ADP5022 [ADI]

Dual 3 MHz, 600 mA Buck Regulator with 150 mA LDO; 双3兆赫, 600毫安降压稳压器与150毫安LDO
ADP5022
型号: ADP5022
厂家: ADI    ADI
描述:

Dual 3 MHz, 600 mA Buck Regulator with 150 mA LDO
双3兆赫, 600毫安降压稳压器与150毫安LDO

稳压器
文件: 总28页 (文件大小:668K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual 3 MHz, 600 mA Buck  
Regulator with 150 mA LDO  
ADP5022  
FEATURES  
GENERAL DESCRIPTION  
Input voltage range: 2.4 V to 5.5 V  
Tiny 16-ball, 2 mm × 2 mm WLCSP package  
Overcurrent and thermal protection  
Soft start  
Factory programmable undervoltage lockout on VDDA  
system supply of either 2.2 V or 3.9 V  
Factory programmable default output voltages for all  
3 channels  
Buck1 and Buck2 key specifications  
Current mode architecture for excellent transient response  
3 MHz operating frequency  
Uses tiny multilayer inductors and capacitors  
Forced PWM and auto PWM/PSM modes  
Out-of-phase operation for reduced input filtering  
100% duty cycle low dropout mode  
24 μA typical quiescent current per channel, no switching  
LDO key specifications  
The ADP5022 is a micro power management unit (micro PMU)  
that combines two high performance buck regulators and a low  
dropout regulator (LDO) in a tiny 16-ball 2.08 mm × 2.08 mm  
WLCSP to meet demanding performance and board space  
requirements.  
The high switching frequency of the buck regulators enables  
tiny multilayer external components and minimizes the board  
space required. When the MODE pin is set high, the buck reg-  
ulators operate in forced PWM mode. When the MODE pin is  
set low, the buck regulators automatically switch operating  
modes, depending on the load current level. At higher output  
loads, the buck regulators operate in PWM mode. When the  
load current falls below a predefined threshold, the regulators  
operate in power save mode (PSM), improving the light-load  
efficiency.  
The two bucks operate out-of-phase to reduce the input  
capacitor requirement and noise.  
Stable with 1 μF ceramic output capacitors  
High PSRR  
60 dB up to 10 KHz  
The low quiescent current, low dropout voltage, and wide input  
voltage range of the ADP5022 LDO extends the battery life of  
portable devices. The LDO maintains power supply rejection  
greater than 60 dB for frequencies as high as 10 kHz while  
operating with a low headroom voltage.  
Low output noise  
65 μV rms output noise at VOUT3 = 3.3 V  
Low dropout voltage: 150 mV @ 150 mA load  
11 μA typical ground current at no load  
Each regulator in the ADP5022 has a dedicated, independent  
enable pin. A high voltage level applied to the enable pin activates  
the respective regulator. The default output voltages are factory  
programmable and can be set to a wide range of options.  
APPLICATIONS  
USB devices  
Handheld products  
Multivoltage power for processors, ASICS, FPGAs,  
and RF chipsets  
ADP5022  
L1  
COUT_3  
1µH  
SW1  
V
@
OUT1  
600mA  
VIN1  
EN1  
V
= 2.4V  
IN  
TO 5.5V  
VOUT1  
PGND1  
BUCK1  
C4  
C3  
C4  
ON  
C2  
4.7µF  
10µF  
OFF  
EN_BK1  
MODE  
PWM  
C1  
C2  
MODE  
PWM/PSM  
VIN2  
L2  
1µH  
C3  
4.7µF  
SW2  
MODE  
V
@
OUT2  
600mA  
VOUT2  
PGND2  
ON  
ON  
BUCK2  
C5  
5.0mm  
EN2  
VDDA  
VIN3  
10µF  
OFF  
OFF  
EN_BK2  
C1  
1µF  
VOUT3  
V
@
LDO1  
EN_LDO1  
OUT3  
150mA  
EN3  
C6  
1µF  
L1  
COUT_1 COUT_2  
4.7mm  
AGND  
Figure 1. Typical Applications Circuit  
Figure 2. Typical PCB Layout  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
 
 
ADP5022  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 16  
Power Management Unit........................................................... 16  
Buck Section................................................................................ 17  
LDO Section ............................................................................... 18  
Applications Information.............................................................. 19  
Buck External Component Selection....................................... 19  
LDO Capacitor Selection .......................................................... 20  
PCB Layout Guidelines.................................................................. 22  
Evaluation Board schematics and Artwork ................................ 23  
Suggested Layout........................................................................ 23  
Outline Dimensions....................................................................... 25  
Ordering Guide .......................................................................... 25  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Buck1 and Buck2 Specifications................................................. 4  
LDO Specifications ...................................................................... 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Data................................................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
REVISION HISTORY  
11/09—Revision A: Initial Version  
Rev. A | Page 2 of 28  
 
ADP5022  
SPECIFICATIONS  
VDDA = VIN1 = VIN2 = 3.6 V, VIN3 = (VOUT3 + 0.5 V) or 2.4 V, whichever is greater, VIN3 ≤ VIN1, TJ = −40°C to +125°C, unless  
otherwise noted.1  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min Typ Max Unit  
INPUT VOLTAGE RANGE  
System and Buck Input Supplies Voltage Range  
VDDA, VIN1  
and VIN2  
,
Low UVLO level models  
High UVLO level models  
2.4  
5.5  
V
4.5  
2.3  
5.5  
5.5  
V
V
LDO Input Supply Voltage Range  
SHUTDOWN CURRENT  
VIN3  
IGND-SD  
EN1 = EN2 = EN3 = GND  
EN1 = EN2 = EN3 = GND  
TJ = −40°C to +85°C  
0.5  
μA  
μA  
2
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
EN1, EN2, EN3, MODE INPUTS  
EN1, EN2, EN3, MODE Input Logic High  
EN1, EN2, EN3, MODE Input Logic Low  
EN1, EN2, EN3, MODE Input Leakage Current  
STANDBY CURRENT  
TSDTH  
TSDHYS  
TJ rising  
150  
20  
°C  
°C  
VIH  
VIL  
VI-LEAKAGE  
VDDA = VIN1 = VIN2  
VDDA = VIN1 = VIN2  
Pin at (VDDA = VIN1 = VIN2) or GND  
1.2  
V
V
μA  
0.4  
1
0.05  
All Channels Enabled, No Load  
All Channels Enabled, No Load, No Buck Switching  
VIN3 UNDERVOLTAGE LOCKOUT  
Input Voltage Rising  
ISTBY  
ISTBY-NOSW  
80  
59  
μA  
μA  
85  
UVLOVIN3RISE  
UVLOVIN3FALL  
2.20  
V
V
Input Voltage Falling  
1.45  
VDDA UNDERVOLTAGE LOCKOUT  
Input Voltage Rising  
UVLOVDDARISE  
UVLOVDDAFALL  
High UVLO level (factory programmed)  
Low UVLO level (factory programmed)  
High UVLO level (factory programmed) 3.40  
Low UVLO level (factory programmed) 2.00  
4.15  
2.35  
V
V
V
V
Input Voltage Falling  
1 All limits at temperature extremes are guaranteed via correlation using standard statistical quality control.  
Rev. A | Page 3 of 28  
 
ADP5022  
BUCK1 AND BUCK2 SPECIFICATIONS  
VDDA = VIN1 = VIN2 = 3.6 V, VIN3 = (VOUT3 + 0.5 V) or 2.4 V, whichever is greater, VIN3 ≤ VIN1, TJ = −40°C to +125°C, unless  
otherwise noted.1  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
OPERATING SUPPLY CURRENT  
Buck1 Only  
IGND1  
ILOAD1 = 0 mA, device not switching, EN1  
= VDDA, EN2 = EN3 = GND  
ILOAD2 = 0 mA, device not switching, EN2  
= VDDA, EN1 = EN3 = GND  
ILOAD1 = ILOAD1 = 0 mA, device not switch-  
ing, EN1 = EN2 = VDDA, EN3 = GND  
24  
32  
48  
ꢀA  
ꢀA  
ꢀA  
Buck2 Only  
IGND2  
Buck1 and Buck2 Only  
OUTPUT VOLTAGE ACCURACY  
IGND1-2  
64  
+3  
VOUT1, VOUT2  
PWM mode, VIN1 = VIN2 = 2.4 V to 5.5 V, −3  
ILOAD1 = ILOAD2 = 0 mA − 600 mA  
%
POWER SAVE MODE TO PWM CURRENT  
THRESHOLD  
IPSM-PWM  
IPWM-PSM  
105  
100  
mA  
mA  
PWM TO POWER SAVE MODE CURRENT  
THRESHOLD  
SW CHARACTERISTICS, BUCK1 and BUCK2  
PFET On Resistance  
RPFET  
RNFET  
Typical at VIN1 = VIN2 = 3.6 V  
Typical at VIN1 = VIN2 = 5.0 V  
Typical at VIN1 = VIN2 = 3.6 V  
Typical at VIN1 = VIN2 = 5.0 V  
165  
125  
125  
100  
950  
3.0  
275  
220  
mΩ  
mΩ  
mΩ  
mΩ  
mA  
MHz  
NFET On Resistance  
Current Limit  
ILIMIT1, ILIMIT2  
FSW  
PFET switch peak current limit  
750  
2.5  
1050  
3.5  
OSCILLATOR FREQUENCY  
START-UP TIME2  
From Shutdown State  
TSTARTUP12-SD  
250  
ꢀs  
1 All limits at temperature extremes are guaranteed via correlation using standard statistical quality control.  
2 Start-up time is defined as the time from a rising edge on EN1/EN2 to VOUT1/VOUT2 reaching 90% of their nominal value.  
Rev. A | Page 4 of 28  
 
 
ADP5022  
LDO SPECIFICATIONS  
VDDA = VIN1 = VIN2 = 3.6 V, VIN3 = (VOUT3 + 0.5 V) or 2.3 V, whichever is greater, VIN3 ≤ VIN1, IOUT3 = 10 mA; CIN3 = COUT3  
1 μF, TJ = −40°C to +125°C, unless otherwise noted.1  
=
Table 3.  
Parameter  
OPERATING SUPPLY CURRENT2  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
IVIN3-GND  
IOUT3 = 0 μA  
IOUT3 = 10 mA  
IOUT3 = 150 mA  
11  
16  
31  
21  
29  
43  
μA  
μA  
μA  
OUTPUT VOLTAGE ACCURACY  
VOUT3  
100 μA < IOUT3 < 150 mA,  
−2  
+2  
%
VIN3 = (VOUT3 + 0.5 V) to 5.5 V  
REGULATION  
Line Regulation  
Load Regulation3  
DROPOUT VOLTAGE4  
∆VOUT3/∆VIN3 VIN3 = (VOUT3 + 0.5 V) to 5.5 V, IOUT = 1 mA −0.03  
∆VOUT3/∆IOUT3 IOUT3 = 1 mA to 150 mA  
+0.03  
%/V  
0.002 0.0075 %/mA  
VDROPOUT  
VOUT3 = 3.0 V, IOUT3 = 10 mA  
VOUT3 = 3.0 V, IOUT3 = 150 mA  
7
110  
mV  
mV  
150  
350  
START-UP TIME5  
From Shutdown State  
CURRENT-LIMIT THRESHOLD6  
OUTPUT NOISE  
TSTARTUP3-SD  
ILIMIT3  
200  
240  
μs  
160  
mA  
OUTNOISE  
10 Hz to 100 kHz, VIN3 = 5 V, VOUT3 = 3.3 V  
10 Hz to 100 kHz, VIN3= 5 V, VOUT3 = 2.4 V  
10 Hz to 100 kHz, VIN3 = 5 V, VOUT3 = 1.2 V  
65  
52  
40  
μV rms  
μV rms  
μV rms  
POWER SUPPLY REJECTION RATIO  
PSRR  
10 kHz, VIN3 = 5 V, VOUT3 = 3.3 V  
10 kHz, VIN3 = 5 V, VOUT3 = 2.3 V  
10 kHz, VIN3 = 5 V, VOUT3 = 1.2 V  
60  
66  
70  
dB  
dB  
dB  
1 All limits at temperature extremes are guaranteed via correlation using standard statistical quality control.  
2 LDO operating supply current is the current drawn from VIN3 to AGND when the LDO is enabled. Whenever any regulator channel is enabled, current is drawn from  
VIN1 to AGND. This current is 8 μA typical and is included in the IGND1, IGND2, and IGND1-2 specifications.  
3 Based on an end-point calculation using 1 mA and 150 mA loads.  
4 Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to the nominal output voltage. This applies only for output  
voltages above 2.3 V.  
5 Start-up time is defined as the time between the rising edge of EN3 to VOUT3 being at 90% of its nominal value.  
6 Current-limit threshold is defined as the current at which VOUT3 drops to 90% of the specified typical value. For example, the current limit for a 3.0 V output voltage is  
defined as the current that causes the output voltage to drop to 90% of 3.0 V or 2.7 V.  
Rev. A | Page 5 of 28  
 
 
ADP5022  
ABSOLUTE MAXIMUM RATINGS  
θJA of the package is based on modeling and calculation using a  
4-layer board. The junction-to-ambient thermal resistance is  
highly dependent on the application and board layout. In  
applications where high maximum power dissipation exists,  
close attention to thermal board design is required. The value  
of θJA may vary, depending on PCB material, layout, and envi-  
ronmental conditions. The specified values of θJA are based on a  
4-layer, 4” × 3” circuit board. Refer to JEDEC JESD 51-9 for  
detailed information on the board construction. For additional  
information, see the AN-617 Application Note, MicroCSPTM  
Wafer Level Chip Scale Package.  
Table 4.  
Parameter  
Rating  
VDDA, VIN1, VIN2, VIN3, VOUT1, VOUT2,  
VOUT3, EN1, EN2, EN3, MODE to GND  
−0.3 V to +6 V  
Storage Temperature Range  
Operating Junction Temperature Range  
Soldering Conditions  
−65°C to +150°C  
−40°C to +125°C  
JEDEC J-STD-020  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered on a circuit board.  
THERMAL DATA  
Table 5. Thermal Resistance  
Absolute maximum ratings apply individually only, not in  
combination.  
Package Type  
θJA  
Unit  
16-Ball, 0.5 mm Pitch WLCSP  
65  
°C/W  
The ADP5022 can be damaged when the junction temperature  
limits are exceeded. Monitoring ambient temperature (TA) does  
not guarantee that the junction temperature (TJ) is within the  
specified temperature limits. In applications with high power  
dissipation and poor thermal resistance, the maximum ambient  
temperature may have to be derated. In applications with  
moderate power dissipation and low PCB thermal resistance,  
the maximum ambient temperature may exceed the maximum  
limit as long as the junction temperature is within specification  
limits. TJ of the device is dependent on TA, the power  
ESD CAUTION  
dissipation (PD) of the device, and the junction-to-ambient  
thermal resistance (θJA) of the package. Maximum TJ is  
calculated from TA and PD using the following formula:  
TJ = TA + (PD × θJA)  
Rev. A | Page 6 of 28  
 
 
 
 
ADP5022  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
BALL A1  
INDICATOR  
1
2
3
4
VOUT3 AGND VIN3 VDDA  
A
VIN1  
SW1  
EN1  
EN2  
VIN2  
B
C
D
EN3 MODE SW2  
PGND1 VOUT1 VOUT2 PGND2  
TOP VIEW  
(BALL SIDE DOWN)  
Not to Scale  
Figure 3. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
A1  
A2  
A3  
A4  
B1  
Mnemonic  
VOUT3  
AGND  
VIN3  
VDDA  
VIN1  
Description  
LDO Output Voltage and Sensing Input.  
Analog Ground.  
LDO Input Supply (VIN3 ≤ VIN1 = VIN2 = VDDA).  
Supply Input for the Housekeeping Block and UVLO Sensing.  
Buck1 Input Supply (VIN1 = VIN2 = VDDA).  
B2  
B3  
B4  
EN1  
EN2  
VIN2  
Buck1 Activation. Set EN1 = high: turn on Buck1. Set EN1 = low: turn off Buck1.  
Buck2 Activation. Set EN2 = high: turn on Buck2. Set EN2 = low: turn off Buck2.  
Buck2 Input Supply (VIN2 = VIN1 = VDDA).  
C1  
SW1  
Buck1 Switching Node.  
C2  
EN3  
LDO Activation. Set EN3 = high: turn on LDO. EN3 = low: turn off LDO.  
C3  
C4  
MODE  
SW2  
Buck1/Buck2 Operating Mode: MODE = high: forced PWM operation. MODE = low: auto PWM/PSM operation.  
Buck2 Switching Node.  
D1  
D2  
D3  
D4  
PGND1  
VOUT1  
VOUT2  
PGND2  
Dedicated Power Ground for Buck1.  
Buck1 Output Voltage Sensing Input.  
Buck2 Output Voltage Sensing Input.  
Dedicated Power Ground for Buck2.  
Rev. A | Page 7 of 28  
 
ADP5022  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN1 = VIN2 = VIN3 = VDDA = 5.0 V, TA = 25°C, unless otherwise noted.  
T
T
SW  
4
2
VOUT1  
1
VOUT  
VOUT2  
2
EN  
1
3
I
IN  
VOUT3  
3
B
B
B
B
B
B
CH1 2.00V  
CH3 2.00V  
CH2 2.00V  
M 200µs  
A CH1  
1.92V  
CH1 2.00V  
CH3 5.00V  
CH2 50.0mA Ω  
CH4 5.00V  
M 40.0µs  
A CH3  
2.2V  
W
W
W
W
W
B
W
W
T 45.40%  
T 11.20%  
Figure 4. 3-Channel Start-Up Waveforms, VIN3 Cascaded from VOUT1  
Figure 7. Buck2 Startup, VOUT2 = 1.8 V, IOUT2 = 5 mA  
0.15  
0.14  
0.13  
0.12  
0.11  
0.10  
0.09  
0.08  
0.07  
0.06  
0.00010  
0.00008  
0.00006  
0.00004  
0.00002  
PSM TO PWM  
PWM TO PSM  
0
2.4  
2.9  
3.4  
3.9  
4.4  
4.9  
5.4  
2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4  
INPUT VOLTAGE (V)  
V
(V)  
IN  
Figure 5. System Quiescent Current vs. Input Voltage, VOUT1 = 0.8 V,  
VOUT2 = 2.5 V, VIN3 = VOUT2, VOUT3 = 1.2 V, All Channels Unloaded  
Figure 8. Buck 2 PSM to PWM Transition, VOUT2 = 1.8 V  
T
T
T
T
= +25°C  
= –40°C  
= +85°C  
A
A
A
3.354  
3.334  
3.314  
3.294  
3.274  
3.254  
3.234  
SW  
4
VOUT  
2
EN  
1
I
IN  
3
B
B
B
CH1 2.00V  
CH3 5.00V  
CH2 50.0mA Ω  
CH4 5.00V  
M 40.0µs  
A CH3  
2.2V  
W
W
W
0
0.1  
0.2  
0.3  
(A)  
0.4  
0.5  
0.6  
B
W
I
OUT  
T
11.20%  
Figure 9. Buck1 Load Regulation Across Temperature, VOUT1 = 3.3 V,  
Auto Mode  
Figure 6. Buck1 Startup, VOUT1 = 3.3 V, IOUT1 = 10 mA  
Rev. A | Page 8 of 28  
 
ADP5022  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.834  
1.824  
1.814  
T
T
T
= +25°C  
= –40°C  
= +85°C  
A
A
A
V
V
V
= 3.6V  
= 4.5V  
= 5.5V  
IN  
IN  
IN  
1.804  
1.794  
1.784  
1.774  
1.764  
0
0.1  
0.2  
0.3  
(A)  
0.4  
0.5  
0.6  
0.0001  
0.001  
0.01  
I (A)  
OUT  
0.1  
1
I
OUT  
Figure 10. Buck2 Load Regulation Across Temperature, VOUT2 = 1.8 V,  
Auto Mode  
Figure 13. Buck1 Efficiency vs. Load Current, Across Input Voltage,  
VOUT1 = 3.3 V, Auto Mode  
100  
90  
80  
70  
60  
50  
40  
30  
1.834  
V
V
V
V
= 5.5V  
= 4.5V  
= 3.6V  
= 2.4V  
IN  
IN  
IN  
IN  
1.824  
1.814  
1.804  
1.794  
1.784  
V
V
V
= 3.6V  
= 4.5V  
= 5.5V  
IN  
IN  
IN  
20  
10  
0
1.774  
1.764  
0
0.1  
0.2  
0.3  
(A)  
0.4  
0.5  
0.6  
0.001  
0.01  
0.1  
1
I
I
(A)  
OUT  
OUT  
Figure 11. Buck 2 Load Regulation Across Input Voltage, VOUT1 = 1.8 V,  
PWM Mode  
Figure 14. Buck1 Efficiency vs. Load Current, Across Input Voltage,  
VOUT1 = 3.3 V, PWM Mode  
100  
90  
80  
70  
60  
50  
40  
30  
3.354  
3.334  
3.314  
3.294  
3.274  
V
V
V
= 3.6V  
= 4.5V  
= 5.5V  
IN  
IN  
IN  
V
V
V
V
= 5.5V  
= 4.5V  
= 3.6V  
= 2.4V  
IN  
IN  
IN  
IN  
20  
10  
3.254  
3.234  
0
0
0.1  
0.2  
0.3  
(A)  
0.4  
0.5  
0.6  
0.0001  
0.001  
0.01  
(A)  
0.1  
1
I
I
OUT  
OUT  
Figure 12. Buck1 Load Regulation Across Input Voltage, VOUT2 = 3.3 V,  
PWM Mode  
Figure 15. Buck2 Efficiency vs. Load Current, Across Input Voltage,  
VOUT2 = 1.8 V, Auto Mode  
Rev. A | Page 9 of 28  
ADP5022  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
V
V
= 5.5V  
= 4.5V  
= 3.6V  
= 2.4V  
T
T
T
= –40°C  
= +25°C  
= +85°C  
IN  
IN  
IN  
IN  
A
A
A
0
0.001  
0.01  
0.1  
1
0.0001  
0.001  
0.01  
I (A)  
OUT  
0.1  
1
I
(A)  
OUT  
Figure 16. Buck2 Efficiency vs. Load Current, Across Input Voltage,  
VOUT2 = 1.8 V, PWM Mode  
Figure 19. Buck1 Efficiency vs. Load Current, Across Temperature,  
VOUT1 = 3.3 V, Auto Mode  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
V
V
V
V
= 2.4V  
= 3.6V  
= 4.5V  
= 5.5V  
T
T
T
= +25°C  
= –40°C  
= +85°C  
IN  
IN  
IN  
IN  
A
A
A
20  
10  
20  
10  
0
0
0.0001  
0.001  
0.01  
(A)  
0.1  
1
0.0001  
0.001  
0.01  
I (A)  
OUT  
0.1  
1
I
OUT  
Figure 17. Buck1 Efficiency vs. Load Current, Across Input Voltage,  
VOUT1 = 0.8 V, Auto Mode  
Figure 20. Buck2 Efficiency vs. Load Current, Across Temperature,  
VOUT2 = 1.8 V, Auto Mode  
100  
90  
80  
70  
60  
50  
40  
30  
3.5  
T
T
T
= +25°C  
= –40°C  
= +85°C  
A
A
A
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
V
V
V
V
= 2.4V  
= 3.6V  
= 4.5V  
= 5.5V  
IN  
IN  
IN  
IN  
20  
10  
0
0.001  
0.01  
0.1  
1
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
I
(A)  
OUT  
OUTPUT CURRENT (A)  
Figure 18. Buck1 Efficiency vs. Load Current, Across Input Voltage,  
VOUT1 = 0.8 V, PWM Mode  
Figure 21. Buck2 Switching Frequency vs. Output Current, Across  
Temperature, VOUT2 = 1.8 V, PWM Mode  
Rev. A | Page 10 of 28  
ADP5022  
T
T
VOUT  
VOUT  
1
2
1
2
I
I
SW  
SW  
SW  
SW  
4
4
B
B
CH1 50.0V  
CH2 500mA  
CH4 2.00V  
M 4.00µs A CH2  
240mA  
CH1 50mV  
CH2 500mA Ω  
CH4 2.00V  
M 400ns A CH2  
220mA  
W
W
B
B
W
W
T
28.40%  
T 28.40%  
Figure 22. Typical Waveforms, VOUT1 = 3.3 V, IOUT1 = 30 mA, Auto Mode  
Figure 25. Typical Waveforms, VOUT2 = 1.8 V, IOUT2 = 30 mA, PWM Mode  
T
T
VOUT  
1
VIN  
I
SW  
VOUT  
1
2
SW  
SW  
3
4
B
B
CH1 50.0mV  
CH3 1.00V  
M 1.00ms  
A
CH3  
4.80V  
CH1 50.0V  
CH2 500mA Ω  
CH4 2.00V  
M 4.00µs A CH2  
220mA  
W
W
W
B
B
B
CH4 2.00V  
W
W
T
30.40%  
T
28.40%  
Figure 26. Buck1 Response to Line Transient, Input Voltage from 4.5 V to  
5.0 V, VOUT1 = 3.3 V, PWM Mode  
Figure 23. Typical Waveforms, VOUT2 = 1.8 V, IOUT2 = 30 mA, Auto Mode  
T
T
VOUT  
1
VIN  
I
SW  
VOUT  
2
1
SW  
SW  
4
3
4
B
CH1 50mV  
CH2 500mA Ω  
CH4 2.00V  
M 400ns A CH2  
220mA  
B
B
W
CH1 50.0mV  
CH3 1.00V  
M 1.00ms  
A
CH3  
4.80V  
W
W
B
B
W
CH4 2.00V  
W
T
28.40%  
T
30.40%  
Figure 24. Typical Waveforms, VOUT1 = 3.3 V, IOUT1 = 30 mA, PWM Mode  
Figure 27. Buck2 Response to Line Transient, VIN = 4.5 V to 5.0 V,  
VOUT2 = 1.8 V, PWM Mode  
Rev. A | Page 11 of 28  
ADP5022  
T
T
SW  
SW  
4
1
4
1
VOUT  
VOUT  
I
OUT  
I
OUT  
2
2
B
B
B
CH1 100mV  
CH2 200mA Ω  
CH4 5.00V  
M 20.0µs A CH2  
T 19.20%  
88.0mA  
W
W
W
B
B
B
CH1 50.0mV  
W CH2 50.0mA Ω  
CH4 5.00V  
M 20.0µs A CH2  
T 60.000µs  
356mA  
W
W
Figure 28. Buck1 Response to Load Transient, IOUT1 from 1 mA to 50 mA,  
VOUT1 = 3.3 V, Auto Mode  
Figure 31. Buck2 Response to Load Transient, IOUT2 from 20 mA to 180 mA,  
VOUT2 = 1.8 V, Auto Mode  
T
T
SW  
VOUT2  
2
4
SW1  
VOUT  
1
3
VOUT1  
1
SW2  
I
OUT  
2
4
B
B
B
B
B
B
B
CH1 5.00V  
CH3 5.00V  
CH2 5.00V  
CH4 5.00V  
M 400ns A CH4  
T 50.00%  
1.90V  
CH1 50.0mV  
W CH2 50.0mA Ω  
CH4 5.00V  
M 20.0µs A CH2  
T 22.20%  
379mA  
W
W
W
W
W
W
Figure 29. Buck2 Response to Load Transient, IOUT2 from 1 mA to 50 mA,  
VOUT2 = 1.8 V, Auto Mode  
Figure 32. VOUT and SW Waveforms for Buck1 and Buck2 in PWM Mode  
Showing Out-of-Phase Operation  
T
T
SW  
4
I
IN  
2
1
3
VOUT  
1
VOUT  
EN  
I
OUT  
2
B
B
B
B
B
B
CH1 50.0mV  
W CH2 200mA Ω  
CH4 5.00V  
M 20.0µs A CH2  
T 20.40%  
408mA  
CH1 2.00V  
CH3 5.00V  
CH2 50.0mA Ω  
M 40.0µs  
T 11.20%  
A CH3  
2.2V  
W
W
W
W
W
W
B
Figure 30. Buck1 Response to Load Transient, IOUT1 from 20 mA to 180 mA,  
VOUT1 = 3.3 V, Auto Mode  
Figure 33. LDO Startup, VOUT3 = 3.0 V, IOUT3 = 5 mA  
Rev. A | Page 12 of 28  
ADP5022  
2.820  
2.815  
2.810  
2.805  
2.800  
2.795  
2.790  
2.785  
2.780  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
150mA  
100mA  
10mA  
1mA  
100µA  
1µA  
V
V
V
V
= 3.3V  
= 4.5V  
= 5.0V  
= 5.5V  
IN  
IN  
IN  
IN  
0
3.3  
0
0.02  
0.04  
0.06  
0.08  
(A)  
0.10  
0.12  
0.14  
3.8  
4.3  
4.8  
5.3  
I
OUT  
INPUT VOLTAGE (V)  
Figure 34. LDO Load Regulation Across Input Voltage, VOUT3 = 2.8 V  
Figure 37. LDO Ground Current vs. Input Voltage, Across Output Load,  
VOUT3 = 2.8 V  
2.85  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
2.84  
2.83  
2.82  
2.81  
2.80  
2.79  
2.78  
2.77  
2.76  
2.75  
0
0
0.02  
0.04  
0.06  
0.08  
(A)  
0.10  
0.12  
0.14  
0.16  
0
0.02  
0.04  
0.06  
0.08  
0.10  
0.12  
0.14  
I
LOAD CURRENT (A)  
OUT  
Figure 35. LDO Load Regulation Across Temperature, VIN3 = 3.3 V, VOUT3 = 2.8 V  
Figure 38. LDO Ground Current vs. Output Load, VIN3 = 3.3 V, VOUT3 = 2.8 V  
3.0  
2.5  
2.0  
1.5  
3.0  
2.5  
2.0  
1.5  
I
I
I
I
I
= 150mA  
= 100mA  
= 10mA  
= 1mA  
OUT  
OUT  
OUT  
OUT  
OUT  
1.0  
1.0  
V
V
V
= 3.6V  
= 4.5V  
= 5.5V  
IN  
IN  
IN  
0.5  
0
0.5  
0
= 100µA  
0
0.05  
0.10  
0.15  
0.20  
(A)  
0.25  
0.30  
0.35  
0.40  
2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4  
I
V
(V)  
OUT  
IN  
Figure 36. LDO Line Regulation Across Output Load, VOUT3 = 2.8 V  
Figure 39. LDO Current Capability Across Input Voltage, VOUT3 = 2.8 V  
Rev. A | Page 13 of 28  
ADP5022  
65  
60  
T
5VIN  
I
OUT  
3.3VIN  
55  
50  
45  
40  
35  
30  
2
1
VOUT  
25  
0.001  
B
B
W
CH1 100mV  
CH2 100mA  
M 40.0µs A CH2  
52.0mA  
W
0.01  
0.1  
1
10  
100  
I (mA)  
LOAD  
T
19.20%  
Figure 40. LDO Response to Load Transient, IOUT3 from 1 mA to 80 mA,  
VOUT3 = 2.8 V  
Figure 43. LDO Output Noise vs. Load Current, Across Input Voltage,  
VOUT3 = 3.0 V  
0
T
100µA  
1mA  
–10  
10mA  
50mA  
–20  
VIN  
100mA  
150mA  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
VOUT  
1  
3
B
CH1 20.0mV  
CH3 1.00V  
M 100µs  
28.40%  
A
CH3  
4.80V  
W
W
10  
100  
1k  
10k  
100k  
1M  
10M  
B
T
FREQUENCY (Hz)  
Figure 41. LDO Response to Line Transient, Input Voltage from 4.5 V to 5.5 V,  
VOUT3 = 2.8 V  
Figure 44. LDO PSRR Across Output Load, VIN3 = 3.3 V, VOUT3 = 2.8 V  
60  
0
–20  
–40  
–60  
5VIN  
55  
3.3VIN  
50  
45  
40  
35  
30  
–80  
100µA  
1mA  
10mA  
50mA  
–100  
100mA  
150mA  
100k  
FREQUENCY (Hz)  
25  
0.001  
–120  
10  
0.01  
0.1  
1
10  
100  
100  
1k  
10k  
1M  
10M  
I
(mA)  
LOAD  
Figure 42. LDO Output Noise vs. Load Current, Across Input Voltage,  
VOUT3 = 2.8 V  
Figure 45. LDO PSRR Across Output Load, VIN3 = 3.3 V, VOUT3 = 3.0 V  
Rev. A | Page 14 of 28  
ADP5022  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
100µA  
1mA  
10mA  
50mA  
100mA  
150mA  
100µA  
1mA  
10mA  
50mA  
100mA  
150mA  
–20  
–40  
–60  
–80  
–100  
–120  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 46. LDO PSRR Across Output Load, VIN3 = 5.0 V, VOUT3 = 2.8 V  
Figure 47. LDO PSRR Across Output Load, VIN3 = 5.0 V, VOUT3 = 3.0 V  
Rev. A | Page 15 of 28  
ADP5022  
THEORY OF OPERATION  
VOUT1 VOUT2  
GM ERROR  
AMP  
GM ERROR  
AMP  
PWM  
PWM  
COMP  
COMP  
SOFT START  
SOFT START  
VIN2  
VIN1  
I
I
LIMIT  
LIMIT  
PSM  
PSM  
COMP  
COMP  
PWM/  
PSM  
PWM/  
PSM  
CONTROL  
BUCK1  
CONTROL  
BUCK2  
LOW  
CURRENT  
LOW  
CURRENT  
SW2  
SW1  
OSCILLATOR  
DRIVER  
AND  
ANTISHOOT  
THROUGH  
DRIVER  
AND  
ANTISHOOT  
THROUGH  
SYSTEM  
UNDERVOLTAGE  
LOCK OUT  
THERMAL  
SHUTDOWN  
PGND2  
PGND1  
LDO  
UNDERVOLTAGE  
LOCK OUT  
EN1  
EN2  
EN3  
R1  
R2  
ENABLE  
CONTROL  
LDO  
CONTROL  
ADP5022  
VDDA VIN3  
AGND VOUT3  
MODE  
Figure 48. Functional Block Diagram  
The buck regulators can operate in forced PWM mode if the  
MODE pin is at a logic high level. In forced PWM mode, the  
switching frequency of the two bucks is always constant and  
does not change with the load current. If the MODE pin is at a  
logic low level, the switching regulators operate in an auto  
PWM/ PSM mode. In this mode, the regulators operate at fixed  
PWM frequency when the load current is above the power  
saving current threshold. When the load current falls below the  
power saving current threshold, the regulator in question enters  
power saving mode where the switching occurs in bursts. The  
burst repetition is a function of the current load and the output  
capacitor value. This operating mode reduces the switching  
and quiescent current losses. The auto PWM/PSM mode  
transition is controlled independently for each buck regulator.  
POWER MANAGEMENT UNIT  
The ADP5022 is a micro power management units (micro  
PMU) combining two step-down (buck) dc-to-dc converters  
and a single low dropout linear regulator (LDO). The high  
switching frequency and tiny 16-ball WLCSP package allow for  
a small power management solution.  
To combine these high performance converters and regulators  
into the micro PMU, there is a system controller allowing them  
to operate together.  
Each regulator has a dedicated enable pin. EN1 controls the  
activation for Buck1, EN2 controls the activation for Buck2,  
and EN3 controls the activation of the LDO. Logic high applied to  
the ENx pin turns on the regulator, and a logic low applied to  
the ENx pin turns off the regulator. When a regulator is turned  
on, the output voltage is controlled through a soft start circuit to  
avoid a large inrush current due to the discharged output  
capacitors.  
The two bucks operate synchronized to each other.  
Rev. A | Page 16 of 28  
 
 
ADP5022  
Thermal Protection  
PWM Mode  
In the event that the junction temperature rises above 150°C,  
the thermal shutdown circuit turns off the converters and the  
LDO. Extreme junction temperatures can be the result of high  
current operation, poor circuit board design, or high ambient  
temperature. A 20°C hysteresis is included so that when thermal  
shutdown occurs, the bucks and LDO do not return to opera-  
tion until the on-chip temperature drops below 130°C. When  
coming out of thermal shutdown, soft start is initiated.  
In PWM mode, the bucks operate at a fixed frequency of 3 MHz  
set by an internal oscillator. At the start of each oscillator cycle,  
the PFET switch is turned on, sending a positive voltage across  
the inductor. Current in the inductor increases until the current  
sense signal crosses the peak inductor current threshold that  
turns off the PFET switch and turns on the NFET synchronous  
rectifier. This sends a negative voltage across the inductor,  
causing the inductor current to decrease. The synchronous  
rectifier stays on for the rest of the cycle. The buck regulates the  
output voltage by adjusting the peak inductor current threshold.  
Undervoltage Lockout  
To protect against battery discharge, undervoltage lockout  
(UVLO) circuitry is integrated in the system. If the input  
voltage on VDDA drops below a typical 2.15 V UVLO  
threshold, all channels shut down. In the buck channels,  
both the power switch and the synchronous rectifier turn  
off. When the voltage on VDDA rises above the UVLO  
threshold, the part is enabled once more.  
Power Save Mode (PSM)  
The bucks smoothly transition to PSM operation when the  
load current decreases below the PSM current threshold. When  
either of the bucks enter power save mode, an offset is induced  
in the PWM regulation level, which makes the output voltage  
rise. When the output voltage reaches a level approximately  
1.5% above the PWM regulation level, PWM operation is  
turned off. At this point, both power switches are off, and the  
buck enters an idle mode. The output capacitor discharges until  
the output voltage falls to the PWM regulation voltage, at which  
point the device drives the inductor to make the output voltage  
rise again to the upper threshold. This process is repeated while  
the load current is below the PSM current threshold.  
Alternatively, the user can select device models with a UVLO  
set at a higher level, suitable for USB applications. For these  
models, the device hits the turn-off threshold when the input  
supply drops to 3.65 V typical.  
Enable/Shutdown  
When all three enable pins are held low, the device is in  
shutdown mode, and the input current remains below 2 ꢀA.  
PSM Current Threshold  
BUCK SECTION  
The PSM current threshold is set to 100 mA. The bucks employ  
a scheme that enables this current to remain accurately con-  
trolled, independent of input and output voltage levels. This  
scheme also ensures that there is very little hysteresis between  
the PSM current threshold for entry to and exit from the PSM.  
The PSM current threshold is optimized for excellent efficiency  
over all load currents.  
The two bucks use a fixed frequency and high speed current  
mode architecture.  
The bucks operate with an input voltage of 2.4 V to 5.5 V.  
Control Scheme  
The bucks operate with a fixed frequency, current mode PWM  
control architecture at medium to high loads for high efficiency  
but shift to a power save mode (PSM) control scheme at light  
loads to lower the regulation power losses. When operating in  
fixed frequency PWM mode, the duty cycle of the integrated  
switches is adjusted and regulates the output voltage. When  
operating in PSM at light loads, the output voltage is controlled  
in a hysteretic manner, with higher output voltage ripple. During  
part of this time, the converter is able to stop switching and  
enters an idle mode, which improves conversion efficiency.  
Oscillator/Phasing of Inductor Switching  
The ADP5022 ensures that both bucks operate at the same  
switching frequency when both bucks are in PWM mode.  
Additionally, the ADP5022 ensures that when both bucks are  
in PWM mode, they operate out-of-phase, whereby the Buck2  
PFET starts conducting exactly half a clock period after the  
Buck1 PFET starts conducting.  
Rev. A | Page 17 of 28  
 
ADP5022  
Enable/Shutdown  
LDO SECTION  
The bucks start operation with soft start when the EN1 or EN2  
pin is toggled from logic low to logic high. Pulling the EN1 or  
EN2 pin low disables that channel.  
The LDO is a low quiescent current, low dropout linear  
regulator and provides up to 150 mA of output current.  
Drawing a low 30 ꢀA quiescent current (typical) at full load  
makes the LDO ideal for battery-operated portable equipment.  
Short-Circuit Protection  
The LDO operates with an input voltage of 2.3 V to 5.5 V.  
The bucks include frequency foldback to prevent output current  
runaway on a hard short. When the voltage at the feedback pin  
falls below half the target output voltage, indicating the possi-  
bility of a hard short at the output, the switching frequency is  
reduced to half the internal oscillator frequency. The reduction  
in the switching frequency allows more time for the inductor to  
discharge, preventing a runaway of output current.  
It also provides high power supply rejection ratio (PSRR), low  
output noise, and excellent line and load transient response  
with just a small 1 μF ceramic input and output capacitor.  
Internally, the LDO consists of a reference, an error amplifier,  
a feedback voltage divider, and a PMOS pass transistor. Output  
current is delivered via the PMOS pass device, which is con-  
trolled by the error amplifier. The error amplifier compares  
the reference voltage with the feedback voltage from the output  
and amplifies the difference. If the feedback voltage is lower  
than the reference voltage, the gate of the PMOS device is  
pulled lower, allowing more current to flow and increasing  
the output voltage. If the feedback voltage is higher than the  
reference voltage, the gate of the PMOS device is pulled higher,  
reducing the current flowing to the output.  
Soft Start  
The bucks have an internal soft start function that ramps the  
output voltage in a controlled manner upon startup, thereby  
limiting the inrush current. This prevents possible input voltage  
drops when a battery or a high impedance power source is  
connected to the input of the converter.  
Current Limit  
Each buck has protection circuitry to limit the amount of  
positive current flowing through the PFET switch and the  
amount of negative current flowing through the synchronous  
rectifier. The positive current limit on the power switch limits  
the amount of current that can flow from the input to the  
output. The negative current limit prevents the inductor  
current from reversing direction and flowing out of the load.  
LDO Undervoltage Lockout  
The ADP5022 integrates an undervoltage lockout function  
on the VIN3 input voltage, which ensures that the LDO  
output drive is disabled whenever VIN3 is below a threshold  
of approximately 2.0 V. Where the ADP5022 is configured to  
supply VIN3 from either VOUT1 or VOUT2, this ensures that  
the LDO powers up safely in this cascaded configuration.  
100% Duty Operation  
With a drop in input voltage or with an increase in load current,  
the buck may reach a limit where, even with the PFET switch  
on 100% of the time, the output voltage drops below the desired  
output voltage. At this limit, the buck transitions to a mode  
where the PFET switch stays on 100% of the time. When the  
input conditions change again and the required duty cycle  
falls, the buck immediately restarts PWM regulation without  
allowing overshoot on the output voltage. This is particularly  
useful in battery-powered applications to achieve the longest  
operation time by taking full advantage of the whole battery  
voltage range. Maintaining regulation is dependent on the input  
voltage, load current, and output voltage. This can be calculated  
from the following equation:  
V
IN(MIN) = VOUT(MAX) + ILOAD(MAX) × (RDS(on)MAX + RL)  
where:  
V
OUT(MAX) is the nominal output voltage plus the maximum  
tolerance.  
LOAD(MAX) is the maximum load current plus inductor ripple  
current.  
DS(on)MAX is the maximum P-channel switch RDS(on)  
RL is the DC resistance of the inductor.  
I
R
.
Rev. A | Page 18 of 28  
 
ADP5022  
APPLICATIONS INFORMATION  
Output Capacitor  
BUCK EXTERNAL COMPONENT SELECTION  
Trade-offs between performance parameters such as efficiency  
and transient response can be made by varying the choice of  
external components in the applications circuit, as shown in  
Figure 1.  
Higher output capacitor values reduce the output voltage ripple  
and improve load transient response. When choosing this value,  
it is also important to account for the loss of capacitance due to  
output voltage dc bias.  
Inductor  
Ceramic capacitors are manufactured with a variety of dielec-  
trics, each with a different behavior over temperature and  
applied voltage. Capacitors must have a dielectric adequate  
to ensure the minimum capacitance over the necessary  
temperature range and dc bias conditions. X5R or X7R  
dielectrics with a voltage rating of 6.3 V or 10 V are recom-  
mended for best performance. Y5V and Z5U dielectrics are  
not recommended for use with any dc-to-dc converter because  
of their poor temperature and dc bias characteristics.  
The high switching frequency of the ADP5022 bucks allows for  
the selection of small chip inductors. For best performance, use  
inductor values between 0.7 ꢀH and 3 ꢀH. Suggested inductors  
are shown in Table 7.  
The peak-to-peak inductor current ripple is calculated using  
the following equation:  
VOUT ×(VIN VOUT  
)
IRIPPLE  
=
V
IN × fSW ×L  
The worst-case capacitance accounting for capacitor variation  
over temperature, component tolerance, and voltage is calcu-  
lated using the following equation:  
where:  
SW is the switching frequency.  
L is the inductor value.  
f
CEFF = COUT × (1 − TEMPCO) × (1 − TOL)  
The minimum dc current rating of the inductor must be greater  
than the inductor peak current. The inductor peak current is  
calculated using the following equation:  
where:  
C
EFF is the effective capacitance at the operating voltage.  
TEMPCO is the worst-case capacitor temperature coefficient.  
TOL is the worst-case component tolerance.  
IRIPPLE  
IPEAK = ILOAD(MAX)  
+
In this example, the worst-case temperature coefficient  
2
(TEMPCO) over −40°C to +85°C is assumed to be 15% for an  
X5R dielectric. The tolerance of the capacitor (TOL) is assumed  
to be 10%, and COUT is 9.2481 ꢀF at 1.8 V, as shown in Figure 49.  
Inductor conduction losses are caused by the flow of current  
through the inductor, which has an associated internal dc  
resistance (DCR). Larger sized inductors have smaller DCR,  
which may decrease inductor conduction losses. Inductor core  
losses are related to the magnetic permeability of the core material.  
Because the bucks are high switching frequency dc-to-dc  
converters, shielded ferrite core material is recommended for  
its low core losses and low EMI.  
Substituting these values in the equation yields  
CEFF = 9.2481 ꢀF × (1 − 0.15) × (1 − 0.1) = 7.0747 ꢀF  
To guarantee the performance of the bucks, it is imperative  
that the effects of dc bias, temperature, and tolerances on the  
behavior of the capacitors be evaluated for each application.  
12  
Table 7. Suggested 1.0 μH Inductors  
Dimensions  
(mm)  
ISAT  
(mA)  
DCR  
(mΩ)  
Vendor  
Murata  
Murata  
Model  
10  
8
LQM2MPN1R0NG0B 2.0 × 1.6 × 0.9  
LQM18FN1R0M00B 1.6 × 0.8 × 0.8  
1.6 × 0.8 × 0.8  
2.0 × 2.0 × 1.4  
GLFR1608T1R0M-LR 1.6 × 0.8 × 0.8  
1400  
150  
290  
900  
230  
85  
26  
90  
59  
80  
81  
85  
Taiyo Yuden CBMF1608T1R0M  
Coilcraft  
TDK  
Coilcraft  
Toko  
EPL2014-102ML  
6
0603LS-102  
MDT2520-CN  
1.8 × 1.69 × 1.1 400  
2.5 × 2.0 × 1.2  
4
1350  
2
0
0
1
2
3
4
5
6
DC BIAS VOLTAGE (V)  
Figure 49. Typical Capacitor Performance  
Rev. A | Page 19 of 28  
 
 
 
 
ADP5022  
The peak-to-peak output voltage ripple for the selected output  
capacitor and inductor values is calculated using the following  
equation:  
Input Capacitor  
Higher value input capacitors help to reduce the input voltage  
ripple and improve transient response. Maximum input capa-  
citor current is calculated using the following equation:  
VIN  
×2×L×COUT  
IRIPPLE  
8× fSW ×COUT  
VRIPPLE  
=
=
(
2π × fSW  
)
VOUT (VIN VOUT  
)
ICIN ILOAD(MAX)  
Capacitors with lower equivalent series resistance (ESR) are  
preferred to guarantee low output voltage ripple, as shown in  
the following equation:  
VIN  
To minimize supply noise, place the input capacitor as close  
to the VIN pin of the BUCK as possible. As with the output  
capacitor, a low ESR capacitor is recommended.  
VRIPPLE  
IRIPPLE  
ESRCOUT  
The effective capacitance needed for stability, which includes  
temperature and dc bias effects, is a minimum of 3 μF and a  
maximum of 10 μF. A list of suggested capacitors is shown in  
Table 9.  
The effective capacitance needed for stability, which includes  
temperature and dc bias effects, is a minimum of 7 μF and a  
maximum of 40 μF.  
Table 9. Suggested 4.7 μF Capacitors  
Table 8. Suggested 10 μF Capacitors  
Voltage  
Case Rating  
Size (V)  
GRM188R60J475ME19D 0402 6.3  
Case  
Size  
Voltage  
Rating (V)  
Vendor  
Murata  
Taiyo Yuden  
TDK  
Type  
X5R  
X5R  
X5R  
X5R  
Model  
Vendor  
Type Model  
X5R  
GRM188R60J106  
JMK107BJ475  
C1608JB0J106K  
ECJ1VB0J106M  
0603  
0603  
0603  
0603  
6.3  
6.3  
6.3  
6.3  
Murata  
Taiyo Yuden X5R  
Panasonic X5R  
JMK107BJ475  
0402 6.3  
0402 6.3  
ECJ-0EB0J475M  
Panasonic  
The buck regulators require 10 μF output capacitors to guar-  
antee stability and response to rapid load variations and to  
transition in and out the PWM/PSM modes. In certain  
applications, where one or both buck regulator powers a  
processor, the operating state is known because it is con-  
trolled by software. In this condition, the processor can drive  
the MODE pin according to the operating state; consequently, it  
is possible to reduce the output capacitor from 10 μF to 4.7 μF  
because the regulator does not expect a large load variation  
when working in PSM mode, see Figure 50.  
LDO CAPACITOR SELECTION  
Output Capacitor  
The ADP5022 LDO is designed for operation with small, space-  
saving ceramic capacitors but functions with most commonly  
used capacitors as long as care is taken with the ESR value. The  
ESR of the output capacitor affects stability of the LDO control  
loop. A minimum of 0.70 μF capacitance with an ESR of 1 Ω  
or less is recommended to ensure stability of the ADP5022.  
Transient response to changes in load current is also affected  
by output capacitance. Using a larger value of output capacit-  
ance improves the transient response of the ADP5022 to large  
changes in load current.  
ADP5022  
L1  
1µH  
PROCESSOR  
C2  
4.7µF  
MICRO PMU  
VIN1  
VIN2  
SW1  
VCORE  
VOUT1  
PGND1  
C4  
4.7µF  
Input Bypass Capacitor  
V
IN  
2.5V TO 5.5V  
C3  
4.7µF  
Connecting a 1 μF capacitor from VIN3 to GND reduces  
the circuit sensitivity to printed circuit board (PCB) layout,  
especially when long input traces or high source impedance  
are encountered. If greater than 1 μF of output capacitance is  
required, increase the input capacitor to match it.  
MODE  
GPIO  
VIO  
VDDA  
VIN3  
L2  
1µH  
C1  
1µF  
SW2  
VOUT2  
PGND2  
C5  
4.7µF  
ANALOG  
SUB-SYSTEM  
Table 10. Suggested 1.0 μF Capacitors  
EN1  
EN2  
EN3  
VOUT3  
Case  
Size  
Voltage  
Rating (V)  
VANA  
C6  
1µF  
Vendor  
Murata  
TDK  
Panasonic  
Taiyo Yuden  
Type  
X5R  
X5R  
X5R  
X5R  
Model  
GRM155B30J105K  
C1005JB0J105KT  
ECJ0EB0J105K  
LMK105BJ105MV-F  
0402  
0402  
0402  
0402  
6.3  
6.3  
6.3  
10.0  
Figure 50. Processor System Power Management with PSM/PWM Control  
Rev. A | Page 20 of 28  
 
 
 
ADP5022  
Input and Output Capacitor Properties  
Use the following equation to determine the worst-case capa-  
citance accounting for capacitor variation over temperature,  
component tolerance, and voltage.  
Use any good quality ceramic capacitors with the ADP5022  
as long as they meet the minimum capacitance and maximum  
ESR requirements. Ceramic capacitors are manufactured with  
a variety of dielectrics, each with a different behavior over  
temperature and applied voltage. Capacitors must have a  
dielectric adequate to ensure the minimum capacitance over  
the necessary temperature range and dc bias conditions. X5R  
or X7R dielectrics with a voltage rating of 6.3 V or 10 V are  
recommended for best performance. Y5V and Z5U dielectrics  
are not recommended for use with any LDO because of their  
poor temperature and dc bias characteristics.  
CEFF = CBIAS × (1 − TEMPCO) × (1 − TOL)  
where:  
CBIAS is the effective capacitance at the operating voltage.  
TEMPCO is the worst-case capacitor temperature coefficient.  
TOL is the worst-case component tolerance.  
In this example, the worst-case temperature coefficient  
(TEMPCO) over −40°C to +85°C is assumed to be 15% for an  
X5R dielectric. The tolerance of the capacitor (TOL) is assumed  
to be 10% and CBIAS is 0.94 ꢀF at 1.8 V as shown in Figure 51.  
Figure 51 depicts the capacitance vs. voltage bias characteristic  
of a 0402 1 μF, 10 V, X5R capacitor. The voltage stability of a  
capacitor is strongly influenced by the capacitor size and voltage  
rating. In general, a capacitor in a larger package or higher voltage  
rating exhibits better stability. The temperature variation of the  
X5R dielectric is about 15% over the −40°C to +85°C tempera-  
ture range and is not a function of package or voltage rating.  
Substituting these values into the following equation.  
CEFF = 0.94 ꢀF × (1 − 0.15) × (1 − 0.1) = 0.719 ꢀF  
Therefore, the capacitor chosen in this example meets the  
minimum capacitance requirement of the LDO over  
temperature and tolerance at the chosen output voltage.  
To guarantee the performance of the ADP5022, it is imperative  
that the effects of dc bias, temperature, and tolerances on the  
behavior of the capacitors are evaluated for each application.  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
1
2
3
4
5
6
DC BIAS VOLTAGE (V)  
Figure 51. Capacitance vs. Voltage Characteristic  
Rev. A | Page 21 of 28  
 
ADP5022  
PCB LAYOUT GUIDELINES  
Poor layout can affect ADP5022 performance, causing electro-  
magnetic interference (EMI) and electromagnetic compatibility  
(EMC) problems, ground bounce, and voltage losses. Poor  
layout can also affect regulation and stability. A good layout is  
implemented using the following guidelines:  
Route the output voltage path away from the inductor and  
SW node to minimize noise and magnetic interference.  
Maximize the size of ground metal on the component side  
to help with thermal dissipation.  
Use a ground plane with several vias connecting to  
the component side ground to further reduce noise  
interference on sensitive circuit nodes.  
Place the inductor, input capacitor, and output capacitor  
close to the IC using short tracks. These components carry  
high switching frequencies, and large tracks act as antennas.  
Rev. A | Page 22 of 28  
 
ADP5022  
EVALUATION BOARD SCHEMATICS AND ARTWORK  
C2  
0603  
J1  
L1  
1µH  
4.7µF  
J8  
J9  
J2  
B1  
C1  
D2  
D1  
VIN1  
SW1  
C3  
0603  
4.7µF  
C
0603  
10µF  
_1  
OUT  
B4  
A4  
A3  
A2  
C3  
B2  
BUCK1  
J3  
J4  
VIN2  
VOUT1  
PGND1  
VDDA  
C1  
0402  
1µF  
VIN3  
L2  
1µH  
AGND  
MODE  
EN1  
J10  
C4  
D3  
D4  
R1  
SW2  
VOUT2  
PGND2  
0  
C
0603  
10µF  
_2  
_3  
OUT  
BUCK2  
LDO  
J13  
J12  
J5  
B3  
C2  
EN2  
EN3  
A1  
VOUT3  
J7  
J6  
C
OUT  
0402  
1µF  
R2  
0Ω  
J11  
Figure 52. Evaluation Board Schematic  
SUGGESTED LAYOUT  
Figure 53. Top Layer, Recommended Layout  
Figure 54. Second Layer, Recommended Layout  
Rev. A | Page 23 of 28  
 
 
ADP5022  
Figure 55. Third Layer, Recommended Layout  
Figure 56. Bottom Layer, Recommended Layout  
Rev. A | Page 24 of 28  
ADP5022  
OUTLINE DIMENSIONS  
0.660  
0.602  
0.544  
2.12  
2.08 SQ  
2.04  
0.022  
REF  
SEATING  
PLANE  
4
3
2
1
A
BALL 1  
IDENTIFIER  
B
C
D
0.330  
0.310  
0.290  
1.50  
REF  
0.50  
REF  
0.04 NOM  
COPLANARITY  
0.380  
0.352  
0.324  
TOP VIEW  
(BALL SIDE DOWN)  
BOTTOM VIEW  
(BALL SIDE UP)  
0.280  
0.250  
0.220  
Figure 57. 16-Ball Wafer Level Chip Scale Package [WLCSP]  
Back-Coating Included  
(CB-16-7)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Output  
Undervoltage  
Lockout Level  
Temperature  
Range  
Package  
Option  
Branding  
Code  
Model  
ADP5022ACBZ-1-R72  
Voltage (V)1  
Package Description  
VOUT1 = 3.3 V  
VOUT2 = 1.5 V  
VOUT3 = 1.8 V  
VOUT1 = 1.2 V  
VOUT2 = 1.8 V  
VOUT3 = 2.8 V  
VOUT1 = 3.3 V  
VOUT2 = 1.8 V  
VOUT3 = 3.3 V  
Low  
Low  
High  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
16-Ball Wafer Level Chip Scale Package [WLCSP]  
16-Ball Wafer Level Chip Scale Package [WLCSP]  
16-Ball Wafer Level Chip Scale Package [WLCSP]  
CB-16-7  
CB-16-7  
CB-16-7  
L9H  
ADP5022ACBZ-2-R72  
ADP5022ACBZ-4-R72  
L9J  
LG7  
1 For additional voltage options, contact a local sales or distribution representative. Additional output voltages and UVLO available are  
Buck1 and Buck2: 3.3 V, 3.0 V, 2.8 V, 2.5 V, 2.3 V, 2.0 V, 1.82 V, 1.8 V, 1.6 V, 1.5 V, 1.3 V, 1.2 V, 1.1 V, 1.0 V, 0.9 V, 0.8 V  
LDO: 3.3 V, 3.0 V, 2.9 V, 2.8 V, 2.775 V, 2.5 V, 2.0 V, 1.875 V, 1.8 V, 1.75 V, 1.7 V, 1.65 V, 1.6 V, 1.55 V, 1.5 V, 1.2 V  
UVLO: 2.25 V or 3.9 V  
2 Z = RoHS Compliant Part.  
Rev. A | Page 25 of 28  
 
 
 
ADP5022  
NOTES  
Rev. A | Page 26 of 28  
ADP5022  
NOTES  
Rev. A | Page 27 of 28  
ADP5022  
NOTES  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08253-0-11/09(A)  
Rev. A | Page 28 of 28  

相关型号:

ADP5022ACBZ-1-R7

Dual 3 MHz, 600 mA Buck Regulator with 150 mA LDO
ADI

ADP5022ACBZ-2-R7

Dual 3 MHz, 600 mA Buck Regulator with 150 mA LDO
ADI

ADP5022ACBZ-4-R7

Dual 3 MHz, 600 mA Buck Regulator with 150 mA LDO
ADI

ADP5023

Dual 3 MHz, 800 mA Buck
ADI

ADP5023ACPZ-1-R7

Dual 3 MHz, 800 mA Buck
ADI

ADP5023ACPZ-R7

Dual 3 MHz, 800 mA Buck
ADI

ADP5023CP-EVALZ

Dual 3 MHz, 800 mA Buck
ADI

ADP5024

Dual 3 MHz, 800 mA Buck Regulators with Two 300 mA LDOs
ADI

ADP5024ACPZ-1-R7

Dual 3 MHz, 1200 mA Buck
ADI

ADP5024ACPZ-R7

Dual 3 MHz, 1200 mA Buck
ADI

ADP5024CP-EVALZ

Dual 3 MHz, 1200 mA Buck
ADI

ADP5030ACBZ-1228R7

DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PBGA16, 1.60 X 1.60 MM, 0.40 MM PITCH, ROHS COMPLIANT, WLCSP-16
ROCHESTER