ADP3401 [ADI]

GSM Power Management System; GSM电源管理系统
ADP3401
型号: ADP3401
厂家: ADI    ADI
描述:

GSM Power Management System
GSM电源管理系统

GSM
文件: 总12页 (文件大小:285K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
a
GSM Power Management System  
ADP3401  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Handles all GSM Baseband Power Management  
Functions  
VBAT  
Four LDOs Optimized for Specific GSM Subsystems  
Charges Li-Mn Coin Cell for Real-Time Clock  
Charge Pump and Logic Level Translators for 3 V and 5 V  
GSM SIM Modules  
ADP3401  
DIGITAL  
VCC  
LDO  
Thermally Enhanced 6.1 mm 28-Lead TSSOP Package  
RESET  
APPLICATIONS  
PWRONKEY  
GSM/DCS/PCS Handsets  
TeleMatic Systems  
ICO/Iridium Terminals  
RTC LDO  
VRTC  
ROWX  
POWER-UP  
SEQUENCING  
AND  
PROTECTION  
LOGIC  
XTAL OSC  
LDO  
PWRONIN  
ANALOGON  
RESCAP  
VTCXO  
VCCA  
GENERAL DESCRIPTION  
ANALOG  
LDO  
CHRON  
The ADP3401 is a multifunction power management system IC  
optimized for GSM cell phones. The wide input voltage range of  
3.0 V to 7.0 V makes the ADP3401 ideal for both single cell Li-Ion  
and three cell NiMH designs. The current consumption of the  
ADP3401 has been optimized for maximum battery life, featuring  
a ground current of only 150 µA when the phone is in standby  
(digital LDO, and SIM card supply active). An undervoltage lock-  
out (UVLO) prevents the startup when there is not enough energy  
in the battery. All four integrated LDOs are optimized to power  
one of the critical sub-blocks of the phone. Their novel anyCAP™  
architecture requires only very small output capacitors for stability,  
and the LDOs are insensitive to the capacitors’ equivalent series  
resistance (ESR). This makes them stable with any capacitor,  
including ceramic (MLCC) types for space-restricted applications.  
SIMBAT  
CAP+  
CAP؊  
CHARGE  
PUMP  
VSIM  
SIMPROG  
SIMON  
BUFFER  
REFOUT  
DGND  
REF  
SIMGND  
+
RESETIN  
CLKIN  
LOGIC LEVEL  
TRANSLATION  
AGND  
DATAIO  
CLK RST  
I/O  
A step-up converter is implemented to supply both the SIM  
module and the level translation circuitry to adapt logic signals  
for 3 V and 5 V SIM modules. Sophisticated controls are avail-  
able for power-up during battery charging, keypad interface, and  
charging of an auxiliary backup battery for the real-time clock.  
These allow an easy interface between ADP3401, GSM proces-  
sor, charger, and keypad. The 28-lead TSSOP package has been  
thermally enhanced to maximize power dissipation capability.  
Furthermore, a reset circuit and a thermal shutdown function  
have been implemented to support reliable system design.  
anyCAP is a trademark of Analog Devices, Inc.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
(–20°C TA +85°C, VBAT = 3 V to 7 V, CVBAT = CSIMBAT = CVSIM = 10 F,  
VCC = CVCCA = 2.2 F, CVRTC = 0.1 F, CVTCXO = 0.22 F, CVCAP = 0.1 F, min. loads applied  
on all outputs, unless otherwise noted)  
C
ADP3401–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS1  
Parameter  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
SHUTDOWN SUPPLY CURRENT  
VBAT = Low (UVLO Low)  
VBAT = High (UVLO High)  
IBAT  
VBAT = 2.7 V  
VBAT = 3.6 V, VRTC On  
3
12  
20  
30  
µA  
µA  
OPERATING GROUND CURRENT  
VCC and VRTC On  
VCC, VRTC and VSIM On  
All LDOs and VSIM On  
IGND  
Minimum Loads, VBAT = 3.6 V  
Minimum Loads, VBAT = 3.6 V  
Minimum Loads, VBAT = 3.6 V  
Maximum Loads, VBAT = 3.6 V  
100 140  
150 240  
260 400  
15  
µA  
µA  
µA  
mA  
All LDOs and VSIM On  
UVLO CHARACTERISTICS  
UVLO On Threshold  
UVLO Hysteresis  
VBATUVLO  
3.0  
100  
3.3  
V
mV  
INPUT CHARACTERISTICS  
Input High Voltage  
PWRONIN and ANALOGON  
PWRONKEY  
Input Low Voltage  
VIH  
VIL  
2
V
V
0.7 ϫ VBAT  
PWRONIN and ANALOGON  
PWRONKEY  
0.4  
V
V
0.3 ϫ VBAT  
PWRONKEY INPUT PULL-UP  
RESISTANCE TO VBAT  
15  
20  
25  
kΩ  
CHRON CHARACTERISTICS  
CHRON Threshold  
CHRON Hysteresis Resistance  
CHRON Input Bias Current  
VT  
RIN  
IB  
2.38  
108  
2.48 2.58  
125 138  
0.5  
V
kΩ  
µA  
2.38 < CHRON < VT  
CHRON > VT  
ROWX CHARACTERISTICS  
ROWX Output Low Voltage  
VOL  
IIH  
PWRONKEY = Low  
IOL = 200 µA  
PWRONKEY = High  
V(ROWX) = 5 V  
0.4  
1
V
ROWX Output High Leakage  
Current  
µA  
SHUTDOWN  
Thermal Shutdown Threshold2  
Thermal Shutdown Hysteresis  
Junction Temperature  
Junction Temperature  
160  
35  
ºC  
ºC  
DIGITAL LDO (VCC)  
Output Voltage  
Line Regulation  
VCC  
DVCC  
DVCC  
Line, Load, Temp  
2.710  
2.2  
2.765 2.820  
2
15  
V
mV  
mV  
3 V < VBAT < 7 V, Min Load  
50 µA < ILOAD < 100 mA,  
VBAT = 3.6 V  
Load Regulation  
Output Capacitor3  
Dropout Voltage  
CO  
VDO  
µF  
mV  
VO = VINITIAL – 100 mV  
ILOAD = 100 mA  
215  
ANALOG LDO (VCCA)  
Output Voltage  
Line Regulation  
VCCA  
DVCCA  
DVCCA  
Line, Load, Temp  
2.710  
2.765 2.820  
2
15  
V
mV  
mV  
3 V < VBAT < 7 V, Min Load  
200 µA < ILOAD < 130 mA,  
VBAT = 3.6 V  
Load Regulation  
Output Capacitor3  
Dropout Voltage  
CO  
VDO  
2.2  
65  
µF  
mV  
VO = VINITIAL – 100 mV  
ILOAD = 130 mA  
f = 217 Hz (t = 4.6 ms)  
VBAT = 3.6 V  
f = 10 Hz to 100 kHz  
ILOAD = 130 mA, VBAT = 3.6 V  
215  
Ripple Rejection  
DVBAT/  
DVCCA  
VNOISE  
70  
75  
dB  
Output Noise Voltage  
µV rms  
–2–  
REV. 0  
ADP3401  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
CRYSTAL OSCILLATOR LDO (VTCXO)  
Output Voltage  
Line Regulation  
VTCXO  
VTCXO  
VTCXO  
Line, Load, Temp  
2.710  
2.765 2.820  
2
1
V
mV  
mV  
3 V < VBAT < 7 V, Min Load  
100 µA < ILOAD < 5 mA,  
VBAT = 3.6V  
Load Regulation  
Output Capacitor3  
Dropout Voltage  
CO  
VDO  
0.22  
65  
µF  
mV  
VO = VINITIAL – 100 mV  
ILOAD = 5 mA  
f = 217 Hz (t = 4.6 ms)  
VBAT = 3.6 V  
f = 10 Hz to 100 kHz  
ILOAD = 5 mA, VBAT = 3.6 V  
150  
Ripple Rejection  
VBAT/  
VTCXO  
VNOISE  
72  
80  
dB  
Output Noise Voltage  
µV rms  
VOLTAGE REFERENCE (REFOUT)  
Output Voltage  
Line Regulation  
VREFOUT  
VREFOUT  
Line, Load, Temp  
3 V < VBAT < 7 V, Min Load  
1.192  
1.210 1.228  
2
V
mV  
Load Regulation  
Ripple Rejection  
VREFOUT  
0 µA < ILOAD < 50 µA,  
VBAT = 3.6 V  
f = 217 Hz (t = 4.6 ms),  
VBAT = 3.6 V  
0.5  
75  
mV  
dB  
VBAT/  
VREFOUT  
CO  
65  
Maximum Capacitive Load  
Output Noise Voltage  
100  
pF  
µV rms  
VNOISE  
f = 10 Hz to 100 kHz  
VBAT = 3.6 V  
40  
REAL-TIME CLOCK LDO/  
BATTERY CHARGER (VRTC)  
Maximum Output Voltage  
Current Limit  
Off Reverse Leakage Current  
Dropout Voltage  
VRTC  
IMAX  
IL  
ILOAD 10 µA  
2.810  
2.850 2.890  
175  
1
V
3.050 V < VBAT < 7 V  
2.0 V < VBAT < UVLO  
VO = VINITIAL – 10 mV  
ILOAD = 10 µA  
µA  
µA  
mV  
VDO  
170  
SIM CHARGE PUMP (VSIM)  
Output Voltage for 5 V SIM Modules  
VSIM  
VSIM  
0 mA ILOAD 10 mA  
SIMPROG = High  
0 mA ILOAD 6 mA  
SIMPROG = Low  
4.70  
2.82  
5.00  
3.00  
5.30  
3.18  
V
V
Output Voltage for 3 V SIM Modules  
GSM/SIM LOGIC TRANSLATION  
(GSM INTERFACE)  
Input High Voltage (SIMPROG, SIMON, VIH  
RESETIN, CLKIN)  
Input Low Voltage (SIMPROG, SIMON,  
RESETIN, CLKIN)  
DATAIO  
VCC – 0.6  
V
V
V
V
VIL  
0.6  
VIL  
VOL (I/O) = 0.4 V,  
IOL (I/O) = 1 mA  
VOL (I/O) = 0.4 V,  
IOL (I/O ) = 0 mA  
IIH, IOH = ±10 µA  
VIL = 0 V  
0.230  
0.335  
VIH, VOH  
IIL  
VOL  
VCC – 0.4  
16  
V
mA  
V
–0.9  
0.420  
24  
VIL (I/O) = 0.4 V  
DATAIO Pull-Up Resistance to VCC  
RIN  
20  
kΩ  
REV. 0  
–3–  
ADP3401  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
SIM INTERFACE  
VSIM = 5 V  
RST  
RST  
CLK  
CLK  
I/O  
I/O  
I/O  
I/O  
VOL  
VOH  
VOL  
VOH  
VIL  
VIH, VOH  
IIL  
I = +200 µA  
I = –20 µA  
I = +200 µA  
I = –20 µA  
0.6  
0.5  
0.4  
V
V
V
V
V
V
mA  
V
VSIM – 0.7  
0.7 ϫ VSIM  
VSIM – 0.4  
IIH, IOH = ±20 µA  
VIL = 0 V  
IOL = +1 mA  
–0.9  
0.4  
VOL  
DATAIO 0.23 V  
VSIM = 3 V  
RST  
RST  
CLK  
CLK  
I/O  
VOL  
VOH  
VOL  
VOH  
VIL  
I = +200 µA  
I = –20 µA  
I = +20 µA  
I = –20 µA  
0.2 ϫ VSIM  
0.2 ϫ VSIM  
0.4  
V
V
V
V
V
V
mA  
V
0.8 ϫ VSIM  
0.7 ϫ VSIM  
VSIM – 0.4  
I/O  
I/O  
I/O  
VIH, VOH  
IIL  
VOL  
IIH, IOH = ±20 µA  
VIL= 0 V  
IOL = 1 mA  
–0.9  
0.4  
DATAIO 0.23 V  
I/O Pull-Up Resistance to VSIM  
Max Frequency (CLK)  
Prop Delay (CLK)  
Output Rise/Fall Times (CLK)  
Output Rise/Fall Times (I/O, RST)  
Duty Cycle (CLK)  
RIN  
fMAX  
tD  
tR, tF  
tR, tF  
D
8
5
10  
12  
kΩ  
MHz  
ns  
ns  
µs  
CL = 30 pF  
30  
9
50  
18  
1
CL = 30 pF  
CL = 30 pF  
D CLKIN = 50%  
f = 5 MHz  
47  
53  
%
RESET GENERATOR (RESET)  
Output High Voltage  
Output Low Voltage  
Delay Time Per Unit Capacitance  
Applied to RESCAP Pin  
VOH  
VOL  
tD  
IOH = –15 µA  
IOL = –15 µA  
VCC – 0.3  
1.0  
V
V
ms/nF  
0.3  
NOTES  
1All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods .  
2This feature is intended to protect against catastophic failure of the device. Maximum allowed operating junction temperature is 125ºC. Operation beyond 125ºC  
could cause permenant damage to the device.  
3Required for stability.  
Specifications subject to change without notice.  
–4–  
REV. 0  
ADP3401  
PIN FUNCTION DESCRIPTIONS  
ABSOLUTE MAXIMUM RATINGS*  
Voltage on Any Pin with Respect  
Pin  
Mnemonic  
Function  
to Any GND Pin . . . . . . . . . . . . . . . . . . . . . . –0.3 V, +10 V  
Voltage on Any Pin May Not Exceed VBAT,  
with the Following Exceptions: VRTC, VSIM,  
CAP+, PWRONIN, I/O, CLK, RST  
Storage Temperature Range . . . . . . . . . . . . –65  
Operating Temperature Range . . . . . . . . . . . –20  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . 125  
θJA, Thermal Impedance (TSSOP-28) . . 2-Layer Board 90  
θJA, Thermal Impedance (TSSOP-28) . . 4-Layer Board 60  
Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300°C  
*This is a stress rating only, operation beyond these limits can cause the device to  
1
2
3
4
5
VBAT  
VCC  
PWRONKEY  
ANALOGON  
PWRONIN  
Battery Input Voltage  
Digital Low Dropout Regulator  
Power On/Off Key  
VTCXO Enable  
Power On/Off Signal from  
Microprocessor  
Microprocessor Keyboard Output  
Charger On/Off Input  
Real-Time Clock Supply/Coin  
Cell Battery Charger  
Negative Side of Boost Capacitor  
Battery Input for the SIM  
Charge Pump  
Non-Level-Shifted Bidirectional  
Data I/O  
Non-Level-Shifted SIM Reset  
Non-Level-Shifted Clock  
Charge Pump Ground  
Level-Shifted Bidirectional SIM  
Data Input/Output  
Level-Shifted SIM Reset  
VSIM Programming:  
Low = 3 V, High = 5 V  
VSIM Enable  
Level-Shifted SIM Clock  
SIM Supply  
Positive Side of Boost Capacitor  
Reset Delay Timing Cap  
Digital Ground  
Crystal Oscillator Low Dropout  
Regulator  
°
C to +150  
°C  
°C to +85°C  
°C  
°
C/W  
6
7
8
ROWX  
CHRON  
VRTC  
°C/W  
be permanently damaged.  
9
10  
CAP–  
SIMBAT  
PIN CONFIGURATION  
11  
DATAIO  
1
2
28  
27  
26  
25  
24  
23  
22  
VBAT  
AGND  
12  
13  
14  
15  
RESETIN  
CLKIN  
SIMGND  
I/O  
VCCA  
VCC  
PWRONKEY  
ANALOGON  
3
REFOUT  
RESET  
VTCXO  
DGND  
4
5
PWRONIN  
ROWX  
6
16  
17  
RST  
SIMPROG  
7
CHRON  
VRTC  
RESCAP  
ADP3401  
8
21 CAP+  
20 VSIM  
CAP؊  
9
18  
19  
20  
21  
22  
23  
24  
SIMON  
CLK  
VSIM  
10  
11  
12  
13  
14  
19  
18  
17  
16  
15  
SIMBAT  
DATAIO  
RESETIN  
CLKIN  
CLK  
SIMON  
SIMPROG  
RST  
CAP+  
RESCAP  
DGND  
VTCXO  
SIMGND  
I/O  
ORDERING GUIDE  
25  
26  
27  
28  
RESET  
REFOUT  
VCCA  
Main Reset  
Reference Output  
Analog Low Dropout Regulator  
Analog Ground  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
AGND  
ADP3401ARU –20°C to +85°C 28-Lead TSSOP RU-28A  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the ADP3401 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–5–  
ADP3401  
Table I. LDO Control Logic  
OUTPUTS  
INPUTS  
UVLO  
CHRON  
PWRONKEY  
PWRONIN  
ANALOGON  
VRTC  
Off  
VCC VCCA REFOUT VTCXO  
L
X
H
X
L
X
X
L
X
X
X
L
X
X
X
X
L
Off  
On  
On  
Off  
On  
On  
Off  
On  
On  
Off  
Off  
On  
Off  
On  
On  
Off  
Off  
On  
Off  
On  
On  
Off  
Off  
On  
H
H
H
H
H
On  
On  
H
H
H
On  
L
H
H
On  
L
H
On  
X = Don't care  
Bold denotes the active control signal.  
Table II. VSIM Control Logic  
INPUTS  
VCC  
OUTPUTS  
VSIM  
RESET  
SIMON  
SIMPROG  
Off  
On  
On  
On  
On  
L
L
H
H
H
X
X
L
H
H
X
X
X
L
Off  
Off  
Off  
3 V  
5 V  
H
X = Don't care  
VBAT  
ADP3401  
DIGITAL LDO  
VBAT  
VREF  
VCC  
2.765V  
OUT  
PG  
20k⍀  
ADJ  
EN  
UVLO  
GND  
UVLO  
DGND  
POWER GOOD  
RTC LDO  
OUT  
PWRONKEY  
ROWX  
OVER  
TEMP  
VRTC  
2.85V  
VBAT  
EN  
GND  
PWRONIN  
RESCAP  
RESET  
GENERATOR  
RESET  
XTAL OSC LDO  
VBAT  
VTCXO  
2.765V  
CHARGER  
VREF  
EN  
OUT  
ON  
CHRON  
THRESHOLD  
GND  
ANALOGON  
SIMBAT  
CAP+  
ANALOG LDO  
VBAT  
EN  
CHARGE  
PUMP  
CAP؊  
VCCA  
2.765V  
VREF  
EN  
OUT  
3V/5V  
EN  
SIMPROG  
SIMON  
GND  
SIMGND  
RESETIN  
CLKIN  
EN  
LOGIC  
LEVEL  
TRANSLATION  
REF  
BUFFER  
REFOUT  
AGND  
DATAIO  
+
1.210V  
I/O CLK RST  
VSIM  
Figure 1. Functional Block Diagram  
–6–  
REV. 0  
ADP3401  
300  
250  
200  
150  
100  
50  
350  
300  
250  
PWRONIN, SIMON, AND ANALOGON  
+85؇C  
PWRONIN AND SIMON  
200  
150  
100  
50  
+25؇C  
PWRONIN  
؊20؇C  
0
0
3
4
5
6
7
0.5  
1.0  
1.5  
2.0  
2.5  
3
VRTC – V  
VBAT – V  
Figure 2. Ground Current vs. Battery Voltage  
Figure 5. RTC I/V Characteristic  
140  
120  
MLCC CAPS  
VBAT 100 mV/DIV  
3.2  
100  
VCC  
3.0  
VCCA  
80  
VCC 10 mV/DIV  
60  
40  
20  
0
VCCA 10 mV/DIV  
VTCXO 10 mV/DIV  
0
20  
40  
60  
80  
100  
120  
140  
LOAD CURRENT – mA  
TIME – 100s/DIV  
Figure 3. VCC, VCCA Dropout Voltage vs. Load Current  
Figure 6. Line Transient Response, Maximum Loads  
70  
60  
50  
40  
30  
20  
MLCC CAPS  
VBAT (100 mV/DIV)  
3.2  
3.0  
VCC (10 mV/DIV)  
VCCA (10 mV/DIV)  
VTCXO (10 mV/DIV)  
10  
0
0
1
2
3
4
5
TIME – 100s/DIV  
LOAD CURRENT – mA  
Figure 4. VTCXO Dropout Voltage vs. Load Current  
Figure 7. Line Transient Response, Minimum Loads  
REV. 0  
–7–  
ADP3401  
MLCC CAPS  
I = 100mA  
I
LOAD  
PWRONIN AND ANALOGON (2V/DIV)  
VCCA (100mV/DIV)  
I = 200A  
VCC  
REFOUT (100mV/DIV)  
VCC (100mV/DIV)  
VTCXO (100mV/DIV)  
TIME – 200s/DIV  
TIME – 50s/DIV  
Figure 8. VCC Load Step  
Figure 11. Turn-On Transients, Maximum Loads  
80  
MLCC CAPS  
I = 130mA  
70  
60  
50  
40  
30  
20  
10  
0
VTCXO  
I
VCCA  
LOAD  
I = 50A  
REFOUT  
MLCC OUTPUT CAPS  
VBAT = 3.2V, FULL LOADS  
VCC  
VCCA  
4
10  
100  
1k  
10k  
100k  
TIME – 100s/DIV  
FREQUENCY – Hz  
Figure 12. Ripple Rejection vs. Frequency  
Figure 9. VCCA Load Step  
80  
REFOUT  
70  
60  
50  
40  
PWRONIN AND ANALOGON (2V/DIV)  
VCCA (100mV/DIV)  
VCCA  
VCC  
VTCXO (100mV/DIV)  
VCC (100mV/DIV)  
30  
VTCXO  
20  
FREQUENCY = 217Hz  
MAX LOADS  
10  
0
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
VBAT – V  
TIME – 50s/DIV  
Figure 13. Ripple Rejection vs. Battery Voltage  
Figure 10. Turn-On Transients, Minimum Loads  
–8–  
REV. 0  
ADP3401  
These functions have traditionally been done as either a discrete  
implementation or a custom ASIC design. ADP3401 combines  
the benefits of both worlds by providing an integrated standard  
product solution where every block is optimized to operate in a  
GSM environment while maintaining a cost-competitive solution.  
600  
500  
FULL LOAD  
MLCC CAPS  
VCCA  
TCXO  
400  
300  
200  
100  
0
Figure 15 shows the external circuitry associated with the  
ADP3401. Only a few support components, mainly decoupling  
capacitors, are required.  
Input Voltage  
REF  
The input voltage range for ADP3401 is 3 V to 7 V and optimized  
for a single Li-Ion cell or three NiMH/NiCd cells. The ADP3401  
uses Analog Devices’ patented package thermal enhancement  
technology, which allows 15% improvement in power handling  
capability over standard plastic packages. The thermal impedance  
10  
100  
1k  
10k  
100k  
FREQUENCY – Hz  
(θJA) of the ADP3401 is 60°C/W. The charging voltage for a high  
Figure 14. Output Noise Density  
THEORY OF OPERATION  
The ADP3401 is a power management chip optimized for use with  
the AD20msp425 GSM baseband chipsets in handset applications.  
Figure 1 shows a functional block diagram of the ADP3401.  
capacity NiMH cell can be as high as 5.5 V. Power dissipation  
should be calculated at maximum ambient temperatures and  
battery voltage in order not to exceed the 125°C maximum allow-  
able junction temperature. Figure 16 shows the maximum total  
LDO output current as a function of ambient temperature and  
battery voltage.  
The ADP3401 contains several blocks:  
However, high battery voltages normally occur only when the  
battery is being charged and the handset is not in conversation  
mode. In this mode there is a relatively light load on the LDOs.  
A fully charged Li-Ion battery is 4.25 V, where the LDOs deliver  
Four Low Dropout Regulators (Digital, Analog, Crystal  
Oscillator, Real-Time Clock)  
Reset Generator  
Buffered Precision Reference  
SIM Interface Logic Level Translation (3 V/5 V)  
SIM Voltage Supply  
the maximum 240 mA up to the max 85°C ambient temperature.  
Power-On/-Off Logic  
Undervoltage Lockout  
CHARGER INPUT  
R1  
1
2
3
4
5
6
7
8
9
VBAT  
AGND  
VCCA  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
10F  
1 Li-ION OR  
3 NiMH  
VCC  
2.2F  
CELLS  
2.2F  
10F  
100⍀  
PWRONKEY  
ANALOGON  
PWRONIN  
ROWX  
REFOUT  
RESET  
VTCXO  
DGND  
RESCAP  
CAP+  
GSM  
PROCESSOR  
0.22F  
ANALOG GND  
DIGITAL AND  
SIM GND  
R2  
CHRON  
VRTC  
100nF  
ADP3401  
100nF  
BACKUP COIN CELL  
CAP–  
VSIM  
10F  
CLK TO SIMCARD  
10 SIMBAT  
11 DATAIO  
12 RESETIN  
13 CLKIN  
CLK  
100nF  
10F  
SIMON  
SIMPROG  
RST  
GSM  
PROCESSOR  
SIM PIN OF  
GSM PROCESSOR  
RST TO SIMCARD  
I/O TO SIM CARD  
14 SIMGND  
I/O  
Figure 15. Typical Application Circuit  
REV. 0  
–9–  
ADP3401  
RTC LDO (VRTC)  
300  
4-LAYER BOARD  
The RTC LDO charges a rechargable coin cell to run the real-  
time clock module. It has been targeted to charge Manganese  
Lithium batteries such as the ML series (ML621/ML1220)  
from Sanyo. The ML621 has a small physical size (6.8 mm  
diameter) and a nominal capacity of 2.5 mAh, which yields  
about 250 hours of backup time.  
= 60؇C/W  
JA  
VBAT = 5V  
250  
200  
150  
100  
50  
VBAT = 5.5V  
VBAT = 6V  
VBAT = 7V  
Figure 18 shows the use of VRTC with the Enhanced GSM  
Processor which is a part of the AD20msp425 chipset.  
ENHANCED  
GSM PROCESSOR  
(AD20msp425)  
ADP3401  
0
VRTC  
؊20  
0
20  
40  
60  
80 85  
VRTC  
AMBIENT TEMPERATURE – ؇C  
COIN  
CELL  
RTC  
MODULE  
Figure 16. Total LDO Load Current vs. Temperature and VBAT  
Low Dropout Regulators (LDOs)  
PWRONIN  
PWRON  
The ADP3401 high-performance LDOs are optimized for  
their given functions by balancing quiescent current, dropout  
voltage, line/load regulation, ripple rejection, and output  
noise. 2.2 µF tantalum or MLCC ceramic capacitors are  
recommended for use with the digital and analog LDOs, and  
0.22 µF for the TCXO LDO.  
Figure 18. Connecting VRTC and POWERONIN to the  
AD20msp425 Chipset  
Digital LDO (VCC)  
The ADP3401 supplies current both for charging the coin cell and  
for the RTC module when the digital supply is off. The nominal  
charging voltage of 2.85 V ensures charging down to a main  
battery voltage of 3.0 V. The inherent current limit of VRTC  
ensures long cell life while the precise output voltage regulation  
charges the cell to more than 90% of its capacity. In addition, it  
features a very low quiescent current (10 µA) since this LDO is  
running all the time, even when the handset is switched off. It also  
has reverse current protection with low leakage which is needed  
when the main battery is removed and the coin cell supplies the  
RTC module.  
The digital LDO (VCC) supplies all the digital circuitry in the  
handset (baseband processor, baseband converter, external  
memory, display, etc). The LDO has been optimized for very  
low quiescent current (30 µA maximum) at light loads as this  
LDO is on at all times. This is due to both the structure of GSM  
and a new clocking scheme used in the AD20msp425. Figure 17  
shows how the digital current varies as a function of time.  
~2ms  
0.5s TO 2s  
The RTC module has a built-in alarm which, when it expires,  
will pull POWERONIN high, allowing an alarm function even if  
the handset is switched off.  
~50mA  
Reference Output (REFOUT)  
~200A  
The reference output is a low-noise, high-precision reference  
with a guaranteed accuracy of 1.5% over temperature. The  
reference can be fed to the baseband converter, such as the  
AD6425, improving the absolute accuracy of the converters  
from 5% to 1.5%. This significantly reduces calibration time  
needed for the baseband converter during production.  
TIME  
MICROPROCESSOR  
START  
MICROPROCESSOR  
STOP  
Figure 17. Digital Power as a Function of Time  
Analog LDO (VCCA)  
SIM Interface  
This LDO has the same features as the digital LDO. It has further-  
more been optimized for good low frequency ripple rejection for use  
with analog sections in order to reject the ripple coming from the RF  
power amplifier. VCCA is rated to 130 mA load which is sufficient  
to supply the complete analog section of a baseband converter such  
as the AD6421/AD6425, including a 32 earpiece. The analog  
LDO and the TCXO LDO can be controlled by ANALOGON.  
The SIM interface generates the needed SIM voltage—either 3 V  
or 5 V, dependent on SIM type, and also performs the needed  
logic level translation. Quiescent current is low, as the SIM card  
will be powered all the time. Note that DATAIO and I/O have  
integrated pull-up resistors as shown in Figure 19. See Table II for  
the control logic of the charge pump output, VSIM.  
TCXO LDO (VTCXO)  
The TCXO LDO is intended as a supply for the temperature-  
compensated crystal oscillator, which needs its own ultralow noise  
supply. The output current is rated to 5 mA for the TCXO LDO.  
–10–  
REV. 0  
ADP3401  
RESET  
ADP3401  
ADP3401 contains reset circuitry that is active both at power-up  
and at power-down. RESET is held low at power-up. An inter-  
nal power-good signal starts the reset delay. The delay is set by  
an external capacitor on RESCAP:  
VCC  
VSIM  
LEVEL  
SHIFT  
RESETIN  
CLKIN  
RST  
CLK  
VCC  
VCC  
VSIM  
VSIM  
ms  
nF  
tRESET = 1.0  
×CRESCAP  
LEVEL  
SHIFT  
A 100 nF capacitor will produce a 100 ms reset time. At power-off,  
RESET will be kept low to prevent any spurious microprocessor  
starts. The current capability of RESET is low (a few hundred nA)  
when VCC is off, to minimize power consumption. Therefore,  
RESET should only be used to drive a single CMOS input. When  
VCC is on, RESET will drive about 15 µA.  
DATAIO  
I/O  
Figure 19. Schematic for Level Translators  
Power-On/-Off  
ADP3401 handles all issues regarding power-on/-off of the hand-  
set. It is possible to turn on the ADP3401 in three different ways:  
Overtemperature Protection  
The maximum die temperature for ADP3401 is 125  
°C. If the die  
temperature exceeds 160 C, the ADP3401 will disable all the  
°
LDOs except the RTC LDO, which has very limited current capa-  
bilities. The LDOs will not be re-enabled before the die tempera-  
ture is below 125°C, regardless of the state of PWRONKEY,  
PWRONIN, and CHRON. This ensures that the handset will  
always power-off before the ADP3401 exceeds its absolute maxi-  
mum thermal ratings.  
Pulling PWRONKEY low  
Pulling PWRONIN high  
CHRON exceeds threshold  
Pulling PWRONKEY key low is the normal way of turning on the  
handset. This will turn on all the LDOs as long as PWRONKEY is  
held low. The microprocessor then starts and pulls PWRONIN  
high after which PWRONKEY can be released. PWRONIN going  
high will also turn on the handset. This is the case when the alarm  
in the RTC module expires.  
APPLICATIONS INFORMATION  
Input Capacitor Selection  
For the input voltage, VBAT, of the ADP3401, a local bypass  
capacitor is recommended. Use a 5 µF to 10 µF, low ESR capaci-  
tor. Multilayer ceramic chip capacitors provide the best combina-  
tion of low ESR and small size, but may not be cost-effective. A  
lower cost alternative may be to use a 5 µF to 10 µF tantalum  
capacitor with a small (1 µF to 2 µF) ceramic in parallel.  
An external charger can also turn on the phone. The turn-on  
threshold and hysteresis can be programmed via external resistors  
to allow full flexibility with any external charger and battery chem-  
istry. These resistors are referred to as R1 and R2 in Figure 15.  
Undervoltage Lockout (ULVO)  
LDO Capacitor Selection  
The UVLO function in the ADP3401 prevents startup when the  
initial voltage of the main battery is below the 3.0 V threshold.  
If the battery is this low with no load, there will be little or no  
capacity left. When the battery is greater than 3.0 V, as with the  
insertion of a fresh battery, the UVLO comparator trips, the  
RTC LDO is enabled, and the threshold is reduced to 2.9 V.  
This allows the handset to start normally until the battery volt-  
age decays to 2.9 V open circuit. Once the 3.0 V threshold is  
exceeded, the RTC LDO is enabled. If, however, the backup  
coin cell is not connected, or is damaged or discharged below  
1.5 V, the RTC LDO will not start on its own. In this situation,  
the RTC LDO will be started by enabling the VCC LDO.  
The performance of any LDO is a function of the output capaci-  
tor. The digital and analog LDOs require a 2.2 µF capacitor and  
the TCXO LDO requires a 0.22 µF capacitor. Larger values  
may be used, but the overshoot at startup will increase slightly.  
If a larger output capacitor is desired, be sure to check that the  
overshoot and settling time are acceptable for the application.  
All the LDOs are stable with a wide range of capacitor types and  
ESR due to Analog Devices’ anyCAP technology. The ADP3401  
is stable with extremely low ESR capacitors (ESR ~ 0), such as  
multilayer ceramic capacitors, but care should be taken in their  
selection. Note that the capacitance of some capacitor types shows  
wide variations over temperature or with dc voltage. A good quality  
dielectric, X7R or better, is recommended.  
Once the system is started, i.e., the phone is turned on and the  
VCC LDO is up and running, the UVLO function is entirely  
disabled. The ADP3401 is then allowed to run down to very low  
battery voltages, typically around 2 V. The battery voltage is  
normally monitored by the microprocessor and usually shuts the  
phone off at around 3.0 V.  
The RTC LDO has a rechargeable coin cell or an electric double-  
layer capacitor as a load, but an additional 0.1 µF ceramic capaci-  
tor is recommended for stability and best performance.  
Charge Pump Capacitor Selection  
For the input (SIMBAT) and output (VSIM) of the SIM charge  
pump, use 10 µF low ESR capacitors. The use of low ESR capaci-  
tors improves the noise and efficiency of the SIM charge pump.  
Multilayer ceramic chip capacitors provide the best combination of  
low ESR and small size but may not be cost-effective. A lower cost  
alternative may be to use a 10 µF tantalum capacitor with a small  
(1 µF to 2 µF) ceramic capacitor in parallel.  
If the phone is off, i.e., the VCC LDO is off, and the battery  
voltage drops below 2.9 V, the UVLO circuit disables startup  
and the RTC LDO. This is implemented with very low quies-  
cent current, typically 3 µA, to protect the main battery against  
any damage. NiMH batteries can reverse polarity if the 3-cell  
battery voltage drops below 3.0 V and a current of more than  
about 40 µA continues to flow. Lithium ion batteries will lose  
their capacity, although the built-in safety circuits normally  
present in these cells will most likely prevent any damage.  
REV. 0  
–11–  
ADP3401  
For the lowest ripple and best efficiency, use a 0.1 µF, ceramic  
capacitor for the charge pump flying capacitor (CAP+ and CAP–).  
A good quality dielectric, such as X7R is recommended.  
Example: R1 = 10 kand R2 = 30.2 kgives a charger thresh-  
old (not counting the drop in the power Schottky diode) of  
3.5 V ± 160 mV with a 200 mV ± 30 mV hysteresis.  
Setting the Charger Turn-On Threshold  
Charger Diode Selection  
The ADP3401 can be turned on when the charger input exceeds  
a programmable threshold voltage. The charger’s threshold and  
hysteresis are set by selecting the values for R1 and R2 shown in  
Figure 15.  
The diode shown in Figure 15 is used to prevent the battery from  
discharging into the charger turn-on setting resistors, R1 and R2.  
A Schottky diode is recommended to minimize the voltage differ-  
ence from the charger to the battery and the power dissipation.  
Choose a diode with a current rating high enough to handle both  
the battery charging current and the current the ADP3401 will  
draw if powered up during charging. The battery charging current  
is dependent on the battery chemistry and the charger circuit.  
The ADP3401 current will be dependent on the loading.  
The turn-on threshold for the charger is calculated using:  
R2 + RHYS  
R2 × RHYS  
VCHR  
=
× R1 +1 ×VT  
Where VT is the CHRON threshold voltage and RHYS is the  
CHRON hysteresis resistance.  
Printed Circuit Board Layout Considerations  
Use the following general guidelines when designing printed  
circuit boards:  
The hysteresis is determined using:  
1. Split the battery connection to the VBAT and SIMBAT  
pins of the ADP3401. Use separate traces for each connection  
and locate the input capacitors as close to the pins as possible.  
VT  
RHYS  
VHYS  
=
× R1  
Combining the above equations and solving for R1 and R2 gives  
2. SIM input and output capacitors should be returned to the  
SIMGND and kept as close as possible to the ADP3401 to  
minimize noise. Traces to the SIM charge pump capacitor  
should be kept as short as possible to minimize noise.  
the following formulas:  
RHYS  
VT  
R1 =  
×VHYS  
3. VCCA and VTCXO capacitors should be returned to AGND.  
4. VCC and VRTC capacitors should be returned to DGND.  
R1× RHYS  
R2 =  
VCHR  
VT  
1 × RHYS R1  
5. Split the ground connections. Use separate traces or planes  
for the analog, digital, and power grounds, and tie them  
together at a single point, preferably close to the battery return.  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
28-Lead Thin Shrink Small Outline (TSSOP)  
(RU-28A)  
0.386 (9.80)  
0.378 (9.60)  
15  
28  
0.244 (6.20)  
0.236 (6.00)  
0.325 (8.25)  
0.313 (7.95)  
1
14  
PIN 1  
0.0374 (0.95)  
0.0335 (0.85)  
0.0433 (1.10)  
MAX  
8؇  
0؇  
0.0118 (0.30)  
0.0075 (0.19)  
0.0256  
(0.65)  
BSC  
0.030 (0.75)  
0.020 (0.50)  
0.006 (0.15)  
0.002 (0.05)  
SEATING  
PLANE  
0.0078 (0.200)  
0.0035 (0.090)  
–12–  
REV. 0  

相关型号:

ADP3401ARU

GSM Power Management System
ADI

ADP3402

GSM Power Management System
ADI

ADP3402ARU

GSM Power Management System
ADI

ADP3404

GSM Power Management System
ADI

ADP3404ARU

GSM Power Management System
ADI

ADP3404ARUZ-REEL7

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO28, ROHS COMPLIANT, TSSOP-28, Power Management Circuit
ADI

ADP3405

GSM Power Management System
ADI

ADP3405ARU

GSM Power Management System
ADI

ADP3405ARU-REEL

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO28, 4.40 MM, TSSOP-28, Power Management Circuit
ADI

ADP3405ARU-REEL

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO28, 4.40 MM, TSSOP-28
ROCHESTER

ADP3405ARU-REEL7

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO28, 4.40 MM, TSSOP-28
ROCHESTER

ADP3408

GSM Power Management System
ADI