ADP2387ACPZN-R7 [ADI]

20 V, 6 A, Synchronous, Step-Down DC-to-DC Regulator;
ADP2387ACPZN-R7
型号: ADP2387ACPZN-R7
厂家: ADI    ADI
描述:

20 V, 6 A, Synchronous, Step-Down DC-to-DC Regulator

开关
文件: 总26页 (文件大小:607K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
20 V, 6 A, Synchronous, Step-Down  
DC-to-DC Regulator  
Data Sheet  
ADP2387  
FEATURES  
TYPICAL APPLICATIONS CIRCUIT  
Input voltage range: 4.5 V to 20 V  
Integrated MOSFET: 44 mΩ typical/11 mΩ typical  
Reference voltage: 0.6 V 1%  
ADP2387  
BST  
V
PVIN  
EN  
IN  
C
BST  
L
C
IN  
SW  
V
OUT  
Continuous output current: 6 A  
C
OUT  
PGOOD  
ILIM  
RT  
R
TOP  
Programmable current-limit threshold  
Programmable switching frequency: 200 kHz to 1400 kHz  
Precision enable and power good  
External compensation  
Internal soft start with external adjustable option  
Startup into a precharged output  
FB  
COMP  
SS  
R
ILIM  
R
T
R
C
R
VREG  
BOT  
C
C
VREG  
GND PGND  
C
C
SS  
Supported by ADIsimPower design tool  
Figure 1.  
APPLICATIONS  
Communications infrastructure  
Networking and servers  
Industrial and instrumentation  
Healthcare and medical  
Intermediate power rail conversion  
DC-to-dc point of load applications  
GENERAL DESCRIPTION  
The ADP2387 is a synchronous step-down, dc-to-dc regulator with  
an integrated 44 mΩ, high-side power, metal oxide semiconductor  
field effect transistor (MOSFET) and an 11 mΩ, synchronous  
rectifier MOSFET to provide a high efficiency solution in a  
compact 4 mm × 4 mm LFCSP. This device uses a peak current  
mode, constant frequency pulse-width modulation (PWM)  
control scheme for excellent stability and transient response.  
The switching frequency of the ADP2387 can be programmed  
between 200 kHz to 1400 kHz.  
Other key features include undervoltage lockout (UVLO),  
overvoltage protection (OVP), overcurrent protection (OCP),  
short-circuit protection (SCP), and thermal shutdown (TSD).  
The ADP2387 operates over the −40°C to +125°C junction  
temperature range and is available in a 24-lead, 4 mm × 4 mm  
LFCSP.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
The ADP2387 requires minimal external components and operates  
from an input voltage of 4.5 V to 20 V. The output voltage can  
be adjusted from 0.6 V to 90% of the input voltage and delivers  
up to 6 A of continuous current. Each IC draws less than 110 µA  
current from the input source when it is disabled.  
This regulator targets high performance applications that require  
high efficiency and design flexibility. External compensation  
and an adjustable soft start function provide design flexibility.  
The power-good output and precision enable input provide  
simple and reliable power sequencing. The programmable  
current-limit function allows the inductor to be optimized by  
output current.  
V
V
V
= 5.0V  
= 3.3V  
= 1.2V  
OUT  
OUT  
OUT  
55  
50  
0
1
2
3
4
5
6
OUTPUT CURRENT (A)  
Figure 2. Efficiency vs. Output Current, VIN = 12 V, fSW = 300 kHz  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2016–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADP2387* PRODUCT PAGE QUICK LINKS  
Last Content Update: 04/25/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
ADP2387 Material Declaration  
PCN-PDN Information  
EVALUATION KITS  
ADP2387 Evaluation Board  
Quality And Reliability  
Symbols and Footprints  
DOCUMENTATION  
Data Sheet  
DISCUSSIONS  
View all ADP2387 EngineerZone Discussions.  
ADP2387: 20 V, 6 A, Synchronous, Step-Down DC-to-DC  
Regulator Data Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
User Guides  
UG-786: Evaluation Board for the ADP2387 20 V, 6 A  
Synchronous, Step-Down, DC-to-DC Regulator  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
ADP2387  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications Information .............................................................. 15  
Input Capacitor Selection.......................................................... 15  
Output Voltage Setting .............................................................. 15  
Voltage Conversion Limitations............................................... 15  
Inductor Selection...................................................................... 16  
Output Capacitor Selection....................................................... 16  
Programming Input Voltage UVLO ........................................ 17  
Compensation Design ............................................................... 17  
ADIsimPower Design Tool ....................................................... 18  
Design Example.............................................................................. 19  
Output Voltage Setting .............................................................. 19  
Frequency Setting....................................................................... 19  
Current-Limit Threshold Setting............................................. 19  
Inductor Selection...................................................................... 19  
Output Capacitor Selection....................................................... 20  
Compensation Components..................................................... 20  
Soft Start Time Program ........................................................... 20  
Input Capacitor Selection.......................................................... 20  
Recommended External Components .................................... 21  
Circuit Board Layout Recommendations ................................... 22  
Typical Applications Circuits........................................................ 24  
Outline Dimensions....................................................................... 25  
Ordering Guide .......................................................................... 25  
Applications....................................................................................... 1  
Typical Applications Circuit............................................................ 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 12  
Control Scheme .......................................................................... 12  
Precision Enable/Shutdown ...................................................... 12  
Internal Regulator (VREG)....................................................... 12  
Bootstrap Circuitry .................................................................... 12  
Oscillator ..................................................................................... 12  
Soft Start ...................................................................................... 12  
Power Good................................................................................. 13  
Peak Current-Limit and Short-Circuit Protection................. 13  
Overvoltage Protection (OVP)................................................. 13  
Undervoltage Lockout (UVLO) ............................................... 14  
Thermal Shutdown..................................................................... 14  
REVISION HISTORY  
4/2017—Rev. B to Rev. C  
Added Maximum Junction Temperature Parameter, Table 2 ....... 6  
1/2016—Revision B: Initial Version  
Rev. C | Page 2 of 25  
 
Data Sheet  
ADP2387  
FUNCTIONAL BLOCK DIAGRAM  
VREG  
CLK  
BIAS AND DRIVER  
REGULATOR  
PVIN  
OSC  
RT  
SLOPE RAMP  
UVLO  
EN  
EN_BUF  
BOOST  
REGULATOR  
1.17V  
1µA  
4µA  
A
CS  
OCP  
THRESHOLD  
SETTING  
V
I_MAX  
ILIM  
HICCUP  
MODE  
OCP  
+
BST  
SW  
SLOPE RAMP  
NFET  
NFET  
Σ
DRIVER  
COMP  
0.6V  
+
+
+
CMP  
I
SS  
CONTROL  
LOGIC  
SS  
FB  
AMP  
AND MOSFET  
DRIVER WITH  
ANTICROSS  
VREG  
PROTECTION  
DRIVER  
OVP  
0.7V  
PGND  
CLK  
NEG CURRENT  
CMP  
+
+
V
I_NEG  
0.54V  
+
PGOOD  
GND  
DEGLITCH  
ADP2387  
Figure 3. Functional Block Diagram  
Rev. C | Page 3 of 25  
 
ADP2387  
Data Sheet  
SPECIFICATIONS  
VPVIN = 12 V, TJ = −40°C to +125°C for minimum/maximum specifications, and TA = 25°C for typical specifications, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
PVIN  
PVIN Voltage Range  
Quiescent Current  
Shutdown Current  
PVIN Undervoltage Lockout Threshold  
VPVIN  
IQ  
ISHDN  
UVLO  
4.5  
2.4  
50  
20  
V
No switching  
EN = GND  
PVIN rising  
PVIN falling  
2.9  
80  
4.3  
3.8  
3.6  
110  
4.4  
mA  
µA  
V
3.6  
V
FB  
FB Regulation Voltage  
VFB  
0°C < TJ < 85°C  
−10°C < TJ < +115°C  
−40°C < TJ < +125°C  
596.4  
595.2  
594  
600  
600  
600  
0.01  
603.6  
604.8  
606  
mV  
mV  
mV  
µA  
FB Bias Current  
ERROR AMPLIFIER (EA)  
Transconductance  
EA Source Current  
EA Sink Current  
IFB  
0.1  
gm  
ISOURCE  
ISINK  
380  
40  
40  
480  
60  
60  
580  
80  
80  
µS  
µA  
µA  
INTERNAL REGULATOR (VREG)  
VREG Voltage  
Dropout Voltage  
VVREG  
VPVIN = 12 V, IVREG = 50 mA  
VPVIN = 12 V, IVREG = 50 mA  
7.6  
62  
8
350  
100  
8.4  
V
mV  
mA  
Current-Limit Regulator  
138  
SW  
High-Side On Resistance1  
Low-Side On Resistance1  
SW Minimum On Time  
SW Minimum Off Time  
BST  
RDSON_HS  
RDSON_LS  
tMIN_ON  
VBST − VSW = 5 V  
VVREG = 8 V  
44  
11  
130  
200  
70  
18  
165  
260  
mΩ  
mΩ  
ns  
tMIN_OFF  
ns  
Bootstrap Voltage  
OSCILLATOR (RT PIN)  
Switching Frequency  
Switching Frequency Range  
CURRENT LIMIT  
VBOOT  
fSW  
4.6  
5
5.4  
V
RT = 100 kΩ  
540  
200  
600  
660  
1400  
kHz  
kHz  
High-Side Peak  
RILIM = 44.2 kΩ  
RILIM = 66.5 kΩ  
RILIM = 133 kΩ  
7.7  
5.1  
2.3  
9.2  
6.1  
2.9  
2.5  
0.6  
10.7  
7.1  
3.5  
A
A
A
A
V
µA  
Low-Side Negative2  
ILIM Voltage2  
ILIM Current Range2  
VILIM  
IILIM  
4
15  
SS  
Internal Soft Start  
SS Pin Pull-Up Current  
PGOOD  
1600  
3.1  
Clock cycles  
µA  
ISS_UP  
2.2  
3.8  
Power-Good Range  
FB Rising Threshold  
FB Rising Hysteresis  
FB Falling Threshold  
FB Falling Hysteresis  
Power-Good Deglitch Time  
PGOOD from low to high  
PGOOD from high to low  
PGOOD from low to high  
PGOOD from high to low  
PGOOD from low to high  
PGOOD from high to low  
VPGOOD = 5 V  
95  
5
%
%
%
%
105  
11.7  
1024  
16  
0.01  
125  
Clock cycles  
Clock cycles  
µA  
Power-Good Leakage Current  
Power-Good Output Low Voltage  
0.1  
190  
IPGOOD = 1 mA  
mV  
Rev. C | Page 4 of 25  
 
 
Data Sheet  
ADP2387  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
EN  
EN Rising Threshold  
EN Falling Threshold  
EN Source Current  
1.17  
1.07  
5
1.25  
V
V
µA  
µA  
0.97  
EN voltage below falling threshold  
EN voltage above rising threshold  
1
THERMAL SHUTDOWN (TSD)  
Threshold  
Hysteresis  
150  
25  
°C  
°C  
1 Pin-to-pin measurement.  
2 Guaranteed by design.  
Rev. C | Page 5 of 25  
 
ADP2387  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
Parameter  
Rating  
JA is specified for the worst case conditions, that is, a device  
soldered in the circuit board (4-layer, JEDEC standard board)  
for surface mount packages.  
PVIN, SW, EN, PGOOD  
SW 10 ns Transient  
SW 100 ns Transient  
BST  
FB, SS, COMP, ILIM, RT  
VREG  
−0.3 V to +22 V  
−2.5 V to +22 V  
−1 V to +22 V  
VSW + 6 V  
−0.3 V to +6 V  
−0.3 V to +12 V  
−0.3 V to +0.3 V  
Table 3. Thermal Resistance  
Package Type  
JA  
42.6  
JC  
Unit  
°C/W  
°C/W  
24-Lead LFCSP  
6.8 (EP, SW)  
2.3 (EP, GND)  
PGND to GND  
Operating Junction Temperature Range −40°C to +125°C  
ESD CAUTION  
Maximum Junction Temperature  
Storage Temperature Range  
Soldering Conditions  
150°C  
−65°C to +150°C  
JEDEC J-STD-020  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. C | Page 6 of 25  
 
 
 
Data Sheet  
ADP2387  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
COMP 1  
FB 2  
18 PVIN  
17 PVIN  
16 PVIN  
15 BST  
14 SW  
25  
GND  
VREG 3  
GND 4  
SW 5  
26  
SW  
SW 6  
13 PGND  
ADP2387  
TOP VIEW  
(Not to Scale)  
NOTES  
1. THE EXPOSED GND PAD MUST BE SOLDERED  
TO A LARGE, EXTERNAL, COPPER GND PLANE  
TO REDUCE THERMAL RESISTANCE.  
2. THE EXPOSED SW PAD MUST BE CONNECTED  
TO THE SW PINS OF THE ADP2387 BY USING  
SHORT, WIDE TRACES, OR ELSE SOLDERED  
TO A LARGE, EXTERNAL, COPPER SW PLANE  
TO REDUCE THERMAL RESISTANCE.  
Figure 4. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
COMP  
FB  
Description  
Error Amplifier Output. Connect an RC network from COMP to GND.  
Feedback Voltage Sense Input. Connect this pin to a resistor divider from the output voltage, VOUT  
Output of the Internal 8 V Regulator. The control circuits are powered from this voltage. Place a 1 µF, X7R or  
X5R ceramic capacitor between this pin and GND.  
1
2
3
.
VREG  
4
GND  
SW  
PGND  
BST  
Analog Ground. This pin is the return of the internal control circuit.  
Switch Node Outputs. Connect these pins to the output inductor.  
Power Ground. This pin is the return of the low-side power MOSFET.  
Supply Rail for the High-Side Gate Drive. Place a 0.1 µF, X7R or X5R capacitor between SW and BST.  
5 to 7, 14  
8 to 13  
15  
16 to 19  
PVIN  
Power Inputs. Connect these pins to the input power source and connect a bypass capacitor between these  
pins and PGND.  
20  
EN  
Precision Enable Pin. An external resistor divider can set the turn on threshold. To enable the device  
automatically, connect the EN pin to the PVIN pin.  
21  
22  
PGOOD  
RT  
Power-Good Output (Open Drain). Connecting a pull-up resistor of 10 kΩ to 100 kΩ to this pin is recommended.  
Frequency Setting. Connect a resistor between RT and GND to program the switching frequency between  
200 kHz to 1400 kHz.  
23  
24  
ILIM  
SS  
Current-Limit Threshold Setting. Connect a resistor between ILIM and GND to program the current-limit  
threshold.  
Soft Start Control. Connect a capacitor from SS to GND to program the soft start time. If this pin is open, the  
regulator uses the internal soft start time.  
25  
26  
E P, G N D  
E P, S W  
The exposed GND pad must be soldered to a large, external, copper GND plane to reduce thermal resistance.  
The exposed SW pad must be connected to the SW pins of the ADP2387 by using short, wide traces, or else  
soldered to a large, external copper SW plane to reduce thermal resistance.  
Rev. C | Page 7 of 25  
 
ADP2387  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25oC, VIN = 12 V, VOUT = 3.3 V, L = 2.2 µH, COUT = 100 µF + 47 µF, fSW = 600 kHz, unless otherwise noted.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
INDUCTOR:  
INDUCTOR:  
FDVE1040-4R7  
FDVE1040-  
2R2  
V
= 1.2V  
= 1.8V  
= 2.5V  
= 3.3V  
= 5.0V  
V
V
V
V
V
= 1.2V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
V
= 1.8V  
= 2.5V  
= 3.3V  
= 5.0V  
OUT  
V
V
V
OUT  
OUT  
OUT  
0
0
4
1
2
3
4
5
6
0
0
4
1
2
3
4
5
6
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 5. Efficiency at VIN = 12 V, fSW = 600 kHz  
Figure 8. Efficiency at VIN = 12 V, fSW = 300 kHz  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
INDUCTOR:  
744 333 0100  
INDUCTOR:  
V
V
V
V
V
= 1.0V  
FDVE1040-  
2R2  
OUT  
OUT  
OUT  
OUT  
OUT  
V
= 1.8V  
= 1.2V  
= 1.8V  
= 2.5V  
= 3.3V  
OUT  
V
V
V
= 2.5V  
= 3.3V  
= 5.0V  
OUT  
OUT  
OUT  
1
2
3
4
5
6
1
2
3
4
5
6
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 6. Efficiency at VIN = 18 V, fSW = 600 kHz  
Figure 9. Efficiency at VIN = 5 V, fSW = 600 kHz  
100  
90  
80  
70  
60  
50  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
T
T
T
= +125°C  
= +25°C  
= –40°C  
T
T
T
= +125°C  
= +25°C  
= –40°C  
J
J
J
J
J
J
6
8
10  
12  
14  
16  
18  
20  
6
8
10  
12  
14  
16  
18  
20  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 7. Shutdown Current vs. Input Voltage  
Figure 10. Quiescent Current vs. Input Voltage  
Rev. C | Page 8 of 25  
 
Data Sheet  
ADP2387  
4.5  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
RISING  
FALLING  
RISING  
FALLING  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
3.6  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
120  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
120  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. PVIN UVLO Threshold vs. Temperature  
Figure 14. EN Threshold vs. Temperature  
3.20  
3.15  
3.10  
3.05  
3.00  
2.95  
2.90  
606  
604  
602  
600  
598  
596  
594  
–40  
–20  
0
20  
40  
60  
80  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. SS Pin Pull-Up Current vs. Temperature  
Figure 15. Feedback Voltage vs. Temperature  
630  
620  
610  
600  
590  
580  
570  
8.4  
8.3  
8.2  
8.1  
8.0  
7.9  
7.8  
7.7  
R
= 100kΩ  
T
–40  
–20  
0
20  
40  
60  
80  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. Frequency vs. Temperature  
Figure 16. VREG Voltage vs. Temperature  
Rev. C | Page 9 of 25  
ADP2387  
Data Sheet  
65  
55  
45  
35  
25  
15  
5
10  
9
HIGH-SIDE R  
LOW-SIDE R  
DSON  
DSON  
8
I
I
I
= 9A  
= 6A  
= 3A  
OCP  
OCP  
OCP  
7
6
5
4
3
2
–40  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. MOSFET Resistor vs. Temperature  
Figure 20. Peak Current-Limit Threshold vs. Temperature  
EN  
V
(AC)  
OUT  
I
L
V
OUT  
PGOOD  
SW  
I
OUT  
Figure 18. Working Mode Waveform  
Figure 21. Soft Start with Full Load  
EN  
EN  
V
OUT  
V
OUT  
PGOOD  
PGOOD  
I
OUT  
I
L
Figure 19. Precharged Output  
Figure 22. Shutdown with Full Load  
Rev. C | Page 10 of 25  
 
Data Sheet  
ADP2387  
V
(AC)  
V
(AC)  
OUT  
OUT  
V
IN  
SW  
I
OUT  
Figure 23. Load Transient Response, 1 A to 5 A  
Figure 26. Line Transient Response, VIN from 8 V to 14 V, IOUT = 6 A  
V
OUT  
V
OUT  
SW  
SW  
I
L
I
L
Figure 24. Output Short Entry  
Figure 27. Output Short Recovery  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
V
V
V
V
V
V
= 1.0V  
= 1.2V  
= 1.8V  
= 2.5V  
= 3.3V  
= 5.0V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
V
V
V
V
V
= 1.2V  
= 1.8V  
= 2.5V  
= 3.3V  
= 5.0V  
OUT  
OUT  
OUT  
OUT  
OUT  
70  
75  
80  
85  
90  
95  
100  
70  
75  
80  
85  
90  
95  
100  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
Figure 25. Output Current vs. Ambient Temperature at VIN = 12 V,  
SW = 600 kHz, Measured on the ADP2387 Evaluation Board  
Figure 28. Output Current vs. Ambient Temperature at VIN = 12 V,  
SW = 300 kHz, Measured on the ADP2387 Evaluation Board  
f
f
Rev. C | Page 11 of 25  
ADP2387  
Data Sheet  
THEORY OF OPERATION  
The ADP2387 is a synchronous step-down, dc-to-dc regulator  
that uses a current mode architecture with an integrated high-  
side power switch and a low-side synchronous rectifier. The  
regulator targets high performance applications that require  
high efficiency and design flexibility.  
OSCILLATOR  
The RT pin controls the ADP2387 switching frequency. A  
resistor (RT) from RT to GND can program the switching  
frequency according to the following equation:  
69,120  
( )  
RT +15  
fSW (kHz) =  
The ADP2387 operates with an input voltage from 4.5 V to 20 V  
and regulates the output voltage from 0.6 V to 90% of the input  
voltage. Additional features that maximize design flexibility  
include programmable current-limit threshold, programmable  
switching frequency, programmable soft start, external  
A 100 kΩ resistor sets the frequency to 600 kHz, and a 42.2 kΩ  
resistor sets the frequency to 1.2 MHz. Figure 29 shows the typical  
relationship between the switching frequency (fSW) and RT.  
1400  
compensation, precision enable, and a power-good output.  
CONTROL SCHEME  
1200  
1000  
800  
600  
400  
200  
0
The ADP2387 uses a fixed frequency, peak current mode PWM  
control architecture. At the start of each oscillator cycle, the  
high-side MOSFET turns on, generating a positive voltage  
across the inductor. When the inductor current crosses the peak  
inductor current threshold, the high-side MOSFET turns off,  
and the low-side MOSFET turns on. Turning on the low-side  
MOSFET generates a negative voltage across the inductor,  
which causes the inductor current to decrease. The low-side  
MOSFET stays on for the rest of cycle (see Figure 18).  
PRECISION ENABLE/SHUTDOWN  
20  
60  
100  
140  
180  
(kΩ)  
220  
260  
300  
R
T
The EN input pin has a precision analog threshold of 1.17 V  
(typical) with 100 mV of hysteresis. When the enable voltage  
exceeds 1.17 V, the regulator turns on. When the enable voltage  
falls below 1.07 V (typical), the regulator turns off. To force the  
regulator to start automatically when input power is applied,  
connect EN to PVIN.  
Figure 29. Switching Frequency vs. RT  
SOFT START  
The ADP2387 has integrated soft start circuitry to limit the output  
voltage rising time and reduce inrush current at startup. Calculate  
the internal soft start time (tSS_INT) by using the following equation:  
The precision EN pin has an internal pull-down current source  
(5 µA) that provides a default turn off when the EN pin is open.  
1600  
fSW (kHz)  
tSS_INT  
=
(ms)  
When the EN pin voltage exceeds 1.17 V (typical), the ADP2387  
is enabled and the internal pull-down current source at the EN  
pin decreases to 1 µA, which allows users to program the PVIN  
UVLO and hysteresis.  
To program a slower soft start time, use the SS pin. When a  
capacitor is connected between the SS pin and GND, an internal  
current charges the capacitor to establish the soft start ramp.  
Calculate the external soft start time (tSS_EXT) by using the  
following equation:  
INTERNAL REGULATOR (VREG)  
The on-board regulator provides a stable supply for the internal  
circuits. Place a 1 µF, X7R or X5R ceramic capacitor between  
the VREG pin and the GND pin. The internal regulator includes  
a current-limit circuit to protect the output if the maximum  
external load current is exceeded.  
0.6 V ×CSS  
tSS_EXT  
=
ISS_UP  
where:  
SS is the soft start capacitance.  
SS_UP is the soft start pull-up current (3.1 µA).  
C
I
BOOTSTRAP CIRCUITRY  
The internal error amplifier includes three positive inputs: the  
internal reference voltage, the internal digital soft start voltage,  
and the SS pin voltage. The error amplifier regulates the FB  
voltage to the lowest of the three voltages.  
The ADP2387 includes a regulator to provide the gate drive  
voltage for the high-side MOSFET. It uses differential sensing to  
generate a 5 V bootstrap voltage between the BST and SW pins.  
Place a 0.1 µF, X7R or X5R ceramic capacitor between the BST  
and the SW pins.  
When the output voltage is charged prior to turn on, the  
ADP2387 prevents the reverse inductor current from discharging  
the output capacitor. This function remains active until the soft  
start voltage exceeds the voltage on the FB pin.  
Rev. C | Page 12 of 25  
 
 
 
 
 
 
 
 
Data Sheet  
ADP2387  
10  
9
POWER GOOD  
The power-good pin (PGOOD) is an active high, open-drain  
output that requires an external resistor to pull it up to a  
voltage. A logic high on the PGOOD pin indicates that the  
voltage on the FB pin (and, therefore, the output voltage) is  
within regulation.  
8
7
6
The power-good circuitry monitors the output voltage on the  
FB pin and compares it to the rising and falling thresholds that  
are specified in Table 1. If the rising output voltage exceeds the  
target value, the PGOOD pin is held low. The PGOOD pin  
continues to be held low until the falling output voltage returns  
to the target value.  
5
4
3
2
40  
60  
80  
100  
120  
(kΩ)  
140  
160  
180  
200  
R
ILIM  
If the output voltage falls below the target output voltage, the  
PGOOD pin is held low. The PGOOD pin continues to be held  
low until the rising output voltage returns to the target value.  
Figure 31. Peak Current-Limit Threshold vs. RILIM  
Table 5. FB Pin Voltage and Switching Frequency  
The power-good rising and falling thresholds are shown in  
Figure 30. There is a 1024 clock cycle waiting period before  
the PGOOD pin is pulled from low to high, and there is a  
16 clock cycle waiting period before the PGOOD pin is pulled  
from high to low.  
FB Pin Voltage  
Switching Frequency  
VFB ≥ 0.4 V  
0.4 V > VFB ≥ 0.2 V  
VFB < 0.2 V  
fSW  
fSW/2  
fSW/4  
For protection against heavy loads, the ADP2387 uses a hiccup  
mode for overcurrent protection. When the inductor peak current  
reaches the current-limit value, the high-side MOSFET turns  
off and the low-side MOSFET turns on until the next cycle.  
The overcurrent counter increments during this process. If the  
overcurrent counter reaches 10 or if the FB pin voltage falls to  
0.4 V after the soft start, the regulator enters hiccup mode. The  
high-side and low-side MOSFETs both turn off. The regulator  
remains in hiccup mode for 4096 clock cycles and then attempts  
to restart. If the current-limit fault clears, the regulator resumes  
normal operation. Otherwise, it reenters hiccup mode.  
V
RISING  
V
FALLING  
OUT  
OUT  
116.7%  
105%  
100%  
95  
%
90%  
PGOOD  
1024 CYCLE  
DEGLITCH  
16 CYCLE  
DEGLITCH  
1024 CYCLE  
DEGLITCH  
16 CYCLE  
DEGLITCH  
Figure 30. PGOOD Rising and Falling Thresholds  
The ADP2387 also provides a sink current-limit to prevent the  
low-side MOSFET from sinking excessive current from the load.  
When the voltage across the low-side MOSFET exceeds the sink  
current-limit threshold, which is typically 2.5 A, the low-side  
MOSFET turns off immediately for the rest of the cycle. Both high-  
side and low-side MOSFETs turn off until the next clock cycle.  
PEAK CURRENT-LIMIT AND SHORT-CIRCUIT  
PROTECTION  
The ADP2387 has a peak current-limit protection circuit to  
prevent current runaway. A resistor between ILIM and GND  
programs the peak current-limit threshold according to the  
following equation:  
In some cases, the input voltage (VPVIN) ramp rate is too slow or  
the output capacitor is too large for the output to reach regulation  
during the soft start process, which causes the regulator to enter  
hiccup mode. To avoid such occurrences, use a resistor divider  
at the EN pin to program the input voltage UVLO, or use a  
longer soft start time.  
405  
I
OCP (A) =  
RILIM + 0.5  
( )  
where:  
OCP is the peak current-limit threshold.  
ILIM is the resistor between ILIM and GND.  
Figure 31 shows the typical relationship between the peak  
current-limit threshold and RILIM  
I
R
OVERVOLTAGE PROTECTION (OVP)  
The ADP2387 includes an overvoltage protection feature to  
protect the regulator against an output short to a higher voltage  
supply or when a strong load disconnect transient occurs. If the  
feedback voltage increases to 0.7 V, the internal high-side and  
low-side MOSFETs turn off until the voltage at the FB pin  
decreases to 0.63 V. At that time, the ADP2387 resumes normal  
operation.  
.
During the initial soft start, the ADP2387 uses frequency  
foldback to prevent output current runaway. The switching  
frequency reduces according to the voltage on the FB pin,  
which allows more time for the inductor to discharge. Table 5  
shows the correlation between the switching frequency and  
FB pin voltage.  
Rev. C | Page 13 of 25  
 
 
 
 
 
 
ADP2387  
Data Sheet  
UNDERVOLTAGE LOCKOUT (UVLO)  
THERMAL SHUTDOWN  
Undervoltage lockout circuitry is integrated in the ADP2387 to  
prevent the occurrence of power-on glitches. If the VPVIN voltage  
drops below 3.8 V typical, the device shuts down and both the  
power switch and synchronous rectifier turn off. When the VPVIN  
voltage rises again above 4.3 V typical, the soft start period is  
initiated and the device is enabled.  
If the ADP2387 junction temperatures rises above 150°C, the  
internal thermal shutdown circuit turns off the regulator for self  
protection. Extreme junction temperatures can be the result of  
high current operation, poor circuit board thermal design,  
and/or high ambient temperature. If an overtemperature event  
occurs, the ADP2387 does not return to normal operation until  
the on-chip temperature falls below 125°C because a 25°C  
hysteresis is included in the thermal shutdown circuit. Upon  
recovery, a soft start initiates before normal operation begins.  
Rev. C | Page 14 of 25  
 
 
Data Sheet  
ADP2387  
APPLICATIONS INFORMATION  
INPUT CAPACITOR SELECTION  
VOLTAGE CONVERSION LIMITATIONS  
The input capacitor reduces the input voltage ripple caused by  
the switch current on PVIN. Place the input capacitor as close  
as possible to the PVIN pin. A ceramic capacitor in the 10 µF to  
47 µF range is recommended. Keep the loop that is composed of  
this input capacitor, the high-side MOSFET, and the low-side  
MOSFET as small as possible.  
The minimum output voltage for a given input voltage and  
switching frequency is constrained by the minimum on time.  
The minimum on time of the ADP2387 is typically 130 ns.  
Calculate the minimum output voltage for a given input voltage  
and switching frequency by using the following equation:  
V
OUT_MIN = VIN × tMIN_ON × fSW − (RDSON_HS RDSON_LS) ×  
OUT_MIN × tMIN_ON × fSW − (RDSON_LS + RL) × IOUT_MIN  
where:  
OUT_MIN is the minimum output voltage.  
MIN_ON is the minimum on time.  
SW is the switching frequency.  
The voltage rating of the input capacitor must be greater than the  
maximum input voltage. The rms current rating of the input  
capacitor must be larger than the value calculated by the  
following equation:  
I
(1)  
V
t
f
IC  
= IOUT × D × (1 D)  
INRMS  
R
R
DSON_HS is the high-side MOSFET on resistance.  
DSON_LS is the low-side MOSFET on resistance.  
OUTPUT VOLTAGE SETTING  
An external resistive divider sets the output voltage of the  
ADP2387. Use the following equation to calculate the resistor  
values:  
IOUT_MIN is the minimum output current.  
RL is the series resistance of the output inductor.  
The maximum output voltage for a given input voltage and  
switching frequency is constrained by the minimum off time  
and the maximum duty cycle. The minimum off time is typically  
200 ns, and the maximum duty cycle of the ADP2387 is  
typically 90%.  
RTOP  
RBOT  
VOUT = 0.6 × 1 +  
where:  
R
TOP is the top feedback resistor between VOUT and FB.  
Calculate the maximum output voltage, limited by the minimum  
off time for a given input voltage and switching frequency, by  
using the following equation:  
RBOT is the bottom feedback resistor between FB and GND.  
To limit output voltage accuracy degradation due to the FB bias  
current (0.1 µA maximum) to less than 0.5% (maximum),  
ensure that RBOT < 30 kΩ.  
V
OUT_MAX = VIN × (1 − tMIN_OFF × fSW) − (RDSON_HS RDSON_LS) ×  
OUT_MAX × (1 − tMIN_OFF × fSW) − (RDSON_LS + RL) × IOUT_MAX (2)  
where:  
OUT_MAX is the maximum output voltage.  
MIN_OFF is the minimum off time.  
I
Table 6 lists the recommended resistor divider values for various  
output voltages.  
V
t
I
Table 6. Resistor Divider Values for Various Output Voltages  
VOUT (V)  
OUT_MAX is the maximum output current.  
RTOP 1% (kΩ)  
RBOT 1% (kΩ)  
Calculate the maximum output voltage, limited by the maximum  
duty cycle for a given input voltage, using the following equation:  
1.0  
1.2  
1.5  
1.8  
2.5  
3.3  
5.0  
10  
10  
15  
20  
47.5  
10  
22  
15  
10  
10  
10  
15  
2.21  
3
VOUT_MAX = DMAX × VIN  
(3)  
where DMAX is the maximum duty cycle.  
As shown in Equation 1 to Equation 3, reducing the switching  
frequency alleviates the minimum on time and minimum off  
time limitation.  
Rev. C | Page 15 of 25  
 
 
 
 
 
ADP2387  
Data Sheet  
INDUCTOR SELECTION  
OUTPUT CAPACITOR SELECTION  
The operating frequency, input voltage, output voltage, and  
inductor ripple current determine the inductor value. Using a  
small inductor leads to a faster transient response, but it degrades  
efficiency due to a larger inductor ripple current; whereas using  
a large inductor value leads to smaller ripple current and better  
efficiency but results in a slower transient response.  
The output capacitor selection affects the output ripple voltage  
load step transient and the loop stability of the regulator.  
For example, during a load step transient where the load is  
suddenly increased, the output capacitor supplies the load until  
the control loop can ramp up the inductor current. The delay  
caused by the control loop causes output undershoot. Calculate  
the output capacitance that is required to satisfy the voltage  
droop requirement by using the following equation:  
As a guideline, the inductor ripple current, ΔIL, is typically set to  
one-third of the maximum load current. Calculate the inductor  
value by using the following equation:  
KUV × ∆ISTEP2 × L  
2 ×(VIN VOUT )× ∆VOUT _UV  
COUT_UV  
=
(VIN VOUT )× D  
L =  
IL × fSW  
where:  
KUV is a factor, with a typical setting of KUV = 2.  
where:  
V
V
IN is the input voltage.  
OUT is the output voltage.  
ΔISTEP is the load step.  
ΔVOUT_UV is the allowable undershoot on the output voltage.  
D is the duty cycle (D = VOUT/VIN).  
ΔIL is the inductor current ripple.  
Another example occurs when a load is suddenly removed from  
the output, and the energy stored in the inductor rushes into  
the output capacitor, causing the output to overshoot.  
fSW is the switching frequency.  
The ADP2387 uses adaptive slope compensation in the current  
loop to prevent subharmonic oscillations when the duty cycle is  
larger than 50%. The internal slope compensation limits the  
minimum inductor value.  
Calculate the output capacitance required to meet the overshoot  
requirement by using the following equation:  
KOV × ∆ISTEP2 × L  
(VOUT + ∆VOUT _OV ) VOUT  
COUT_OV  
=
2
2
For a duty cycle that is larger than 50%, determine the  
minimum inductor value by using the following equation:  
where:  
OV is a factor, with a typical setting of KOV = 2.  
K
VOUT  
×
(
1D  
)
L (Minimum) =  
ΔVOUT_OV is the allowable overshoot on the output voltage.  
4× fSW  
The equivalent series resistance (ESR) and capacitance value  
determine the output ripple. Use the following equations to  
select a capacitor to meet the output ripple requirements:  
Calculate the peak inductor current as follows:  
ΔIL  
2
IPEAK = IOUT +  
IL  
COUT_RIPPLE  
=
8 × fSW × ∆VOUT _ RIPPLE  
The saturation current of the inductor must be larger than the peak  
inductor current. For ferrite core inductors with a quick saturation  
characteristic, the saturation current rating of the inductor must  
be higher than the current-limit threshold of the switch. This  
higher rating prevents the inductor from reaching saturation.  
VOUT _ RIPPLE  
RESR  
=
IL  
where:  
ΔVOUT_RIPPLE is the allowable output ripple voltage.  
ESR is the ESR of the output capacitor in ohms (Ω).  
Calculate the rms current of the inductor as follows:  
R
2
IL  
12  
2
IRMS  
=
Select the largest output capacitance given by COUT_UV, COUT_OV  
and COUT_RIPPLE to meet both load transient and output ripple  
performance.  
,
IOUT  
+
Shielded ferrite core materials are recommended for low core  
loss and low EMI. Table 7 lists some recommended inductors.  
The selected output capacitor voltage rating must be greater  
than the output voltage. The rms current rating of the output  
capacitor must be larger than the value calculated by  
IL  
12  
ICOUT_RMS  
=
Rev. C | Page 16 of 25  
 
 
Data Sheet  
ADP2387  
Table 7. Recommended Inductors  
Vendor  
Part No.  
Value (µH)  
0.47  
0.75  
1.0  
1.5  
2.2  
ISAT (A)  
15.6  
10.9  
9.5  
13.7  
11.4  
9.8  
IRMS (A)  
14.1  
10.7  
9.5  
14.6  
11.6  
9.0  
DCR (mΩ)  
3.7  
6.2  
8.5  
4.6  
Toko  
FDVE0630-R47M  
FDVE0630-R75M  
FDVE0630-1R0M  
FDVE1040-1R5M  
FDVE1040-2R2M  
FDVE1040-3R3M  
FDVE1040-4R7M  
IHLP3232DZ-R47M-11  
IHLP3232DZ-R68M-11  
IHLP3232DZ-1R0M-11  
IHLP4040DZ-1R5M-01  
IHLP4040DZ-2R2M-01  
IHLP4040DZ-3R3M-01  
IHLP4040DZ-4R7M-01  
744 325 120  
6.8  
3.3  
4.7  
10.1  
13.8  
2.38  
3.22  
4.63  
5.8  
8.2  
8.0  
Vishay  
0.47  
0.68  
1.0  
1.5  
2.2  
14  
14.5  
12  
27.5  
25.6  
18.6  
17  
25  
22.2  
18.2  
15  
12  
10  
9
3.3  
4.7  
14.4  
16.5  
1.8  
9.5  
Wurth Elektronik  
1.2  
25  
20  
744 325 180  
1.8  
18  
16  
3.5  
744 325 240  
744 325 330  
2.4  
3.3  
17  
15  
14  
12  
4.75  
5.9  
744 325 420  
4.2  
14  
11  
7.1  
PROGRAMMING INPUT VOLTAGE UVLO  
COMPENSATION DESIGN  
The ADP2387 has a precision enable input that can program  
the UVLO threshold of the input voltage (see Figure 32).  
For peak current-mode control, simplify the power stage as a  
voltage controlled current source supplying current to the output  
capacitor and load resistor. It is composed of one domain pole  
and a zero that is contributed by the output capacitor ESR. The  
control-to-output transfer function is based on the following:  
PVIN  
ADP2387  
R
TOP_EN  
s
1+  
1+  
EN CMP  
2× π× fZ  
EN  
V
OUT (s)  
GVD (s) =  
= AVI × R ×  
VCOMP (s)  
s
1.17V  
4µA  
R
BOT_EN  
2× π× fP  
1µA  
1
fz =  
2 × π × RESR ×COUT  
Figure 32. Programming the Input Voltage UVLO  
Use the following equations to calculate RTOP_EN and RBOT_EN  
1.07 V ×VIN _ RISING 1.17 V ×VIN _ FALLING  
1
fp =  
:
2 × π×(R + RESR )×COUT  
RTOP_EN  
=
where:  
VI = 8.7 A/V.  
R is the load resistance.  
ESR is the equivalent series resistance of the output capacitor.  
OUT is the output capacitance.  
1.07 V ×5 μA 1.17 V ×1 μA  
A
1.17 V× RTOP _ EN  
RBOT_EN  
where:  
=
R
C
VIN _ RISING RTOP _ EN ×5 μA 1.17 V  
A transconductance amplifier is used on the ADP2387 as an  
error amplifier and to compensate the system. Figure 33 shows  
the simplified, peak current mode control, small signal circuit.  
V
V
IN_RISING is the VIN rising threshold.  
IN_FALLING is the VIN falling threshold.  
Rev. C | Page 17 of 25  
 
 
 
 
ADP2387  
Data Sheet  
V
V
R
OUT  
OUT  
Calculate RC by using the following equation:  
2 × π ×VOUT COUT fC  
m × AVI  
R
×
×
TOP  
RC =  
V
C
R
0.6V ×  
g
COMP  
OUT  
gm  
+
A
VI  
+
Place the compensation zero at the domain pole (fP), then  
determine CC by using the following equation:  
R
BOT  
R
C
C
CP  
ESR  
C
C
(R + RESR )×COUT  
CC =  
RC  
CCP is optional. It can be used to cancel the zero caused by the  
ESR of the output capacitor.  
Figure 33. Simplified, Peak Current Mode Control, Small Signal Circuit  
The compensation components, RC and CC, contribute a zero, and  
the optional components, CCP and RC, contribute an optional pole.  
R
ESR ×COUT  
CCP  
=
RC  
The closed-loop transfer equation is as follows:  
ADIsimPower DESIGN TOOL  
RBOT  
gm  
TV (s) =  
×
×
RBOT + RTOP CC + CCP  
The ADP2387 is supported by the ADIsimPowerdesign tool  
set. ADIsimPower is a collection of tools that produce complete  
power designs optimized for a specific design goal. The tools  
enable the user to generate a full schematic and bill of materials  
and to calculate performance in minutes. ADIsimPower can  
optimize designs for cost, area, efficiency, and parts count,  
while taking into consideration the operating conditions and  
limitations of the IC and all real external components. For  
more information about the ADIsimPower design tools, go to  
www.analog.com/ADIsimPower. The tool set is available from  
the Analog Devices, Inc., website, and users can request an  
unpopulated board.  
1+ RC ×CC ×s  
×GVD (s)  
RC ×CC ×CCP  
CC ×CCP  
s× 1+  
×s  
The following design guideline shows how to select the RC, CC,  
and CCP compensation components for ceramic output capacitor  
applications.  
Determine the cross frequency (fC). Generally, fC is between  
fSW/12 and fSW/6.  
Rev. C | Page 18 of 25  
 
 
Data Sheet  
ADP2387  
DESIGN EXAMPLE  
ADP2387  
V
= 12V  
IN  
PVIN  
EN  
BST  
SW  
C
IN  
C
0.1µF  
BST  
L1  
10µF  
25V  
2.2µH  
V
= 3.3V  
PGOOD  
OUT  
C
100µF  
C
OUT2  
47µF  
6.3V  
ILIM  
OUT1  
R
10kΩ  
R
TOP  
ILIM  
R
T
44.2kΩ  
6.3V  
100kΩ  
1%  
RT  
FB  
VREG  
R
BOT  
2.21kΩ  
1%  
C
COMP  
VREG  
1µF  
R
C
SS  
44.2kΩ  
C
22nF  
C
4.7pF  
SS  
C
CP  
GND PGND  
C
1.2nF  
Figure 34. Schematic for Design Example  
This section describes the procedures for selecting the external  
components, based on the example specifications that are listed  
in Table 8. See Figure 34 for the schematic of this design example.  
INDUCTOR SELECTION  
The peak-to-peak inductor ripple current, ∆IL, is set to 30% of  
the maximum output current. To estimate the inductor value,  
use the following equation:  
Table 8. Step-Down DC-to-DC Regulator Requirements  
Parameter  
Specification  
12.0 V 10%  
3.3 V  
6 A  
33 mV  
(VIN VOUT )× D  
L =  
Input Voltage (VIN)  
Output Voltage (VOUT  
Output Current (IOUT  
Output Voltage Ripple (∆VOUT_RIPPLE  
Load Transient  
Switching Frequency (fSW)  
IL × fSW  
)
where:  
)
V
V
IN = 12 V.  
OUT = 3.3 V.  
D = 0.275.  
∆IL = 1.8 A.  
)
5%, 1 A to 5 A, 2 A/µs  
600 kHz  
fSW = 600 kHz.  
OUTPUT VOLTAGE SETTING  
This calculation results in L = 2.215 µH. Choose the standard  
inductor value of 2.2 µH.  
Choose a 10 kΩ resistor as the top feedback resistor (RTOP),  
and calculate the bottom feedback resistor (RBOT) by  
Calculate the peak-to-peak inductor ripple current by using the  
following equation:  
0.6  
RBOT = RTOP ×  
VOUT 0.6  
(VIN VOUT )× D  
ΔIL =  
To set the output voltage to 3.3 V, the resistors values are as  
follows: RTOP = 10 kΩ, and RBOT = 2.21 kΩ.  
L × fSW  
This calculation results in ∆IL = 1.81 A.  
FREQUENCY SETTING  
To calculate the peak inductor current, use the following equation:  
To set the switching frequency to 600 kHz, connect a 100 kΩ  
resistor from the RT pin to GND.  
IL  
2
IPEAK = IOUT +  
CURRENT-LIMIT THRESHOLD SETTING  
This calculation results in IPEAK = 6.905 A.  
Connect a 44.2 kΩ resistor between ILIM pin and GND to set  
the current-limit threshold at 9 A.  
To calculate the rms current flowing through the inductor, use  
the following equation:  
2
IL  
12  
2
IRMS  
=
IOUT  
+
This calculation results in IRMS = 6.023 A.  
Based on the calculated current value, select an inductor with  
a minimum rms current rating of 6.03 A and a minimum  
saturation current rating of 6.91 A.  
However, to protect the inductor from reaching its saturation  
point under the current-limit condition, rate the inductor for at  
least a 9.2 A saturation current for reliable operation.  
Rev. C | Page 19 of 25  
 
 
 
 
 
 
 
ADP2387  
Data Sheet  
Based on the requirements previously described, select a 2.2 µH  
inductor, such as the FDVE1040-2R2M from Toko, which has  
a 6.1 mΩ DCR and an 11.4 A saturation current.  
2× π ×3.3 V ×94 μF×60 kHz  
0.6 V × 480μS ×8.7 A/V  
RC =  
CC =  
= 46.7 kΩ  
(0.55 Ω +0.002 Ω )× 94 μF  
= 1111 pF  
OUTPUT CAPACITOR SELECTION  
46.7 kΩ  
The output capacitor is required to meet both the output voltage  
ripple and load transient response requirements.  
0.002 Ω× 94 μF  
46.7 kΩ  
CCP  
=
= 4.0 pF  
To meet the output voltage ripple requirement, use the following  
equation to calculate the ESR and capacitance value of the  
output capacitor:  
Choose standard components, as follows: RC = 44.2 kΩ,  
CC = 1200 pF, and CCP = 4.7 pF.  
Figure 35 shows the bode plot at 6 A. The cross frequency is  
58 kHz, and the phase margin is 62°.  
IL  
COUT_RIPPLE  
=
8 × fSW × ∆VOUT _ RIPPLE  
60  
180  
144  
108  
72  
VOUT _ RIPPLE  
48  
RESR  
=
IL  
36  
This calculation results in COUT_RIPPLE = 11.4 µF, and RESR = 18 mΩ.  
24  
12  
36  
To meet the 5% overshoot and undershoot transient  
requirements, use the following equations to calculate the  
capacitance:  
0
0
–12  
–24  
–36  
–48  
–60  
–36  
–72  
–108  
–144  
–180  
KOV × ∆ISTEP2 × L  
COUT_OV  
=
=
2
2
(VOUT + ∆VOUT _OV ) VOUT  
KUV × ∆ISTEP2 × L  
2 ×(VIN VOUT )× ∆VOUT _UV  
COUT_UV  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
where:  
OV = KUV = 2 are the coefficients for estimation purposes.  
Figure 35. Bode Plot at 6 A  
K
ISTEP = 4 A is the load transient step.  
VOUT_OV = 5% VOUT is the overshoot voltage.  
VOUT_UV = 5% VOUT is the undershoot voltage.  
SOFT START TIME PROGRAM  
The soft start feature allows the output voltage to ramp up in a  
controlled manner, eliminating output voltage overshoot during  
soft start and limiting the inrush current. Set the soft start time  
to 4 ms.  
This calculation results in COUT_OV = 63.1 µF, and COUT_UV = 24.5 µF.  
According to the calculation, the output capacitance must be  
greater than 63 µF, and the ESR of the output capacitor must be  
smaller than 18 mΩ. It is recommended that one 100 µF/X5R/  
6.3 V ceramic capacitor and one 47 µF/X5R/6.3 V ceramic  
capacitor be used, such as the GRM32ER60J107ME20 and  
GRM32ER60J476ME20 from Murata, with an ESR of 2 mΩ.  
tSS _ EXT × ISS _UP 4 ms × 3.1 μA  
CSS  
=
= 20.7 nF  
=
0.6  
0.6V  
Choose a standard component value, as follows: CSS = 22 nF.  
INPUT CAPACITOR SELECTION  
COMPENSATION COMPONENTS  
Place a minimum 10 µF ceramic capacitor near the PVIN pin.  
In this application, it is recommended that one 10 µF, X5R, 25 V  
ceramic capacitor be used.  
For better load transient and stability performance, set the cross  
frequency (fC) to fSW/10. In this case, fSW is running at 600 kHz;  
therefore, fC is set to 60 kHz.  
The 100 µF and 47 µF ceramic output capacitors have a derated  
value of 62 µF and 32 µF, respectively.  
Rev. C | Page 20 of 25  
 
 
 
 
 
Data Sheet  
ADP2387  
RECOMMENDED EXTERNAL COMPONENTS  
Table 9. Recommended External Components for Typical Applications with 6 A Output Current  
fSW (kHz)  
VIN (V)  
12  
12  
12  
12  
12  
12  
12  
5
5
5
5
5
VOUT (V)  
L (µH)  
1.5  
2.2  
2.2  
3.3  
3.3  
4.7  
4.7  
1.5  
1.5  
2.2  
2.2  
2.2  
2.2  
1
1.5  
2.2  
2.2  
3.3  
1
1
1
1
1
COUT (µF)1  
680 + 2 × 100  
680 + 2 × 100  
680  
680  
470  
3 × 100  
100 + 47  
680 + 2 × 100  
680  
680  
470  
3 × 100  
3 × 100  
3 × 100  
3 × 100  
2 × 100  
100 + 47  
100  
RTOP (kΩ)  
RBOT (kΩ)  
RC (kΩ)  
57.6  
68.1  
73.2  
88.7  
84.5  
44.2  
33  
57.6  
57.6  
73.2  
61.9  
33  
44.2  
39  
47  
44.2  
44.2  
44.2  
97.6  
82  
CC (pF)  
2200  
2200  
2200  
2200  
2200  
2200  
2200  
2200  
2200  
2200  
2200  
2200  
2200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
680  
CCP (pF)  
150  
120  
100  
82  
300  
1
10  
10  
15  
20  
47.5  
10  
22  
10  
10  
15  
20  
47.5  
10  
15  
10  
10  
10  
15  
2.21  
3
15  
10  
10  
10  
15  
2.21  
10  
10  
15  
2.21  
3
15  
10  
10  
10  
15  
2.21  
15  
2.21  
3
15  
10  
1.2  
1.5  
1.8  
2.5  
3.3  
5
47  
8.2  
4.7  
150  
120  
100  
82  
10  
8.2  
10  
8.2  
4.7  
4.7  
2.2  
68  
1
1.2  
1.5  
1.8  
2.5  
3.3  
1.5  
1.8  
2.5  
3.3  
5
5
600  
12  
12  
12  
12  
12  
5
5
5
5
5
15  
20  
47.5  
10  
22  
10  
10  
15  
20  
1
680  
470  
1.2  
1.5  
1.8  
2.5  
3.3  
2.5  
3.3  
5
47  
10  
3 × 100  
2 × 100  
100  
100 + 47  
100  
39  
33  
22  
8.2  
4.7  
4.7  
3.3  
2.2  
2.2  
8.2  
6.8  
4.7  
4.7  
3.3  
2.2  
47.5  
10  
5
1
44.2  
37.4  
47  
73.2  
44.2  
34.8  
33  
39  
37.4  
47  
1000  
12  
12  
12  
5
5
5
5
5
5
1
47.5  
10  
22  
10  
10  
15  
20  
47.5  
10  
1.5  
1.5  
0.47  
0.47  
0.68  
0.68  
0.68  
0.68  
100  
100  
680  
680  
680  
680  
680  
680  
680  
680  
1
3 × 100  
2 × 100  
100 + 47  
100 + 47  
100  
1.2  
1.5  
1.8  
2.5  
3.3  
10  
10  
15  
2.21  
100  
1 680 µF: 4 V, KEMET T520Y687M004ATE010; 470 µF: 6.3 V, KEMET T520X477M006ATE010; 100 µF: 6.3 V, X5R, Murata GRM32ER60J107ME20; and 47 µF: 6.3 V, X5R,  
Murata GRM32ER60J476ME20.  
Rev. C | Page 21 of 25  
 
ADP2387  
Data Sheet  
CIRCUIT BOARD LAYOUT RECOMMENDATIONS  
Good printed circuit board (PCB) layout is essential for obtaining  
the best performance from the ADP2387. Poor PCB layout  
can degrade the output regulation, as well as the EMI and  
electromagnetic compatibility (EMC) performance. Figure 37  
shows an example of a good PCB layout for the ADP2387. For  
optimum layout, refer to the following guidelines:  
Connect the exposed GND pad of the ADP2387 to a large,  
external copper ground plane to maximize its power  
dissipation capability and to minimize junction temperature.  
In addition, connect the exposed SW pad to the SW pins  
of the ADP2387, using short, wide traces; or connect the  
exposed SW pad to a large external copper plane of the  
switching node for high current flow.  
Place the feedback resistor divider network as close as  
possible to the FB pin to prevent noise pickup. Minimize  
the length of the trace that connects the top of the feedback  
resistor divider to the output while keeping the trace away  
from the high current traces and the switching node to  
avoid noise pickup. To further reduce noise pickup, place  
an analog ground plane on either side of the FB trace and  
ensure that the trace is as short as possible to reduce the  
parasitic capacitance pickup.  
Use separate analog ground planes and power ground  
planes. Connect the ground reference of sensitive analog  
circuitry, such as output voltage divider components, to  
analog ground. In addition, connect the ground reference  
of power components, such as input and output capacitors,  
to power ground. Connect both ground planes to the  
exposed GND pad of the ADP2387.  
Place the input capacitor, inductor, and output capacitor as  
close as possible to the IC, and use short traces. Ensure that  
the high current loop traces are as short and as wide as  
possible. Make the high current path from the input  
capacitor through the inductor, the output capacitor, and  
the power ground plane back to the input capacitor as  
short as possible by ensuring that the input and output  
capacitors share a common power ground plane.  
In addition, ensure that the high current path from the  
power ground plane through the inductor and output  
capacitor back to the power ground plane is as short as  
possible by tying the PGND pins of the ADP2387 to the  
PGND plane as close as possible to the input and output  
capacitors.  
ADP2387  
V
PVIN  
BST  
SW  
IN  
C
C
IN  
BST  
EN  
V
L
OUT  
PGOOD  
C
OUT  
R
R
TOP  
ILIM  
FB  
RT  
COMP  
SS  
BOT  
R
VREG  
C
R
R
T
ILIM  
C
GND PGND  
VREG  
C
C
C
SS  
Figure 36. High Current Path in the PCB Circuit  
Rev. C | Page 22 of 25  
 
Data Sheet  
ADP2387  
ANALOG GROUND PLANE  
R
BOT  
PVIN  
COMP  
PVIN  
PVIN  
R
TOP  
FB  
INPUT  
INPUT  
GND  
SW  
BYPASS BULK  
CAP  
CAP  
VREG  
PVIN  
BST  
C
VREG  
GND  
SW  
+
C
BST  
SW  
SW  
PGND  
SW  
INDUCTOR  
POWER GROUND PLANE  
OUTPUT  
CAPACITOR  
VOUT  
VIA  
BOTTOM LAYER TRACE  
COPPER PLANE  
Figure 37. Recommended PCB Layout  
Rev. C | Page 23 of 25  
 
ADP2387  
Data Sheet  
TYPICAL APPLICATIONS CIRCUITS  
ADP2387  
V
= 12V  
IN  
PVIN  
EN  
BST  
SW  
C
IN  
C
BST  
0.1µF  
L1  
1.0µH  
10µF  
25V  
PGOOD  
V
= 1.2V  
OUT  
C
470µF  
C
OUT2  
100µF  
6.3V  
ILIM  
OUT1  
R
10kΩ  
R
TOP  
ILIM  
44.2kΩ  
R
T
6.3V  
124kΩ  
1%  
RT  
FB  
VREG  
R
10kΩ  
BOT  
C
COMP  
VREG  
1µF  
R
1%  
C
SS  
66.5kΩ  
C
22nF  
C
SS  
C
CP  
68pF  
GND PGND  
C
1.5nF  
Figure 38. Typical Applications Circuit, VIN = 12 V, VOUT = 1.2 V, IOUT = 6 A, fSW = 500 kHz  
ADP2387  
V
= 12V  
IN  
PVIN  
BST  
SW  
C
R
IN  
TOP_EN  
16.9kΩ  
C
0.1µF  
BST  
L1  
10µF  
3.3µH  
V
= 5.0V  
OUT  
25V  
EN  
R
BOT_EN  
2kΩ  
C
OUT  
100µF  
6.3V  
PGOOD  
ILIM  
R
TOP  
22kΩ  
1%  
R
R
ILIM  
T
FB  
44.2kΩ  
100kΩ  
RT  
R
BOT  
COMP  
3kΩ  
1%  
VREG  
R
C
C
VREG  
44.2kΩ  
1µF  
C
C
SS  
CP  
2.2pF  
GND PGND  
C
C
SS  
1.2nF  
22nF  
Figure 39. Programming Input Voltage UVLO Rising Threshold at 11 V, Falling Threshold at 10 V, VIN = 12 V, VOUT = 5 V, IOUT = 6 A, fSW = 600 kHz  
ADP2387  
V
= 12V  
IN  
PVIN  
EN  
BST  
SW  
C
IN  
C
BST  
0.1µF  
L1  
4.7µH  
10µF  
25V  
PGOOD  
V
= 3.3V  
OUT  
C
100µF  
C
OUT2  
47µF  
6.3V  
ILIM  
OUT1  
R
10kΩ  
R
TOP  
ILIM  
80.6kΩ  
R
T
6.3V  
100kΩ  
1%  
RT  
FB  
VREG  
R
BOT  
C
COMP  
2.21kΩ  
VREG  
1µF  
R
1%  
C
SS  
44.2kΩ  
C
22nF  
C
SS  
C
CP  
4.7pF  
GND PGND  
C
2.2nF  
Figure 40. Programming Peak Current-Limit Threshold at 5 A, VIN = 12 V, VOUT = 3.3 V, IOUT = 3 A, fSW = 600 kHz  
Rev. C | Page 24 of 25  
 
Data Sheet  
ADP2387  
OUTLINE DIMENSIONS  
4.10  
4.00 SQ  
3.90  
2.80  
2.70  
2.60  
0.20  
MIN  
0.20 MIN  
PIN 1  
PIN 1  
INDICATOR  
INDICATOR  
1.50  
0.20  
MIN  
19  
24  
18  
1.40  
1
1.30  
0.45  
EXPOSED  
PAD  
0.35  
0.25  
0.50  
BSC  
EXPOSED  
PAD  
1.05  
0.95  
0.85  
6
13  
7
12  
0.50  
0.40  
0.30  
TOP VIEW  
BOTTOM VIEW  
0.20  
MIN  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PADS, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD .  
Figure 41. 24-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Very Thin Quad  
(CP-24-12)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range Package Description  
Package Option  
ADP2387ACPZN-R7 −40°C to +125°C  
ADP2387-EVALZ  
24-Lead Lead Frame Chip Scale Package [LFCSP_WQ], 7Tape and Reel  
Evaluation Board  
CP-24-12  
1 Z = RoHS Compliant Part.  
©2016–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12643-0-4/17(C)  
Rev. C | Page 25 of 25  
 
 

相关型号:

ADP2389

18 V, 12 A Step-Down Regulator with Programmable Current Limit
ADI

ADP2389-EVALZ

18 V, 12 A Step-Down Regulator with Programmable Current Limit
ADI

ADP2389ACPZ-R7

18 V, 12 A Step-Down Regulator with Programmable Current Limit
ADI

ADP2390

集成可编程限流和PFM的18 V、12 A降压稳压器
ADI

ADP2390-EVALZ

18 V, 12 A Step-Down Regulator with Programmable Current Limit
ADI

ADP2390ACPZ-R7

18 V, 12 A Step-Down Regulator with Programmable Current Limit
ADI

ADP2441

36 V,1 A, Synchronous, Step-Down DC-to-DC Regulator
ADI

ADP2441-EVALZ

36 V,1 A, Synchronous, Step-Down DC-to-DC Regulator
ADI

ADP2441ACPZ-R2

36 V,1 A, Synchronous, Step-Down DC-to-DC Regulator
ADI

ADP2441ACPZ-R7

36 V,1 A, Synchronous, Step-Down DC-to-DC Regulator
ADI

ADP2442

36 V,1 A, Synchronous, Step-Down, DC-to-DC Regulator with External Clock Synchronization
ADI

ADP2442-EVALZ

36 V,1 A, Synchronous, Step-Down, DC-to-DC Regulator with External Clock Synchronization
ADI