ADP2389 [ADI]

18 V, 12 A Step-Down Regulator with Programmable Current Limit;
ADP2389
型号: ADP2389
厂家: ADI    ADI
描述:

18 V, 12 A Step-Down Regulator with Programmable Current Limit

文件: 总23页 (文件大小:776K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
18 V, 12 A Step-Down Regulator with  
Programmable Current Limit  
Data Sheet  
ADP2389/ADP2390  
FEATURES  
TYPICAL APPLICATIONS CIRCUIT  
Input voltage: 4.5 V to 18 V  
Continuous output current: 12 A  
Integrated MOSFETs: 17 mΩ high-side/4.5 mΩ low-side  
0.6 V 0.5% reference voltage  
Programmable switching frequency range: 200 kHz to 2200 kHz  
Enhanced transient response  
VIN  
PVIN  
EN  
BST  
V
C
IN  
BST  
C
IN  
V
SW  
OUT  
L
PGOOD  
C
OUT  
ADP2389/  
ADP2390  
R
R
TOP  
BOT  
FTW  
FB  
COMP  
SS  
ILIM  
RT  
Programmable current limit with 10% accuracy  
Precision enable and power good  
VREG  
R
C
R
R
R
T
FTW  
ILIM  
GND PGND  
External compensation and soft start  
PFM mode (ADP2390 only)  
C
C
C
C
VREG  
SS  
Start up into a precharged output  
Supported by the ADIsimPower design tool  
Figure 1.  
APPLICATIONS  
Communication infrastructure  
Networking and servers  
Industrial and instrumentation  
Healthcare and medical  
Intermediate power rail conversions  
DC-to-DC point of load applications  
GENERAL DESCRIPTION  
The ADP2389/ADP2390 are current mode control, synchronous  
step-down, dc-to-dc regulators. They integrate a 17 mΩ high-side  
power MOSFET and a 4.5 mΩ synchronous rectifier MOSFET to  
provide a high efficiency solution. The ADP2390 operates in pulse  
frequency modulation (PFM) mode to improve the system  
efficiency at light load. The ADP2389/ADP2390 run from an  
input voltage of 4.5 V to 18 V and can deliver up to 12 A of output  
current. The output voltage can be adjusted to 0.6 V and the  
switching frequency can be programmed between 200 kHz to  
2200 kHz.  
The ADP2389/ADP2390 operates over a −40°C to +125°C  
junction temperature range and is available in 32-lead, 5 mm ×  
5 mm LFCSP package.  
100  
95  
90  
85  
80  
75  
70  
The ADP2389/ADP2390 target high performance applications  
that require high efficiency and design flexibility. External  
compensation and soft start provide design flexibility. The power-  
good output and precision enable input provide simple and reliable  
power sequencing. An enhanced transient response feature  
improves the load transient performance, which reduces the  
output capacitance. Programmable current limit allows the user  
to optimized the inductor design and provide a compact solution.  
V
V
V
V
= 1.2V  
= 1.8V  
= 3.3V  
= 5.0V  
OUT  
OUT  
OUT  
OUT  
65  
60  
0
1
2
3
4
5
6
7
8
9
10 11 12  
OUTPUT CURRENT (A)  
Figure 2. ADP2389 Efficiency vs. Output Current, VIN = 12 V, fSW = 300 kHz  
Other key features include undervoltage lockout (UVLO),  
overvoltage protection (OVP), overcurrent protection (OCP),  
and thermal shutdown (TSD).  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2015 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADP2389/ADP2390  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Undervoltage Lockout (UVLO) ............................................... 13  
Thermal Shutdown .................................................................... 13  
Applications Information.............................................................. 14  
Input Capacitor Selection.......................................................... 14  
Output Voltage Setting .............................................................. 14  
Inductor Selection...................................................................... 14  
Output Capacitor Selection....................................................... 15  
Programming Input Voltage UVLO ........................................ 15  
Compensation Design ............................................................... 15  
Design Example.............................................................................. 17  
Output Voltage Setting .............................................................. 17  
Frequency Setting....................................................................... 17  
Inductor Selection...................................................................... 17  
Output Capacitor Selection....................................................... 17  
Compensation Components..................................................... 18  
Soft Start Time Program ........................................................... 18  
Input Capacitor Selection.......................................................... 18  
Schematic for Design Example................................................. 18  
External Components Recommendation.................................... 19  
Circuit Board Layout Recommendations ................................... 20  
Typical Application Circuits ......................................................... 22  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
Typical Applications Circuit............................................................ 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Detailed Functional Block Diagram .............................................. 3  
Specifications..................................................................................... 4  
Absolute Maximum Ratings............................................................ 6  
Thermal Information................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 12  
Control Scheme .......................................................................... 12  
PFM Mode (ADP2390 Only).................................................... 12  
Precision Enable/Shutdown...................................................... 12  
Internal Regulator (VREG)....................................................... 12  
Bootstrap Circuitry .................................................................... 12  
Oscillator ..................................................................................... 12  
Soft Start ...................................................................................... 13  
Fast Transient Response ............................................................ 13  
Power Good................................................................................. 13  
Peak Current-Limit and Short-Circuit Protection................. 13  
Overvoltage Protection (OVP)................................................. 13  
REVISION HISTORY  
8/15—Revision 0: Initial Version  
Rev. 0 | Page 2 of 23  
 
Data Sheet  
ADP2389/ADP2390  
DETAILED FUNCTIONAL BLOCK DIAGRAM  
VREG  
5V  
CLK  
VIN  
REGULATOR  
RT  
EN  
OSC  
SLOPE RAMP  
1.2V  
UVLO  
EN_BUF  
SHUTDOWN  
LOGIC  
THERMAL  
SHUTDOWN  
1.3µA  
4.8µA  
PVIN  
BOOST  
REGULATOR  
OCP  
THRESHOLD  
SETTING  
I
MAX  
ILIM  
+
HICCUP  
MODE  
OCP  
+
A
CS  
SLOPE RAMP  
Σ
COMP  
0.6V  
+
+
+
I
SS  
CMP  
g
SS  
FB  
m
BST  
SW  
SKIP  
CMP  
NFET  
NFET  
+
DRIVER  
PFM  
THRESHOLD  
CONTROL  
LOGIC  
AND MOSFET  
DRIVER WITH  
ANTICROSS  
PROTECTION  
ADP2390  
ONLY  
FTW  
FAST  
TRANSIENT  
WINDOW  
VREG  
DRIVER  
0.7V  
OVP  
+
+
+
PGND  
+
I
NEG  
CLK  
NEGATIVE  
0.66V  
CURRENT  
COMPARATOR  
0.54V  
PGOOD  
GND  
DEGLITCH  
ADP2389/ADP2390  
Figure 3. ADP2389/ADP2390 Detailed Functional Block Diagram  
Rev. 0 | Page 3 of 23  
 
ADP2389/ADP2390  
SPECIFICATIONS  
Data Sheet  
VPVIN = VVIN = 12 V, TJ = −40°C to +125°C for minimum/maximum specifications, and TA = 25°C for typical specifications, unless  
otherwise noted.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Units  
SUPPLY VOLTAGE (PVIN AND VIN)  
PVIN Voltage Range  
VIN Voltage Range  
Quiescent Current  
Shutdown Current  
VPVIN  
VVIN  
IQ  
ISHDN  
UVLO  
4.5  
4.5  
18  
18  
1.5  
20  
4.4  
V
V
mA  
µA  
V
No switching  
EN = GND  
VIN rising  
1.16  
7.5  
4.2  
VIN Undervoltage Lockout Threshold  
VIN falling  
3.5  
3.7  
V
FEEDBACK (FB)  
FB Regulation Voltage  
VFB  
IFB  
0°C < TJ < 85°C  
−40°C < TJ < +125°C  
0.597  
0.594  
0.6  
0.6  
0.01  
0.603  
0.606  
0.1  
V
V
µA  
FB Bias Current  
ERROR AMPLIFIER (EA)  
Transconductance  
EA Source Current  
gm  
ISOURCE  
ISINK  
450  
40  
40  
500  
50  
50  
550  
60  
60  
µS  
µA  
µA  
EA Sink Current  
INTERNAL REGULATOR (VREG)  
VREG Voltage  
Dropout Voltage  
Regulator Current Limit  
SWITCH NODE (SW)  
On Resistance1  
VVREG  
IVREG = 10 mA  
IVREG = 50 mA  
4.8  
5
355  
100  
5.2  
V
mV  
mA  
High-Side  
Low-Side  
SW Minimum On Time2  
SW Minimum Off Time2  
CURRENT LIMIT  
RDSON_H  
RDSON_L  
tMIN_ON  
tMIN_OFF  
VBOOT = 5 V  
VVREG = 5 V  
17  
30  
9
mΩ  
mΩ  
ns  
4.5  
100  
150  
ns  
ILIM Voltage  
VILIM  
IILIM  
IOCP  
0.592  
V
µA  
A
ILIM Current Range  
High-Side Peak Current Limit  
Low-Side Negative Current Limit2  
BST  
1.8  
15  
12  
18.6  
RILIM = 59 kΩ  
16.8  
4
A
Bootstrap Voltage  
VBOOT  
fSW  
4.6  
5
5.4  
V
OSCILLATOR (RT )  
Switching Frequency  
Switching Frequency Range  
FAST TRANSIENT WINDOW (FTW)  
Fast Transient Response Window  
Minimum Fast Transient Response Window2  
SS  
RT = 100 kΩ  
540  
200  
600  
660  
2200  
kHz  
kHz  
RFTW = 100 kΩ  
2
1
%
%
SS Pin Pull-Up Current  
ISS  
2.7  
3.4  
4.1  
µA  
Rev. 0 | Page 4 of 23  
 
Data Sheet  
ADP2389/ADP2390  
Parameter  
PGOOD  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Units  
FB Threshold  
Rising  
Falling  
106  
86  
110  
90  
114  
94  
%
%
FB Hysteresis  
Rising  
5
%
Falling  
5
%
Power-Good Deglitch Time  
PGOOD from low to high  
PGOOD from high to low  
VPGOOD = 5 V  
16  
16  
0.01  
150  
Cycles  
Cycles  
µA  
PGOOD Leakage Current  
PGOOD Output Low Voltage  
EN  
0.1  
260  
IPGOOD = 1 mA  
mV  
EN Rising Threshold  
EN Falling Threshold  
EN Source Current  
1.2  
1.1  
6.1  
1.3  
1.28  
V
V
µA  
µA  
1.02  
EN voltage < 1.1 V  
EN voltage > 1.2 V  
THERMAL  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
150  
25  
°C  
°C  
1 Pin-to-pin measurement.  
2 Guaranteed by design.  
Rev. 0 | Page 5 of 23  
 
 
ADP2389/ADP2390  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL INFORMATION  
Table 2.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board (4-layer, JEDEC standard board) for  
surface-mount packages.  
Parameter  
Rating  
PVIN, VIN, EN, PGOOD  
SW  
BST  
FB, SS, COMP, RT, ILIM, FTW, VREG  
PGND to GND  
Operating Junction Temperature Range  
Storage Temperature Range  
Soldering Conditions  
−0.3 V to +22 V  
−1 V to +22 V  
VSW + 6 V  
−0.3 V to +6 V  
−0.3 V to +0.3 V  
−40°C to +125°C  
−65°C to +150°C  
JEDEC J-STD-020  
Table 3. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
32-Lead LFCSP  
41  
2.2  
°C/W  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
ESD CAUTION  
Unless otherwise specified, all other voltages are referenced to  
GND.  
Rev. 0 | Page 6 of 23  
 
 
 
Data Sheet  
ADP2389/ADP2390  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
ADP2389/ADP2390  
TOP VIEW  
(Not to Scale)  
SS 1  
COMP 2  
FB 3  
24 PVIN  
23 PVIN  
22 PVIN  
21 BST  
20 SW  
33  
GND  
VREG 4  
GND 5  
SW 6  
19 SW  
34  
SW  
SW 7  
18 PGND  
17 PGND  
SW 8  
NOTES  
1. THE EXPOSED GND PAD MUST BE SOLDERED TO A LARGE, EXTERNAL,  
COPPER GND PLANE TO REDUCE THERMAL RESISTANCE.  
2. THE EXPOSED SW PAD MUST BE CONNECTED TO THE SW PINS BY  
USING SHORT, WIDE TRACES, OR SOLDERED TO A LARGE, EXTERNAL,  
COPPER SW PLANE TO REDUCE THERMAL RESISTANCE.  
Figure 4. Pin Configuration (Top View)  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
4
SS  
COMP  
FB  
Soft Start Control. Connect a capacitor from the SS pin to GND to program the soft start time.  
Error Amplifier Output. Connect an RC network from the COMP pin to GND.  
Feedback Voltage Sense Input. Connect this pin to a resistor divider from the output voltage, VOUT  
Output of the Internal 5 V Regulator. The control circuits are powered from this voltage. Place a 1 μF, X7R or  
X5R ceramic capacitor between this pin and GND.  
.
VREG  
5
GND  
Analog Ground.  
6 to 11, 19, 20 SW  
Switch Node. Connect this pin to an inductor.  
12 to 18  
21  
PGND  
BST  
Power Ground. Return of the low-side MOSFET.  
Supply Rail for the High-Side Gate Drive. Place a 0.1 μF, X7R or X5R capacitor between SW and BST.  
22 to 26  
PVIN  
Power Input. Connect PVIN to the input power source and connect a bypass capacitor between this pin and  
PGND.  
27  
28  
29  
30  
31  
32  
33  
34  
VIN  
Power Input for Control Circuitry. Bypass VIN to GND with a low equivalent series resistance (ESR) capacitor  
as close to the device as possible. Connect VIN to PVIN directly.  
Precision Enable. Use an external resistor divider to set the turn on threshold. To enable the device  
automatically, connect the EN pin to PVIN.  
Fast Transient Response Window Setting. Connect a resistor between the FTW pin and GND to set the fast  
transient response window.  
Power-Good Output (Open-Drain). Connecting a 10 kΩ to 100 kΩ pull-up resistor from PGOOD to a pull-up  
voltage is recommended.  
Current-Limit Threshold Setting. Connect a resistor from the ILIM pin to GND to program the current-limit  
threshold.  
Frequency Setting. Connect a resistor between the RT pin and GND to program the switching frequency  
between 200 kHz to 2.2 MHz.  
Exposed GND Pad. The exposed GND pad must be soldered to a large, external, copper GND plane to reduce  
thermal resistance.  
Exposed SW Pad. The exposed SW pad must be connected to the SW pins by using short, wide traces, or  
soldered to a large, external, copper SW plane to reduce thermal resistance.  
EN  
FTW  
PGOOD  
ILIM  
RT  
EP, GND  
EP, SW  
Rev. 0 | Page 7 of 23  
 
ADP2389/ADP2390  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VPVIN = VVIN = 12 V, V OUT = 1.8 V, L = 1 µH, COUT = 5 × 100 µF, fSW = 500 kHz, unless otherwise noted.  
100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
95  
90  
85  
80  
INDUCTOR:  
744 333 0100  
INDUCTOR:  
744 333 0220  
75  
70  
65  
60  
V
V
V
V
V
V
V
= 1.0V  
= 1.2V  
= 1.5V  
= 1.8V  
= 2.5V  
= 3.3V  
= 5.0V  
V
V
V
V
V
V
V
= 1.0V  
= 1.2V  
= 1.5V  
= 1.8V  
= 2.5V  
= 3.3V  
= 5.0V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
0
1
2
3
4
5
6
7
8
9
10 11 12  
0
1
2
3
4
5
6
7
8
9
10 11 12  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 5. ADP2389 Efficiency at VPVIN = 12 V, fSW = 600 kHz  
Figure 8. ADP2389 Efficiency at VPVIN = 12 V, fSW = 300 kHz  
100  
100  
95  
90  
95  
90  
85  
80  
75  
70  
65  
60  
85  
80  
INDUCTOR:  
744 333 0220  
75  
70  
65  
60  
INDUCTOR:  
744 333 0100  
V
V
V
V
V
V
V
= 1.0V  
= 1.2V  
= 1.5V  
= 1.8V  
= 2.5V  
= 3.3V  
= 5.0V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
V
V
V
V
V
V
= 1.2V  
= 1.5V  
= 1.8V  
= 2.5V  
= 3.3V  
= 5.0V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
0.1  
1
10  
0.1  
1
10  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 6. ADP2390 Efficiency at VPVIN = 12 V, fSW = 600 kHz  
Figure 9. ADP2390 Efficiency at VPVIN = 12 V, fSW = 300 kHz  
16  
1.25  
14  
12  
1.20  
1.15  
1.10  
1.05  
10  
8
6
4
2
0
T
T
T
= –40°C  
= +25°C  
= +125°C  
T
T
T
= –40°C  
= +25°C  
= +125°C  
J
J
J
J
J
J
1.00  
4
6
8
10  
12  
14  
16 18  
4
6
8
10  
12  
14  
16 18  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 7. Shutdown Current (ISHDN) vs. Input Voltage  
Figure 10. Quiescent Current (IQ) vs. Input Voltage  
Rev. 0 | Page 8 of 23  
 
Data Sheet  
ADP2389/ADP2390  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
3.6  
1.25  
1.20  
RISING  
RISING  
1.15  
1.10  
FALLING  
1.05  
1.00  
FALLING  
40  
0.95  
–40  
–40  
–20  
0
20  
60  
80  
100  
120  
–20  
0
20  
40  
60  
80  
100  
120  
120  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. VIN UVLO Threshold vs. Temperature  
Figure 14. EN Threshold vs. Temperature  
3.55  
606  
604  
602  
600  
598  
596  
594  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. SS Pin Pull-Up Current vs. Temperature  
Figure 15. Feedback Voltage vs. Temperature  
620  
610  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
R
= 100kΩ  
T
600  
590  
580  
570  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 16. VREG Voltage vs. Temperature  
Figure 13. Frequency vs. Temperature  
Rev. 0 | Page 9 of 23  
ADP2389/ADP2390  
Data Sheet  
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
30  
R
= 59kΩ  
ILIM  
25  
HIGH-SIDE R  
DSON  
20  
15  
10  
5
LOW-SIDE R  
DSON  
0
–40  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 20. Peak Current-Limit Threshold vs. Temperature  
Figure 17. MOSFET RDSON vs. Temperature  
520  
510  
500  
490  
480  
470  
T
V
(AC)  
OUT  
1
I
L
SW  
4
2
B
CH1 10.0mV  
CH2 10.0V  
M
T
2.00µsA CH2  
50.20%  
5.40V  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
W
CH4 5.00A Ω  
TEMPERATURE (°C)  
Figure 18. EA Transconductance vs. Temperature  
Figure 21. Continuous Conduction Mode (CCM) Waveform  
T
T
V
(AC)  
OUT  
EN  
1
2
V
OUT  
1
3
I
L
PGOOD  
4
2
SW  
I
OUT  
4
B
B
B
B
B
CH1 50.0mV  
CH2 10.0V  
CH4 2.00A Ω  
M
T
100µs A CH1  
50.20%  
–2.00mV  
CH1 1.00V  
CH3 5.00V  
CH2 10.0V  
CH4 10.0A Ω  
M1.00ms A CH1  
50.00%  
1.08V  
W
W
W
W
W
B
T
W
Figure 19. PFM Mode Waveform (ADP2390)  
Figure 22. Soft Start with Full Load  
Rev. 0 | Page 10 of 23  
Data Sheet  
ADP2389/ADP2390  
T
T
EN  
V
(AC)  
OUT  
1
2
V
OUT  
1
3
4
I
PGOOD  
OUT  
I
L
4
B
B
B
B
B
CH1 1.00V  
CH3 5.00V  
CH2 10.0V  
CH4 5.00A  
M1.00ms A CH3  
50.40%  
2.90V  
CH1 50.0mV  
M 200µs  
20.00%  
A
CH4  
4.90A  
W
W
W
W
W
B
Ω
T
CH4 5.00A Ω  
T
W
Figure 23. Precharged Output  
Figure 26. Load Transient Response, IOUT = 2.4 A to 9.6 A  
T
T
V
(AC)  
OUT  
V
(AC)  
OUT  
1
1
PVIN  
SW  
I
OUT  
3
2
4
B
B
B
B
CH2 10.0V  
CH1 50.0mV  
M 200µs  
20.00%  
A
CH4  
6.00A  
CH1 10.0mV  
CH3 5.00V  
M1.00ms A CH3  
T 20.40%  
11.0V  
W
W
W
B
CH4 5.00A Ω  
T
W
W
Figure 24. Load Transient Response with Fast Transient Enable,  
Figure 27. Line Transient Response, VPVIN from 8 V to 14 V, IOUT = 12 A  
I
OUT = 2.4 A to 9.6 A  
T
T
SW  
SW  
2
2
V
V
OUT  
OUT  
1
4
1
I
I
L
L
4
B
B
B
B
B
CH1 1.00V  
CH2 10.0V  
CH4 10.0A  
M1.00ms A CH1  
20.20%  
1.08V  
CH1 1.00V  
CH2 10.0V  
CH4 10.0A Ω  
M10.0ms A CH1  
80.20%  
1.06V  
W
W
B
W
W
W
Ω
T
T
W
Figure 25. Output Short Entry  
Figure 28. Output Short Recovery  
Rev. 0 | Page 11 of 23  
ADP2389/ADP2390  
Data Sheet  
THEORY OF OPERATION  
The ADP2389/ADP2390 are synchronous step-down, dc-to-dc  
regulators. These devices use a current-mode control architecture  
with an integrated high-side power switch and a low-side synchro-  
nous rectifier. The regulators target high performance applications  
that require high efficiency and design flexibility.  
When the EN pin voltage exceeds 1.2 V (typical), the  
ADP2389/ADP2390 are enabled and the internal pull-down  
current source at the EN pin decreases to 1 µA, which allows  
users to program the PVIN UVLO and hysteresis.  
INTERNAL REGULATOR (VREG)  
The ADP2389/ADP2390 can operate with an input voltage from  
4.5 V to 18 V and can regulate the output voltage to 0.6 V. Addi-  
tional features added for design flexibility include programmable  
switching frequency, programmable soft start, programmable  
current limit, external compensation, precision enable, and a  
power-good output.  
The on-board regulator provides a stable supply for the internal  
circuits. Place a 1 µF, X7R or X5R ceramic capacitor between  
the VREG pin and GND. The internal regulator includes a  
current-limit circuit to protect the output if the maximum  
external load current is exceeded.  
BOOTSTRAP CIRCUITRY  
CONTROL SCHEME  
The ADP2389/ADP2390 include a boot strap regulator to  
provide the gate drive voltage for the high-side MOSFET. The  
boot strap regulator uses differential sensing to generate a 5 V  
bootstrap voltage between the BST pin and the SW pin.  
The ADP2389/ADP2390 use a fixed frequency, peak current  
mode pulse-width modulation (PWM) control architecture. At  
the start of each oscillator cycle, the high-side MOSFET turns  
on, adding a positive voltage across the inductor. The current in  
the inductor (IL) increases until the current sense signal crosses  
the peak inductor current threshold that turns off the high-side  
MOSFET and turns on the low-side MOSFET. This action adds a  
negative voltage across the inductor, causing the inductor current to  
decrease. The low-side MOSFET remains on for the rest of cycle.  
Place a 0.1 µF, X7R or X5R ceramic capacitor between the  
BST pin and the SW pin.  
OSCILLATOR  
The switching frequency of the ADP2389/ADP2390 (fSW) is  
controlled by the RT pin. A resistor (RT) from the RT pin to  
GND can program the switching frequency according to the  
following equation:  
PFM MODE (ADP2390 ONLY)  
The ADP2390 can work in PFM mode during a light load.  
When the COMP pin voltage is below the PFM threshold  
voltage, the device enters PFM mode. In PFM mode, the device  
monitors the FB voltage to regulate the output voltage. Because  
the high-side and low-side MOSFETs are turned off, the load  
current discharges the output capacitor, causing the output  
voltage to drop. When the FB voltage drops below 0.605 V, the  
device begins switching and the output voltage increases as the  
output capacitor is charged by the inductor current. When the  
FB voltage exceeds 0.62 V, the device turns off both the high-side  
and low-side MOSFETs until the FB voltage drops to 0.605 V. In  
the PFM mode, the output voltage ripple is greater than the  
ripple in the PWM mode.  
67,000  
RT (k) +12  
f
SW (kHz) =  
A 100 kΩ resistor sets the switching frequency to 600 kHz, and  
a 44.2 kΩ resistor sets the switching frequency to 1.2 MHz.  
Figure 29 shows the typical relationship between fSW and RT.  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
PRECISION ENABLE/SHUTDOWN  
The EN input pin has a precision analog threshold of 1.2 V (typical)  
with 100 mV of hysteresis. When the enable pin (EN) voltage  
exceeds 1.2 V, the regulator turns on; when it falls below 1.1 V  
(typical), the regulator turns off. To force the regulator to start  
automatically when input power is applied, connect the EN pin  
to PVIN.  
600  
400  
200  
0
10  
40  
70 100 130 160 190 220 250 280 310 340  
(kΩ)  
R
T
Figure 29. Switching Frequency (fSW) vs. RT  
The precision EN pin has an internal pull-down current source  
(5 µA) that provides a default turn off when the EN pin is open.  
Rev. 0 | Page 12 of 23  
 
 
 
 
 
 
 
 
Data Sheet  
ADP2389/ADP2390  
For protection against heavy loads, the ADP2389/ADP2390 use  
a hiccup mode for overcurrent protection. When the inductor T  
turns off and the low-side MOSFET turns on until the next  
cycle. The overcurrent counter increments during this process.  
If the overcurrent counter reaches four or the FB pin voltage falls  
to 0.2 V after the soft start, the device enters hiccup mode. During  
hiccup mode, the high-side MOSFET and the low-side both turn  
off. The device remains in this mode for seven soft start times and  
then attempts to restart from soft start. If the current-limit fault is  
cleared, the device resumes normal operation; otherwise, it  
reenters hiccup mode.  
SOFT START  
The SS pin programs the soft start time. Place a capacitor  
between the SS pin and GND; an internal current charges this  
capacitor to establish the soft start ramp. Calculate the soft start  
time using the following equation:  
0.6 V ×CSS  
tSS  
=
ISS  
where:  
SS is the soft start capacitance.  
SS is the soft start pull-up current (3.4 µA).  
C
I
In some cases, the input voltage (PVIN) ramp rate is too slow,  
or the output capacitor is too large for the output to reach  
regulation during the soft start process, which causes the  
regulator to enter hiccup mode. To avoid such cases, use a  
resistor divider at the EN pin to program the input voltage  
UVLO, or use a longer soft start time.  
If the output voltage is precharged before power-up, the ADP2389/  
ADP2390 prevent the low-side MOSFET from turning on until  
the soft start voltage exceeds the voltage on the FB pin.  
FAST TRANSIENT RESPONSE  
The ADP2389/ADP2390 use the FTW pin to set the fast transient  
response window. Place a resistor (RFTW) between the FTW pin  
and GND to program the window. Calculate the window  
threshold using the following equation:  
OVERVOLTAGE PROTECTION (OVP)  
The ADP2389/ADP2390 include an OVP feature that protects  
the regulator against an output short to a higher voltage supply  
or against a strong load disconnect transient. If the feedback  
voltage increases to 0.7 V, the internal high-side MOSFET and  
low-side MOSFET turn off until the voltage at FB decreases to  
0.63 V. At that time, the ADP2389/ADP2390 resumes normal  
operation.  
200  
( )  
RFTW +1  
Window Threshold =  
%
If the output voltage is greater than the setting window, the fast  
transient response is enabled. The fast transient response  
function is disabled if the FTW pin is open and the minimum  
window is 1%.  
UNDERVOLTAGE LOCKOUT (UVLO)  
To avoid false trigger of the fast transient, the window threshold  
must be 2× greater than the output ripple.  
The undervoltage lockout (UVLO) threshold is 4.2 V with a 0.5 V  
hysteresis, which prevents power-on glitches from occurring.  
When the VIN voltage rises above 4.2 V, the device enables and  
the soft start period initiates. When the VIN voltage drops  
below 3.7 V, the device turns off.  
POWER GOOD  
The power-good (PGOOD) pin is an active high, open-drain  
output that requires an external resistor to pull it up to a voltage. A  
logic high on the PGOOD pin indicates that the voltage at the  
FB pin (and thus the output voltage) is within 10% of the desired  
value, and there is a 16 cycle waiting period before PGOOD is  
pulled high. A logic low indicates that the voltage at the FB pin  
is out of 10% of the desired value, and there is a 16-cycle  
waiting period before PGOOD is pulled low.  
THERMAL SHUTDOWN  
In the event that the ADP2389/ADP2390 junction temperatures  
rises above 150°C, the internal thermal shutdown circuit turns  
off the regulator for self protection. Extreme junction temperatures  
can be the result of high current operation, poor circuit board  
thermal design, and/or high ambient temperature. A 25°C  
hysteresis is included in the thermal shutdown circuit so that if an  
overtemperature event occurs, the ADP2389/ADP2390 does  
not return to normal operation until the on-chip temperature  
drops below 125°C. Upon recovery, a soft start initiates before  
normal operation.  
PEAK CURRENT-LIMIT AND SHORT-CIRCUIT  
PROTECTION  
The ADP2389/ADP2390 have a cycle-by-cycle peak current-  
limit protection circuit to prevent current runaway. A resistor  
(RILIM) from the ILIM pin to GND programs the peak current-  
limit threshold according to the following equation:  
1000  
IOCP (A) =  
R
ILIM (k) + 0.5  
Rev. 0 | Page 13 of 23  
 
 
 
 
 
 
 
ADP2389/ADP2390  
Data Sheet  
APPLICATIONS INFORMATION  
As a guideline, the inductor ripple current, ΔIL, is typically set  
to one third of the maximum load current. Calculate the inductor  
value using the following equation:  
INPUT CAPACITOR SELECTION  
The input decoupling capacitor attenuates high frequency noise  
on the input. This capacitor must be a ceramic type in the range  
of 10 µF to 47 µF. Place the capacitor close to the PVIN pin. Keep  
the loop composed by this input capacitor, high-side MOSFET  
and low-side MOSFET as small as possible.  
(VIN VOUT )× D  
L =  
IL × fSW  
where:  
The voltage rating of the input capacitor must be greater than  
the maximum input voltage. The rms current rating of the input  
capacitor must be larger than the value calculated from the  
following equation:  
V
V
IN is the input voltage.  
OUT is the output voltage.  
D is the duty cycle.  
ΔIL is the inductor ripple current.  
f
SW is the switching frequency.  
ICIN _ RMS = IOUT × D×  
where:  
1– D  
( )  
VOUT  
D =  
VIN  
IOUT is the output current.  
D is the duty cycle.  
The peak inductor current (IPEAK) is calculated using  
OUTPUT VOLTAGE SETTING  
IL  
2
IPEAK = IOUT  
+
An external resistor divider sets the output voltages of the  
ADP2389/ADP2390. Calculate the resistor values using the  
following equation:  
The saturation current of the inductor must be greater than the  
peak inductor current. For the ferrite core inductors with a quick  
saturation characteristic, the saturation current rating (ISAT) of the  
inductor must be greater than the current-limit threshold of the  
switch to prevent the inductor from being saturated.  
RTOP  
RBOT  
VOUT = 0.6× 1+  
where :  
Calculate the rms current of the inductor (IRMS) from the  
following equation:  
RTOP is the top feedback resistor.  
RBOT is the bottom feedback resistor.  
2
IL  
12  
2
IRMS  
=
IOUT  
+
To limit output voltage accuracy degradation due to FB bias  
current (0.1 µA maximum) to less than 0.5% (maximum),  
ensure that RBOT is less than 30 kΩ.  
Shielded ferrite core materials are recommended for low core  
loss and low electromagnetic interference (EMI). Table 6 lists  
recommended inductors.  
Table 5 gives the recommended resistor divider for various  
output voltages.  
Table 6. Recommended Inductors  
Table 5. Resistor Divider for Difference Output Voltage  
Value ISAT  
IRMS DCR  
(A) (mΩ)  
VOUT (V)  
RTOP  
,
1% (kΩ)  
RBOT  
, 1% (kΩ)  
Vendor  
Device No.  
(µH)  
(A)  
1.0  
1.2  
1.5  
1.8  
2.5  
3.3  
5.0  
10  
10  
15  
20  
47.5  
10  
22  
15  
10  
10  
10  
15  
2.21  
3
CoilCraft  
XAL7030-102ME  
XAL7030-152ME  
XAL7030-222ME  
1
1.5  
2.2  
21.8 16.1 4.55  
11.9 23.5 7.6  
10  
32  
27  
21  
18  
18  
32  
24  
20  
16  
13.7  
0.64  
1.02  
1.7  
Toko  
FDUE1040D-H-R22M 0.22  
FDUE1040D-H-R45M 0.45  
FDU1040D-H-R68M  
0.68  
FDUE1040D-H-1R0M 1.0  
2.35  
FDA1254-H-1R2M  
744 333 0022  
744 333 0047  
744 333 0068  
744 333 0082  
744 332 0100  
744 325 120  
1.2  
20.2 18.4 2.6  
INDUCTOR SELECTION  
Würth  
Elektronik  
0.22  
0.47  
0.68  
0.82  
1.0  
1.2  
1.5  
2.2  
60  
47  
38  
36  
21.5 0.6  
The inductor value is determined by the operating frequency,  
the input voltage, output voltage, and inductor ripple current.  
Using a small inductor leads to a faster transient response; however,  
it degrades efficiency due to its larger inductor ripple current.  
Using a large inductor value leads to smaller ripple current and  
better efficiency but results in a slower transient response.  
20  
20  
20  
0.8  
1.35  
1.35  
1.35  
1.8  
27.5 20  
25  
27  
22  
20  
18  
16  
744 333 0150  
744 333 0220  
2.5  
3.7  
Rev. 0 | Page 14 of 23  
 
 
 
 
 
 
Data Sheet  
ADP2389/ADP2390  
OUTPUT CAPACITOR SELECTION  
PROGRAMMING INPUT VOLTAGE UVLO  
The output capacitor selection affects both the output ripple  
voltage and the loop dynamics of the regulator.  
The ADP2389/ADP2390 have a precision enable input that  
programs the UVLO threshold of the input voltage, as shown in  
Figure 30.  
During a step load transient, for instance, when the load is  
suddenly increased, the output capacitor supplies the load until  
the control loop ramps up the inductor current. The delay caused  
by the control loop causes the output to undershoot. Use the  
following equation to calculate the output capacitance required  
to satisfy the voltage droop requirement:  
PVIN  
ADP2389/  
ADP2390  
R
TOP_EN  
EN CMP  
EN  
K
UV × ∆ISTEP2 × L  
VIN VOUT × ∆VOUT _UV  
1.2V  
4.8µA  
COUT _UV  
=
R
BOT_EN  
2×  
(
)
1.3µA  
where:  
UV is a factor; the typical setting is KUV = 2.  
K
ΔISTEP is the load step.  
ΔVOUT_UV is the allowable undershoot on the output voltage.  
Figure 30. Programming the Input Voltage UVLO  
Use the following equations to calculate RTOP_EN and RBOT_EN  
1.1 V ×VIN _ RISING – 1.2 V ×VIN _ FALLING  
:
When a load is suddenly removed from the output and the  
energy stored in the inductor rushes into the output capacitor,  
the output overshoots. Calculate the output capacitance required to  
meet the overshoot requirement using the following equation:  
RTOP _ EN  
=
1.1 V × 6.1μΑ – 1.2 V ×1μA  
where:  
KOV × ∆ISTEP2 × L  
V
V
IN_RISING is the VIN rising threshold.  
IN_FALLING is the VIN falling threshold.  
COUT _OV  
=
(
)
2× VOUT − ∆VOUT _OV VOUT  
1.2 V × RTOP _ EN  
RBOT _ EN  
=
where:  
OV is a factor; the typical setting is KOV = 2.  
VIN _ RISING RTOP _ EN × 6.1μΑ – 1.2 V  
K
ΔISTEP is the load step.  
ΔVOUT_OV is the allowable overshoot on the output voltage.  
COMPENSATION DESIGN  
For peak current mode control, the power stage can be simplified  
as a voltage controlled current source supplying current to the  
output capacitor and load resistor. It is composed of one  
domain pole and a zero contributed by the output capacitor  
ESR. The control to output transfer function is shown with the  
following equations:  
The output ripple is determined by the ESR and the value of the  
capacitance. Use the following equations to select a capacitor  
that can meet the output ripple requirements:  
IL  
COUT _ RIPPLE  
=
8× fSW × ∆VOUT _ RIPPLE  
s
where ΔVOUT_RIPPLE is the allowable output ripple voltage.  
VOUT _ RIPPLE  
1+  
1+  
2×π × fZ  
VOUT (s)  
GVD (s) =  
= AVI × R×  
VCOMP (s)  
RESR  
=
s
IL  
2×π × fP  
where RESR is the equivalent series resistance of the output  
capacitor in ohms.  
where:  
G
A
VD is the control to output transfer function.  
Select the largest output capacitance given by COUT_UV, COUT_OV  
and COUT_RIPPLE to meet both load transient and output ripple  
performance.  
,
VI = 20 A /V.  
R is the load resistance.  
fZ is the zero of GVD  
.
fP is the domain pole of GVD  
.
The selected output capacitor voltage rating must be greater  
than the output voltage. The rms current rating of the output  
capacitor must be greater than the value calculated using the  
following equation:  
1
fZ =  
2×π × RESR ×COUT  
where:  
ESR is the equivalent series resistance of the output capacitor.  
IL  
R
C
ICOUT _ RMS  
=
12  
OUT is the output capacitance.  
1
fP =  
2×π ×  
(
R + RESR × COUT  
)
Rev. 0 | Page 15 of 23  
 
 
 
 
ADP2389/ADP2390  
Data Sheet  
The ADP2389/ADP2390 use a transconductance amplifier for the  
error amplifier and to compensate the system. Figure 31 shows  
the simplified, peak current mode control, small signal circuit.  
The following design guideline shows how to select the  
compensation components RC, CC, and CCP for ceramic output  
capacitor applications.  
V
V
OUT  
OUT  
1. Determine the cross frequency, fC. Generally, fC is between  
fSW/12 and fSW/6.  
R
TOP  
2. Calculate RC using the following equation:  
V
C
R
COMP  
C
OUT  
+
A
VI  
g
m
2 × π ×VOUT × COUT × fC  
RC =  
+
R
R
BOT  
R
0.6 V × gm × A  
C
VI  
CP  
ESR  
C
C
3. Place the compensation zero at the domain pole, fP, and  
determine CC by  
Figure 31. Simplified Peak Current Mode Control, Small Signal Circuit  
(R + RESR )×COUT  
CC =  
RC  
The compensation components, RC and CC, contribute a zero  
and the optional CCP and RC contribute an optional pole.  
4.  
CCP is optional. Use CCP to cancel the zero caused by the  
ESR of the output capacitor.  
The closed-loop transfer equation is as follows:  
RESR ×COUT  
RBOT  
gm  
CCP  
=
TV (s) =  
×
×
RC  
RBOT + RTOP CC + CCP  
1+ RC ×CC × s  
RC ×CC ×CCP  
×GVD (s)  
s × 1+  
× s  
CC + CP  
Rev. 0 | Page 16 of 23  
 
Data Sheet  
ADP2389/ADP2390  
DESIGN EXAMPLE  
This section provides the procedures of selecting the external  
components based on the example specifications listed in Table 7.  
The schematic of this design example is shown in Figure 32.  
Calculate the peak inductor current with the following equation:  
IL  
IPEAK = IOUT  
+
2
This results in IPEAK = 13.588 A.  
Table 7. Step-Down DC-to-DC Regulator Requirements  
Parameter  
Specification  
12.0 V 10%  
1.2 V  
12 A  
12 mV  
Calculate the rms current flowing through the inductor by the  
following equation:  
Input Voltage  
Output Voltage  
Output Current  
Output Voltage Ripple  
Load Transient  
2
IL  
12  
2
IRMS  
=
IOUT  
+
5%, 3 A to 9 A, 2 A/µs  
500 kHz  
This results in IRMS = 12.035 A.  
Switching Frequency  
According to the calculated current value, select an inductor  
with a minimum rms current rating of 12.035 A and a minimum  
saturation current rating of 13.588 A.  
OUTPUT VOLTAGE SETTING  
Select a 10 kΩ resistor as the top feedback resistor (RTOP) and  
calculate the bottom feedback resistor (RBOT) using the  
following equation:  
However, to protect the inductor from reaching its saturation  
point under a current-limit condition, the inductor must be  
rated for at least a 20 A saturation current for reliable operation.  
0.6  
Based on these requirements, select a 0.68 µH inductor, such as  
the 7443330068 from Würth Elektronik, which has 1.35 mΩ dc  
resistance (DCR) and a 38 A saturation current.  
RBOT = RTOP  
×
VOUT 0.6  
To set the output voltage to 1.2 V, the resistors values are RTOP  
10 kΩ and RBOT = 10 kΩ.  
=
OUTPUT CAPACITOR SELECTION  
The output capacitor must meet both the output voltage ripple  
requirement and load transient response.  
FREQUENCY SETTING  
Use the following equation to calculate the value of RT:  
To meet the output voltage ripple requirement, use the following  
equation to calculate the ESR and capacitance value of the  
output capacitor:  
67,000  
RT (k) =  
– 12  
fSW (kHz)  
Thus, when fSW = 500 kHz, the value of RT = 122 kΩ.  
Select the standard resistor value of 121 kΩ for RT.  
INDUCTOR SELECTION  
IL  
COUT _ RIPPLE  
=
8× fSW × ∆VOUT _ RIPPLE  
VOUT _ RIPPLE  
The peak-to-peak inductor ripple current, ∆IL, is set to 33% of  
the maximum output current. Use the following equation to  
estimate the inductor value:  
RESR =  
IL  
This results in COUT_RIPPLE = 66 μF and RESR = 3.78 mΩ.  
(
VIN VOUT  
)
× D  
To meet the 5% overshoot and undershoot transient  
requirements, use the following equations to calculate the  
capacitance:  
L =  
IL × fSW  
where:  
KOV × ∆ISTEP2 × L  
V
V
IN = 12.0 V  
OUT = 1.2 V  
COUT _OV  
=
=
(
)
2× VOUT − ∆VOUT _OV VOUT  
D = 10%  
IL = 4 A  
KUV × ∆ISTEP2 × L  
COUT _UV  
f
SW = 500 kHz  
2×  
(
VIN VOUT × ∆VOUT _UV  
)
This results in L = 0.54 µH. Select the standard inductor value  
of 0.68 µH.  
where:  
OV = KUV = 2, and are the coefficients for estimation purpose.  
K
ISTEP = 6 A, and is the load transient step.  
VOUT_OV = 5% × VOUT and, is the overshoot voltage.  
VOUT_UV = 5% × VOUT, and is the undershoot voltage.  
Calculate the peak-to-peak inductor ripple current using the  
following equation:  
(
VIN VOUT × D  
)
IL =  
This results in COUT_OV = 332 µF and COUT_UV = 38 µF.  
L× fSW  
This results in ∆IL = 3.176 A.  
Rev. 0 | Page 17 of 23  
 
 
 
 
 
 
ADP2389/ADP2390  
Data Sheet  
According to the calculations for COUT_RIPPLE, COUT_OV, and  
SOFT START TIME PROGRAM  
C
OUT_UV, the output capacitance must be greater than 332 µF and  
The soft start feature ramps up the output voltage in a controlled  
manner, eliminating output voltage overshoot during soft start,  
and limiting the inrush current. Set the soft start time to 4 ms.  
the ESR of the output capacitor must be less than 3.78 mΩ. It is  
recommended that five 100 µF, X5R, 6.3 V ceramic capacitors  
be used, such as the GRM32ER60J107ME20 from Murata, with  
an ESR of 2 mΩ.  
tSS × ISS 4 ms × 3.4 μA  
CSS  
=
=
= 22.67 nF  
0.6 V  
0.6 V  
COMPENSATION COMPONENTS  
Choose a standard component value of CSS = 22 nF.  
For better load transient and stability performance, set the cross  
frequency, fC, to fSW/10. In this case, fSW is running at 500 kHz;  
therefore, set fC to 50 kHz.  
INPUT CAPACITOR SELECTION  
Place a minimum 10 µF ceramic capacitor near the PVIN pin.  
In this application, one 10 µF, X5R, 25 V ceramic capacitor is  
recommended.  
The 100 µF ceramic output capacitors have a derated value of  
62 µF.  
2×π ×1.2 V × 5× 62 μF × 50 kHz  
RC =  
CC =  
=19.47 kΩ  
0.6 V × 500 μS × 20 A/V  
(
0.1 Ω + 0.002 Ω × 5 × 62 μF  
)
=1623 pF  
19.47 kΩ  
0.002 Ω × 5 × 62 μF  
19.47 kΩ  
CCP  
=
= 31.8 pF  
Choose the following standard components: RC = 20 kΩ, CC =  
1500 pF, and CCP = 33 pF.  
SCHEMATIC FOR DESIGN EXAMPLE  
C
0.1µF  
BST  
V
= 12V  
VIN  
PVIN  
EN  
BST  
SW  
IN  
V
= 1.2V  
OUT  
C
C
IN  
10µF  
25V  
L
C
C
C
C
OUT4  
PGOOD  
OUT1  
OUT2  
OUT3  
OUT5  
0.68µH  
100µF  
6.3V  
100µF  
6.3V  
100µF  
6.3V  
100µF  
6.3V  
100µF  
6.3V  
ADP2389/  
ADP2390  
R
10kΩ  
FTW  
TOP  
ILIM  
RT  
FB  
R
BOT  
COMP  
10kΩ  
R
VREG  
R
20kΩ  
T
C
SS  
121kΩ  
GND PGND  
C
C
C
CP  
SS  
C
22nF 1500pF  
33pF  
C
VREG  
1µF  
Figure 32. Schematic for Design Example  
Rev. 0 | Page 18 of 23  
 
 
 
 
 
Data Sheet  
ADP2389/ADP2390  
EXTERNAL COMPONENTS RECOMMENDATION  
Table 8. Recommended External Components for Typical Applications with 10 A Output Current  
fSW (kHz)  
VIN (V)  
12  
12  
12  
12  
12  
12  
12  
5
5
5
5
5
VOUT (V)  
L (µH)  
0.82  
1
1
1.2  
1.5  
2.2  
2.2  
0.68  
0.82  
0.82  
1
1
1
COUT F)1  
680  
RTOP (kΩ)  
RBOT (kΩ)  
RC (kΩ)  
21  
18  
15  
18  
15  
20  
10  
15  
18  
12  
15  
10  
12  
18  
18  
21  
20  
12  
20  
20  
18  
18  
14  
10  
12  
20  
12  
18  
15  
18  
22.1  
14  
9.1  
12  
CC (pF)  
2700  
2700  
2700  
2700  
2700  
2700  
2700  
2700  
2700  
2700  
2700  
2700  
2700  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
680  
CCP (pF)  
330  
270  
39  
33  
22  
18  
10  
330  
270  
39  
300  
1
10  
10  
15  
20  
47.5  
10  
22  
10  
10  
15  
20  
47.5  
10  
15  
10  
10  
10  
15  
2.21  
3
15  
10  
10  
10  
15  
2.21  
10  
10  
10  
15  
2.21  
3
15  
10  
10  
10  
15  
2.21  
15  
2.21  
3
15  
1.2  
1.5  
1.8  
2.5  
3.3  
5
470  
5 × 100  
5 × 100  
3 × 100  
3 × 100  
100  
1
470  
470  
1.2  
1.5  
1.8  
2.5  
3.3  
1.2  
1.5  
1.8  
2.5  
3.3  
5
5 × 100  
4 × 100  
2 × 100  
2 × 100  
4 × 100  
3 × 100  
3 × 100  
2 × 100  
100  
33  
22  
18  
5
600  
12  
12  
12  
12  
12  
12  
5
5
5
5
5
0.47  
0.47  
0.68  
0.82  
1
10  
15  
20  
47.5  
10  
22  
10  
10  
15  
27  
22  
18  
12  
10  
6.8  
33  
27  
22  
1.2  
100  
1
0.47  
0.47  
0.47  
0.47  
0.47  
0.47  
0.47  
0.47  
0.68  
0.13  
0.24  
0.24  
0.24  
0.24  
0.24  
5 × 100  
4 × 100  
3 × 100  
2 × 100  
100  
1.2  
1.5  
1.8  
2.5  
3.3  
2.5  
3.3  
5
20  
47.5  
10  
18  
12  
10  
5
100  
1200  
12  
12  
12  
5
5
5
5
5
5
100  
47  
47  
2 × 100  
2 × 100  
2 × 100  
100  
47  
47  
47.5  
10  
22  
10  
10  
15  
20  
47.5  
10  
6.8  
4.7  
3.3  
12  
12  
10  
8.2  
6.8  
4.7  
680  
680  
680  
680  
680  
680  
680  
680  
1
1.2  
1.5  
1.8  
2.5  
3.3  
10  
10  
10  
15  
2.21  
1 680 µF: 6.3 V, KEMET T530X687M006ATE010; 470 µF: 6.3 V, KEMET T520X477M006ATE010; 100 µF: 6.3 V, X5R, Murata GRM32ER60J107ME20; 47 µF: 6.3 V, X5R, Murata  
GRM32ER60J476ME20.  
Rev. 0 | Page 19 of 23  
 
 
ADP2389/ADP2390  
Data Sheet  
CIRCUIT BOARD LAYOUT RECOMMENDATIONS  
Good printed circuit board (PCB) layout is essential for obtaining  
the best performance from the ADP2389/ADP2390. Poor PCB  
layout can degrade the output regulation, as well as the EMI and  
electromagnetic compatibility (EMC) performance. Figure 34  
shows an example of a good PCB layout for the ADP2389/  
ADP2390. For optimum layout, refer to the following guidelines:  
Connect the exposed GND pad of the ADP2389/ADP2390  
to a large, external copper ground plane to maximize its power  
dissipation capability and minimize junction temperature. In  
addition, connect the exposed SW pad to the SW pins of the  
ADP2389/ADP2390, using short, wide traces, or connect  
the exposed SW pad to a large copper plane of the switching  
node for high current flow to reduce thermal resistance.  
Place the feedback resistor divider network as close as  
possible to the FB pin to prevent noise pickup. Minimize  
the length of the trace that connects the top of the feedback  
resistor divider to the output while keeping the trace away  
from the high current traces and the switching node to  
avoid noise pickup. To reduce noise pickup further, place  
an analog ground plane on either side of the FB trace and  
ensure that the trace is as short as possible to reduce the  
parasitic capacitance pickup.  
Use separate analog ground planes and power ground  
planes. Connect the ground reference of sensitive analog  
circuitry, such as output voltage divider components, to the  
analog ground. In addition, connect the ground reference  
of power components, such as input and output capacitors,  
to power ground. Connect both ground planes to the  
exposed GND pad of the ADP2389/ADP2390.  
Place the input capacitor, the inductor, and the output  
capacitor as close as possible to the IC, and use short traces.  
Ensure that the high current loop traces are as short and as  
wide as possible. Make the high current path from the input  
capacitor through the inductor, the output capacitor, and the  
power ground plane back to the input capacitor as short as  
possible. To accomplish this, ensure that the input and output  
capacitors share a common power ground plane.  
VIN  
PVIN  
EN  
BST  
SW  
V
C
IN  
BST  
C
IN  
V
OUT  
L
PGOOD  
C
OUT  
ADP2389/  
ADP2390  
R
R
TOP  
FTW  
In addition, ensure that the high current path from the power  
ground plane through the inductor and output capacitor  
back to the power ground plane is as short as possible by  
tying the PGND pins of the ADP2389/ADP2390 to the  
PGND plane as close as possible to the input and output  
capacitors.  
FB  
COMP  
SS  
ILIM  
RT  
BOT  
VREG  
R
C
R
R
R
T
FTW  
ILIM  
GND PGND  
C
CP  
C
C
C
C
VREG  
SS  
NOTES  
1. ITEMS IN GRAY INDICATES HIGH CURRENT.  
Figure 33. High Current Path in the PCB Circuit  
Rev. 0 | Page 20 of 23  
 
Data Sheet  
ADP2389/ADP2390  
VIA  
ANALOG GROUND PLANE  
BOTTOM LAYER TRACE  
COPPER PLANE  
PVIN  
R
BOT  
SS  
COMP  
FB  
PVIN  
GND  
INPUT  
INPUT  
BULK  
PVIN  
BYPASS  
R
TOP  
CAPACITOR CAPACITOR  
PVIN  
BST  
VREG  
C
C
BST  
VREG  
GND  
SW  
SW  
SW  
SW  
PGND  
PGND  
SW  
SW  
SW  
INDUCTOR  
OUTPUT  
CAPACITOR  
POWER GROUND PLANE  
VOUT  
Figure 34. Recommended PCB Layout  
Rev. 0 | Page 21 of 23  
 
ADP2389/ADP2390  
Data Sheet  
TYPICAL APPLICATION CIRCUITS  
Figure 35 through Figure 37 show some typical application circuits of the ADP2389/ADP2390 for user information.  
V
12V  
IN  
VIN  
PVIN  
EN  
BST  
SW  
C
0.1µF  
BST  
V
OUT  
3.3V, 12A  
C
IN  
10µF  
25V  
L
PGOOD  
C
100µF  
6.3V  
C
100µF  
6.3V  
C
OUT3  
100µF  
6.3V  
OUT1  
OUT2  
1.2µH  
ADP2390  
R
TOP  
10kΩ  
FTW  
FB  
COMP  
SS  
ILIM  
RT  
R
BOT  
2.21kΩ  
R
C
R
VREG  
T
38.3kΩ  
100kΩ  
GND PGND  
C
10pF  
C
22nF  
C
C
1500pF  
CP  
SS  
C
VREG  
1µF  
Figure 35. VIN = 12 V, VOUT = 3.3 V, IOUT = 12 A, fSW = 600 kHz with PFM Mode  
V
12V  
IN  
VIN  
PVIN  
EN  
BST  
SW  
C
0.1µF  
BST  
V
OUT  
1.2V, 8A  
C
IN  
10µF  
25V  
L
1µH  
PGOOD  
C
330µF  
16V  
C
OUT2  
OUT1  
10µF  
6.3V  
ADP2389  
R
TOP  
10kΩ  
FTW  
FB  
COMP  
SS  
ILIM  
RT  
R
BOT  
10kΩ  
R
21kΩ  
C
VREG  
R
R
ILIM  
T
82.5kΩ 121kΩ  
GND PGND  
C
C
C
C
CP  
SS  
100pF  
22nF  
2200pF  
C
VREG  
1µF  
Figure 36. VIN = 12 V, VOUT = 1.2 V, IOUT = 8 A, fSW = 500 kHz with Programmable Current Limit  
V
12V  
IN  
VIN  
PVIN  
EN  
BST  
SW  
C
0.1µF  
BST  
V
OUT  
1.8V, 12A  
C
IN  
10µF  
25V  
L
PGOOD  
C
100µF  
6.3V  
C
100µF  
6.3V  
C
100µF  
6.3V  
C
OUT4  
100µF  
6.3V  
OUT1  
OUT2  
OUT3  
0.68µH  
ADP2389  
R
TOP  
20kΩ  
FTW  
FB  
COMP  
SS  
ILIM  
RT  
R
BOT  
10kΩ  
R
27kΩ  
C
VREG  
R
R
FTW  
T
78.7kΩ 100kΩ  
GND PGND  
C
C
C
C
CP  
SS  
22pF  
22nF  
1200pF  
C
VREG  
1µF  
Figure 37. VIN = 12 V, VOUT = 1.8 V, IOUT = 12 A, fSW = 600 kHz with Fast Transient  
Rev. 0 | Page 22 of 23  
 
 
 
Data Sheet  
ADP2389/ADP2390  
OUTLINE DIMENSIONS  
5.10  
5.00 SQ  
4.90  
3.80  
3.70  
3.55  
0.65  
0.65  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
1.777  
1.677  
1.527  
25  
24  
32  
1
0.50  
BSC  
EXPOSED  
PAD  
0.425  
EXPOSED  
PAD  
0.45  
0.35  
0.25  
1.725  
1.625  
1.475  
17  
8
16  
9
BOTTOM VIEW  
3.441  
3.341  
TOP VIEW  
0.625  
0.984  
1.00  
0.90  
0.80  
3.191  
0.05 MAX  
0.02 NOM  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
COPLANARITY  
0.08  
0.30  
0.25  
0.20  
0.152 REF  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD  
Figure 38. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
5 mm × 5 mm Body, Very Thin Quad  
(CP-32-19)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range Output Voltage Package Description  
Package Option  
CP-32-19  
CP-32-19  
ADP2389ACPZ-R7 −40°C to +125°C  
ADP2390ACPZ-R7 −40°C to +125°C  
ADP2389-EVALZ  
Adjustable  
Adjustable  
32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Evaluation Board  
ADP2390-EVALZ  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12192-0-8/15(0)  
Rev. 0 | Page 23 of 23  
 
 

相关型号:

ADP2389-EVALZ

18 V, 12 A Step-Down Regulator with Programmable Current Limit
ADI

ADP2389ACPZ-R7

18 V, 12 A Step-Down Regulator with Programmable Current Limit
ADI

ADP2390

集成可编程限流和PFM的18 V、12 A降压稳压器
ADI

ADP2390-EVALZ

18 V, 12 A Step-Down Regulator with Programmable Current Limit
ADI

ADP2390ACPZ-R7

18 V, 12 A Step-Down Regulator with Programmable Current Limit
ADI

ADP2441

36 V,1 A, Synchronous, Step-Down DC-to-DC Regulator
ADI

ADP2441-EVALZ

36 V,1 A, Synchronous, Step-Down DC-to-DC Regulator
ADI

ADP2441ACPZ-R2

36 V,1 A, Synchronous, Step-Down DC-to-DC Regulator
ADI

ADP2441ACPZ-R7

36 V,1 A, Synchronous, Step-Down DC-to-DC Regulator
ADI

ADP2442

36 V,1 A, Synchronous, Step-Down, DC-to-DC Regulator with External Clock Synchronization
ADI

ADP2442-EVALZ

36 V,1 A, Synchronous, Step-Down, DC-to-DC Regulator with External Clock Synchronization
ADI

ADP2442ACPZ-R7

36 V,1 A, Synchronous, Step-Down, DC-to-DC Regulator with External Clock Synchronization
ADI