to 3.6 V, VEE = 0 V, TA = −40°C to +95°C, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
QUANTIZER DC CHARACTERISTICS  
Input Voltage Range  
Input Common Mode  
Peak-to-Peak Differential Input Range  
Input Sensitivity  
Input Offset Voltage  
Input RMS Noise  
Input Resistance  
VCC − 1.2  
2.1  
VCC − 0.2  
2.7  
2.0  
V
V
At PIN or NIN, dc-coupled  
DC-coupled  
PIN − NIN, ac-coupled  
PIN − NIN, BER ≤ 1 × 10−10  
V p-p  
mV p-p  
µV  
µV rms  
6.6  
1.0  
3.5  
100  
235  
50  
Single-ended  
Input Capacitance  
QUANTIZER AC CHARACTERISTICS  
Input Data Rate  
0.65  
pF  
4.25  
Gbps  
dB  
Small Signal Gain  
51  
Differential  
S11  
S22  
Random Jitter  
Deterministic Jitter  
Low Frequency Cutoff  
Power Supply Rejection  
LOSS OF SIGNAL DETECTOR (LOS)  
LOS Assert Level  
−10  
−10  
3.0  
10  
30  
45  
dB  
dB  
ps rms  
ps p-p  
kHz  
dB  
Differential, f < 4.25 GHz  
Differential, f < 4.25 GHz  
Input ≥ 10 mV p-p, 4× FC, K28.7 pattern  
Input ≥ 10 mV p-p, 4× FC, K28.5 pattern  
3.9  
21.0  
100 kHz < f < 10 MHz  
2.9  
22.4  
2.5  
3.5  
35  
5.0  
5.0  
950  
62  
4.8  
55.0  
mV p-p  
mV p-p  
dB  
dB  
ns  
RTHRADJ = 100 kΩ  
RTHRADJ = 1 kΩ  
1.0 Gbps, PRBS 223 − 1  
4× FC, PRBS 223 − 1  
DC-coupled  
Electrical Hysteresis  
2.8  
LOS Assert Time  
LOS Deassert Time  
ns  
DC-coupled  
RSSI  
Input Current Range  
5
1000  
µA  
RSSI Output Linearity  
Gain  
Offset  
2
1.0  
145  
%
5 µA ≤ IIN ≤ 1000 µA  
IRSSI/IPD_CATHODE  
mA/mA  
nA  
V
Compliance Voltage (At PD_CATHODE)  
VCC − 0.4  
VCC − 0.9  
IPD_CATHODE = 5 µA  
IPD_CATHODE = 1000 µA  
V
BW_SEL (BANDWIDTH SELECTION)  
Channel Bandwidth  
1.5  
GHz  
−3 dB cutoff frequency of the on-chip,  
two-pole, low-pass filter, when BW_SEL = 0  
POWER SUPPLIES  
VCC  
ICC  
2.9  
3.3  
48  
3.6  
54  
V
mA  
°C  
OPERATING TEMPERATURE RANGE  
CML OUTPUT CHARACTERISTICS  
Output Impedance  
Output Voltage Swing  
Output Rise and Fall Time  
−40  
+25  
+95  
TMIN to TMAX  
50  
750  
70  
Single-ended  
Differential  
20% to 80%  
600  
940  
103  
mV p-p  
ps  
Rev. A | Page 3 of 16  
 
ADN2892  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
LOGIC INPUTS (SQUELCH, LOS_INV, AND  
BW_SEL)  
VIH, Input High Voltage  
2.0  
V
VIL, Input Low Voltage  
Input Current (SQUELCH, LOS_INV)  
0.8  
39  
V
µA  
IINH, VIN = 2.4 V, 100 kΩ pull-down,  
on-chip resistor  
Input Current (BW_SEL)  
−38  
µA  
IINL, VIN = 0.0 V, 100 kΩ pull-up,  
on-chip resistor  
LOGIC OUTPUTS (LOS)  
VOH, Output High Voltage  
2.4  
V
V
Open drain output, 4.7 kΩ − 10 kΩ  
pull-up resistor to VCC  
Open drain output, 4.7 kΩ − 10 kΩ  
pull-up resistor to VCC  
VOL, Output Low Voltage  
0.4  
Rev. A | Page 4 of 16  
Data Sheet  
ADN2892  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Rating  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Power Supply Voltage  
Minimum Voltage  
(All Inputs and Outputs)  
Maximum Voltage  
(All Inputs and Outputs)  
Storage Temperature  
Operating Temperature Range  
Production Soldering Temperature  
Junction Temperature  
4.2 V  
VEE − 0.4 V  
VCC + 0.4 V  
−65°C to +150°C  
−40°C to +95°C  
J-STD-20  
THERMAL RESISTANCE  
125°C  
θJA is specified for 4-layer PCB with exposed paddle soldered  
to GND.  
Table 3.  
Package Type  
θJA  
Unit  
3 mm × 3 mm, 16-lead LFCSP  
28  
°C/W  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 5 of 16  
 
 
 
ADN2892  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
12 DRVCC  
11 OUTP  
10 OUTN  
AVDD  
PIN  
1
2
3
4
ADN2892  
TOP VIEW  
NIN  
(Not to Scale)  
AVEE  
9 DRVEE  
NOTES  
1. THERE IS AN EXPOSED PAD ON THE BOTTOM OF  
THE PACKAGE THAT MUST BE CONNECTED TO  
THE GND PLANE WITH FILLED VIAS.  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
I/O Type1 Description  
1
2
3
4
5
6
7
AVCC  
PIN  
NIN  
AVEE  
THRADJ  
BW_SEL  
LOS_INV  
P
Analog Power Supply.  
AI  
AI  
P
AO  
DI  
DI  
Differential Data Input, Positive Port, 50 Ω On-Chip Termination.  
Differential Data Input, Negative Port, 50 Ω On-Chip Termination.  
Analog Ground.  
LOS Threshold Adjust Resistor.  
With one 100 kΩ on-chip, pull-up resistor, BW_SEL = 0 for 1×/2× FC, BW_SEL = 1 for 4× FC.  
With one 100 kΩ on-chip, pull-down resistor, LOS_INV = 1 inverts the LOS output  
to be active low for SFF.  
8
9
LOS  
DRVEE  
OUTN  
DO  
P
DO  
DO  
P
DI  
AO  
P
LOS Detector Output, Open Collector.  
Output Buffer Ground.  
Differential Data Output, CML, Negative Port, 50 Ω, On-Chip Termination.  
Differential Data Output, CML, Positive Port, 50 Ω, On-Chip Termination.  
Output Buffer Power Supply.  
Disable Outputs, 100 kΩ On-Chip, Pull-Down Resistor.  
Average Current Output.  
Power Input for RSSI Measurement.  
10  
11  
12  
13  
14  
15  
16  
OUTP  
DRVCC  
SQUELCH  
RSSI_OUT  
PD_VCC  
PD_CATHODE AO  
Photodiode Bias Voltage.  
Exposed Pad Pad  
P
Connect to Ground.  
1 P = power; DI = digital input; DO = digital output; AI = analog input; and AO = analog output.  
Rev. A | Page 6 of 16  
 
 
Data Sheet  
ADN2892  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
+95°C  
+25°C  
–40°C  
+25°C  
DEASSERTION  
–40°C  
+95°C  
ASSERTION  
1k  
10k  
(W)  
100k  
50ps/DIV  
R
TH  
Figure 6. LOS Trip and Release vs. RTH at 4.25 Gbps  
Figure 3. Eye of ADN2892 @ 25°C, 4.25 Gbps, and 10 mV Input  
8
7
6
5
4
3
2
1
0
1GBPS  
4.25GBPS  
1k  
10k  
(W)  
100k  
50ps/DIV  
R
TH  
Figure 4. Eye of ADN2892 @ 95°C, 4.25 Gbps, and 10 mV Input  
Figure 7. LOS Electrical Hysteresis vs. RTH at 25°C  
16  
14  
12  
10  
8
6
4
2
200ps/DIV  
0
5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6  
ELECTRICAL HYSTERESIS (dB)  
Figure 5. Eye of ADN2892 at 25°C, 1.063 Gbps, and 10 mV Input (BW_SEL = 0)  
Figure 8. Sample Lot Distribution—Worst-Case Condition:  
Conditions = 4.25 Gbps, 100 kΩ @ −40°C, 3.6 V  
Rev. A | Page 7 of 16  
 
 
 
ADN2892  
Data Sheet  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
1200  
1000  
800  
600  
400  
200  
0
0
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
0
200  
400  
600  
800  
1000  
RATE (Gbps)  
PD_CATHODE CURRENT (PHOTODIODE CURRENT) (µA)  
Figure 12. RSSI Output vs. Average Photodiode Current  
Figure 9. Random Jitter vs. Data Rate  
60  
50  
40  
30  
20  
10  
0
18  
16  
14  
12  
10  
8
6
4
2
0
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
0
10  
20  
30  
40  
50  
RATE (Gbps)  
PD_CATHODE CURRENT (PHOTODIODE CURRENT) (µA)  
Figure 10. Deterministic Jitter vs. Data Rate  
Figure 13. RSSI Output vs. Average Photodiode Current (Zoomed)  
–0.15  
70  
60  
50  
40  
30  
20  
10  
–0.20  
–0.25  
–0.30  
–0.35  
–0.40  
–0.45  
–0.50  
–0.55  
–0.60  
–0.65  
–0.70  
0
100k  
0
100 200 300 400 500 600 700 800 900 1000  
1M  
10M  
INPUT CURRENT (µA)  
SUPPLY-NOISE FREQUENCY  
Figure 14. PD_CATHODE Compliance Voltage vs.  
Input Current RSSI (Refer to VCC)  
Figure 11. PSRR vs. Supply-Noise Frequency  
Rev. A | Page 8 of 16  
 
Data Sheet  
ADN2892  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
49.0  
48.5  
48.0  
47.5  
47.0  
46.5  
46.0  
100  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. ADN2892 ICC Current vs. Temperature  
Figure 15. RSSI Offset—Difference Between Measured RSSI Output and  
PD_CATHODE (Input) Current of 5 µA  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
+100°C  
2.0  
1.5  
1.0  
0.5  
0
+30°C  
–40°C  
0
200  
400  
600  
800  
1000  
PD_CATHODE CURRENT (µA)  
Figure 16. RSSI Linearity % vs. PD_CATHODE Current  
Rev. A | Page 9 of 16  
 
ADN2892  
Data Sheet  
THEORY OF OPERATION  
LIMITING AMPLIFIER  
RECEIVED SIGNAL STRENGTH INDICATOR (RSSI)  
Input Buffer  
The ADN2892 has an on-chip, RSSI circuit. By monitoring the  
current supplied to the photodiode, the RSSI circuit provides an  
accurate, average power measurement. The output of the RSSI is  
a current that is directly proportional to the average amount of  
PIN photodiode current. Placing a resistor between the  
RSSI_OUT pin and GND converts the current to a GND  
referenced voltage. This function eliminates the need for  
external RSSI circuitry for SFF-8472-compliant optical  
receivers. For more information, see Figure 12 to Figure 16.  
The ADN2892 limiting amplifier provides differential  
inputs (PIN/NIN), each with a single-ended, on-chip 50 Ω  
termination. The amplifier can accept either dc-coupled or  
ac-coupled signals; however, an ac-coupled signal is  
recommended. Using a dc-coupled signal, the amplifier  
needs a nominal VCC − 0.7 V common-mode voltage and  
0.5 V headroom. If the input common-mode voltage is 2.4 V,  
the available headroom is reduced down to 0.3 V.  
Connect the PD_VCC, PD_CATHODE, and RSSI_OUT pins to  
AVCC to disable the RSSI feature.  
The ADN2892 limiting amplifier is a high gain device. It is  
susceptible to dc offsets in the signal path. The pulse width  
distortion presented in the NRZ data or a distortion generated  
by the TIA may appear as dc offset or a corrupted signal to the  
ADN2892 inputs. An internal offset correction loop can  
compensate for certain levels of offset.  
SQUELCH MODE  
Driving the SQUELCH input to logic high disables the limiting  
amplifier outputs. Using LOS output to drive the SQUELCH  
input, the limiting amplifier outputs stop toggling anytime a  
signal input level to the limiting amplifier drops below the  
programmed LOS threshold.  
CML Output Buffer  
The ADN2892 provides differential CML outputs, OUTP and  
OUTN. Each output has an internal 50 Ω termination to VCC.  
The SQUELCH pin has a 100 kΩ, internal pull-down resistor.  
LOSS-OF-SIGNAL (LOS) DETECTOR  
BW_SEL (BANDWIDTH SELECTION) MODE  
The on-chip LOS circuit drives LOS to logic high when the  
input signal level falls below a user-programmable threshold.  
The threshold level can be set anywhere from 3.5 mV pp to 35  
mV pp typical by a resistor connected between the THRADJ  
pin and VEE. See Figure 6 and Figure 7 for the LOS threshold  
vs. THRADJ. The ADN2892 LOS circuit has an electrical  
hysteresis greater than 2.5 dB to prevent chatter at the LOS  
signal. The LOS output is an open-collector output that must be  
pulled up externally with a 4.7 kΩ to 10 kΩ resistor.  
Driving the BW_SEL input signal to logic high, the amplifier  
provides a 3.8 GHz bandwidth. Driving the BW_SEL input  
signal to logic low, the amplifier accepts input signals through a  
1.5 GHz, 2-pole, low-pass filter that improves receiving  
sensitivity.  
The low-pass filter reduces the possible relaxation oscillation of  
low speed, low cost laser source by limiting the input signal  
bandwidth.  
The BW_SEL pin has a 100 kΩ, on-chip pull-up resistor. Setting  
the BW_SEL pin open disables the low-pass filter.  
LOS_INV (LOSE OF SIGNAL_INVERT) MODE  
Some applications, such as SFF, need the LOS assertion and  
deassertion voltage reversed. When the LOS_INV pin is pulled  
to logic high, the LOS output assertion is pulled down to  
electrical low.  
The LOS_INV pin has a 100 kΩ on-chip, pull-down resistor.  
Rev. A | Page 10 of 16  
 
 
 
 
 
 
 
Data Sheet  
ADN2892  
APPLICATIONS  
The exposed pad should connect to the GND plane using filled  
vias so that solder does not leak through the vias during reflow.  
Using filled vias in parallel under the package greatly reduces  
the thermal resistance and enhances the reliability of the  
connectivity of the exposed pad to the GND plane during  
reflow.  
PCB DESIGN GUIDELINES  
Proper RF PCB design techniques must be used to ensure  
optimal performance.  
Output Buffer Power Supply and Ground Planes  
Pin 9 (DRVEE) and Pin 12 (DRVCC) are the power supply and  
ground pins that provide current to the differential output  
buffer. To reduce possible series inductance, Pin 9, which is the  
ground return of the output buffer, should connect to ground  
directly. If the ground plane is an internal plane and  
To reduce power supply noise, a 10 μF electrolytic decoupling  
capacitor between power and ground should be close to where  
the 3.3 V supply enters the PCB. The other 0.1 μF and 1 nF  
ceramic chip decoupling capacitors should be close to the VCC  
and VEE pins to provide optimal supply decoupling and a  
shorter current return loop.  
connections to the ground plane are vias, multiple vias in  
parallel to ground can reduce series inductance.  
Similarly, to reduce the possible series inductance, Pin 12,  
which supplies power to the high speed differential  
OUTP/OUTN output buffer, should connect to the power plane  
directly. If the power plane is an internal plane and connections  
to the power plane are vias, multiple vias in parallel can reduce  
the series inductance, especially on Pin 12. See Figure 18 for the  
recommended connections.  
VCC  
C9  
VCC  
RSSI MEASUREMENT  
TO ADC  
R1  
C10  
0.1F  
VCC  
VCC  
C8  
C5  
C6  
16  
15  
14  
13  
C7  
AVCC  
PIN  
DRVCC  
1
2
3
4
12  
11  
10  
9
ADN2892  
C1  
C2  
OUTP C3  
OUTN C4  
DRVEE  
CONNECT  
EXPOSED  
PAD TO  
GND  
TO HOST  
BOARD  
NIN  
ADN2882  
AVEE  
5
6
7
8
C1–C4, C11: 0.01F X5R/X7R DIELECTRIC, 0201 CASE  
C5, C7, C9, C10, C12: 0.1F X5R/X7R DIELECTRIC, 0402 CASE  
C6, C8: 1nF X5R/X7R DIELECTRIC, 0201 CASE  
R3  
4.7kTO 10k  
ON HOST BOARD  
C12  
R2  
VCC  
TO ADuC7020  
Figure 18. Typical ADN2892 Applications Circuit  
Rev. A | Page 11 of 16  
 
 
 
ADN2892  
Data Sheet  
PCB Layout  
Soldering Guidelines for the LFCSP  
Figure 19 shows the recommended PCB layout. The 50 Ω  
transmission lines are the traces that bring the high frequency  
input and output signals (PIN, NIN, OUTP, and OUTN) from a  
terminated source to a terminated load with minimum  
reflection. To avoid a signal skew between the differential  
traces, each differential PIN/NIN and OUTP/OUTN pair  
should have matched trace lengths from a differential source to  
a differential load. C1, C2, C3, and C4 are ac coupling  
capacitors in series with the high speed, signal input/output  
paths. To minimize the possible mismatch, the ac coupling  
capacitor pads should be the same width as the 50 Ω  
transmission line trace width. To reduce supply noise, a 1 nF  
decoupling capacitor should be placed as close as possible to the  
VCC pins on the same layer and not through vias. A 0.1 μF  
decoupling capacitor can be placed on the bottom of the PCB  
directly underneath the 1 nF capacitor. All high speed, CML  
outputs have internal 50 Ω resistor termination between the  
output pin and VCC. The high speed inputs, PIN and NIN, also  
have the internal 50 Ω termination to an internal reference  
voltage.  
The lands on the 16-lead LFCSP are rectangular. The PCB pad  
for these should be 0.1 mm longer than the package land length  
and 0.05 mm wider than the package land width. The land  
should be centered on the pad. This ensures that the solder joint  
size is maximized. The bottom of the LFCSP has a central  
exposed pad. The pad on the printed circuit board should be at  
least as large as the exposed pad. Users must connect the  
exposed pad to VEE using filled vias so that solder does not  
leak through the vias during reflow. This ensures a solid  
connection from the exposed pad to VEE.  
PAD COATING AND PB-FREE SOLDERING  
Table 5.  
Pad Coating  
Matt-Tin  
Pb-Free Reflow Portfolio  
J-STD-20B  
As with any high speed, mixed-signal design, keep all high  
speed digital traces away from sensitive analog nodes.  
R1, C9, C10 ON BOTTOM  
DVCC GND  
TO ROSA  
DOUBLE-VIAS TO REDUCE  
INDUCTANCE TO SUPPLY  
AND GND  
AVCC  
GND  
PLACE C7 ON  
BOTTOM OF BOARD  
UNDERNEATH C8  
PLACE C5 ON  
BOTTOM OF BOARD  
UNDERNEATH C6  
1
EXPOSED PAD  
C6  
C8  
C1  
C3  
PIN  
NIN  
OUTP  
FILLED VIAS TO  
GND  
4mm  
OUTN  
C2  
C4  
TRANSMISSION LINES SAME  
WIDTH AS AC COUPLING  
CAPS TO REDUCE REFLECTIONS  
DOUBLE-VIA TO GND  
TO REDUCE INDUCTANCE  
VIA TO C12, R2  
ON BOTTOM  
VIAS TO BOTTOM  
Figure 19. Recommended ADN2892 PCB Layout (Top View)  
Rev. A | Page 12 of 16  
 
 
Data Sheet  
ADN2892  
OUTLINE DIMENSIONS  
0.50  
0.40  
0.30  
0.60 MAX  
3.00  
BSC SQ  
PIN 1  
INDICATOR  
BOTTOM VIEW  
*
1.65  
1.50 SQ  
1.35  
13  
12  
16  
0.45  
1
PIN 1  
INDICATOR  
2.75  
BSC SQ  
TOP  
VIEW  
EXPOSED  
PAD  
4
9
8
0.50  
BSC  
5
0.25 MIN  
1.50 REF  
0.80 MAX  
12° MAX  
0.65 TYP  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.90  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.23  
0.18  
0.20 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VEED-2  
EXCEPT FOR EXPOSED PAD DIMENSION.  
Figure 20. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
3 mm × 3 mm Body, Very Thin Quad  
(CP-16-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
–40°C to +95°C  
–40°C to +95°C  
–40°C to +95°C  
Package Description  
Package Option  
CP-16-3  
CP-16-3  
Branding  
F05  
F05  
ADN2892ACPZ-500RL7  
ADN2892ACPZ-RL7  
ADN2892ACPZ-RL  
EVAL-ADN2892EBZ  
16-Lead LFCSP_VQ, 500 pieces  
16-Lead LFCSP_VQ, 1,500 pieces  
16-Lead LFCSP_VQ,5,000 pieces  
Evaluation Board  
CP-16-3  
F05  
1 Z = RoHS-Compliant Part.  
Rev. A | Page 13 of 16  
 
 
ADN2892  
NOTES  
Data Sheet  
Rev. A | Page 14 of 16  
Data Sheet  
NOTES  
ADN2892  
Rev. A | Page 15 of 16  
ADN2892  
NOTES  
Data Sheet  
©2005–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04986-0-7/13(A)  
Rev. A | Page 16 of 16  

相关型号:

ADN2901XXX

IC TRANSCEIVER, PBGA186, FBGA-186, ATM/SONET/SDH IC
ADI

ADN2902XXX

IC TRANSCEIVER, PBGA186, FBGA-186, ATM/SONET/SDH IC
ADI

ADN2905ACPZ

CPRI and 10G Ethernet Data Recovery IC with AMP/EQ from 614.4 Mbps to 10.3125 Gbps
ADI

ADN2905ACPZ-RL7

CPRI and 10G Ethernet Data Recovery IC with AMP/EQ from 614.4 Mbps to 10.3125 Gbps
ADI

ADN2913

Continuous Rate 6.5 Mbps to 8.5 Gbps Clock and Data Recovery IC with Integrated Limiting Amp/EQ
ADI

ADN2913ACPZ

Continuous Rate 6.5 Mbps to 8.5 Gbps Clock and Data Recovery IC with Integrated Limiting Amp/EQ
ADI

ADN2913ACPZ-RL7

Continuous Rate 6.5 Mbps to 8.5 Gbps Clock and Data Recovery IC with Integrated Limiting Amp/EQ
ADI

ADN2915

Continuous Rate 6.5 Mbps to 11.3 Gbps Clock and Data Recovery IC with Integrated Limiting Amp/EQ
ADI

ADN2915ACPZ

Continuous Rate 6.5 Mbps to 11.3 Gbps Clock and Data Recovery IC with Integrated Limiting Amp/EQ
ADI

ADN2917

Continuous Rate 8.5 Gbps to 11.3 Gbps Clock and Data Recovery IC with Integrated Limiting Amp/EQ
ADI

ADN2917ACPZ

Continuous Rate 8.5 Gbps to 11.3 Gbps Clock and Data Recovery IC with Integrated Limiting Amp/EQ
ADI

ADN2917ACPZ-RL7

Continuous Rate 8.5 Gbps to 11.3 Gbps Clock and Data Recovery IC with Integrated Limiting Amp/EQ
ADI