ADP3502 [ADI]

CDMA Power Management System; CDMA电源管理系统
ADP3502
型号: ADP3502
厂家: ADI    ADI
描述:

CDMA Power Management System
CDMA电源管理系统

CD
文件: 总36页 (文件大小:671K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
a
CDMA Power Management System  
ADP3502  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
11 LDOs Optimized for Specific CDMA Subsystems  
4 Backup LDOs for Standby Mode Operation  
Ultra Low Standby Supply Current  
High Accuracy Battery Charger (0.7%)  
3 Li-Ion Battery Charge Modes  
5 mA Precharge  
Low Current Charge  
Full Current Charge  
Integrated RTC  
LOGIC  
ANALOG  
BLOCK  
BLOCK  
BATTERY  
CHARGER  
POWER ON  
KEYPAD I/F  
GPIO  
DELAY 10ms  
INTERRUPT  
CONTROL  
REFERENCE  
LDO  
CONTROL  
LDO1TO LDO11  
Ambient Temperature: –30؇C to +85؇C  
64-Lead 7 mm 
؋
 7 mm 
؋
 1 mm TQFP Package  
VOLTAGE  
DETECTOR  
SERIAL I/F  
RESET  
APPLICATIONS  
CDMA/CDMA2000/PCS Handsets  
RTC  
COUNTER  
32kHz OUTPUT  
CONTROL  
ADP3502  
RESET  
OUTPUT  
STAY-ALIVE  
TIMER  
GENERAL DESCRIPTION  
The ADP3502 is a multifunction chip optimized for CDMA-1x  
cell phone power management. It offers a total power solution  
for the handset baseband and RF section, including LDOs to  
power 11 subsystems. Also integrated are a real-time clock  
(RTC), serial bus interface, and charging control for Li-Ion/  
Li-Polymer batteries. Sophisticated controls are available for  
power-up during battery charging, keypad interface, GPIO/INT  
function, and RTC function.  
The ADP3502 is optimized for CDMA handsets powered by  
single-cell Li-Ion batteries. Its high level of integration sig-  
nificantly reduces the design effort, number of discrete  
components, and solution size/cost. The main-sub LDO  
structure reduces the standby current consumption, and as a  
result, greatly extends the standby time of the phone. System  
operation has been proven to be fully compatible with  
MSM51xx-based designs.  
The ADP3502 comes in a 64-lead 7 mm × 7 mm × 1 mm  
TQFP package and is specified over a wide temperature range of  
–30°C to +85°C.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
ADP3502–SPECIFICATIONS  
(TA = –30؇C to +85؇C, CVBAT = 1 F MLCC, VBAT = 3.6 V, unless otherwise noted. See Table II for COUT.)  
MAIN FUNCTIONS  
Parameter  
Symbol Conditions  
Min  
Typ Max  
Unit  
SHUTDOWN GND CURRENT  
Power OFF  
IGND  
TA = –20°C to +60°C  
25  
45  
µA  
LDO3b: ON, Connect to RTCV  
through Schottky Diode  
RTC/32K OSC: Active  
All Other LDOs: OFF  
All Logic Inputs: VBAT or GND  
MVBAT: OFF  
OPERATING GND CURRENT  
Standby Mode Operation (Light Load)  
IGND  
LDO1b, LDO2b, LDO3b,  
LDO6b: ON  
60  
125  
µA  
IO = 1 mA for LDO3b and LDO6b  
IO = 3 mA for LDO1b  
I
O = 300 µA for LDO2b  
All Other LDOs: OFF  
RTC/32K OSC: Active  
MVBAT: OFF  
All Logic Output: No Load  
LDO1, LDO2, LDO3, LDO6,  
All Sub-LDOs: ON, IO = 70% Load  
All Other LDOs: OFF  
RTC/32K OSC: Active  
MVBAT: ON  
Standby Mode Operation (Midload)  
300  
700  
µA  
µA  
All Logic Outputs: No Load  
LDO5: OFF  
Active Operation  
All Other LDOs: ON, 70% Load  
RTC/32K OSC: Active  
All Logic Outputs: No Load  
MVBAT: ON  
THERMAL SHUTDOWN THRESHOLD  
THERMAL SHUTDOWN HYSTERESIS  
160  
35  
°C  
°C  
V
ADAPTER/ADPSUPPLY VOLTAGE RANGE VADP  
VBAT VOLTAGE RANGE VBAT  
5
12  
3.3  
5.5  
V
LDO SPECIFICATIONS (TA = 25؇C, CVBAT = 1 F MLCC, VBAT = VOUT + 1 V, NRCAP = 0.1 F. See Table II for COUT.)  
Parameter  
Symbol Conditions  
Min  
Typ Max  
Unit  
BASEBAND VDD MAIN-LDO (LDO1a)  
Output Voltage  
VLDO1a  
IO = 1 mA to 150 mA  
TA = –30°C to +85°C  
2.81  
2.2  
2.90 2.99  
V
Output Capacitor Required for Stability  
Dropout Voltage  
Start-Up Time from Shutdown  
CLDO1a  
VDO  
µF  
mV  
µs  
IO = 150 mA  
200  
250  
BASEBAND VDD SUB-LDO (LDO1b)  
Output Voltage  
VLDO1b  
IO = 3 mA  
2.8  
2.87 3.0  
V
TA = –30°C to +85°C  
–2–  
REV. 0  
ADP3502  
Parameter  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
BASEBAND AVDD MAIN-LDO (LDO2a)  
Output Voltage  
VLDO2a  
16 Steps, 20 mV/Step, IO = 50 mA  
Code: 1000  
2.30  
2.60  
2.36 2.43  
2.66 2.74  
V
V
Code: 0111  
TA = 25°C  
Output Default Voltage  
Output Voltage  
VLDO2a  
VLDO2a  
IO = 50 mA, TA = 25°C  
16 Steps, 20 mV/Step, IO = 50 mA  
Code: 1000  
2.46  
2.52 2.6  
V
2.29  
2.57  
2.36 2.47  
2.66 2.81  
V
V
Code: 0111  
TA = –30°C to +85°C  
Output Default Voltage  
Output Capacitor Required for Stability  
Dropout Voltage  
VLDO2a  
CLDO2a  
VDO  
IO = 50 mA, TA = –30°C to +85°C  
2.42  
1
2.52 2.66  
V
µF  
mV  
dB  
IO = 50 mA  
f = 1 kHz  
210  
60  
Ripple Rejection  
Output Noise Voltage  
Start-Up Time from Shutdown  
VNOISE  
f = 100 Hz to 100 kHz  
120  
250  
µV rms  
µs  
BASEBAND AVDD SUB-LDO (LDO2b)  
Output Voltage  
VLDO2b  
IO = 300 µA, VLDO2MAIN = 2.6 V  
TA = –30°C to +85°C  
2.50  
2.57 2.70  
V
REFO SWITCH  
On Resistance  
Off Leak  
RON  
ILEAK  
TA = –30°C to +85°C, IO = 500 µA  
LDO2: ON, Switch: OFF  
50  
0.01  
130  
1
µA  
COIN CELL MAIN-LDO (LDO3a)  
Output Voltage  
VLDO3a  
IO = 1 mA to 50 mA  
TA = –30°C to +85°C  
IO = 50 mA  
2.90  
1
3.0  
3.09  
V
Dropout Voltage  
Output Capacitor Required for Stability  
Start-Up Time from Shutdown  
VDO  
CLDO3a  
140  
250  
mV  
µF  
µs  
COIN CELL SUB-LDO (LDO3b)  
Output Voltage  
VLDO3b  
IO = 1 mA  
TA = –30°C to +85°C  
2.85  
2.97 3.15  
V
V
AUDIO LDO (LDO4)  
Output Voltage  
VLDO4  
IO = 1 mA to 180 mA  
TA = –30°C to +85°C  
2.81  
2.2  
2.9  
2.99  
Output Capacitor Required for Stability  
Dropout Voltage  
Ripple Rejection  
CLDO4  
VDO  
µF  
mV  
dB  
IO = 180 mA  
f = 1 kHz  
200  
60  
Output Noise Voltage  
Start-Up Time from Shutdown  
VNOISE  
f = 100 Hz to 10 kHz  
50  
250  
µV rms  
µs  
VIBRATOR LDO (LDO5)  
Output Voltage  
VLDO5  
IO = 1 mA to 150 mA  
TA = –30°C to +85°C  
IO = 150 mA  
2.75  
2.2  
2.9  
3.05  
V
Dropout Voltage  
Output Capacitor Required for Stability  
VDO  
CLDO5  
200  
mV  
µF  
BASEBAND CORE MAIN-LDO (LDO6a)  
Output Voltage  
VLDO6a  
IO = 1 mA to 150 mA  
TA = –30°C to +85°C  
2.75  
2.2  
2.85 2.95  
V
Output Capacitor Required for Stability  
Dropout Voltage  
Start-Up Time from Shutdown  
CLDO6a  
VDO  
µF  
mV  
µs  
IO = 150 mA  
200  
250  
REV. 0  
–3–  
ADP3502  
LDO SPECIFICATIONS (continued)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
BASEBAND CORE SUB-LDO (LDO6b)  
Output Voltage  
VLDO6b  
IO = 1 mA  
TA = –30°C to +85°C  
2.70  
2.80  
2.90  
V
RF RX1 LDO (LDO7)  
Output Voltage  
VLDO7  
IO = 1 mA to 100 mA  
TA = –30°C to +85°C  
2.81  
1.5  
2.9  
2.99  
2.99  
2.99  
2.99  
1.58  
V
Output Capacitor Required for Stability  
Dropout Voltage  
Ripple Rejection  
Output Noise Voltage  
Start-Up Time from Shutdown  
CLDO7  
VDO  
µF  
mV  
dB  
µV rms  
µs  
IO = 100 mA  
f = 1 kHz  
f = 100 Hz to 100 kHz  
200  
60  
40  
VNOISE  
250  
RF TX LDO (LDO8)  
Output Voltage  
VLDO8  
IO = 1 mA to 150 mA  
TA = –30°C to +85°C  
2.81  
2.2  
2.9  
V
Output Capacitor Required for Stability  
Dropout Voltage  
Ripple Rejection  
Output Noise Voltage  
Start-Up Time from Shutdown  
CLDO8  
VDO  
µF  
mV  
dB  
µV rms  
µs  
IO = 150 mA  
f = 1 kHz  
f = 100 Hz to 100 kHz  
200  
60  
40  
VNOISE  
250  
RF RX2 LDO (LDO9)  
Output Voltage  
VLDO9  
IO = 1 mA to 50 mA  
TA = –30°C to +85°C  
2.81  
1
2.9  
V
Output Capacitor Required for Stability  
Dropout Voltage  
Ripple Rejection  
Output Noise Voltage  
Start-Up Time from Shutdown  
CLDO9  
VDO  
µF  
mV  
dB  
µV rms  
µs  
IO = 50 mA  
f = 1 kHz  
f = 100 Hz to 100 kHz  
150  
60  
40  
VNOISE  
250  
RF OPTIONAL LDO (LDO10)  
Output Voltage  
VLDO10  
IO = 1 mA to 50 mA  
TA = –30°C to +85°C  
2.81  
1
2.9  
V
Output Capacitor Required for Stability  
Dropout Voltage  
Ripple Rejection  
Output Noise Voltage  
Start-Up Time from Shutdown  
CLDO10  
VDO  
µF  
mV  
dB  
µV rms  
µs  
IO = 50 mA  
f = 1 kHz  
f = 100 Hz to 100 kHz  
150  
60  
40  
VNOISE  
250  
OPTIONAL LDO (LDO11)  
Output Voltage  
VLDO11  
CLDO11  
VNOISE  
IO = 1 mA to 100 mA  
TA = –30°C to +85°C  
1.42  
2.2  
1.5  
V
Output Capacitor Required for Stability  
Ripple Rejection  
Output Noise Voltage  
µF  
dB  
µV rms  
µs  
f = 1 kHz  
f = 100 Hz to 100 kHz  
60  
50  
250  
Start-Up Time from Shutdown  
VOLTAGE DETECTOR FOR LDO1  
AND LDO6  
LDO1 Detect Voltage  
LDO1 Release Voltage  
LDO1 Hysteresis  
LDO6 Detect Voltage  
LDO6 Release Voltage  
LDO6 Hysteresis  
VDET1  
VDET1  
VHYS1  
VDET6  
VDET6  
VHYS6  
TA = –30°C to +85°C  
TA = –30°C to +85°C  
TA = –30°C to +85°C  
TA = –30°C to +85°C  
TA = –30°C to +85°C  
TA = –30°C to +85°C  
2.7  
2.72  
2.77  
52  
2.58  
2.67  
90  
V
V
mV  
V
V
VLDO1–NOM  
35  
2.50  
VLDO6–NOM  
45  
mV  
–4–  
REV. 0  
ADP3502  
(TA = –30؇C to +85؇C, CVBAT = 10 F MLCC, CADAPTER = 1 F MLCC, unless  
otherwise noted.)  
BATTERY VOLTAGE DIVIDER: MVBAT  
Parameter  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
MVBAT OUTPUT VOLTAGE  
5-Bit Programmable  
VBAT = 4.35 V, MVEN = 1  
VMVBAT  
TA = 25°C  
Code: 10000  
Code: 01111  
2.459 2.508 2.538  
2.648 2.697 2.732  
V
V
MVBAT OUTPUT VOLTAGE  
STEP  
VSTEP  
VBAT = 4.35 V, MVEN = 1  
6
mV/LSB  
OUTPUT DRIVE CURRENT  
CAPABILITY  
IOUT  
1
2
mA  
MVBAT LOAD REGULATION  
MVBAT  
0 < IOUT < 100 µA  
3
5
mV  
OPERATING BATTERY  
CURRENT  
VBAT = 4.35 V, MVEN = 1  
78  
97  
µA  
SHUTDOWN CURRENT  
VBAT = 4.35 V, MVEN = 0  
1
µA  
(TA = –30؇C to +85؇C, CVBAT = 10 F MLCC, CADAPTER = 1 F MLCC, 4.0 V ADAPTER 12 V, unless  
otherwise noted.)  
BATTERY CHARGER  
Parameter  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
CHARGER CONTROL VOLTAGE  
RANGE  
VBAT  
TA = 25°C  
2-Bit Programmable  
SENSE  
VR_SENSE = 30 mV, CHI = 1  
4.8 V ADAPTER 12 V  
Code: 00 (Default)  
Code: 01  
3.440 3.500 3.560  
4.175 4.205 4.235  
4.195 4.225 4.255  
4.215 4.245 4.275  
V
V
V
V
Code: 10  
Code: 11  
CHARGER CONTROL VOLTAGE  
RANGE1  
VBAT  
TA = –20°C to +55°C  
2-Bit Programmable  
SENSE  
VR_SENSE = 160 mV, CHI = 1  
4.8 V ADAPTER 12 V (Note 1)  
Code: 00 (Default)  
Code: 01  
3.440 3.500 3.560  
4.155 4.205 4.255  
4.175 4.225 4.275  
4.195 4.245 4.295  
V
V
V
V
Code: 10  
Code: 11  
CHARGER VOLTAGE  
+25°C to +55°C or +25°C to –20°C  
VR_SENSE = 30 mV, Constant Adapter  
Voltage between 4.8 V and 12 V  
–20  
+20  
mV  
TEMPERATURE DRIFT1  
CHARGER DETECT ON  
THRESHOLD  
ADAPTER-VBAT  
ADAPTER-VBAT  
110  
0
165  
25  
225  
60  
2
mV  
mV  
mA  
CHARGER DETECT OFF  
THRESHOLD  
CHARGER SUPPLY CURRENT  
IADAPTER  
ADAPTER = 5 V, VBAT = 4.3 V  
CURRENT LIMIT THRESHOLD  
High Current Limit  
(Full Charge Current Enabled)  
Low Current Limit  
ADAPTER-VISNS  
ADAPTER = 5 V  
VBAT = 3.6 V  
170  
40  
210  
60  
255  
75  
mV  
mV  
VBAT = 3.0 V  
(Full Charge Current Disabled)  
PRECHARGE CURRENT SOURCE  
BASE PIN DRIVE CURRENT  
VBAT DDLO  
3
5
7
mA  
mA  
V
20  
35  
DEEP DISCHARGE LOCK-OUT  
(Releasing Voltage)  
DDLO  
VBAT< DDLO, TA = 25°C,  
(5 mA Precharge), VBAT Ramping Up  
2.650 2.80  
DEEP DISCHARGE LOCK-OUT  
HYSTERESIS2  
100  
200  
1
mV  
ISENSE BIAS CURRENT  
IISNS  
VISNS = 5 V  
µA  
REV. 0  
–5–  
ADP3502  
BATTERY CHARGER (continued)  
Parameter  
Symbol  
CHG – ILKG  
Conditions  
Min  
Typ Max  
Unit  
CHARGE TRANSISTOR REVERSE  
LEAKAGE CURRENT3  
I
No Adapter Present  
1
µA  
MINIMUM LOAD FOR STABILITY1 IL  
CBAT = 10 µF MLCC, No Battery  
10  
mA  
NOTES  
1Guaranteed but not tested.  
2DDLO hysteresis is dependent on DDLO threshold value. If DDLO threshold is at maximum, DDLO hysteresis is at maximum at the same time.  
3This includes the total reverse current from battery to BVS, BASE, ISENSE, and ADAPTER pins with no adapter present. No signal path between ADAPTER pin  
and ADPSUPPLY pin.  
Specifications subject to change without notice.  
LOGIC  
DC SPECIFICATIONS  
(TA = 25؇C, CVBAT = 1 F MLCC, VBAT = 3.6 V, unless otherwise noted.)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
CS, CLKIN, RESETIN–,  
TCXOON, SLEEP–  
Input Current H/L  
Input High Voltage  
Input Low Voltage  
Hysteresis  
IIL/IIH  
VIH  
VIL  
VIN = VLDO1 or 0 V  
–1  
2.25  
+1  
µA  
V
V
0.5  
520  
470  
260  
mV  
KEYPADROW  
(Internal 20 kPull-Up)  
Input High Voltage  
Input Low Voltage  
Hysteresis  
VIH  
VIL  
2.25  
V
V
mV  
0.5  
GPIO, DATA  
Input Current H/L  
Input High Voltage  
Input Low Voltage  
Hysteresis  
Output High Voltage  
Output Low Voltage  
IIL/IIH  
VIH  
VIL  
VIN = VLDO1 or 0 V  
–1  
2.25  
+1  
µA  
V
V
mV  
V
V
0.5  
VOH  
VOL  
IOH = 400 µA  
IOL = –1.8 mA  
2.69  
2.69  
0.28  
INT–  
Output High Voltage  
Output Low Voltage  
VOH  
VOL  
IOH = 400 µA  
IOL = –1.8 mA  
V
V
0.28  
0.4  
BLIGHT (Open-Drain Output)  
Output Low Voltage  
VOL  
IOL = –100 mA  
IOL = –1.8 mA  
V
V
KEYPADCOL  
(Open-Drain Output)  
Output Low Voltage  
VOL  
0.15  
PWRONKEY–, OPT1  
(Internal 140 kPull-Up)  
Input High Voltage  
Input Low Voltage  
Hysteresis  
VIH  
VIL  
VHYS  
0.8 VBAT  
0.8 VBAT  
V
V
mV  
0.2 VBAT  
950  
950  
OPT2– (Input/Open-Drain Output)  
Input Current H  
Input High Voltage  
Input Low Voltage  
Hysteresis  
IIH  
VIH  
VIL  
VHYS  
VOL  
VIN = VBAT  
1
µA  
V
V
mV  
V
0.2 VBAT  
0.1 VBAT  
IOL = –1.8 mA  
Output Low Voltage  
–6–  
REV. 0  
ADP3502  
LOGIC (continued)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
OPT3  
Input Current H/L  
Input High Voltage  
Input Low Voltage  
Hysteresis  
IIL/IIH  
VIH  
VIL  
VIN = VBAT or 0 V  
–1  
+1  
µA  
0.7 VBAT  
V
0.2 VBAT  
V
mV  
VHYS  
300  
32K OUT  
Output High Voltage  
Output Low Voltage  
VOH  
VOL  
IOH = 400 mA  
IOL = –1.8 mA  
0.9 RTCV  
V
V
0.1 RTCV  
RESET+ (Open-Drain Output)  
Output Low Voltage  
OFF Leak  
VOL  
OFFLEAK  
IOL = –1.8 mA  
0.28  
1
V
µA  
0.005  
1
RSTDELAY–, RESETOUT–  
(Open-Drain Output)  
Output Low Voltage  
VOL  
IOSC  
IOL = –1.8 mA  
0.28  
V
SUPPLY CURRENT OR RTCV  
RTCV = 3 V,  
VBAT = 2 V  
µA  
All Logic: No Load  
AC SPECIFICATIONS  
(All specifications include temperature, unless otherwise noted.)  
Parameter  
Symbol  
RTCV  
Conditions  
Min  
Typ  
Max  
Unit  
V
OPERATIONAL SUPPLY RANGE  
OSCILLATOR FREQUENCY  
START-UP TIME  
2
3.1  
FCLK  
32.768  
kHz  
ms  
tSTART  
RTCV = 0 V to 3 V  
100  
200  
FREQUENCY JITTER  
Cycle to Cycle  
>100 Cycles  
fJITTER/SEC  
RTCV = 3 V, TA = 25°C  
40  
50  
ns  
ns  
FREQUENCY DEVIATION  
RTCV = 3 V, 3 Minutes  
1000  
ppm  
SERIAL INTERFACE  
Parameter  
Min  
Typ  
Max  
Unit  
Test Condition/Comments  
tCKS  
tCSS  
tCKH  
tCKL  
tCSH  
tCSR  
tDS  
tDH  
tRD  
tRZ  
tCSZ  
50  
50  
100  
100  
100  
62  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
CLK Setup Time  
CS Setup Time  
CLK High Duration  
CLK Low Duration  
CS Hold Time  
CS Recovery Time  
Input Data Setup Time  
Input Data Hold Time  
Data Output Delay Time  
Data Output Floating Time  
50  
40  
50  
50  
50  
Data Output Floating Time after CS Goes Low  
REV. 0  
–7–  
ADP3502  
ABSOLUTE MAXIMUM RATINGS*  
Voltage on ADAPTER, ADPSUPPLY Pin  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . 125°C  
JA Thermal Impedance (TQFP-64)  
to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V, 15 V  
Voltage on VBAT Pin to GND . . . . . . . . . . . . –0.3 V, +6.5 V  
Voltage on Pins 6–13, 21–28  
to GND . . . . . . . . . . . . . . . . . . . . . . . –0.3 V, VLDO1 + 0.3 V  
Voltage on Pins 1, 62–64 . . . . . . . . . . . –0.3 V, VBAT + 0.3 V  
Voltage on Pins 20, 32 . . . . . . . . . . . . . –0.3 V, VRTCV + 0.3 V  
Voltage on Pin 60 . . . . . . . . . . . . . . –0.3 V, VADAPTER + 0.3 V  
Voltage on Pins 2–5, 14, 30, 31, 33 . . . . . . . . . –0.3 V, +6.5 V  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Operating Temperature Range . . . . . . . . . . . –30°C to +85°C  
(2-Layer Board) . . . . . . . . . . . . . . . . . . . . . . . . . . .87.4°C/W  
JA Thermal Impedance (TQFP-64)  
(4-Layer Board) . . . . . . . . . . . . . . . . . . . . . . . . . . 56.2°C/W  
Lead Temperature Range  
(Soldering, 60 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . 300°C  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability. Absolute maximum  
ratings apply individually only, not in combination. Unless otherwise specified all  
other voltages are referenced to GND.  
ORDERING GUIDE  
Model  
Temperature Range  
Package  
ADP3502ASU  
–30°C to +85°C  
64-Lead TQFP  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
ADP3502 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
–8–  
REV. 0  
ADP3502  
PIN CONFIGURATION  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
OPT3  
KEYPADCOL0  
KEYPADCOL1  
KEYPADCOL2  
KEYPADCOL3  
KEYPADROW0  
KEYPADROW1  
KEYPADROW2  
KEYPADROW3  
KEYPADROW4  
KEYPADROW5  
TCXOON  
VBAT  
LDO7 (REF Rx1)  
LDO6 (BASEBAND CORE)  
VBAT  
3
4
5
LDO5 (VIBRATOR)  
LDO4 (AUDIO)  
VBAT  
6
7
ADP3502  
8
LDO2 (BASEBAND AVDD)  
REFO  
TOP VIEW  
9
(Not to Scale)  
10  
11  
12  
13  
14  
15  
16  
AGND  
LDO3 (RTC/COIN-CELL)  
VBAT  
SLEEP–  
LDO1 (BASEBAND VDD)  
LDO11 (OPTION)  
VBAT  
BLIGHT  
DGND  
INT–  
RSTDELAY–  
PIN FUNCTION DESCRIPTION  
Pin  
No. Mnemonic  
I/O Supply Function  
1
2
OPT3  
I
VBAT  
LDO1  
LDO1  
LDO1  
LDO1  
LDO1  
LDO1  
LDO1  
LDO1  
LDO1  
LDO1  
LDO1  
Optional Power ON Input. ADP3502 will keep power ON when this pin goes high.  
Keypad Column Strobe 0 (Open-Drain, Pull Low)  
Keypad Column Strobe 1 (Open-Drain, Pull Low)  
Keypad Column Strobe 2 (Open-Drain, Pull Low)  
Keypad Column Strobe 3 (Open-Drain, Pull Low)  
Keypad Row Input 0. Pulled up internally, 20 k.  
Keypad Row Input 1. Pulled up internally, 20 k.  
Keypad Row Input 2. Pulled up internally, 20 k.  
Keypad Row Input 3. Pulled up internally, 20 k.  
Keypad Row Input 4. Pulled up internally, 20 k.  
Keypad Row Input 5. Pulled up internally, 20 k.  
KEYPADCOL0  
KEYPADCOL1  
KEYPADCOL2  
KEYPADCOL3  
KEYPADROW0  
KEYPADROW1  
KEYPADROW2  
KEYPADROW3  
KEYPADROW4  
KEYPADROW5  
TCXOON  
O
O
O
O
I
3
4
5
6
7
I
8
I
9
I
10  
11  
12  
I
I
I
Logic Input Pin for Main LDOs (LDO1, LDO2, LDO3, LDO6) Turning On Control.  
L: OFF, H: ON.  
13  
SLEEP–  
I
LDO1  
Logic Input Pin for LDO7 and LDO9. This input gates register data for these LDOs.  
LDO7 and LDO9 are turned OFF when SLEEP goes low even if the registers are set  
to ON. If register of SLEEP7 and SLEEP9 are set to “1,” the SLEEP signal is ignored.  
14  
15  
16  
BLIGHT  
DGND  
INT–  
O
O
VBAT  
LDO1  
LED Drive. Open-drain output.  
Digital Ground  
Interrupt Signal Output  
REV. 0  
–9–  
ADP3502  
PIN FUNCTION DESCRIPTION (continued)  
Pin  
No. Mnemonic  
I/O Supply Function  
17  
RTCV  
Supply input for RTC, 32 kHz OSC, and other logic. Connects to coin cell battery in  
typical operation.  
18  
19  
20  
21  
OSC IN  
AGND  
RTCV  
Connect to 32.768 kHz crystal  
Analog Ground  
OSC OUT  
GPIO0  
RTCV  
LDO1  
Connect to 32.768 kHz crystal  
I/O  
I/O  
I/O  
I/O  
General-purpose input and output port. Integrated interrupt function. Interrupt occurs  
on both the falling and rising edges.  
22  
23  
24  
GPIO1  
GPIO2  
GPIO3  
LDO1  
LDO1  
LDO1  
General-purpose input and output port. Integrated interrupt function. Interrupt occurs  
on both the falling and rising edges.  
General-purpose input and output port. Integrated interrupt function. Interrupt occurs  
on both the falling and rising edges.  
General-purpose input and output port. Integrated interrupt function. Interrupt occurs  
on both the falling and rising edges.  
25  
26  
27  
28  
29  
30  
31  
32  
33  
DATA  
I/O  
I
LDO1  
LDO1  
LDO1  
LDO1  
RTCV  
RTCV  
RTCV  
RTCV  
RTCV  
Serial interface data input and output  
CS  
Serial interface chip select input. Active high input.  
Serial interface clock input  
CLKIN  
I
RESETIN–  
32K OUT  
RESET+  
RESETOUT–  
TEST  
I
Reset input signal for internal reset signal; Starts stay-alive timer.  
32.768 kHz output. Output after 30 ms when reset is released.  
Reset output. Invert signal of RESETOUT–. Open-drain and low leakage.  
Reset output. Follows voltage detector operation. Open-drain output.  
Test pin. Reserved for ADI use. Connect to GND for normal operation.  
O
O
O
I
RSTDELAY–  
O
Reset output. 50 ms delayed. Connect to baseband’s reset input in typical application.  
Open-drain output.  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
VBAT  
LDO11  
LDO1  
VBAT  
LDO3  
AGND  
REFO  
LDO2  
VBAT  
LDO4  
LDO5  
VBAT  
LDO6  
LDO7  
VBAT  
LDO8  
AGND  
LDO9  
VBAT  
LDO10  
Supply input. Connect to battery.  
O
O
VBAT  
VBAT  
Regulator No. 11 output. General-purpose supply.  
Regulator No. 1 output. Use for baseband I/O supply.  
Supply input. Connect to battery.  
O
VBAT  
Regulator No. 3 output. If VBAT > 2.7 V, the output is always active. Use for coin cell supply.  
Analog ground  
O
O
VBAT  
VBAT  
Output of LDO2 through FET switch  
Regulator No. 2 output. Use for baseband analog supply.  
Supply input. Connect to battery.  
O
O
VBAT  
VBAT  
Regulator No. 4 output. Use for general analog supplies, for example, speaker amp.  
Regulator No. 5 output. Use for vibrator.  
Supply input. Connect to battery.  
O
O
VBAT  
VBAT  
Regulator No. 6 output. Use for baseband core supply.  
Regulator No. 7 output. Use for RF Rx IC supply. Gated with SLEEP– signal input.  
Supply input. Connect to battery.  
O
O
O
VBAT  
VBAT  
VBAT  
Regulator No. 8 output. Use for RF Tx IC supply.  
Analog Ground  
Regulator No. 9 output. Use for RF Rx IC supply. Gated with SLEEP– input signal.  
Supply input. Connect to battery.  
Regulator No. 10 output. General-purpose supply.  
–10–  
REV. 0  
ADP3502  
PIN FUNCTION DESCRIPTION (continued)  
Function  
Pin  
No. Mnemonic  
I/O Supply  
54  
BVS  
Battery voltage sense input for charger. Connect to battery with a separate low current  
trace  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
NRCAP  
O
VBAT  
Noise reduction capacitor, 0.1 µF MLCC  
AGND  
Analog Ground  
MVBAT  
BASE  
O
O
VBAT  
Battery voltage divider output. Buffered internally. Connect to baseband ADC.  
Base drive output for PNP pass transistor  
ADAPTER  
ADAPTER  
ADPSUPPLY  
ISENSE  
AC Adapter Input  
I
I
I
I
ADAPTER  
ADAPTER  
VBAT  
Supply bias current to charging related blocks  
Charge current sense input  
PWRONKEY–  
OPT1–  
Power ON/OFF key input. Pulled up internally with 140 k.  
Optional power ON input. ADP3502 will keep power on when this pin goes low.  
VBAT  
OPT2–  
I/O VBAT  
Optional power ON input. ADP3502 will keep power on when this pin goes low.  
While the part is powered up, the input is pulled low (GND) internally. Do not con-  
nect to any supply or signal source.  
REV. 0  
–11–  
ADP3502  
AGND  
VBAT  
ADAPTER ISENSE BASE BVS  
61  
48 45  
37 34  
56  
50  
39 19  
52  
42  
59  
58  
54  
VBAT  
CHARGER_DETECT  
CHARGER CONTROL  
60  
57  
ADPSUPPLY  
BATOV  
140k  
BATTERY CHARGER  
MVBAT (VBAT MEASURE)  
POWERON N  
OPT1_N  
OPT2_N  
OPT3  
62  
63  
64  
1
PWRONKEY–  
OPT1–  
DDLO  
LDO_EN  
POWER ON  
BATID  
40  
REFO  
DDLO CONTROL  
SIGNALS  
REF  
LPF  
OPT2–  
REF  
OPT3  
RTC  
ALARM  
55  
NRCAP  
LDO1  
MAIN  
VOLTAGE_DETECT  
PWROFF  
36 LDO1 (BASEBAND VDD)  
41 LDO2 (BASEBAND AVDD)  
ON/OFF  
LDO1  
LDO2  
LDO3  
LDO6  
LDO4  
LDO5  
LDO7  
LDO8  
SUB  
LOGIC  
DELAY  
10ms  
MAIN  
SYNC  
CLK  
ON/OFF  
LOGIC  
CLK  
SUB  
5
MAIN  
ON/OFF  
LOGIC  
DATA  
IN  
38 LDO2 (RTC/COIN-CELL)  
46 LDO6 (BASEBAND CORE)  
BATOV  
MAIN  
SUB  
INT_IN  
ON/OFF  
LOGIC  
LEVEL  
TRANS  
16  
INT–  
5
43 LDO4 (AUDIO)  
LDO1  
2
3
4
5
KEYPADCOL0  
KEYPADCOL1  
44 LDO5 (VIBRATOR)  
47 LDO7 (RF Rx1)  
49 LDO8 (RF Tx)  
LEVEL  
TRANS  
INT  
KEYPADCOL2  
KEYPADCOL3  
LDO7  
SLEEP7  
4
KEYPAD  
I/F  
6
7
KEYPADROW0  
KEYPADROW1  
6
LDO9  
SLEEP9  
51 LDO9 (RF Rx2)  
53 LDO10 (RF OPTION)  
35 LDO11 (OPTION)  
8
KEYPADROW2  
LDO9  
LDO10  
LEVEL  
TRANS  
9
KEYPADROW3  
KEYPADROW4  
10  
11  
GPIO INT/GPI INTRST  
–LDO1  
KEYPADROW5  
LDO11  
BLIGHT 14  
15  
DGND  
VOLTAGE  
DETECTOR  
26  
27  
CS  
SERIAL  
I/F  
DATA  
CLKIN  
13 SLEEP–  
12 TCXOON  
LEVEL  
TRANS  
DATA 25  
LEVEL  
TRANS  
21  
GPIO0  
GPIO  
+
INT  
GPIO1  
GPIO2  
22  
23  
DATA  
CLKs  
28 RESETIN–  
LEVEL  
LDO1  
LDO1  
RTCV  
TRANSLATOR  
VBAT  
GPIO3 24  
DGND  
AND  
RTCV  
LEVELTRANSLATOR  
RTCV  
17 RTCV  
OSC IN  
18  
20  
DGND  
32kHz  
OSC OUT  
29  
32K OUT  
DELAY  
30ms  
32 TEST  
OPEN DRAIN  
RTC  
/CLOCK  
DELAY  
50ms  
CLKs  
DATA  
33 RSTDELAY–  
31 RESETOUT–  
30 RESET+  
STAY/ALIVE  
TIMER  
0.25SEC–8SEC  
DATA  
RESETIN N  
Figure 1. Overall Block Diagram  
–12–  
REV. 0  
Typical Performance Characteristics–  
ADP3502  
2.928  
2.926  
2.924  
2.922  
2.920  
2.918  
2.916  
2.914  
2.872  
2.870  
2.868  
2.866  
2.864  
2.862  
2.860  
2.858  
2.856  
2.854  
2.914  
2.912  
2.910  
2.908  
2.906  
2.904  
2.902  
2.900  
2.898  
2.896  
2.894  
2.892  
VBAT = 4V  
VBAT = 4V  
VBAT = 4V  
10 20 40 60 80 100 120 140 160 180  
OUTPUT CURRENT – mA  
10 20 40 60 80 100 120 140 160 180  
OUTPUT CURRENT – mA  
10 20 40 60 80 100 120 140 160 180  
OUTPUT CURRENT – mA  
TPC 1. LDO1 Load Regulation  
TPC 2. LDO4 Load Regulation  
TPC 3. LDO6 Load Regulation  
2.928  
2.916  
2.908  
I
= 1mA  
LOAD  
I
= 1mA  
LOAD  
VBAT = 4V  
2.926  
2.924  
2.922  
2.920  
2.918  
2.916  
2.914  
2.912  
2.906  
2.914  
2.912  
2.910  
2.908  
2.906  
2.904  
2.904  
2.902  
2.900  
2.898  
2.896  
2.894  
2.892  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
10 20 40 60 80 100 120 140 160 180  
SUPPLY INPUT FOR LDOs V  
SUPPLY INPUT FOR LDOs V  
OUTPUT CURRENT – mA  
TPC 5. LDO1 Line Regulation  
TPC 6. LDO4 Line Regulation  
TPC 4. LDO8 Load Regulation  
2.908  
200  
180  
160  
140  
120  
100  
80  
2.876  
I
= 1mA  
LOAD  
I
= 1mA  
LOAD  
2.906  
2.904  
2.902  
2.900  
2.898  
2.896  
2.894  
2.874  
2.872  
2.870  
2.868  
2.866  
2.864  
2.862  
60  
40  
20  
0
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
0
25  
50  
75  
100  
125  
150  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
SUPPLY INPUT FOR LDOs V  
OUTPUT CURRENT – mA  
SUPPLY INPUT FOR LDOs V  
TPC 8. LDO8 Line Regulation  
TPC 9. LDO1 Dropout Voltage  
TPC 7. LDO6 Line Regulation  
REV. 0  
–13–  
ADP3502  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
60  
60  
60  
40  
40  
40  
20  
20  
20  
0
0
0
0
30  
60  
90  
120  
150  
180  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
OUTPUT CURRENT – mA  
OUTPUT CURRENT – mA  
OUTPUT CURRENT – mA  
TPC 10. LDO4 Dropout Voltage  
TPC 11. LDO6 Dropout Voltage  
TPC 12. LDO8 Dropout Voltage  
4.24  
4.22  
4.20  
CODE 01  
4.211  
R
= 0.2  
SENSE  
2.91V  
4.210  
4.209  
4.208  
4.207  
4.206  
2.9V  
V
R
= 5.5V  
ADAPTER  
= 0.2  
4.18  
4.16  
4.14  
4.12  
4.10  
2.89V  
SENSE  
I
C
= 180mA  
= 2.2F  
LOAD  
OUT  
5V  
4V  
LINETRANSIENT RESPONSE  
TIME BASE: 100s/DIV  
0
100 200 300 400 500 600 700 800 900  
CHARGING CURRENT – mA  
ADAPTERVOLTAGE V  
TPC 14. Charger Line Regulation  
TPC 13. Charger Load Regulation  
TPC 15. LDO4 Line Transient  
I
C
= 150mA  
= 2.2F  
VBAT = 4V  
VBAT = 4V  
LOAD  
OUT  
C
= 2.2F  
C
= 2.2F  
OUT  
OUT  
2.86V  
2.85V  
2.85V  
2.9V  
2.885V  
2.836V  
2.84V  
180mA  
20mA  
150mA  
20mA  
5V  
4V  
LINETRANSIENT RESPONSE  
TIME BASE: 100s/DIV  
LOADTRANSIENT RESPONSE  
TIME BASE: 100s/DIV  
LOADTRANSIENT RESPONSE  
TIME BASE: 100s/DIV  
TPC 17. LDO6 Line Transient  
TPC 16. LDO4 Load Transient  
TPC 18. LDO6 Load Transient  
–14–  
REV. 0  
ADP3502  
40  
35  
30  
25  
20  
15  
10  
5
I
C
= 150mA  
= 2.2F  
VBAT = 4V  
C = 2.2F  
OUT  
LOAD  
OUT  
LDO 1  
LDO 4  
LDO 8  
2.91V  
2.9V  
2.9V  
2.886V  
2.89V  
150mA  
20mA  
5V  
4V  
LINETRANSIENT RESPONSE  
TIME BASE: 100s/DIV  
LOADTRANSIENT RESPONSE  
TIME BASE: 100s/DIV  
0
0
10  
20  
30  
40  
50  
OUTPUT CAPACITOR – F  
TPC 19. LDO8 Line Transient  
TPC 20. LDO8 Load Transient  
TPC 21. RMS Noise vs. COUT  
0
0
0
C
= 2.2F  
= 180mA  
C = 2.2F  
OUT  
C
= 2.2F  
= 150mA  
OUT  
OUT  
–10  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
I = 150mA  
I
I
LOAD  
LOAD  
LOAD  
VBAT = 4V  
VBAT = 4V  
VBAT = 4V  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
50 100  
1k  
10k  
100k  
1M  
10M  
50 100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
50 100  
FREQUENCY – Hz  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 22. LDO1 PSRR  
TPC 23. LDO4 PSRR  
TPC 24. LDO8 PSRR  
800  
66  
ACTIVE MODE  
700  
600  
500  
400  
300  
200  
64  
62  
60  
58  
56  
54  
LIGHT LOAD STANDBY MODE  
MIDLOAD STANDBY MODE  
–302010  
0
10 20 30 40 50 60 70 80  
–302010  
0
10 20 30 40 50 60 70 80  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
TPC 25. IGND vs. Temperature  
TPC 26. IGND vs. Temperature  
REV. 0  
–15–  
ADP3502  
THEORY OF OPERATION  
ANALOG BLOCKS  
As illustrated in the Functional Block Diagram, the ADP3502  
can be divided into two high level blocks—analog and logic.  
The analog block consists mainly of LDO regulators, a battery  
charger, reference voltage, and voltage detector subblocks, all of  
which are powered by the main battery or the charging adapter.  
On the other hand, VBAT powers all the logic subblocks  
except the RTC counter, 32 kHz output control, RESET  
output, and stay-alive timer. The RTCV pin powers these  
subblocks (see the shaded area of Figure 2).  
Low Drop-Out (LDO) Regulators  
There are four sub-LDOs for LDO1, LDO2, LDO3, and LDO6,  
in order to meet low power consumption at light load (standby  
operation). They are used at low load condition, but they are  
continuously on even if each of the main LDOs are on. LDO3 and  
LDO3b are used for the coin cell, and LDO3b is always on until  
the main battery (VBAT) is decreased to 2.5 V, the DDLO  
threshold. LDO7 and LDO9 are gated by a control signal  
from SLEEP or register setting of SLEEP7/SLEEP9. LDO4 and  
LDO11 are initially on. For details of LDO on/off control, refer  
to the LDO Control section.  
[VBAT]  
5
4
3
2
1
POWER ON  
KEYPAD I/F  
GPIO  
6
7
DELAY 10ms  
INTERRUPT  
CONTROL  
SERIAL I/F  
ANALOG  
BLOCK  
8
LDO CONTROL  
RESET  
[RTCV]-RTC BLOCK  
32K OUTPUT  
CONTROL  
9
RTC COUNTER  
10  
RESET OUTPUT  
11  
STAY-ALIVETIMER  
Figure 2. Power Partitioning of Subblocks  
Table I. Ground Currents of LDOs with Each Handset Operation  
Total  
LDO  
IGND  
Baseband Baseband Coin  
Baseband RF  
RF  
Tx  
RF  
Rx2  
RF  
Main  
LDO Names  
LDO Number  
Power OFF  
VDD  
Core  
Cell  
Audio Vibrator AVDD  
Rx1  
Option Option REF  
1
6
3
4
5
2
7
8
9
10  
11  
OFF  
OFF  
5 µA  
55 µA  
55 µA  
55 µA  
55 µA  
10 µA  
10 µA  
60 µA  
60 µA  
60 µA  
60 µA  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
5 µA  
55 µA  
55 µA  
55 µA  
55 µA  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
20 µA  
20 µA  
20 µA  
20 µA  
20 µA  
20 µA  
30 µA  
Light Load 10 µA  
Midload 60 µA  
50 µA  
Standby  
Mode  
250 µA  
570 µA  
675 µA  
744 µA  
Active Load 60 µA  
60 µA  
80 µA 80 µA 80 µA 80 µA OFF  
80 µA 80 µA 80 µA 80 µA 80 µA  
80 µA 80 µA 80 µA 80 µA 80 µA  
Talk  
Ring  
55 µA OFF  
60 µA  
55 µA 69 mA  
–16–  
REV. 0  
ADP3502  
Table II. LDO Operation Overview  
Current  
Rating (mA)  
Voltage (Typ)  
or Range (V)  
Program  
Steps  
Step  
Size (mV)  
Regulator  
Names  
Default  
COUT (F)  
LDO1a  
LDO1b  
LDO2a  
LDO2b  
LDO3a  
LDO3b  
LDO4  
Baseband VDD  
Baseband VDD Sub  
Baseband AVDD  
Baseband AVDD Sub  
RTC/Coin Cell  
RTC/Coin Cell Sub  
Audio  
150  
3
50  
0.3  
50  
1
180  
150  
150  
1
100  
150  
50  
2.90  
2.87  
2.36 ~ 2.66  
2.33 ~ 2.63  
3.0  
2.97  
2.9  
2.9  
2.85  
2.80  
2.9  
2.9  
2.9  
N/A  
N/A  
16  
N/A  
N/A  
20  
2.2  
2.2  
1
1
1
2.52 V  
2.49 V  
16  
20  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1
2.2  
2.2  
2.2  
2.2  
1.5  
2.2  
1
LDO5  
Vibrator  
LDO6a  
LDO6b  
LDO7  
LDO8  
LDO9  
Baseband Core  
Baseband Core Sub  
RF Rx1  
RF Tx  
RF Rx2  
LDO10  
LDO11  
RF Option  
Option  
50  
100  
2.9  
1.5  
1
2.2  
C
VBAT  
R
SENSE  
AC ADAPTER  
C
ADAPTER  
ISENSE  
BASE  
BVS  
ADAPTER  
Li-ION  
BATTERY  
5mA  
PRECHARGE  
+
1k  
V(ISENSE)  
g
g
m
m
EN  
EN  
ADPSUPPLY  
MVBAT  
DDLO  
MVBAT  
EN  
EN  
REF  
BVS  
V
BIAS  
CHARGER DETECT  
CHI LDO EN CHEN  
CHV MVEN  
0/1  
MV4:0  
Figure 3. Battery Charger Block Diagram  
REV. 0  
–17–  
ADP3502  
BATTERY CHARGER START  
N
V
> VBAT  
Y
ADAPTER  
?
SET CHARGER DETECT FLAG  
PRECHARGE 5mA  
N
VBAT > DDLO  
?
Y
LDO3b: ON  
SET LOW CURRENT CHARGE  
I
= 275mA  
DETERMINED BY EXTERNAL  
SENSE RESISTOR.  
ADAPTER  
(55mV ON R  
)
SENSE  
PRECHARGE: OFF  
LDO1, LDO1b, LDO2, LDO2b,  
LDO3, LDO6, LDO6b  
VOLTAGE DETECTOR  
ALL ENABLED  
VOLTAGE DETECTOR  
VLDO6 > 2.67V  
AND  
N
VLDO1 > 2.77V  
?
Y
A
Figure 4. Charger Flow Chart A  
–18–  
REV. 0  
ADP3502  
A
RESET SEQUENCE RUNS  
BASEBAND SETS CHARGEVOLTAGE  
BASEBAND SETS MVBAT GAIN  
BASEBAND ENABLES  
FULL CHARGE CURRENT?  
(CHI = 1?)  
CHI = 0: FULL CURRENT CHARGE OFF  
CHI = 1: FULL CURRENT CHARGE ON  
N
Y
LOW CURRENT CHARGE: OFF  
SET FULL CURRENT CHARGE  
I
= 850mA MIN.  
ADAPTER  
(170mV MIN. ON R  
)
SENSE  
N
BASEBAND  
CHEN = 0?  
Y
CHARGINGTERMINATED  
Figure 5. Charger Flow Chart B  
REV. 0  
–19–  
ADP3502  
Adapter Connection  
Reference  
There are two adapter connections on the ADP3502, Pins  
ADAPTER and ADPSUPPLY. The ADPSUPPLY pin only  
provides bias current to the charger detect comparator and  
precharge block. With a diode placed on the adapter side of the  
PNP transistor, as shown in Figure 3, the reverse battery current  
will be blocked.  
The ADP3502 has an internal temperature compensated and  
trimmed band gap reference. The battery charger and LDOs all  
use this system reference. This reference is not available for use  
externally. However, to reduce thermal noise in the LDOs, the  
reference voltage is brought out to the NRCAP pin through a  
50 kinternal resistor. A cap on the NRCAP pin will complete  
a low-pass filter that will reduce the noise on the reference volt-  
age. All the LDOs, with the exception of LDO3, use the filtered  
reference.  
Charger Detect Function  
The ADP3502 will detect that a charging adapter has been applied  
when the voltage at the ADAPTER pin exceeds the voltage at  
BVS. The ADAPTER pin voltage must exceed the BVS voltage  
by a small positive offset. This offset has hysteresis to prevent  
jitter at the detection threshold. The charger detection comparator  
will set the charger detect flag in the 20h register and generate  
an interrupt to the system. If the ADAPTER input voltage drops  
below the detection threshold, charging will stop automatically,  
and the charger detect flag will be cleared and generate an  
interrupt also.  
Since the reference voltage appears at NRCAP through a 50 kΩ  
series internal impedance, it is very important to never place any  
load current on this pin. Even a voltmeter with 10 Minput  
impedance will affect the resulting reference voltage by about  
6 mV or 7 mV, affecting the accuracy of the LDOs and charger.  
If for some reason the reference must be measured, be certain to  
use a high impedance range on the voltmeter or a discrete high  
impedance buffer prior to the measurement system.  
DDLO Function and Operation  
LOGIC BLOCKS  
ADP3502 includes the following functions:  
The ADP3502 contains a comparator that will lock out system  
operation if the battery voltage drops to the point of deep dis-  
charge. When the battery voltage exceeds 2.675 V, the reference  
will start as will the sub-LDO3b. If the battery voltage drops  
below the hysteresis level, the reference and LDOs will be shut  
down if for some reason they are still active. Since LDO1 will be in  
deep drop-out and well below the voltage detector threshold at this  
point, the reset generator will have already shut down the rest of  
the system via RESET+, RESETOUT–, and RSTDELAY–.  
3-wire serial interface (CS, CLK, DATA)  
RTC counter section has year, month, day, week, hour,  
minute, and second and controls leap year and days in month  
automatically.  
Detect alarms based on RTC counter  
Periodically constant interrupt feature (2 Hz, 1 Hz, 1/60 Hz,  
1/3600 Hz, once a month)  
GPIO and INT ports control  
If a charging adapter has been applied to the system, the DDLO  
comparator will force the charging current to trickle charge if  
the battery is below the DDLO threshold. During this time, the  
charging current is limited to 5 mA. When the battery voltage  
exceeds the upper threshold, the low current charging is enabled,  
which allows 55 mV (typical) across the external charge current  
sense resistor (see Figure 4).  
Keypad interface  
LED light control  
LDO functions  
Clock and reset output control  
Stay-alive timer  
Figure 6 is a block diagram based on the logic circuit.  
MVBAT  
The ADP3502 provides a scaled buffered output voltage for use  
in reading the battery voltage with an A/D converter. The bat-  
tery voltage is divided down to be nominally 2.600 V at the  
full-scale battery of 4.35 V. To assist with calibrating out system  
errors in the ADP3502 and the external A/D converter, this full-  
scale voltage may be trimmed digitally with five bits stored in  
register 12h. At full-scale input voltage, the output voltage of  
MVBAT can be scaled in 6 mV steps, allowing a very fine cali-  
bration of the battery voltage measurement. The MVBAT buffer is  
enabled by the MVEN bit of register 11h and will consume less  
than 1 µA of leakage current when disabled.  
–20–  
REV. 0  
ADP3502  
[VBAT]  
VOLTAGE DETECT  
DELAY  
10ms  
VOLTAGE DETECT DELAY  
CHARGER DETECT  
SYNC  
POWER ON  
PWRONKEY N  
OPT1 N  
INTERRUPT  
REGISTER  
BLOCK  
OPT2 N  
OPT3  
POWER  
OFF  
PWRONKEY N SYNC  
OPT1 N SYNC  
OPT3 SYNC  
BATOV  
SYNC  
DATA  
IN  
ANALOG BLOCK  
LED CONTROL  
KEYPAD  
I/F  
BLIGHT  
DGND  
BL  
INT  
CONTROL  
REGISTER  
(RESET  
AND  
KEYPAD INT  
KEYPADCOL[3:0]  
KEYPADROW[5:0]  
KEYPAD  
I/F  
MASK)  
GPIO  
CONTROL  
GPIO [3:0]  
GPIO  
INT N  
TCXOON  
SLEEP N  
LDO CONTROL REGISTER  
WRITE ENABLE  
CS  
CLKIN  
DATA  
WRITE DATA [7:0]  
ANALOG  
BLOCKS  
ANALOG  
CONTROL  
REGISTERS  
SERIAL  
I/F  
SP ADDR [4:0]  
DATA  
SELECT  
RESETIN N  
RESETIN N  
LDO  
CONTROL  
(RESET FOR REGISTERS)  
RTC RESETIN N  
RTC CLK32K  
32K OSC  
OSC OUT  
OSC IN  
CLK32K  
32K CLK  
32K OUT  
OUTPUT  
OUTPUT DATA  
SELECT  
CLK512  
CONTROL  
RTC  
ADDRESS  
DECODE  
TEST MODE  
REGISTER  
BLOCK  
CLK1K  
STAY-ALIVE  
TIMER  
RTC  
TEST IDOENABLE  
REGISTER  
BLOCK  
RTC TEST  
TEST MODE  
TEST  
RTC VOLTAGE DETECT  
RTCVOLTAGE DETECT  
RESETOUT N  
RSTDELAY N  
RESET  
RESET OUTPUT  
CONTROL  
[RTCV]  
Figure 6. LOGIC Block Diagram  
–21–  
REV. 0  
ADP3502  
RESET  
RESETIN– Signal  
The internal reset function is activated by the external reset input,  
RESETIN–, and is an asynchronous signal. The internal reset  
signal is used in the following blocks:  
cause the system to have an unexpected result. Take care to avoid  
this situation. RESETIN– is level translated from LDO1 to both  
VBAT and RTCV supplies.  
RESET Output Control and 32 kHz Output Control  
Using a voltage detect signal, the device generates 32K OUT,  
RSTDELAY–, RESETOUT–, and RESET signals. About 32 ms  
after the RTC Voltage Detect (voltage detect signal in RTCV  
supply) signal goes from “0” to “1,” the 32K OUT signal is  
generated from the internal RTC_CLK32K signal. RSTDELAY  
N (RSTDELAY–) goes to “0” when the RTC Voltage Detect is  
“0,” and it goes to “1” at 50 ms after the “0” to “1” transition of  
the RTC Voltage Detect. RESETOUT N (RESETOUT–) and  
RESET toggle their states. Signal CLK512 is a 512 Hz, which  
is generated in USEC counter block.  
Serial I/F  
Interrupt control  
Stay-alive timer  
Registers (refer to the Register section for additional  
information).  
LDOs, controlled by Serial I/F, are applied “RESET” by  
RESETIN–. LDO5, LDO7, LDO8, LDO9, LDO10, and REFO  
are set to “0,” and LDO4 and LDO11 are set to “1.” In case  
RESETIN– has noise, the internal circuit may be in reset and  
SERIAL INTERFACE  
tCSR  
CS  
tCKL  
tCKS  
tCKH  
tCSH  
CLKIN  
tCSS  
tDH  
tDS  
SERIAL  
DATA  
ADDR5  
ADDR4  
0
CTRL1 (W) CTRL2 (W)  
DATA7  
1
DATA0  
SERIAL I/FWRITETIMING  
tCSR  
CS  
tCKL  
tCKS  
tCKH  
CLKIN  
tCSS  
tDH  
tDS  
SERIAL  
DATA  
ADDR5  
ADDR4  
0
CTRL2 (R)  
CTRL1 (R)  
DATA7  
1
DATA0  
tRD  
tCSZ  
SERIAL I/F READTIMING SINGLE MODE  
CS  
tCKL  
tCKS  
tCKH  
CLKIN  
tCSS  
tDH  
tDS  
SERIAL  
DATA  
CTRL2 (R)  
ADDR4  
0
CTRL1 (R)  
ADDR5  
DATA0  
ADDR5  
ADDR4  
DATA7  
1
tRD  
tRZ  
SERIAL I/F READTIMING CONTINUOUS MODE  
Figure 7. Serial Interface Signal  
–22–  
REV. 0  
ADP3502  
Table III. Setup and Hold Specifications  
Parameter*  
Min  
Typ  
Max  
Unit  
Test Condition/Comments  
tCKS  
tCSS  
tCKH  
tCKL  
tCSH  
tCSR  
tDS  
tDH  
tRD  
tRZ  
tCSZ  
50  
50  
100  
100  
100  
62  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
CLK Setup Time  
CS Setup Time  
CLK High Duration  
CLK Low Duration  
CS Hold Time  
CS Recovery Time  
Input Data Setup Time  
Input Data Hold Time  
Data Output Delay Time  
Data Output Floating Time  
50  
40  
50  
50  
50  
Data Output Floating Time after CS Goes Low  
*These parameters are not tested.  
Function Block  
DATA, all data is canceled, and the DATA line would be high  
impedance. In this case, users need to input the data again.  
The ADP3502 integrates the serial bus interface for easy com-  
munication with the system. The data bus consists of three  
wires (CLK, CS, and DATA) and is capable of serial-to-  
parallel/parallel-to-serial conversion of data, as well as clock  
transfer.  
Note that CLKIN should stay “L” when CS goes “H.” RTC  
counter registers should be accessed at a certain time (>62 µs) after  
CS assertion. Asserting RESETIN N (RESETIN–), signal  
resets the block.  
Serial interface block works during the time period at CS signal  
enable. After the falling edge of CLKIN, signals right after the  
rising edge of the CS signal, address, transfer control signal,  
and write data are held in sequentially. In case of DATA READ,  
data will be prepared by the rising edge of CLKIN, and the base-  
band chip may want to read or latch the data at the falling  
edge of CLKIN. While CS is not asserted, CLKIN is ignored.  
If CS goes “L” while CLKIN is continuously applied or input  
Notes:  
CLKIN should be “L” when CS goes “H.”  
In case of RTC counter access, the access should be approxi-  
mately 62 µs (two clock cycles of CLK32K) after the CS signal  
is asserted to hold the RTC value.  
The CS should not be asserted for 62 µs (2 clock cycles of  
CLK32K) after the CS is released.  
CS signal should never be asserted for 1 sec or longer; other-  
wise the RTC counter makes an error.  
CLKIN should be chosen as a multiple of 16 if CS < 31 µs.  
RESETIN N  
CS  
CLKIN  
DATAIN  
SP ADDR [5:0]  
CREATION OF  
WRITE ENABLE  
SERIAL-TO-PARALLEL  
WRITE DATA  
RW SEL  
CONVERSION  
SP DATA [7:0]  
PS DATA [7:0]  
PARALLEL-TO-SERIAL  
CONVERSION  
SYNCHRONIZATION  
AND DATA SELECTION  
DATA  
Figure 8. Serial Interface Block Diagram  
REV. 0  
–23–  
ADP3502  
DATA INPUT/OUTPUT TIMING  
5
4
3
2
1
0
1
0
7
6
5
4
3
2
1
0
R/W (2-BIT)  
ADDRESS (6-BIT)  
READ DATA (8-BIT)  
Figure 9. Serial I/F Data Read/Write Timing  
In Figure 9:  
SP ADDR[5:0]: 6-Bit Address  
SP CTRL[1:0]: 2-Bit Read/Write Control (01: Write, 10: Read)  
Keypad Control and LED Drive  
KEYPADCOL[3:0] are open-drain outputs. The  
KEYPADROW[5:0] are falling edge trigger inputs (input state  
transition from “1” to “0”) and generate interrupt signal and are  
pulled up to LDO1. By providing four keypad-column outputs and  
six keypad-row inputs, the ADP3502 can monitor up to 24 keys  
with the baseband chip. Writing column outputs and reading row  
inputs are controlled through a serial interface. The address of the  
KEYPADROW is 19h, and KEYPADCOL is 18h. The initial  
register value is “1,” which means the output of KEYPADCOL  
is low. Three-stage flip-flop synchronizes signals into interrupt  
circuit to 1 kHz clock.  
SP DATA[7:0]: 8-Bit Input/Output Data  
All transfers will be done MSB first.  
GPIO + INT  
The GPIO block has 4-channel I/O function and interrupt.  
With the GPIO CONTROL register (1Ah), it is possible to  
control the input or output setting of each channel individually.  
The output data is set in the GPIO register (1Ch). When the  
port is set in input mode, the input signal transitions from “1”  
to “0” and from “0” to “1” and then generates an interrupt  
signal with edge detection. The held interrupt signals are reset  
by the GPIO INT RESET register (1Dh). Setting the GPIO  
MASK register (1Bh) to “1” enables the interrupt of GPIO.  
(Not MASKED, “1” at default in reset.)  
The back-light drive is an open-drain output. The maximum  
current of the internal FET is 100 mA. The initial register value  
is “0,” which means the output of BLIGHT is high impedance.  
Power ON Input  
PWRONKEY and OPT1 have pull-up resistors, and others do  
not. In addition to these inputs, other internal input signals, such  
as charger detect and alarm signal (alarm int) from RTC, enable  
the main and sub-LDOs of LDO1, LDO2, LDO3, LDO4, LDO6,  
and LDO11. The Power ON status is held by latch data in the  
delay circuit, called voltage detect delay (see 10 ms Delay section  
for more information). OPT3 has a lower voltage threshold. OPT2  
has a different structure than the other inputs and is pulled  
down to zero by the internal signal when the phone is in Power ON  
status, in order to ensure Power ON status, even if short-term  
disconnection happens. Figure 11 is a block diagram of the  
Power ON sequence.  
INT Register  
If the interrupt event occurs, “1,” the signal is held in this register.  
INT detect and reset are synchronized at the rising edge of  
CLK32K. If the interrupt event and reset signal occur at the  
same time, the interrupt event has priority. The RESETIN N  
signal resets the INT register (1Eh) to “0” (no INT detected),  
except alarm int and pic int. The INT MASK register (1Fh)  
goes to “1” (not masked). This block masks alarm int and pic int,  
which generated in RTCV block, but these signals are reset with  
the ALARM CONTROL register (0Dh) and PIC CONTROL  
register (0Eh). The interrupt signal, INT N, is an inverted OR  
signal of the value in the INT register and GPIO register.  
VBAT  
The DATA-IN register is a port to read an interrupt status. The  
input data are through the SYNC block, except the alarm signal.  
Since this is for just readback purposes, the user cannot write  
any data.  
140k  
VOLTAGE DETECT DELAY  
140k⍀  
CHARGER DETECT  
ALARM INT  
PWRONKEY–  
POWER ON  
SYNC BLOCK  
OPT1–  
OPT2–  
OPT3  
BATOV  
RTC ALARM  
CHARGER DETECT  
OPT3  
REGISTER  
INT  
BLOCK  
DATA-IN REGISTER  
(ADDR: 20h)  
Figure 11. Power ON Input Block Diagram  
OPT1–  
PWRONKEY–  
Figure 10. DATA-IN Block  
–24–  
REV. 0  
ADP3502  
In Figure 11:  
the voltage detect signal is asserted, the voltage detect delay  
signal is asserted. If the duration of the voltage detect signal is  
less than 10 ms, the voltage detect delay signal will not be  
asserted. When the voltage detect signal is released, the voltage  
detect delay signal is released simultaneously. The voltage detect  
delay signal can be reset by writing “1” in the POWER OFF  
register (21h).  
Voltage Detect Delay: Voltage Detect Signal (10 ms Delay)  
(1: Assert)  
Charger detect: Charger Detect Signal (1: Assert)  
Alarm INT: Alarm Detect Signal (Alarm 1 or Alarm 2)  
(1: Assert)  
PWRONKEY–: Power On Key Input (0: Assert)  
OPT1–: Power On Signal (0: Assert)  
OPT2–: Power On Signal (0: Assert)  
OPT3: Power On Signal (1: Assert)  
If users want to go back to a Power ON state, users should set  
“1” to address 22h within a time constant of the external R/C  
network, which is suppose to be connected to OPT2.  
Note that users just need to write a “1” in the Power OFF regis-  
ter to reset the voltage detect delay and do not need to overwrite  
it with a “0.”  
10 ms Delay  
This block generates a 10 ms delayed signal after the reset of the  
voltage detect signal is released. 10 ms (11 clocks of 1024 Hz) after  
POWER ON  
POWER OFF  
POWERONKEY  
POWER ON  
LDO1, LDO2, LDO3,  
LDO4, LDO6, LDO11  
LDO1b, LDO2b, LDO6b  
VOLTAGE DETECTOR  
10ms  
VOLTAGE DETECT DELAY  
50ms  
RSTDELAY–  
OPT2  
INT–  
CLEAR INT  
SERIAL I/F  
CLEAR INT– AND SET PWROFF (21h) = 1  
Figure 12. Power ON Sequence  
REV. 0  
–25–  
ADP3502  
LDO Control  
Logic controls the remainder of the LDOs, including LDO1,  
LDO2, and LDO6. A sub-LDO called LDO3b is independently  
controlled, and this LDO control block doesn’t control LDO3b.  
Also, the main LDO3, called LDO3a, is turned on by the Power  
ON signal, but the sub-LDO3, called LDO3b, is always ON  
while the battery supplies, and only the DDLO controls LDO3b.  
A DDLO is the control signal from the battery charger block and  
is monitoring the battery voltage. When VBAT is under 2.5 V  
(200 mV hysteresis from VBAT = 2.7 V), DDLO minimizes  
(DDLO enable) the current flow from the Li-Ion battery.  
The LDO control block controls Power ON/OFF of the LDO  
block. The function in this block has:  
Hardware control using external signals  
Software control using serial interface  
A mixture of the hardware and software above  
LDO1, LDO2, LDO3, and LDO6 are structured with main and  
sub-LDOs. LDO4, LDO5, LDO7, LDO8, LDO9, LDO10, and  
LDO11 are set through the serial interface, but LDO7 and LDO9  
are gated (AND gate) with SLEEP– signal in order to get into  
the SLEEP mode. If the SLEEP– signal is enabled (goes low), the  
outputs of LDO7 and LDO9 are turned OFF. The Power ON  
Main LDOs: LDO1a, LDO2a, LDO3a, LDO6a  
Sub-LDOs: LDO1b, LDO2b, LDO3b, LDO6b  
Table IVa. DDLO Status Table  
Status LDO1a  
LDO1b LDO2a LDO2b LDO3a LDO3b LDO4 REFO LDO5  
LDO6a  
LDO6b LDO7 LDO8 LDO9 LDO10 LDO11  
RF  
Baseband VDD  
Baseband AVDD Coin Cell  
Audio REFO Vibrator Baseband Core  
Rx1  
Tx  
Rx2  
Option Option  
DDLO OFF  
Enable  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
X
OFF  
OFF  
OFF  
OFF  
X
OFF  
X
DDLO  
Disable  
X
X
X
X
X
X
X
X
X
X
X
X
X means a status of LDO depends on other conditions.  
Table IVb. LDO Control Event Table1  
Event  
LDO1a LDO1b LDO2a LDO2b LDO3a LDO3b LDO4 REFO LDO5  
LDO6a LDO6b LDO7 LDO8 LDO9 LDO10 LDO11  
RF  
Baseband VDD Baseband AVDD Coin Cell  
Audio REFO Vibrator Baseband Core  
Rx1  
Tx  
Rx2  
Option Option  
Power ON2  
TCXOON3  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON/  
OFF  
ON/  
OFF  
ON/  
OFF  
ON/  
OFF  
SLEEP–4  
ON/  
OFF  
ON/  
OFF  
RESETIN–  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ALLOFF Bit  
Goes “H”  
PWROFF Bit  
Goes “H”  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
NOTES  
1This table indicates only the status change caused by an event. Blank cells mean no change and keep previous status.  
2Power-ON Event: Indicating a status just after the power-ON event. After the event, a status of LDO1a, LDO2a, LDO3a, and LDO6a are changed by the TCXOON signal.  
3TCXOON: Hardware control, change all main LDOs’ ON/OFF status.  
4SLEEP–: The LDO7 and LDO9 can be controlled by software if SLEEP = “H” level. If SLEEP– goes “L,” these LDOs are turned OFF immediately.  
Table IVc. Software Controllability of LDOs  
LDO  
LDO1a LDO1b LDO2a LDO2b LDO3a LDO3b LDO4 REFO LDO5  
LDO6a LDO6b LDO7 LDO8 LDO9 LDO10  
LDO11  
Description Baseband VDD Baseband AVDD Coin Cell  
Audio REFO Vibrator Baseband Core  
Rx1  
Tx  
Rx2  
RF Option Option  
Software  
Turn ON  
*  
*  
Software  
Turn OFF  
*LDO7 and LDO9 have a gate with SLEEP–. If SLEEP– is in “L” (active) status, users cannot control it and both LDOs are kept in an OFF status. Users may want to use this  
function as an immediate control to get OFF status by using SLEEP– hardware control when setting Register “1” to the LDO control register.  
–26–  
REV. 0  
ADP3502  
RTC Block  
counter until the CS signal is released. In case the CPU writes  
data into the SEC counter, the USEC counter is reset to zero.  
The calendar registers are set through the serial interface.  
Function  
Note the following:  
RTC counter using binary  
In case of RTC counter access, the access should wait approxi-  
mately 62 µs, (two clock cycles of CLK32K) after the CS signal  
is asserted, to hold the RTC value.  
Reading out and writing settings of year, month, day, week,  
hour, minute, and second data  
Leap year controls, number of days in a month control  
Alarm function (week, hour, minute)  
Periodic interrupt function—2 Hz, 1 Hz, 1/60 Hz, 1/3600 Hz,  
each month (first day of each month)  
The CS signal should never be asserted 1 sec or longer since  
this effects counter operation.  
USEC Counter Operation  
The USEC counter counts up synchronizing with the  
RTC CLK32K clock. It generates a 1 sec timing signal and is  
used as an increment clocking of the RTC counter. In case the  
1 sec signal is generated during the CS signal asserted, the incre-  
ment clock is delayed until the CS signal is released.  
Protection of wrong data readout during RTC data update  
Operation  
Synchronizing with the RTC CLK32K clock, the USEC counter  
generates a 1 sec timing clock, which hits the RTC counter.  
Through the serial interface, the CPU can write the setting  
value and read the RTC counter value. In case the RTC counter  
toggles during the serial interface access to the RTC counter,  
the wrong data can be read/written between the RTC counter  
and the interface. The CS signal stops the clocking to the RTC  
RTC Counter Operation  
The RTC counter uses the increment signal from the USEC  
counter to control the counting operation, including the leap  
year control and numbers of days in a month control.  
RTC CLK32K  
LOADING  
ALARM  
TIMES  
RTC SP ADDR [5:0]  
RTC  
REGISTER  
BLOCK  
RTCWRITE ENABLE  
RTCWRITE DATA [7:0]  
(FROM SERIAL I/F)  
ALARM  
RTC ALARM INT  
RTC CTFG INT  
COMPARATOR  
PERIODIC  
INTERRUPT  
RTC  
COUNTER  
LEAPYEAR  
AND  
RESETWILL BE ASSERTEDWHEN  
RTC COUNTER IS WRITTEN.  
DATA  
SELECT  
DATE  
RTC DATA [7:0]  
CONTROL  
RTC CS  
SEC COUNTER  
INCREMENT  
CONTROL  
USEC  
COUNTER  
REGISTERS FOR  
TEST MODE  
RESETTO RTC AND USEC COUNTERS  
WRITE INITIAL DATA OF USEC COUNTER  
Figure 13. RTC Counter Block  
REV. 0  
–27–  
ADP3502  
ENABLED SIGNALS  
CREATED  
BY DECODING OF  
RTC SP ADDR [5:0]  
06h  
05h  
04h  
03h  
02h  
01h  
00h  
100 SCALE  
12 SCALE  
31 SCALE  
7 SCALE  
YEAR  
MONTH  
DATE  
ADDR 06h WRITE  
ADDR 00h WRITE  
INITIAL DATA  
LEAPYEAR  
AND  
DAYS IN MONTH  
CONTROL  
TO  
FOLLOWING  
COUNTERS  
WEEK  
YEAR COUNT  
MONTH COUNT  
DAY COUNT  
12 SCALE  
60 SCALE  
60 SCALE  
HOUR  
WEEK COUNT  
HOUR COUNT  
MIN COUNT  
MINUTE  
SECOND  
INC ENB  
USEC  
INC CLK  
COUNTER  
SEC COUNT  
Figure 14. RTC Counter Block Diagram  
Periodic Interrupt Function  
Definition of Leap Year  
For this device, the following definition of a leap year is used instead:  
This function generates interrupt periodically. The timing of  
the cycle can be selected from 2 Hz (0.5 sec clock pulse), 1 Hz  
(1 sec clock pulse), 1/60 Hz (minutes), 1/3600 Hz (hour), and  
month (first day of each month).  
“A year that can be divided by 4.”  
Note:  
Year counter = “00” means year 2000 and is a leap year,  
because it can be divided by 400.  
Actual covered year period is from 1901 to 2099.  
The cycle is set using the PI2–PI0 value in the periodic interrupt  
control, PIC register (0Eh). The state when interrupt is gener-  
ated is indicated at the INTRA bit of PIC register (0Eh). The  
INT MASK register (1Fh) only masks the periodic interrupt  
signal. There are two periodic interrupt signal output patterns:  
Number of Days of Month Control  
Months 1, 3, 5, 7, 8, 10, and 12 have 31 days.  
Months 4, 6, 9, and 11 have 30 days.  
1. Hold the value when the interrupt occurs (level).  
2. After the interrupt event happens, assert the interrupt signal  
in a certain time period and then release it (pulse).  
Month 2 has 28 days but has 29 days in a leap year.  
Alarm Function  
Comparing the RTC counter value with the setting value in the  
alarm setting register (07h–09h), the alarm condition is de-  
tected. Setting of week uses seven bits for each day of the  
week and works with multiple day settings. There is a delay of  
62 µs from alarm detection to setting up the AOUT/BOUT  
registers.  
In level case, interrupt occurs at each 0 min (1/60 Hz), 0 o’clock  
(1/3600 Hz), or the first day of the month. Because they  
happen in long cycles, the value is held at the register. After the  
CPU checks the state, it is released by writing a “1” to the PIC  
Bit of the PIC Register. If 2 Hz and 1 Hz, the interrupt is not  
held because the event happens in short cycles. These event  
signals output the pulse signal 2 Hz or 1 Hz in the RTC counter  
directly. The interrupt release operation doesn’t affect the inter-  
rupt signal in this case.  
The ALA EN flag in the ALARM CONTROL register (0Dh)  
sets the enable/disable of the alarm detection. The INT register  
(1Eh) indicates the interrupt signals, ALARM INT of ALA or/  
and ALB. The INT MASK register (1Fh) does mask the  
alarm interrupt signal. The alarm detection state is indicated as  
AOUT of the ALARM CONTROL register (0Dh), and the  
alarm can be released by writing a “1” at the bit. Alarm B is  
controlled the same as Alarm A.  
Stay-Alive Timer  
This is a counter that increments each 250 ms after  
RTC RESETIN N is asserted. It holds its value when the counter  
counts full up. Signal CLK4 is a 4 Hz (250 ms) clock that was  
generated in the USEC counter. The counter can be reset by  
writing a “1” at the CLR of the Stay-Alive TIMER CONTROL  
register (0Fh). The RTC RESETIN N signal is transferred from a  
logic input circuit that is supplied by VBAT of RESETIN N.  
Note: Users just need to write a “1” to release the alarm and do  
not need to write a “0” after the “1.” Users do not need to wait  
62 µs from CS assertion.  
Note: Users just need to write a “1” to release the interrupt and  
do not need to write a “0” after the “1.”  
–28–  
REV. 0  
ADP3502  
CLK4  
TEST RESET  
STAY-ALIVETIMER  
RTC RESETIN N  
D
SA [4:0]  
5-BIT  
COUNTER  
CLRB  
REGISTER  
STAY-ALIVETIMER CONTROL REGISTER (0Fh): CLR  
STAY-ALIVETIMER CONTROL REGISTER (0Fh): SAx  
Figure 15. Stay-Alive Timer Block Diagram  
RTCVOLTAGE DETECT  
SA CLEAR  
CLK4  
SA COUNT [4:0]  
0
1
2
3
4
5
30  
31  
0
Figure 16. Stay-Alive Timer Operation Timing  
REV. 0  
–29–  
ADP3502  
Table V. Registers  
ADDR Description  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Comments  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
Second Counter  
Minute Counter  
Hour Counter  
Week Counter  
Day Counter  
Month Counter  
Year Counter  
Alarm A Minute  
Alarm A Hour  
Alarm A Week  
Alarm B Minute  
Alarm B Hour  
S5  
M5  
S4  
M4  
H4  
S3  
M3  
H3  
S2  
M2  
H2  
W2  
D2  
MO2  
Y2  
AM2  
AH2  
AW2  
BM2  
BH2  
BW2  
AOUT  
PI2  
S1  
M1  
H1  
W1  
D1  
MO1  
Y1  
AM1  
AH1  
AW1  
BM1  
BH1  
BW1  
ALB EN  
PI1  
SA1  
CHI  
REF0  
MV1  
LDO5  
S0  
M0  
H0  
W0  
D0  
MO0  
Y0  
AM0  
AH0  
AW0  
BM0  
BH0  
BW0  
BOUT  
PI0  
Note 1, 2  
Note 1, 2  
Note 1, 2  
Note 1, 2  
Note 1, 2  
Note 1, 2  
Note 1, 2  
Note 2  
Note 2  
Note 2  
Note 2  
Note 2  
Note 2  
Note 2  
Note 2  
Note 2  
Note 3  
Note 3  
Note 3  
Note 3  
D4  
D3  
MO3  
Y3  
Y6  
Y5  
AM5  
Y4  
AM4  
AH4  
AW4  
BM4  
BH4  
BW4  
AM3  
AH3  
AW3  
BM3  
BH3  
BW3  
ALA EN  
PIC  
AW6  
BW6  
AW5  
BM5  
Alarm B Week  
Alarm Control  
BW5  
CLR  
Periodic Interrupt Control  
Stay-Alive Timer Control  
Charger Control  
Charger MVBAT Control  
Charger MVBAT  
LDO Control 1  
Not Available  
LDO Control 2  
LDO Control 3  
LDO2 Gain  
Keypad Column/LED  
Keypad Row Input  
GPIO Control  
GPIO MASK  
GPIO  
SA4  
SA3  
SA2  
SA0  
CHEN  
MVEN  
MV0  
LDO4  
CHV1 CHV0  
MV4  
MV3  
MV2  
LDO11  
Note 4  
Note 3  
Note 3  
Note 3  
Note 5  
Note 5  
Note 5  
Note 5  
SLEEP9 SLEEP7 LDO10  
G23  
LDO9  
LDO8  
LDO7  
ALLOFF  
G20  
KO0  
KI0  
GPC0  
GPMSK0  
GPIO  
G22  
KO2  
KI2  
G21  
KO1  
KI1  
GPC1  
GPMSK1  
GPI1  
BL  
KI4  
KO3  
KI3  
GPC3  
GPMSK3 GPMSK2  
GPI3  
KI5  
GPC2  
GPI2  
Note 5  
GPO3  
GPINT3  
GPRST3  
INT3  
IRST3  
MSK3  
DI3  
GPO2  
GPINT2  
GPRST2  
INT2  
IRST2  
MSK2  
DI2  
GPO1  
GPINT1  
GPRST1  
INT1  
IRST1  
MSK1  
DI1  
GPO0  
GPINT0  
GPRST0  
INT0  
IRST0  
MSK0  
DI0  
PWROFF  
PWRON  
TEST  
Note 5  
1Dh  
1Eh  
GPIO INT  
INT  
Note 5, 6  
Note 5, 6  
Note 5, 6  
Note 5, 6  
Note 5  
Note 5  
Note 5  
Note 5  
Note 2, 7  
INT6 INT5  
IRST6 INT5  
MSK6 MSK5  
DI5  
INT4  
INT4  
MSK4  
DI4  
1Fh  
20h  
21h  
22h  
3Fh  
INT MASK  
DATA IN  
Power OFF  
Power ON  
TEST Register (Option)  
LDOENB USENB  
NOTES  
1. For RTC counter data protection, access should wait for a certain time period (62 µs) after the CS signal assertion. (Refer to the RTC Counter Operation section  
for the wait time).  
2. Registers regarding the RTC counter. They are powered by RTCV.  
3. Analog block control registers. They control LDO and so on. They are powered by VBAT.  
4. Not available.  
5. These are the registers for INT, GPIO, KEYPAD I/F, and so on. They are powered by VBAT.  
6. The INT reset operation will be valid at 62 µs or later after it’s set.  
7. This is a set register for an internal test and should not be accessed at normal operation.  
–30–  
REV. 0  
ADP3502  
APPLICATION INFORMATION  
Input Capacitor Selection  
Input Voltage  
For the input (ADAPTER and VBAT) of the ADP3502, a local  
bypass capacitor is recommended. Use a 10 µF, low ESR capacitor.  
Larger input capacitance and lower ESR provide better supply  
noise rejection and line-transient response. Multilayer ceramic  
chip (MLCC) capacitors provide the best combination of low  
ESR and small size but may not be cost effective. A lower cost  
alternative may be to use a 10 µF tantalum capacitor in parallel  
with a small (1 µF to 2 µF) ceramic capacitor (ceramic capacitors  
will produce the smallest supply ripple).  
The input voltage of the ADP3502 is 4.2 V and is optimized for  
a single Li-Ion cell. The thermal impedance of the ADP3502 is  
56.2°C/W for 4-layer boards. Power dissipation should be  
calculated at the maximum ambient temperatures and battery  
voltage should not exceed the 125°C maximum allowable  
junction temperature. The junction and ambient temperature  
limits are selected to prevent both catastrophic package material  
deterioration and excessive device power output degradation.  
The ADP3502 can deliver the maximum power (0.71 W) up to  
85°C ambient temperature. Figure 17 shows the maximum  
power dissipation as a function of ambient temperature.  
LDO Capacitor Selection  
Low dropout regulators need capacitors on both their input and  
output. The input capacitor provides bypassing of the internal  
amplifier used in the voltage regulation loop. The output capacitor  
improves the regulator response to sudden load changes. The  
output capacitor determines the performance of any LDO. The  
LDO1, LDO4, LDO5, LDO7, LDO8, and LDO11 require a  
2.2 µF capacitor, and the LDO2, LDO3, LDO6, LDO9, and  
LDO10 require a 1 µF capacitor. Transient response is a func-  
tion of output capacitance. Larger values of output capacitance  
decrease peak deviations, providing improved transient response  
for large load current changes. Choose the capacitors by compar-  
ing their lead inductance, ESR, and dissipation factor. Output  
capacitor ESR affects stability. Note that the capacitance of  
some capacitor types show wide variations over temperature or  
with dc voltage. A good quality dielectric, X7R or better, capacitor  
is recommended.  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–30  
0
30  
60  
90  
The RTCV LDO can have a rechargeable coin cell or an electric  
double-layer capacitor as a load, but an additional 0.1 µF ceramic  
capacitor is recommended for stability and optimal performance.  
AMBIENTTEMPERATURE – ؇C  
Figure 17. Power Dissipation vs. Temperature  
RTCV LDO  
Printed Circuit Board Layout Considerations  
Use the following guidelines when designing printed circuit  
boards:  
The RTCV LDO charges a rechargeable coin cell to run the  
real-time clock module. It has been targeted to charge manga-  
nese lithium batteries, such as the ML series (ML621/ML1220)  
from Sanyo. With high energy density and relatively flat discharge  
characteristics, the lithium coin cell is widely used in mobile  
devices, such as cellular phones, digital cameras, and PDAs.  
The ML621 has a small physical size (6.8 mm diameter) and a  
nominal capacity of 2.5 mAh, which yields about 250 hours of  
backup time.  
1. Connect the battery to the VBAT and BVS pins of the  
ADP3502. Kelvin-connect the BVS pin by running a separate  
trace to the VBAT pin. Locate the input capacitor, C13, in  
the Figure 18 as close as possible to these pins.  
2. REFO, LDO2, LDO4, LDO8–LDO10, ADAPTER, and  
NRCAP capacitors should be returned to AGND.  
3. LDO1, LDO3, LDO5–LDO7, LDO11, and VBAT capacitors  
should be returned to DGND.  
4. Split the ground connections. Use separate traces or planes  
for the analog, digital, and power grounds and tie them  
together at a single point, preferably close to the battery return.  
The nominal charging voltage is 3.0 V. This precise output voltage  
regulation charges the cell to more than 90% of its capacity. In  
addition, it features a very low quiescent of 50 µA typically. It  
requires an external low leakage diode for reverse current pro-  
tection that is needed when the main battery is removed, and  
the coin cell supplies the RTCV pin.  
5. Kelvin-connect the charger’s sense resistor by running sepa-  
rate traces to the ADAPTER and ISENSE pins. Make sure the  
traces are terminated as close to the resistor’s body as possible.  
6. Run a separate trace from the BVS pin to the battery to  
prevent a voltage drop error in the MVBAT measurement.  
7. Use the best industry practice for thermal considerations  
during the layout of the ADP3502 and charger components.  
Careful use of the copper area, weight, and multilayer con-  
struction all contribute to improved thermal performance.  
REV. 0  
–31–  
ADP3502  
Setting the Charge Current  
External Pass Transistor Selection  
The ADP3502 will control the charging operations when re-  
quested by the software. It includes a complete constant current/  
voltage single-cell lithium charge controller, as well as input  
current monitoring for the charger and voltage regulators. The  
ADP3502 will default to the lowest charge voltage of 3.50 V. To  
reach final charge on standard lithium batteries, the software  
must select one of the programmed values from this data sheet.  
The current comparator of the ADP3502 senses the voltage  
drop across an external sense resistor to control the average cur-  
rent for charging a battery. The voltage drop can be adjusted  
from 60 mV to 210 mV, giving a charging current limit from  
300 mA to 1.05 A with a 0.2 sense resistor. For lithium  
batteries, selecting the sense resistor, RSENSE, programs the  
charge current. Use the following equation to select the current  
sense resistor, RSENSE. The maximum battery charge current,  
The ADP3502 drives an external PNP pass transistor. The  
BASE pin drives the base of the transistor. The driver can draw  
up to 35 mA from the base of the pass device. The PNP pass  
transistor must meet specifications for:  
Current gain  
Power dissipation  
Collector current  
The current gain, hfe, influences the maximum output current  
the circuit can deliver. The largest guaranteed output current is  
given by ICHGR (max) = 35 mA hfe (min). To ensure proper  
operation, the minimum VBE the ADP3502 can provide must be  
enough to turn on the PNP. The available base drive voltage  
can be estimated using the following:  
VBE =VADAPTER VDIODE VBASE  
ICHGR, must be known.  
where VADAPTER (min) is the minimum adapter voltage, VBASE is  
the base drive voltage, and VSENSE is the maximum high current  
limit threshold voltage. The difference between the adapter  
voltage (VADAPTER) and the final battery voltage (VBAT) must  
exceed the voltage drop due to the blocking diode, the sense  
resistor, and the saturation voltage of the PNP at the maxi-  
mum charge current, where:  
210 mV  
ICHGR  
RSENSE  
=
Similarly, the end of charge current can be calculated from the  
low current limit threshold of 60 mV.  
60 mV  
RSENSE  
ILOW  
=
VCE(SAT) =VADAPTER VDIODE VSENSE VBAT  
The thermal characteristics of the PNP must be considered next.  
The transistor’s rated power dissipation must exceed the actual  
power dissipated in the transistor. The worst-case dissipation  
can be determined using:  
CHARGER DIODE SELECTION  
The diode, D3, shown in the Figure 18, is used to prevent the bat-  
tery from discharging through the adapter supply. Choose a diode  
with a low leakage current but with a current rating high enough  
to handle the battery current and a voltage rating greater than  
VBAT. The blocking diode is required for lithium battery types.  
PDISS = V  
VDIODE VBAT × ICHGR  
(
)
ADAPTER MAX  
(
)
It should be noted that the adapter voltage could be either preregu-  
lated or nonregulated. When preregulated, the difference between  
the maximum and minimum adapter voltage is probably not  
significant. When unregulated, the adapter voltage can have a  
wide range specified. However, the maximum voltage specified  
is usually with no load applied. Therefore, the worst-case power  
dissipation calculation will often lead to an overspecified pass  
device. In either case, it is best to determine the load character-  
istics of the adapter to optimize the charger design.  
–32–  
REV. 0  
ADP3502  
D3  
BAS116  
R
SENSE  
0.2  
Q9  
FZT788  
AC  
ADPTER  
C13  
10F  
Li-ION  
BATTERY  
C18  
10F  
BASEBAND ADC  
VBAT  
C17 0.1F  
R5  
100k⍀  
RF OPTIONAL  
RF RX2  
C16  
1.0F  
OPT1  
C15  
1.0F  
RFTX  
C19  
0.1F  
64  
49  
C14  
2.2F  
1
48  
OPT3  
OPT3  
VBAT  
LDO7  
LDO6  
VBAT  
LDO5  
LDO4  
VBAT  
LDO2  
REFO  
AGND  
LDO3  
VBAT  
LDO1  
LDO11  
VBAT  
KEYPADCOL0  
KEYPADCOL1  
KEYPADCOL2  
KEYPADCOL3  
KEYPADROW0  
KEYPADROW1  
KEYPADROW2  
KEYPADROW3  
KEYPADROW4  
KEYPADROW5  
TCXOON  
RF RX1  
BASEBAND  
CORE  
VIBRATOR  
AUDIO  
KEYPAD  
INTERFACE  
BASEBAND AVDD  
REF0  
ADP3502  
C11  
1.0F  
C7  
2.2F  
C12  
C8  
C9  
1.5F  
RTC/COIN-CELL  
2.2F  
2.2F  
C10  
C6  
TCXOON  
SLEEP  
0.1F  
1.0F  
SLEEP  
BASEBAND VDD  
OPTIONAL  
VBAT  
R4  
BLIGHT  
C4  
C5  
D1  
2.2F  
2.2F  
DGND  
1.5k⍀  
INT  
RSTDELAY–  
INT  
16  
D2  
BAT54  
33  
17  
X1  
32  
R2  
C3  
0.1F  
1k⍀  
SERIAL  
I/F  
COIN CELL  
32.7kHz  
C1  
10pF  
C2  
10pF  
Figure 18. Typical Application Circuit  
REV. 0  
–33–  
ADP3502  
OUTLINE DIMENSIONS  
64-Lead Thin Plastic Quad Flat Package [TQFP]  
7 x 7 x 1.00 mm Body  
(SU-64)  
Dimensions shown in millimeters  
9.00 BSC  
1.20  
MAX  
7.00 BSC  
0.75  
0.60  
0.45  
64  
1
49  
48  
PIN 1  
SEATING  
PLANE  
9.00  
BSC  
TOP VIEW  
(PINS DOWN)  
COPLANARITY  
0.08 MAX  
16  
17  
33  
32  
STANDOFF  
0.15 MAX  
0.05 MIN  
0.23  
0.18  
0.13  
0.40  
BSC  
0.20  
0.09  
7
0
1.05  
1.00  
0.95  
COMPLIANT TO JEDEC STANDARDS MS-026ABD  
–34–  
REV. 0  
–35–  
–36–  

相关型号:

ADP3502ASU

CDMA Power Management System
ADI

ADP3510

CDMA Power Management System
ADI

ADP3510ARU

CDMA Power Management System
ADI

ADP3510ARU-REEL

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO28, TSSOP-28, Power Management Circuit
ADI

ADP3510ARU-REEL7

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO28, TSSOP-28, Power Management Circuit
ADI

ADP3522

GSM Power Management System
ADI

ADP3522ACP-1.8

GSM Power Management System
ADI

ADP3522ACP-1.8-RL7

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, QCC32, 5 X 5 MM, MO-220VHHD-2, LFCSP-32, Power Management Circuit
ADI

ADP3522ACP-1.8-RL7

1-CHANNEL POWER SUPPLY SUPPORT CKT, QCC32, 5 X 5 MM, MO-220VHHD-2, LFCSP-32
ROCHESTER

ADP3522ACP-3

GSM Power Management System
ADI

ADP3522ACP-3-REEL

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, QCC32, 5 X 5 MM, MO-220VHHD-2, LFCSP-32, Power Management Circuit
ADI

ADP3522ACP-3-REEL7

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, QCC32, 5 X 5 MM, MO-220VHHD-2, LFCSP-32, Power Management Circuit
ADI